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Abstract. We introduce a new method, based on the recently developed
random tensor theory, for studying the p-spin glass model with non-Gaussian,
correlated disorder. Using a suitable generalization of Gurau’s theorem on the
universality of the large N limit of the p-unitary ensemble of random tensors, we
exhibit an infinite family of such non-Gaussian distributions which leads to the
same low temperature phase as the Gaussian distribution. While this result is easy
to show (and well known) for uncorrelated disorder, its robustness with respect
to strong quenched correlations is surprising. We show in detail how the critical
temperature is renormalized by these correlations. We close with speculation on
possible applications of random tensor theory to finite-range spin glass models.
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1. Introduction

It is well known that the phase diagram of the p-spin glass model [1, 2] does not depend
on the details of the disorder distributions, in the following sense: if Ji1···ip denotes a
set of independent and identically distributed p-valent couplings between sites i1 · · · ip, a
non-quadratic potential V (Ji1···ip) in the coupling distribution∏

i1···ip

dJi1···ip e
−J2

i1···ip/σ
2+V (Ji1···ip )

(1)

is irrelevant in the thermodynamic limit. That a similar result would hold for correlated
disorder distributions, with terms such as∑

{il,jl}

Ji1i2i3Ji1j2j3Jj1j2j3Jj1i2i3 , (2)

in the potential, is much less obvious. In fact, to our knowledge, no analytic framework
for dealing with such correlated, non-Gaussian disorder has been reported so far. Since
disorder correlations are to be expected in actual physical systems, understanding their
effect is an important problem.

In this work we exhibit an infinite class of non-Gaussian terms of the kind (2) such
that (i) the thermodynamic limit N →∞ is exactly soluble, and (ii) the spin glass phase
has the same structure as for uncorrelated disorder, except for a renormalization of the
critical temperature. This provides the first general result on spin glasses with strongly
correlated disorder.

Our approach is based on new results in random tensor theory. A natural
generalization of random matrices—random tensors—have recently been shown to possess
a large N limit [3] dominated by a few, well-identified ‘melonic’ graphs (the tensor
equivalent of ’t Hooft’s planar graphs in matrix theory [4]). Furthermore, the melonic
family can actually be resummed exactly, and turns out to exhibit interesting critical
and multicritical behavior [5]. These results have not been applied to spin glass problems
previously, and our hope in this work is to convey that random tensors are potentially
powerful tools for spin glass theory, just like random matrices [6].

doi:10.1088/1742-5468/2013/02/L02003 2

http://dx.doi.org/10.1088/1742-5468/2013/02/L02003


J.S
tat.M

ech.(2013)
L02003

Universality in p-spin glasses with correlated disorder

From the perspective of random tensor theory, the quenched couplings of spin glasses
with p-spin interactions are non-Gaussian rank-p random tensors. The behavior of such
tensors in the large N limit has been investigated in [7, 8], with a striking conclusion: in a
suitable ensemble with p-unitary symmetry (more details are given in the text), this limit
is universally Gaussian. This means that, in this ensemble, in the large N limit the sole
effect of the self-interactions of large tensors is to dress the propagator. Here, we show how
this result can be generalized to include interactions between tensors and spin variables,
and thus obtain the aforementioned universality result.

This work is organized as follows. We first recall the Hamiltonian for p-spin models and
insist on the need for a correlated disorder. Then, we recall the relevant properties of large
random tensors in the p-unitary ensemble. This enables us to show how non-Gaussian,
correlated, quenched variables can be integrated exactly in the large N (thermodynamic)
limit, yielding our universality theorem. We conclude with a few words on the possible
relevance of tensor techniques for finite-range p-spin glasses.

