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The spin-foam approach to quantum gravity rests on a quantization of BF theory using 2-complexes

and group representations. We explain why, in dimension three and higher, this spin-foam quantization

must be amended to be made consistent with the gauge symmetries of discrete BF theory. We discuss a

suitable generalization, called ‘‘cellular quantization,’’ which (1) is finite, (2) produces a topological

invariant, (3) matches with the properties of the continuum BF theory, and (4) corresponds to its loop

quantization. These results significantly clarify the foundations—and limitations—of the spin-foam

formalism and open the path to understanding, in a discrete setting, the symmetry-breaking which

reduces BF theory to gravity.
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Introduction.—Since it was first advocated by Baez [1],
Reisenberger [2], and Rovelli [3], the spin-foam approach
to quantum gravity has attracted considerable interest,
resulting in more than a hundred papers published on the
topic every year. In a nutshell, the idea underlying this
activity is that a ‘‘spacetime-covariant, Feynman-style’’
sum-over-histories formulation of background-
independent field theories exists in the form of a weighted
sum over two-dimensional cell complexes [3]. This ap-
proach is believed to provide a successful quantization of
the topological BF theory [4,5], in the form of the
Ponzano-Regge [6] and Ooguri [7] models (in three and
four dimensions, respectively), and work is underway to
adapt it to general relativity, understood as ‘‘BF theory
with extra constraints’’ [8]. Standard reviews of the spin-
foam formalism are in Refs. [5,9]; the state of the art
review is presented in [10].

In spite of strong efforts and promising results [11–18]
(and more references in [17]), several outstanding prob-
lems with the Ponzano-Regge and Ooguri (PRO) models
have remained open so far. We may list them as follows.
(1) Bubble divergences: the original PRO partition func-
tions are, in general, divergent. How should one regularize
them? (2) Topological invariance: the PRO partition func-
tions are formally invariant under changes of triangula-
tions, up to divergent factors. How can one turn them
into finite topological invariants? (3) Relationship to the
canonical theory: the connection between the Ponzano-
Regge model and loop quantum gravity in three dimen-
sions was established in [13]. Can this connection be
extended to four dimensions and higher? (4) Relationship
to the continuum theory: BF theory was quantized in the
continuum in [19,20] and was shown to be related to the
Ray-Singer torsion. Are the PRO models similarly related
to torsion? (See [14] for a positive answer in certain three-
dimensional cases.) (5) Diffeomorphism symmetry: both
the continuum BF action and the Einstein-Hilbert action

are diffeomorphism-invariant. What is the fate of this
symmetry in the PRO models?
Mostly thanks to the work of Freidel et al. [11,12], it has

become clear that all five problems are related to the issue
of identifying the BF shift symmetry in a discrete setting
and gauge-fixing it. No complete solution to this issue,
however, has been proposed in the literature. The purpose
of this Letter is to argue that there is a good reason for this:
when dealing with two-complexes only, as in the spin-foam
formalism, there is no shift symmetry. To identify this
symmetry, one must instead resort to an extension of the
spin-foam formalism including higher-dimensional cells.
This realization paves the way to what we call cellular
quantization. This cellular quantization solves problems 1
through 4 and sheds interesting new light on problem 5.
This Letter is organized as follows. We start by review-

ing the basic properties of the continuum BF theory,
emphasizing its gauge symmetries and relationship to ana-
lytic torsion. We then describe the spin-foam quantization
of BF theory, as described, e.g., in Baez’s reference paper
[5]. We show how to identify the gauge symmetries in a
discrete setting and perform a quantization which does
preserve the topological features of the continuum theory.
Finally, we establish that this cellular quantization corre-
sponds to the loop canonical quantization.
Continuum BF theory.—BF theory was introduced by

Horowitz [21] and Blau and Thompson [19] as an exactly
soluble diffeomorphism-invariant theory, illustrating the
connection between quantum gauge systems and manifold
topology previously discovered by Schwarz [22]. Defined
in terms of a gauge field (or gauge connection), A and a
g-valued (d� 2)-form B on spacetime M, where d ¼
dimM and g is the Lie algebra of the gauge group G, its
classical action reads

SBFðB; AÞ ¼
Z
M
hB ^ FðAÞi: (1)
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Here FðAÞ is the field strength of A, and the bracket denotes
a nondegenerate symmetric bilinear form in g, typically the
Killing form when g is semisimple. The corresponding
field equations are FðAÞ ¼ 0 and Dk�2

A B ¼ 0, with Dk
A

the covariant exterior derivative associated to A acting on
g-valued k-forms. (Note that Dk

A is not the k-fold of com-
position of the covariant exterior derivative with itself.)

