
Testing the nonlinear flux Ansatz for maximal supergravity

Hadi Godazgar,* Mahdi Godazgar,† and Hermann Nicolai‡

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Potsdam, Germany
(Received 7 March 2013; published 23 April 2013)

We put to test the recently proposed nonlinear flux Ansatz for maximal supergravity in 11 dimensions,

which gives the seven-dimensional flux in terms of the scalars and pseudoscalars of maximal N ¼ 8

supergravity, by considering a number of nontrivial solutions of gauged supergravity for which the higher-

dimensional solutions are known. These include the G2 and SUð4Þ� invariant stationary points. The

examples considered constitute a very nontrivial check of the Ansatz, which it passes with remarkable

success.
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I. INTRODUCTION

Recently [1], a simple nonlinear flux Ansatz giving the
seven-dimensional components of the 3-form potential of
11-dimensional supergravity [2] in terms of the scalars and
pseudoscalars of maximal (gauged) N ¼ 8 supergravity
[3] has been proposed. This result arose from an attempt
to understand the embedding of a recently discovered
continuous family of inequivalent maximal (N ¼ 8)
gauged supergravities in four dimensions [4]. The emer-
gence of this new family of theories follows from the
electric-magnetic duality of the ungauged N ¼ 8 theory
[5] and can thus be understood in terms of the freedom to
rotate between how one chooses to define electric and
magnetic vector fields [6]. The inequivalence of the result-
ing theories is confined to the gauged theory, because in the
ungauged theory electric-magnetic duality renders all such
theories equivalent. From an 11-dimensional perspective,
the electric vector fields arise from the off-diagonal elfbein
components (graviphoton), while the magnetic vector
fields emerge from particular components of the 3-form
potential.

A standard method by which new theories are ob-
tained in supergravity is reducing a higher dimensional
theory on some group manifold or coset space. The
problem of determining whether a coset space reduction
is consistent, in the sense that every solution of the
lower-dimensional theory can be uplifted to a solution
of the higher-dimensional theory, is a subtle one. In fact,
the expectation is that such reductions are, in general,
inconsistent [7]. A notable exception to this expectation
is the consistency of the seven-sphere reduction
of 11-dimensional supergravity [8,9]. Central to this
result is a local SU(8) invariant reformulation of the
11-dimensional theory [10], which in the reduction on
a seven-torus T7 immediately reduces to the E7 invariant
theory of Cremmer and Julia [5], without the need to

dualize tensors to scalars. This reformulation necessi-
tates the introduction of new SU(8) covariant objects in
11 dimensions. The most significant such object is the
generalized vielbein, which arises from the study of the
supersymmetry transformation of the graviphoton and
replaces the siebenbein in the reformulated theory. The
intimate connection between the electric vector fields of
the four dimensional theory and the graviphoton leads
naturally to the nonlinear metric Ansatz [11],

��1gmnðx;yÞ
¼1

8
KmIJðyÞKnKLðyÞ½ðuijIJþvijIJÞðuijKLþvijKLÞ�ðxÞ;

(1)

whereby the seven-dimensional metric gmn is given in
terms of the scalar and pseudoscalar fields of N ¼ 8
supergravity, via the E7ð7Þ matrix components uðxÞ and

vðxÞ (see (49) below), and of the Killing vectors KmðyÞ
on the seven-sphere S7 [where the 11-dimensional coor-
dinates are split as zM ¼ ðx�; ymÞ]. We note that the
above formula has been subjected to numerous tests
and has proven its usefulness in other contexts, such as
the AdS/CFT correspondence [11–18]. The proof of
consistency in Ref. [8] also furnishes a formula for the
4-form field strength, modulo a subtlety that is resolved
in Ref. [9]. However, this formula appears to be too
cumbersome for practical applications.
The remarkable result of Ref. [1] is that there exists an

object analogous to the generalized vielbein that arises
from the supersymmetry transformation of the compo-
nents of the 3-form potential from which the magnetic
vector fields of the four-dimensional theory arise. This
new generalized vielbein now replaces the components
of the 3-form potential Amnp along the seven directions

in the local SU(8) invariant reformulation of the
11-dimensional theory. Furthermore, it leads to a non-
linear flux Ansatz, which complements the nonlinear
metric Ansatz above [1],
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ffiffiffi
2

p
KpIJðyÞKqKLðyÞ½ðuijIJ þ vijIJÞðuijKL þ vijKLÞ�ðxÞAmnpðx; yÞ ¼ �iKmn

IJðyÞKqKLðyÞ½ðuijIJ � vijIJÞðuijKL þ vijKLÞ�ðxÞ:
(2)