1.1. p-spin glass models

We consider a p-spin Hamiltonian [1, 2]

HJ(S) = −
∑

1≤i1···ip≤N
Ji1···ipSi1 · · ·Sip + c.c. (3)

where Ji1...bip is a complex3 tensor describing the couplings and S = (Si)1≤i≤N is a set of
real spins4 with lattice index i, weighted by a (normalized) probability measure dΩ(S)
such that ∫

dΩ(S)
N∑
i=1

S2
i = O(N). (4)

This includes in particular Ising [1] and spherical [2] spins.
When the couplings are Gaussianly distributed, it is well known that such p-spin

glass models exhibit replica symmetry breaking in the low temperature phase [2, 11,
12] and have a dynamical transition at a higher temperature where a large number of
metastable states (growing exponentially with N) dominates the free energy landscape [13,
14]; their relevance is conjectured to extend to structural glasses [15]. These results extend
easily to the case of independent and identically distributed (i.i.d.) couplings: all terms
of order higher than 2 in Ji1...ip and J i1...ip in the measure on (J, J) are irrelevant in the
thermodynamic limit N →∞.

In this work we aim to study a family of correlated non-Gaussian measures on the
disorder. Physically, randomness of the couplings comes from randomness of the positions
of the spins, and in general we should not expect the couplings between different sets of p
spins to be independent (for instance due to the geometric relations between the positions
of the spins). One should therefore perturb the Gaussian distribution (with covariance σ2)

3 The use of complex rather than real tensors is motivated by purely technical convenience and does not change
the physics in any way.
4 It is also possible to include Potts or vector spins coupled according to some fixed multi-linear map.
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on the couplings with a polynomial V (J, J). The quenched free energy is given by

[F (J, J)] =

∫
dJ dJ e−N

p−1(J ·J/σ2+V (J,J))F (J, J)∫
dJ dJ e−N

p−1(J ·J/σ2+V (J,J))
, (5)

with

− βF (J, J) = ln

∫
dΩ(S)e−βHJ (S), (6)

and J · J is shorthand for
∑

j1...jp
Jj1...jpJ j1...jp .

The evaluation of [F ] for a generic potential V is of course a completely open problem.
However, the theory of large random tensors provides an exact calculation for an infinite
family of potentials satisfying a particular kind of invariance.

1.2. Large random tensors

We now review the relevant properties of large random tensors discovered in [3, 5, 7]. The
first obvious observation is that, unlike symmetric/Hermitian matrices, tensors cannot be
diagonalized. Hence, a key concept in random matrix theory, the eigenvalue distribution,
does not carry over to the case of higher rank. It turns out however that this fact does not
preclude the development of random tensor theory, which in fact relies on the identification
of an ensemble with suitable symmetry properties.

One such ensemble of tensors—indeed the only one identified so far—is the p-unitary
ensemble, defined as follows. Consider a rank-p complex tensor in N dimensions J , with
components Ji1...ip in a fixed basis, and for each set of p unitary matrices U (1) to U (p),
define

J ′i1...ip =
∑
j1...jp

U
(1)
i1j1
· · · U (p)

ipjp Jj1...jp . (7)

Then we say that a function V (J, J) of J and its complex conjugate J is a p-unitary
invariant if5

V (J ′, J ′) = V (J, J). (8)

The set of p-unitary invariants is conveniently parameterized by p-bubbles B, that is
p-valent bipartite connected graphs with edges colored by numbers between 1 and p, such
that each ‘color’ is incident exactly once to each vertex; see figure 1. A bubble represents
an invariant denoted as trB(J, J), by associating a tensor J with each ‘white’ vertex of
B and a conjugate J to each ‘black’ vertex, and contracting their kth indices along the
edges colored with k. By the fundamental theorem of classical invariants of U(N) (see for
instance [9]), a general p-unitary invariant can be expanded as

V (J, J) =
∑
B

tB trB(J, J), (9)

where the tB are coupling constants.

5 The corresponding symmetry group is known as the external tensor product of p copies of U(N).
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Figure 1. Some p-bubbles at p = 3. Up to color relabeling, there is a single bubble
with four vertices (on the left), whose invariant is

∑
{il,jl}Ji1i2i3J i1j2j3Jj1j2j3J j1i2i3 .