In addition to the usual gauge symmetry of a gauge field,
the action (1) is invariant under the shift symmetry,

B � BþDd�3
A �d�3; (2)

where �d�3 2 �d�3ðM; gÞ is any g-valued (d� 3)-form.
When d � 4, this gauge symmetry is on-shell reducible:
given a flat connection�, i.e., one such that Fð�Þ ¼ 0, the
map �d�3 � Dd�3

� �d�3 is many-to-one. This is to say that

the gauge modes �d�3 (the ‘‘ghosts’’) themselves possess a
gauge symmetry, namely

�d�3 � �d�3 þDd�4
� �d�4; (3)

with �d�4 2 �d�4ðM; gÞ representing ‘‘ghosts for
ghosts.’’ In turn, these new variables themselves may
have a shift symmetry, and so on.

This structure naturally fits in the so-called twisted
de Rham complex,

0 ! �0ðM;gÞ!
D0

� � � � !
Dd�1

�

�dðM; gÞ ! 0: (4)

In this cochain complex, the coboundary maps are the
covariant exterior derivative Dk

� and the k-cochains are

elements of�kðM; gÞ, viz. (d� 2� k)-stage ghosts. Also,
note that, for a given flat connection �, the space of
solutions of the field equation for B is the cohomology
space Hd�2

� derived from (4).

The path-integral quantization of BF theory requires the
gauge-fixing of this shift symmetry. This can be achieved
by means of the resolvent method, a generalization of the
Faddeev-Popov trick to reducible gauge symmetries de-
vised by Schwarz [22]. Starting from the formal, pre-
gauge-fixing expression,

ZBF ¼
Z

DA
Z

DBeiSBFðB;AÞ; (5)

the resolvent method consists in extracting the ‘‘volume’’
of the space ImDd�3

A arising in (2) by means of the complex
(4). This method will be outlined below, when we apply it
to gauge-fix the discrete counterpart of BF theory. For now,
let us simply state the result of this procedure in the
continuum: the gauge-fixed partition function Z0

BF can be
written as a sum over the moduli space M of flat con-
nections on P, with a summand given by the analytic
torsion of the complex (4), viz.

Tor ½�� ¼
Yd�1

j¼0

detððDj
�ÞyDj

�Þð�1Þj=2: (6)

Here [�] denotes the gauge equivalence class of a flat
connection �, and the dagger denotes the adjoint with
respect to arbitrary inner products in the spaces
�kðM;gÞ; the Ray-Singer torsion is independent of these
inner products. In particular, Z0

BF is a topological invariant
of M [19]. (Strictly speaking, these results hold when the
twisted de Rham complex is acyclic, i.e., has vanishing
cohomology, for all flat connections �, implying that the
moduli space of flat connections is discrete. An extension
to the general case is discussed in [19]; see also [23].)
The torsion also provides the measure for transition

amplitudes and for the inner product between boundary
wave functions. Assume that M has two disconnected
boundaries N1, N2. Wave functions are square-integrable
functions over the moduli space of flat gauge fields onN1;2.

The transition from an initial state �1 to a final state �2

through M reads

h�2jZ0
BFj�1i ¼

X
½��2M

��
2ð½��ÞTor½���1ð½��Þ: (7)