While this nonlinear flux Ansatz takes a surprisingly simple
form, it is not a formula that can be found by asserting
consistency with previous results. This is a major differ-
ence with the corresponding result for the AdS7 � S4

compactification of maximal supergravity, where the non-
linear Ansätze can be directly substituted into the higher-
dimensional field equations [19]; such a direct substitution
is not possible for the AdS4 � S7 compactification. Let us
also mention that there exist partial results and uplift
formulae for truncated versions of the maximal theory
where the scalar sector is much simpler (see for example
Refs. [20–27] and references therein). However, the for-
mula above cannot be guessed from these. Its derivation is
critically dependent on an analysis of the manifestly local
formulation of 11-dimensional supergravity. Last but not
least we wish to point out that in comparison with other
theories, N ¼ 8 supergravity is distinguished by an aston-
ishingly rich variety of stationary points [28]1 that can now
be explored by means of the new formula.

The nonlinear flux Ansatz given in Eq. (5.11) of Ref. [1]

differs from the above expression by the factor of
ffiffiffi
2

p
on the

left-hand side. In fact, as already pointed out there, this
overall factor can so far not be determined from intrinsi-
cally Kaluza-Klein theoretic considerations matching the
11-dimensional 3-form potential with the four-dimensional
gauge field. This is in marked contrast to the graviphoton,
for which general Kaluza-Klein theory gives its precise
relation to the four dimensional gauge field, by matching
the non-Abelian interaction with the commutator of two
Killing vector fields. However, as we will show here, this
factor is universally and unambiguously the same for all
solutions, and does follow by explicitly computing the
3-form potential using the above Ansatz for solutions
of gauged supergravity for which the higher dimensional

uplift solution is known (the factor
ffiffiffi
2

p
is most easily

checked for the Englert solution [30]).
The aim of this paper, then, is to test the nonlinear flux

Ansatz for a number of solutions of gauged supergravity. In
order to make the paper self-contained we begin, in Sec. II,
by describing the main conventions and definitions that are
required, summarizing various known results. In addition,
in Appendix C, we list some important �-matrix identities,
most of which already appear in the appendices of
Refs. [5,10], while some are new.

In Sec. III, we begin by describing the 11-dimensional
G2 invariant solution of Ref. [11]. Then, we consider the
G2 invariant stationary point ofN ¼ 8 supergravity [31,32]

that uplifts to the aforementioned solution, rederiving the
E7 matrix components u and v that are parametrized by the
scalars and pseudoscalars. These components are essential
inputs in the nonlinear Ansätze. We calculate the 3-form
potential using the nonlinear flux Ansatz, Eq. (2), verifying
its total antisymmetry as is expected from the general
argument in Ref. [1]. The field strength of this potential
is then derived for the G2 family of solutions. Substituting
the G2 stationary point values yields the flux of the G2

invariant solution of the 11-dimensional theory with pre-
cise agreement.
As our next test, we consider the SUð4Þ� invariant

solution of Ref. [33] in Sec. IV. We rewrite this solution
of 11-dimensional supergravity in terms of geometric
quantities defined on the seven-sphere. As in Sec. III, we
derive the 3-form potential using the nonlinear flux Ansatz
and confirm that at the stationary point [31,32] the asso-
ciated field strength matches precisely with that of the
11-dimensional solution.
Furthermore, in Appendix A, we give the metric and the

flux calculated from the nonlinear Ansätze with the scalars
of the SOð7Þ� invariant family of maximal gauged super-
gravity [31,32]. These examples are simple enough for the
reader to immediately match with the known SOð7Þþ [34]
and SOð7Þ� [30] solutions of 11-dimensional supergravity
and are thus included mainly for the reader’s convenience.

II. PRELIMINARIES

In this paper, we follow the conventions of Ref. [10].
The bosonic field equations of 11-dimensional super-
gravity [2] read2

RMN ¼ 1

72
gMNF

2
PQRS �

1

6
FMPQRFN

PQR; (3)

E�1@MðEFMNPQÞ ¼
ffiffiffi
2

p
1152

i�NPQR1...R4S1...S4FR1...R4
FS1...S4 ;

(4)

whereE is the determinant of the elfbein EM
A. We note that

solutions to these combined equations are only determined
up to an overall constant scaling,

gMN ! �gMN; FMNPQ ! �3=2FMNPQ: (5)

Such a rescaling must be taken into account when compar-
ing the various solutions given in the literature with the
ones constructed from the nonlinear Ansätze (1) and (2).

1Whereas, for instance, maximal gauged supergravity in seven
dimensions has only one nontrivial stationary point besides the
trivial vacuum [29].

2Note that for consistency with Ref. [11], we use a negative
curvature convention, i.e., ½DM;DN�VP ¼ �RP

QMNV
Q. Hence,

the scalar curvature of a sphere is negative.
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We emphasize that the normalization of all solutions is thus
completely fixed by (1) and (2), once the trivial vacuum
solution has been specified.