But there exist different bubbles with six vertices (the three on the right).

For a given invariant potential V (J, J), we define the average of f(J, J) over J by

[
f(J, J)

]
=

∫
dJ dJ e−N

p−1(J ·J/σ2+V (J,J))f(J, J)∫
dJ dJ e−N

p−1(J ·J/σ2+V (J,J))
. (10)

The Feynman diagrammatic expansion of these quantities involves (p+1)-colored bipartite
graphs, made of p-bubbles connected together via extra lines with color ‘0’ incident on
each vertex and corresponding to the propagator σ2 in (10).

The following results concerning the large N limit of (10) have been proved:

• The Feynman expansion is dominated in the large N limit by a simple class of graphs,
called melonic graphs, which generalize ’t Hooft’s planar graphs [3]. Intuitively, a
(p+ 1)-colored graph is melonic if it can be built from recursive insertions on any line
of two vertices connected together by p lines, as in figure 2.

• The large N limit is Gaussian, in the sense that up to subleading corrections in 1/N ,[
trB(J, J)

]
= NG

|B|/2
2 , (11)

where |B| is the number of vertices of the bubble B and G2 = [J · J ]/N is the dressed
propagator depending on the potential V [7].

• The following Schwinger–Dyson equation holds in the N →∞ limit [8]:

[J · J ]

σ2N
+
∑
B

tB
|B|
2

[trB(J, J)]

N
= 1. (12)

The first result implies that all non-melonic bubbles B in the potential drop out in the
large N limit, and therefore we can restrict the sum in (9) to melonic bubbles (and hence
hereafter B will always denote a melonic bubble). In figure 1, all bubbles are melonic
except the non-planar one on the right.

The second result has been coined the universality property of the p-unitary ensemble
of random tensors, and can be seen as a non-trivial generalization of the central limit
theorem. Its origin is that there is only one way to dress a melonic bubble B with
propagators in a melonic way, which happens to correspond to Gaussian contractions.
This feature is specific to tensors and does not hold for random matrices. In a way, this
work can be read as the physics counterpart of this surprising mathematical result. We
refer the reader to the review [10] and to the original papers for more details on random
tensor theory.
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Figure 2. A patch of a melonic graph, recursively built by inserting on any line a
pair of vertices, a black one and a white one, connected together via p lines (here
p = 3).

1.3. Universality in the couplings

Let us now come back to spin glasses. Following the standard recipe for computing
quenched quantities [17], we consider the averaged replicated partition function

[Zn] =

∫ n∏
a=1

dΩ(Sa) e−βHeff({Sa}), (13)

where a is the replica index and the effective Hamiltonian is defined by

e−βHeff({Sa}) =
[
e−β

∑n
a=1HJ (Sa)

]
. (14)

In diagrammatic language, Heff is given by the sum over all connected (p + 1)-colored
bipartite graphs (henceforth ‘graphs’) with spins Sai on the external legs. Denoting as k
the order of the effective coupling between replicas a1 · · · ak, this can be pictured as

(15)

Here the solid line is the J-propagator (tensor lines with color 0), and the p dashed line
emerging from each external leg represents the external spin variables Sak

il
. The blob Gk

is the large N tensor connected k-point function, i.e. the sum over all connected melonic
graphs with k external (solid) legs. For each graph contributing to the blob amplitude,
the site indices il of the spins are contracted along ‘broken faces’, i.e. connected paths
with alternating color 1 ≤ c ≤ p and 0, from one external dashed leg to another, through
the graph.