From our perspective, the moral of this review is that, if
classical BF theory can be thought of as a theory of
connections and (d� 2)-forms, quantum BF theory, on
the other hand, involves the entire twisted de Rham com-
plex (4), with forms of all degrees.
Spin-foam quantization.—Let us now describe the spin-

foam quantization of BF theory, as presented, e.g., in [5].
Assume that G is compact and that M is equipped with a
triangulation � and its dual cell complex K. Define a
discrete connection on � as an assignment of an element
ge of the gauge group G to each edge (1-cell) e of K. Then
for each face (2-cell) f ofK, define the holonomyHf along

f as the ordered product of ge attached to the edges on
the boundary of f. The set of group elementsH ¼ ðHfÞf is
the discrete analogue of the field strength FðAÞ in the
continuum.
Now, consider again the formal expression (5) and ‘‘in-

tegrate over the B-field.’’ This gives

ZBF ¼
Z

DA�ðFðAÞÞ; (8)

with a functional delta function implementing the flatness
of the connection. Thanks to the discretization on K, the
formal measure DA can be defined by means of the Haar
measure dg on G, and we can set

ZBF ¼
Z
GE

Y
e

dge
Y
f

�ðHfÞ: (9)

Now, let us expand the Dirac delta on G in characters,

�ðgÞ ¼ X
j

dimðjÞtrDjðgÞ; (10)

where j ranges over the equivalence classes of unitary
irreps DjðgÞ of G, and recall the identity
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Z
G
dg

Od
l¼1

DjlðgÞ ¼ X
�

j�ih�j (11)

for the projector on the G-invariant subspace of the tensor
representation

N
jl, of which the ‘‘intertwiners’’ � spans

an orthonormal basis. Plugging (10) and (11) into (9) then
gives, after some easy algebra,

ZBF ¼ X
ðjfÞ

Y
f

dimðjfÞ
Y
v

fNdjg: (12)

Here, Nd ¼ 3ðdþ 1Þðd� 2Þ=2, and fNdjg is the Wigner
Ndj symbol. This expression defines the Ponzano-Regge
(d ¼ 3) and Ooguri (d ¼ 4) models.

Unfortunately, (12) is known to be ill defined in general:
when the sum over representations in (12) is truncated to a
finite value�, the sum diverges as� ! 1. This phenome-
non has been coined ‘‘bubble divergences’’ [24] and was
interpreted as an ‘‘infrared effect’’ [5,24]. The connection
between these divergences and the BF shift symmetry was
understood in three dimensions by Freidel and Louapre
[11], and a ‘‘gauge-fixing’’ scheme consisting of removing
certain faces of K was proposed [11,12]. For nontrivial
topologies, however, this scheme turned out to fail turning
(12) into a finite number [25].

It should be clear from the above discussion that the
spin-foam scheme, which only relies on the 2-skeleton of
K, does not implement any gauge-fixing of the discrete
shift symmetry; it simply amounts to a rewriting of the
unfixed partition function (5). This is consistent when
d ¼ 2, in which case BF theory is nothing but the zero-
coupling limit of Yang-Mills theory, but it is inconsistent
when d � 3, as the gauge redundancy then makes the
expression (12) ill defined. It is these divergences that
prevent (12) defining a bona fide topological invariant
and cramp any connection with Ray-Singer torsion.

Cellular quantization.—Suppose now that d � 3. Let
A ¼ GE denote the space of discrete connections on K,
and F the subspace of flat discrete connections, namely
those for whichHf ¼ 1 for all faces f. In the neighborhood

of F , a discrete connection A can be seen as an element
ð�; a�Þ 2 F � N�F of the normal bundle to F , accord-

ing to A ¼ exp�ða�Þ. (We disregard the possibility that F
may contain singularities; see [26] for a discussion of this
issue.) Here, N�F is the set of tangent vectors at �

orthogonal to F , and exp�:T�A ! A denotes the

Riemannian exponential map. Furthermore, the holonomy
can be expanded as

Hf ¼ ðdHfÞ�ða�Þ þOða2�Þ; (13)

and the Haar measure dA on A splits as

dA ¼ d�da�; (14)

where d� is the induced Riemannian measure on F and
da� is the Lebesgue measure on N�F . Finally, we have

�ðHfÞ ¼
Z
g
dbfe

ihbf;ðdHfÞ�ða�Þi: (15)

Hence (9) can be rewritten as
R
F d�z�, where z� has the

BF-like form

z� ¼
Z
N�F

da�
Z
gF
dbeisðb;a�Þ; (16)

where b ¼ ðbfÞf and

sðb; a�Þ ¼
X
f

hbf; ðdHfÞ�ða�Þi: (17)