We are interested in solutions of the above equations that
are obtained via a compactification to a four-dimensional
maximally symmetric spacetime. The most general Ansatz
for the elfbein that is consistent with this requirement is of
the warped form,3

EM
Aðx; yÞ ¼ ��1=2ðyÞe���ðxÞ 0

0 em
aðyÞ

0
@

1
A; (6)

where x� are coordinates on the four-dimensional
spacetime and ym are coordinates on the compact seven-

dimensional space; e
�
�
�ðxÞ is the vierbein of the maximally

symmetric four-dimensional spacetime and em
aðyÞ is the

siebenbein of the compact space. In particular, we assume
the siebenbein to be that of a deformed round seven-sphere
with the deformation parametrized by a matrix Sa

bðyÞ
em

aðyÞ ¼ e
�
m
bðyÞSbaðyÞ; (7)

where e
�
m
aðyÞ is the siebenbein on the round seven-sphere

with inverse radius m7, and where

�ðyÞ � detSa
bðyÞ: (8)

The presence of the warp factor in (6) is required by
consistency with the supersymmetry transformation rules
of the fields that would correspond with those of the
maximal theory upon reduction to four dimensions [34].

The eight Killing spinors of S7, �I satisfy�
D
�
m þ 1

2
im7e

�
m
a
�a

�
�I ¼ 0; (9)

where D
�
m is the covariant derivative on the round

seven-sphere and the �a matrices are flat, Euclidean, anti-
symmetric and purely imaginary. In a Majorana represen-
tation of the Clifford algebra in seven Euclidean
dimensions, the charge conjugation matrix that is used to
define spinor conjugates, or raise and lower spinor indices,
can be chosen to be the identity matrix. Here we make such
a choice. Furthermore, it is useful to choose Killing spinors
that are orthonormal,

��I�J ¼ �IJ; �I ��I ¼ 1; (10)

where on the right-hand side of the second equation,
1 denotes the identity matrix with spinor indices.

These spinors can be used to define a set of vectors and
2-forms as follows:

Ka
IJ ¼ i ��I�a�J; Kab

IJ ¼ ��I�ab�J; (11)

Km
IJ ¼ e

�
m
a
Ka

IJ; Kmn
IJ ¼ e

�
m
a
e
�
n
b
Kab

IJ: (12)

In the following we will adopt the rule that the curved
indices on Killing vectors and their derivatives are always

lowered and raised with the round seven-sphere metric g
�
mn

and its inverse. It is now straightforward to show that

Kab
IJKc

IJ ¼ 0; KaIJKb
IJ ¼ 8�a

b;

KabIJKcd
IJ ¼ 16�ab

cd:
(13)

Assuming the four-dimensional spacetime to be maxi-
mally symmetric implies that the only nonzero components
of the field strength FMNPQ are F���� and Fmnpq.

Following Ref. [35], we parametrize F���� as follows,

F���� ¼ ifFR�����; (14)

where ����� is the alternating tensor in four dimensions.4

The Bianchi identities imply that the Freund-Rubin
parameter fFR is a constant. Beware that switching to flat
indices introduces y dependence,

F�	
� ¼ ifFR�
2��	
�: (15)

Given an elfbein of the form given in Eq. (6) and using
Eq. (14), it is fairly straightforward to show that the
11-dimensional Eqs. (3) and (4) reduce to [11],

R�
� ¼

�
2

3
f2FR�

4 þ 1

72
F2
mnpq

�
��
�; (16)

Rm
n¼�1

6
FmpqrF

npqrþ
�
1

72
F2
mnpq�1

3
f2FR�

4

�
�n
m; (17)

D
�
qð��1FmnpqÞ ¼ 1

24

ffiffiffi
2

p
fFR�

�mnpqrst
Fqrst; (18)

where seven-dimensional indices m; n; p; . . . are raised
(lowered) with

gmn ¼ ea
meb

n�abðgmn ¼ em
aen

b�abÞ;
except in cases where the object is denoted with a circle �

on top, in which case indices are raised (lowered) with g
�mn

(g
�
mn) analogously defined. Hence, �

�
mnpqrst is the alternat-

ing tensor corresponding to the round seven-sphere metric

g
�
mn and its indices are raised with g

�mn
.

As is well known, the four-dimensional spacetime must
be AdS4. We choose to parametrize its radius such that

R�� ¼ 3m2
4g��: (19)

Furthermore, for an S7 of inverse radius m7,

R
�
mn ¼ �6m2

7g
�
mn: (20)

3In general, of course, em
a can also have x dependence. But

here we are considering compactifications.