Let us now show that the k = 2 term dominates in the large N limit. Observe
that powers of N in Heff({Sa}) have three sources: the tensor propagators, the bubble
interactions trB(J, J), and the sums over site indices i. The first two contributions are
those of a melonic graph with k cut lines of color 0 whose scaling has been was found in
the appendix of [7] to be p − (p − 1)k − ρ, where ρ is a positive number independent of
k. As for the spin contribution, from (4) we see that it gives at most a factor of N per
broken face, and there are at most pk/2 of them. This gives for the scaling degree ω(k)
in N of the order-k term of (15)

ω(k) ≤ p−
(p

2
− 1
)
k. (16)

doi:10.1088/1742-5468/2013/02/L02003 6
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We conclude that it is indeed the case that only k = 2 terms are relevant in the large N
limit. Thus, at leading order (15) reduces to

(17)

To complete our evaluation of the effective Hamiltonian, we must compute the two-
point function (G2)i1...bip;j1...bjp = [Ji1...bipJ j1...bjp ] of the tensor. Its scaling withN isN−(p−1).
Its tensorial structure is

∏p
l=1δil,jl which identifies, by pairs, the lattice sites between the

replicas a and b. Finally its amplitude, simply denoted as G2, is found by inserting the
universality property (11) into the Schwinger–Dyson equation (12), yielding

G2

σ2
+
∑
m≥2

( ∑
B∈Bm

tB
)
mGm

2 = 1, (18)

in which Bm denotes the set of melonic bubbles with 2m vertices. The leading-order
connected two-point function is the solution of this polynomial6 equation, and depends
on the whole set of coupling constants tB. For example, for a potential with a single
four-vertex bubble (see figure 1) with coupling constant t, equation (18) becomes

2σ2tG2(t)2 +G2(t) = σ2, (19)

and hence, picking the solution with G2(0) = σ2,

G2(t) =

√
1 + 8σ4t− 1

4σ2t
. (20)

This is a smoothly decreasing function of t ≥ −1/8σ4.
Summarizing, we have proved that

− βHeff({Sa}) =
β2G2

Np−1

∑
a,b

∑
i1···ip

p∏
l=1

SailS
b
il
, (21)

which is the usual p-spin replica Hamiltonian [11, 16], except for the variance σ2 which is
replaced by G2 (which as we saw can be computed exactly for a given tensor quenched
potential V ). This is the content of our universality theorem, the main result of this work.
It shows that the higher order terms in the quenched distribution change the critical
temperature, but not the structure of the low temperature phase.

2. Conclusion and outlook

We have introduced large random tensors as a new tool for spin glass theory. Using the
peculiar scaling behavior of tensors in the p-unitary ensemble, we have identified an infinite
universality class of infinite-range p-spin glasses with non-Gaussian correlated quenched
distributions. To our knowledge, this is the first universality theorem of spin glass theory
with this level of generality.

We close with a more prospective remark. Just like their Sherrington–Kirkpatrick
relatives, the p-spin interactions in (3) have infinite range, and for this reason p-spin glass

6 Or analytic, if V has infinitely many bubble terms.
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models are judged (at least partially) unphysical. We expect however that random tensor
techniques should be applicable to finite-range models too. Indeed, from the random tensor
perspective, a finite-range spin glass model is one for which the J-propagator is non-trivial,
and in particular depends on the tensor indices of J . A typical example of interest here
would be

σ2
i1...bip;j1...bjp

=

∏p
k=1 δikjk∑

1≤l<k≤p(il − jk)2 + 1
, (22)

which goes to zero when the lattice sites are far away. Such tensor models have already been
considered in the context of quantum gravity [18], where they have been called tensor field
theories (TFT). The key difference between TFT and the simple tensor models considered
in this work is the appearance of a renormalization flow. The first renormalizable TFT has
been identified in [19], and developments are happening quickly in this area. We expect
that these new techniques will prove useful in the difficult field of finite-range spin glass
theory.
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Gurau R and Rivasseau V, The 1/N expansion of colored tensor models in arbitrary dimension, 2011

Europhys. Lett. 95 50004 [arXiv:1101.4182]
Gurau R, The complete 1/N expansion of colored tensor models in arbitrary dimension, 2012 Annales Henri
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