To proceed with the quantization of discrete BF theory, we
must now identify the gauge symmetries of (16). To this
effect, consider the discrete twisted de Rham complex,

0 ! gc0!
�0
�

. . . !
�d�1
�

gcd ! 0; (18)

where ck is the number of k-cells of K. The cochain space
gck is the discrete analogue of �kðM; gÞ, and �k

� is the

discrete covariant exterior derivative defined in [14,25],
satisfying �kþ1

� � �k
� ¼ 0. In particular, if � is the

Maurer-Cartan form on G and a ¼ �ða�Þ, then �1
�ðaÞ ¼

dH�ða�Þ. Using the bracket in g, we can also consider the

adjoint maps @�k ¼ ð�k�1
� Þy, defining the dual complex to

(18), namely

0 ! gcd!@
�
d
. . .!@

�
1
gc0 ! 0: (19)

Thanks to this cohomological structure, it is easy to iden-
tify the gauge symmetries of (17): it is simply

b � bþ @�3 ðX3Þ; (20)

with X3 2 gc3 . Indeed, we have

h@�3 ðX3Þ; dH�ða�Þi ¼ hX3; �
2
� � �1

�ðaÞi ¼ 0: (21)

This is nothing but the discrete counterpart of the shift
symmetry (2). When d � 4, this symmetry is reducible, as

Im@�4 � Ker@�3 �, etc. That is, just as in the continuum,

the reducible symmetries of the action (17) involves all the
chain groups in (19), hence cells of all dimensions.
Let us now use the resolvent method to gauge-fix the

discrete shift symmetry. Assume that (18) and (19) are

acyclic, so that Im@�3 exhausts the kernel of (17). (In the

case where the complex (18) is not acyclic, and in particu-
lar when the moduli space of flat connections is not dis-
crete, this method can be amended along the lines of [23].
This yields a similar result, except for a few more deter-
minants.) Then the goal is to restrict the integral over b in

(16) to an integral over Imð@�3 Þ?. Write formally

Z
gF
dbeisðb;a�Þ ¼ VolðIm@�3 Þ

Z
ðIm@�

3
Þ?
db?eisðb;a�Þ (22)
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and observe that, since @�3 provides an isomorphism be-

tween gc3=Ker@�3 ¼ gc3=Im@�4 and Im@�3 , and moreover

�2
� ¼ ð@�3 Þy, we can write

Vol ðIm@�3 Þ ¼ detð�2
�@

�
3 Þ1=2

Volðgc3Þ
VolðIm@�4 Þ

: (23)

Iterating this recursive relation, we get

Vol ðIm@�3 Þ ¼
Yd�1

j¼2

detð�j
�@

�
jþ1Þð�1Þj=2VolðgcjÞð�1Þj : (24)

Now, let us pretend that the chain spaces gcj have unit
volume: this is the meaning of the expression ‘‘dividing by
an infinite volume,’’ underlying the gauge-fixing proce-
dure. (Precisely the same step is taken in the continuum
quantization of BF theory.) Then we can replace (22) by
the finite quantity

Yd�1

j¼2

detð�j
�@

�
jþ1Þð�1Þj=2 Z

ðKer@�
3
Þ?
db?eisðb?;a�Þ: (25)

Hence, returning to (16) and performing the integral over
b?, we get as the definition of gauge-fixed version of z�

z0� ¼ Yd�1

j¼2

detð�j
�@

�
jþ1Þð�1Þj=2 Z

N�F
da��ðdH�ða�ÞÞ: (26)

The remaining integral over a� is now well defined and

gives detð�1
�@

�
2 Þ�1=2. Hence, we obtain for the gauge-fixed

partition function Z0
BF ¼ R

F d�z0�:

Z0
BF ¼

Z
F
d�

Yd�1

j¼1

detð�j
�@

�
jþ1Þð�1Þj=2: (27)

The integral over F can be pulled back to to the moduli
space of flat discrete connections M ¼ F =Gc0 by inte-
grating along the gauge orbits of each flat connection

[14,26]. This yields one more determinant detð�0
�@

�
1 Þ1=2,

and thus

Z0
BF ¼ X

½��2M

Tor½�� (28)

with

Tor ½�� ¼
Yd�1

j¼0

detð@�jþ1�
j
�Þð�1Þj=2: (29)

The expression (28) is a topological invariant of K. In
particular, the quantity Tor½��ðK;GÞ is the twisted

Reidemeister torsion, which is known to coincide with
the twisted analytic torsion. Thus, (28) matches with the
continuum result, consistently with the general expectation
that, for a topological quantum field theory with finitely
many degrees of freedom, discretization should play no
physical role.