4Note that the conventions used in this paper are such that
������

���� ¼ þ4!.
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Thus, in our conventions, the S7 compactification [36] is
given by

m4 ¼ 2m7; fFR ¼ �3
ffiffiffi
2

p
m7: (21)

We repeat that the normalization of all solutions away from
the trivial AdS4 vacuum is fixed by the nonlinear Ansätze.
Thus, they are all expressed in terms of a single dimen-
sionful parameter m7.

III. THE G2 INVARIANT SOLUTION

A. The G2 invariant solution of 11-dimensional
supergravity

In order to write out the G2 invariant solution, we
must first define the geometrical quantities, respectively
preserving the SOð7Þþ and SOð7Þ� subgroups of SO(8)
whose common subgroup is G2 ¼ SOð7Þþ \ SOð7Þ�.
These are given in terms of the following self-dual CIJKLþ
and antiself-dual CIJKL� SO(8) tensors, respectively, which
satisfy the identities [34,37]

CIJMNþ CMNKLþ ¼ 12�IJ
KL þ 4CIJKLþ ; (22)

CIJMN� CMNKL� ¼ 12�IJ
KL � 4CIJKL� : (23)

These tensors will also appear below in the parametrization
of the scalar and pseudoscalar expectations in N ¼ 8
supergravity.

The self-dual tensor Cþ can be used to define SOð7Þþ
invariant quantities [34]

�a ¼ 1

16
CIJKLþ Kab

IJKb
KL; (24)

�ab ¼ � 1

16
CIJKLþ Ka

IJKb
KL; (25)

� ¼ �ab�ab: (26)

These quantities satisfy the nontrivial identities [34]

�a�a ¼ ð21þ �Þð3� �Þ; (27)

�ab ¼ 1

6
ð3þ �Þ�ab � 1

6ð3� �Þ�a�b; (28)

D
�

c�ab ¼ 1

3
m7ð�ab�c � �ða�bÞcÞ; (29)

D
�
a� ¼ 2m7�a; (30)

D
�
a�b ¼ m7ð3� �Þ�ab � m7

3� �
�a�b: (31)

Hence, the variable � lies in the range �21< �< 3, with
the endpoints corresponding to the north and south poles of
the seven sphere. Alternatively, in terms of the unit vector

�̂a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið21þ �Þð3� �Þp �a; (32)

the last two equations become [34]

D
�
a� ¼ 2m7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið21þ �Þð3� �Þp
�̂a; (33)

D
�
a�̂b ¼ m7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� �

21þ �

s
ð�ab � �̂a�̂bÞ: (34)

The antiself-dual CIJKL� can similarly be used to
define the SOð7Þ� invariant tensor (alias ‘‘the parallelizing
torsion’’ on S7),

Sabc ¼ 1

16
CIJKL� KIJ

½abK
KL
c� ; (35)

which satisfies the relations

D
�
aSbcd ¼ 1

6
m7�abcdefgS

efg; (36)

S½abcSd�ef ¼ 1

4
�abcd½eghS

f�gh; (37)

Sa½bcSde�f ¼ 1

6
�bcdeðaghS

fÞgh; (38)

SabeScde ¼ 2�ab
cd þ

1

6
�abcdefgS

efg: (39)

These relations have been derived in Refs. [37,38]. There
is a potential ambiguity in the sign of terms with S on
the right-hand side of the equations above, which is fixed
by requiring that C� is antiself-dual and satisfies Eq. (23)
(see Eqs. (3.6)–(3.17) of Ref. [37]). Equation (36) is de-
rived using the �-matrix identity (C6) and (9).
The relations (24), (25), and (35) can be inverted to give

the SO(8) tensors in terms of the SOð7Þþ and SOð7Þ�
geometric quantities [9,34,38],

CIJKLþ ¼ � 1

12
ð9þ �ÞKa

½IJKa
KL�

þ 1

4
ð21þ �Þ�̂a�̂bKa

½IJKb
KL�

þ 1

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð21þ �Þð3� �Þ

p
�̂aKab

½IJKb
KL�; (40)

CIJKL� ¼ 1

2
SabcKab

½IJKc
KL�: (41)

In Appendix B, we explain thatCþ, iC� together with their
symmetrized product iDþ generate the SU(1,1) algebra in
E7 [11], which commutes with G2. This fact can be used to
derive the relations listed in Eqs. (B6)–(B11).
In terms of the SOð7Þ� invariant tensors defined above,

the G2 invariant solution of 11-dimensional supergravity is
given by the following expressions. In the uncompactified
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dimensions, it is the usual AdS4 metric, while the metric in
the internal seven-dimensional space is given by [11]

gmn ¼ 62=3
�1=9ð15� �Þ�1=3

�
�
ðg�mn � �̂m�̂nÞ þ 1

36
ð15� �Þ�̂m�̂n

�
; (42)

where 
 is an arbitrary positive constant and the index on

�̂m is raised with metric g
�mn

. The determinant of this
metric is

detðgmnÞ ¼ �2 detðg�mnÞ; (43)

where

� ¼ 64=3
�7=18ð15� �Þ�2=3: (44)