Relation to the loop formalism.—The above method
naturally gives rise to the loop quantization of BF theory.
In the loop approach, one quantizes before restricting to
flat gauge fields. Given an embedded, closed graph �,
cylindrical wave functions are functions of the Wilson
lines along the lines of �. For each graph, there is a
Hilbert space whose measure is given by the Haar measure
of G on each line,

Q
edge. The Hilbert spaces of two

different graphs are orthogonal. The standard gauge sym-
metry requires invariance under G-translation on the
source and end nodes of the lines.
Heuristically, the transition amplitudes in the continuum

(7) suggest that they can be formulated in the loop ap-
proach by taking as boundary states cylindrical functions
restricted to the moduli space M, the torsion still provid-
ing the measure. AssumeM has two disconnected bounda-
ries N1, N2, with two closed, embedded graphs �1, �2

associated with two cylindrical functions ��1
, ��2

. The

transition is regularized by choosing a cell decomposition
K of M such that �1, �2 are included into the 1-skeleton.
The ungauge-fixed transition amplitude reads

h��2
jZBFj��1

i¼
Z Y

e

dge�
�
�2
ðgeÞ��1

ðgeÞ
Y
f

�ðHfÞ: (30)

As the shift symmetry does not act on Wilson lines, the
process of the previous section applies. The wave-
functions are evaluated on M because there are no fluctu-
ations around flat connections, yielding

h��2
jZ0

BFj��1
i ¼ X

½��2M

��
�2
ð½��ÞTor½����1

ð½��Þ: (31)

Finally, the regulator K can be removed thanks to the
topological invariance of the torsion, which makes the
continuum limit result into the above formula. Let us
mention an outcome of this result: the loop quantization
of the BF model does not distinguish knottings of the
graphs �1;2.

Conclusion.—We have performed a topological quanti-
zation of discrete BF theory, proving its equivalence to the
usual quantization in the continuum. This result solves
several open problems of the field and extends previous
results obtained in dimension 3 to arbitrary dimensions:
(1) transition amplitudes are finite, answering the issue of
bubble divergences [11,26]; (2) the gauge symmetries in
the discrete setting exist, generalizing [11,12]; (3) they can
be gauge-fixed to derive the loop quantization, generaliz-
ing [13]; and (4) as a result, one gets a topological invari-
ant, which proves that the classical gauge symmetries are
correctly promoted to the quantum level.
The crucial steps of our quantization require us to

take into account cells of all dimensions in the cell com-
plex and not just its 2-skeleton as in the spin-foam quan-
tization. A challenge for future investigations is to find a
representation of (31) as a state-sum, as is done in the
latter approach. (This is of direct relevance for nontrivial
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topologies. But in the spin-foam literature, one is mainly
interested in the local degrees of freedom and not topo-
logical ones, so it is usually assumed that one can work
safely on spheres for which there are no difficulties
in gauge-fixing.)

The last issue we mentioned in the introduction is the
major difficulty in quantum gravity: understanding the
quantum version of diffeomorphism-invariance. It is well
known that diffeomorphism-invariance in the BF model is
contained within its shift symmetry [21]. Hence, the sub-
stance of general relativity is to break the topological
invariance while preserving diffeomorphism-invariance.
Spin-foam models for quantum gravity are very much in
line with this idea, as they start by quantizing BF theory
and then introduce some breaking of the shift symmetry to
restore the local degrees of freedom. It is also known that
discrete models of gravity generically break
diffeomorphism-invariance [17]. Showing that it is re-
stored in the continuum limit (after some coarse-graining
or summing over spin-foams appropriately) is one of the
main programs in the spin-foam approach. Now that the
shift symmetry is correctly controlled in the discrete set-
ting, we feel that the noose is tightening around
diffeomorphisms.
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