The internal flux (4-form field strength) is

Fmnpq ¼ 4
ffiffiffiffiffiffiffiffi
6=5

p
15� �


�1=6m7

�
�
�
mnpqrstS

�rst

� ð21þ �Þð�� 27� 12
ffiffiffi
3

p Þ
12ð15� �Þ �̂½m�

�
npq�rstu�̂

rS
�stu

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð21þ �Þð3� �Þ

p ð�� 51� 12
ffiffiffi
3

p Þ
2ð15� �Þ S

�
½mnp�̂q�

�
:

(45)

The � ambiguity in the expression above arises from
the arbitrariness in the sign of the Freund-Rubin parameter
fFR [11]. As shown there, this solution has N ¼ 1 residual
supersymmetry.

The solution given above solves the Einstein equations
for any value of the constant 
 [see Eq. (5)]. However, the
nonlinear metric Ansatz gives the solution with a particular
value for 
. In anticipation of this fact, and for ease of
comparison later, we choose


�1=3 ¼ 5

6
ffiffiffi
3

p : (46)

Hence,

gmn ¼ 31=6101=3ð15� �Þ�1=3

�
�
ðg�mn � �̂m�̂nÞ þ 1

36
ð15� �Þ�̂m�̂n

�
(47)

and

Fmnpq ¼ 4� 3�1=4

15� �
m7

�
�
�
mnpqrstS

�rst

� ð21þ �Þð�� 27� 12
ffiffiffi
3

p Þ
12ð15� �Þ �̂½m�

�
npq�rstu�̂

rS
�stu

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið21þ �Þð3� �Þp ð�� 51� 12
ffiffiffi
3

p Þ
2ð15� �Þ S

�
½mnp�̂q�

�
:

(48)

B. The G2 invariant stationary point
of gauged supergravity

The 70 scalars and pseudoscalars of the N ¼ 8 super-
gravity theory that parametrize an element of the coset
space E7=SUð8Þ can be described by an element in the
fundamental representation of E7 as follows [5]:

V ¼ uij
IJ vijIJ

vijIJ uijIJ

 !
: (49)

Note that complex conjugation is represented by a respec-
tive lowering/raising of indices.
Using an SU(8) transformation, the E7 matrixV can be

brought into a symmetric gauge of the form

V ¼ exp� � exp
0 
IJKL


IJKL 0

 !
: (50)

Once this gauge is fixed, the distinction between i; j; . . .
and I; J; . . . indices may be safely ignored, as we shall do
so hereafter. For a G2 invariant configuration, the most
general vacuum expectation value that 
IJKL can take
may be parametrized as follows [31,32]:


IJKL � 
IJKLð�;�Þ ¼ 1

2
�ðCIJKLþ cos�þ iCIJKL� sin�Þ;

(51)

where � and � take a particular value for each stationary
point consistent with this configuration. The self-dual
CIJKLþ , antiself-dual CIJKL� and

DIJKL� ¼ 1

2
ðCIJMNþ CMNKL� � CIJMN� CMNKLþ Þ (52)

form a basis of G2 invariant objects in E7. In the remain-
der we will often keep the index structure implicit for
brevity, so

A � B � ðA � BÞIJKL � AIJMNBMNKL: (53)

Given 
 of the form above, the components of the
E7=SUð8Þ coset elements uIJKL and vIJKL can be written
in terms of theG2 invariantC� andD�. Given the structure
of the matrix �, it is not too difficult to see that

V ¼X1
n¼0

1

n!
�n

¼
P1

n¼0
ð�=2Þ2n
ð2nÞ! ð’’�Þn P1

n¼0
ð�=2Þ2nþ1

ð2nþ1Þ! ’ð’�’ÞnP1
n¼0

ð�=2Þ2nþ1

ð2nþ1Þ! ’
�ð’’�Þn P1

n¼0
ð�=2Þ2n
ð2nÞ! ð’�’Þn

0
@

1
A;
(54)

where

’ ¼ cos�Cþ þ i sin�C�;

’� ¼ cos�Cþ � i sin�C�:
(55)
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Of course, the order in which the tensors appear is now
important and indicative of the index structure of the terms.
For example, CþC� ¼ Dþ þD�, while C�Cþ ¼ Dþ �
D�. The matrix above is clearly compatible with the
structure of the matrix given in the defining Eq. (49).

Consider

’’� ¼ðcos�Cþþ isin�C�Þðcos�Cþ� isin�C�Þ: (56)

Using Eqs. (22) and (23), we find that

’’� ¼ 12þ 4 ~�; (57)

where we have omitted a � symbol in the first term above
for brevity and

~� ¼ cos 2�Cþ � sin 2�C� � 1

4
i sin 2�D�: (58)

We notice that ~� has the rather convenient property that

~�2 ¼ 12þ 4 ~�: (59)

One can simply verify the above equation using
Eqs. (B6)–(B11). Now, define a new quantity,

� ¼ 1

8
ð ~�þ 2Þ; (60)

which has been chosen so that

�2 ¼ �: (61)

From Eq. (57), we have

’’� ¼ 12þ 4 ~� ¼ 4þ 32�: (62)

Comparing the components of Eqs. (49) and (54) gives that

uIJ
KL ¼ X1

n¼0

ð�=2Þ2n
ð2nÞ! ð’’�Þn (63)

and

vIJKL ¼ X1
n¼0

ð�=2Þ2nþ1

ð2nþ 1Þ! ’
�ð’’�Þn; (64)

where, as before, indices have been suppressed on the
right-hand side of the above equations.

First, consider uIJ
KL.

uIJ
KL ¼ X1

n¼0

ð�=2Þ2n
ð2nÞ! ð’’�Þn ¼ X1

n¼0

ð�=2Þ2n
ð2nÞ! ð4þ 32�Þn

¼ X1
n¼0

ð�=2Þ2n
ð2nÞ!

Xn
p¼0

n

p

 !
4n�pð32�Þp;

where we have used Eq. (62) in the second equality and
applied the binomial theorem in the third equality. Using
the property satisfied by �, Eq. (61), the previous expres-
sion can be rewritten as follows:

uIJ
KL ¼ X1

n¼0

ð�=2Þ2n
ð2nÞ!

�
4n þ Xn

p¼1

n

p

 !
4n�pð32Þp�

�

¼ X1
n¼0

ð�=2Þ2n
ð2nÞ!

�
4n þ

�Xn
p¼0

n

p

 !
4n�pð32Þp � 4n

�
�

�

¼ X1
n¼0

�2n

ð2nÞ! f1þ ½32n � 1��g:

Identifying the above expressions as the Taylor expansions
of the cosh function simplifies the expression to

uIJ
KL ¼ cosh�þ ðcosh 3�� cosh�Þ�

¼ cosh�þ 1

8
ðcosh 3�� cosh�Þð ~�þ 2Þ

¼ cosh 3�þ 1

2
cosh�sinh 2� ~�;

where we have used Eq. (60) in the second equality and
well-known multiple angle identities for hyperbolic func-
tions in the final equality. Defining

p ¼ cosh�; q ¼ sinh� (65)

and substituting for ~� using Eq. (58) gives

uIJ
KLð�;�Þ
¼ p3�KL

IJ þ 1

2
pq2cos 2�CIJKLþ

� 1

2
pq2sin 2�CIJKL� � 1

8
ipq2 sin 2�DIJKL� (66)

or, equivalently,

uIJKLð�;�Þ
¼ p3�IJ

KL þ 1

2
pq2cos 2�CIJKLþ

� 1

2
pq2sin 2�CIJKL� þ 1

8
ipq2 sin 2�DIJKL� (67)

for the complex conjugate.
The derivation of vIJKL is essentially the same as that of

uIJ
KL. Starting from Eq. (64),

vIJKL ¼ ’� X1
n¼0

ð�=2Þ2nþ1

ð2nþ 1Þ! ð’’
�Þn

¼ 1

2
’� X1

n¼0

�2nþ1

ð2nþ 1Þ! f1þ ½32n � 1��g

¼ 1

2
’�
�
sinh�þ

�
1

3
sinh 3�� sinh�

�
�

�
;

where the second equality is a direct application of the
results derived above. Substituting for ’� and � using
Eqs. (55) and (60), respectively, the above expression
simplifies to
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vIJKL¼ 1

48
ðcos�Cþ� isin�C�Þ

�
�
2ðsinh3�þ9sinh�Þþðsinh3��3sinh�Þ

�
�
cos2�Cþ�sin2�C�� i

4
sin2�D�

��
; (68)

where we have substituted for ~� using Eq. (58). Expanding
out the bracket above and using Eqs. (B6)–(B11), one can
simply show that the above expression reduces to

vIJKLð�;�Þ
¼q3ðcos3�þisin3�Þ�IJ

KLþ
1

2
p2qcos�CIJKLþ

�1

2
ip2qsin�CIJKL� �1

8
q3 sin2�ðsin�þicos�ÞDIJKLþ ;

(69)

where we have used well-known multiple angle identities
for hyperbolic functions and definitions (65).

The G2 invariant stationary point is given by5 [31]

c2 ¼ ðp2 þ q2Þ2 ¼ 1

5
ð3þ 2

ffiffiffi
3

p Þ; (70)

s2 ¼ ð2pqÞ2 ¼ 2

5
ð ffiffiffi

3
p � 1Þ; (71)

v2 ¼ cos 2� ¼ 1

4
ð3� ffiffiffi

3
p Þ; (72)

where c ¼ cosh ð2�Þ and s ¼ sinh ð2�Þ. We also define the
following useful combinations

b1ð�;�Þ¼c3þv3s3; b2ð�;�Þ¼csvðcþvsÞ; (73)

f1ð�;�Þ ¼ p2q2ðp2 þ q2Þ sin� cos� ¼ 1

4
s2cv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
;

(74)

f2ð�;�Þ ¼ p3q3 sin�cos 2� ¼ 1

8
s3v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
; (75)

f3ð�; �Þ ¼ pqðp2 þ q2Þ2 sin� ¼ 1

2
sc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
: (76)

At the G2 invariant stationary point we have the following
simplifying relations

b1 ¼ 3b2; f3 ¼ 4ð2f1 � f2Þ; (77)

which will be useful below.

C. Derivation of the 3-form potential

In this section we derive the potential of the
11-dimensional G2 invariant solution using the nonlinear
flux Ansatz (2), showing that its field strength coincides
with the expression found in Ref. [11].
We identify the expression multiplying the potential in

Eq. (2) as

8��1gpq¼KpIJKqKLðuijIJþvijIJÞðuijKLþvijKLÞ (78)

via the nonlinear metric Ansatz (1). Using this, Eq. (2)
takes the form

Amnp ¼ � 1

8
ffiffiffi
2

p ði�gpqÞKmn
IJKqKL

� ðuijIJ � vijIJÞðuijKL þ vijKLÞ: (79)

From the metric Ansatz [11]

gmn¼�

6
f½6b1�b2ð�þ3Þ�g�mnþb2ð21þ�Þ�̂m�̂ng: (80)

Equivalently,

�gmn¼
�

6

6b1�b2ð�þ3Þðg
�
mn� �̂m�̂nÞþ 1

b1þ3b2
�̂m�̂n

�
:

(81)

Substituting the G2 invariant stationary point values given
in Eqs. (70)–(72) and using (77) gives

gmn ¼ 31=6101=3ð15� �Þ�1=3

�
�
ðg�mn � �̂m�̂nÞ þ 1

36
ð15� �Þ�̂m�̂n

�
; (82)

which coincides with the metric given in Eq. (47).
In order to simplify the right-hand side of Eq. (79), recall

that uijIJ and vijIJ are components of E7 matrices. In
particular, they satisfy the relations [3]

uijIJuij
KL � vijIJv

ijKL ¼ �KL
IJ ; (83)

uijIJvijKL � vijIJu
ij
KL ¼ 0: (84)

These relations can be explicitly verified for the compo-
nents of the E7=SUð8Þ coset element given in Eqs. (67) and
(69) by using identities (B6)–(B11). Now, the expression
for the E7 matrix components in Eq. (79)

ðuijIJ � vijIJÞðuijKL þ vijKLÞ
¼ uijIJuij

KL � vijIJvijKL þ uijIJvijKL � vijIJuij
KL;

¼ uijIJuij
KL � ðuijKLuijIJ � �IJ

KLÞ
þ uijKLvijIJ � vijIJuij

KL:

Recalling that

uij
IJ ¼ ðuijIJÞ�; vijIJ ¼ ðvijIJÞ�; (85)

5The parametrization of 
IJKL used in this paper coincides
with that defined in Refs. [31,32] by taking � ! 1

2
ffiffi
2

p �. Thus, the

values of c, s and v coincide precisely with those given in
Ref. [31].
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the above expression reduces to

ðuijIJ � vijIJÞðuijKL þ vijKLÞ
¼ �IJ

KL þ 2iImðuijIJuijKL � vijIJuij
KLÞ; (86)

where the last term is the imaginary part of the expression
in the bracket.

Using Eqs. (B6)–(B11), it is straightforward to show that

ImðuijIJuijKLÞ ¼ � 1

4
p2q2ðp2 þ q2Þ sin 2�DIJKL� : (87)

The expression on the left-hand side of the above equa-
tion is antisymmetric under the exchange of the pair of
indices ½IJ� and ½KL�, since from Eq. (85) this operation
is equivalent to complex conjugation of the expression
in the bracket. Therefore, it should come as no surprise
that the right-hand side is given solely in terms of D�.
Furthermore,

ImðvijIJuij
KLÞ ¼ 4p3q3sin 32��IJ

KL � 1

2
pqðp2 þ q2Þ2

� sin�CIJKL� � p3q3 sin�cos 2�DIJKLþ ;

(88)

which is indeed symmetric under the exchange of the pairs
of indices ½IJ� and ½KL� as expected from Eq. (84).

Using Eqs. (13), (40), (41), and (52) we derive

Kab
IJKc

KLCIJKLþ ¼ � 16

3
�ab
cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð21þ �Þð3� �Þ

p
�̂d

¼ � 16

3
�ab
cd�

d; (89)

Kab
IJKc

KLCIJKL� ¼ 16Sabc; (90)

Kab
IJKc

KLDIJKLþ ¼�8

3
ð9þ�ÞSabcþ8ð21þ�Þ�̂d�̂½aSbc�d

þ4

9
�d�abcdefgS

efg; (91)

Kab
IJKc

KLDIJKL�

¼ � 8

3
ð3� �ÞSabc þ 8ð21þ �Þ�̂d�̂½aSbc�d

� 16

3
ð21þ �Þ�̂d�̂cSabd � 4

9
�d�abcdefgS

efg: (92)

The first two relations are easily seen to be consistent with
Eqs. (24) and (25). Observe also that the last expression is
not fully anti-symmetric in the indices ½abc�.
With the use of the above relations, the expression for

the 3-form potential, (79), reduces to

Amnp¼ 1

18
ffiffiffi
2

p �gpqg
�qrf6ðð3��Þf1�2ð9þ�Þf2þ6f3ÞS

�
mnr

�18ð21þ�Þðf1�2f2Þ�̂s�̂½mS
�
nr�s

þ12ð21þ�Þf1�̂s�̂rS
�
mnsþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð21þ�Þð3��Þ

p
�ðf1þ2f2Þ�̂s�

�
mnrstuvS

�
tuvg; (93)

where f1, f2, f3 are defined in Eqs. (74)–(76). The quan-

tities �̂m, S
�
mnp and �

�
mnpqrst are constructed with the round

S7 vielbein and they are raised or lowered with the round
S7 metric, as emphasized earlier.
Inserting the expression for the metric, Eq. (81), found

from the nonlinear metric Ansatz,

Amnp ¼ 1

18
ffiffiffi
2

p ½6b1 � b2ð�þ 3Þ�ðb1 þ 3b2Þ
n
6ðb1 þ 3b2Þ�q

p � ð21þ �Þb2�̂p�̂
qgf6ðð3� �Þf1 � 2ð9þ �Þf2 þ 6f3ÞS

�
mnq

� 18ð21þ �Þðf1 � 2f2Þ�̂r�̂½mS
�
nq�r þ 12ð21þ �Þf1�̂r�̂qS

�
mnr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið21þ �Þð3� �Þp ðf1 þ 2f2Þ�̂r�
�
mnqrstuS

�stuo
;

(94)

where b1 and b2 are defined in Eq. (73). Expanding out the terms in the expression above gives

Amnp ¼ 1

3
ffiffiffi
2

p ½6b1 � b2ð�þ 3Þ�
n
6ðð3� �Þf1 � 2ð9þ �Þf2 þ 6f3ÞS

�
mnp

� 18ð21þ �Þðf1 � 2f2Þ�̂r�̂½mS
�
np�r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið21þ �Þð3� �Þp ðf1 þ 2f2Þ�̂q�
�
mnpqrstS

�rsto

þ
ffiffiffi
2

p ð21þ �Þ
½6b1 � b2ð�þ 3Þ�ðb1 þ 3b2Þ ½2b1f1 þ b2ð2f1 � 4f2 � f3Þ��̂q�̂pS

�
mnq: (95)

Let us consider the coefficient of the term that is not totally antisymmetric in the indices ½mnp�,

2b1f1 þ b2ð2f1 � 4f2 � f3Þ ¼ 1

2
sin�vcs2½ðc3 þ v3s3Þ � ðcþ vsÞðc2 � vcsþ v2s2Þ� ¼ 0;

where in the first equality we have simply substituted in the definitions of b1, b2, f1, f2 and f3 using Eqs. (73)–(76). The
vanishing of the nonantisymmetric term even away from the stationary point is expected from the general argument of
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Ref. [1], where it is shown that the 3-form potential as defined by the nonlinear flux Ansatz is totally antisymmetric by the
E7 properties of u

ij
IJ and vijIJ. We now have a totally antisymmetric expression for the 3-form potential

Amnp ¼ 1

3
ffiffiffi
2

p ½6b1 � b2ð�þ 3Þ�
�
6ðð3� �Þf1 � 2ð9þ �Þf2 þ 6f3ÞS

�
mnp

� 18ð21þ �Þðf1 � 2f2Þ�̂r�̂½mS
�
np�r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð21þ �Þð3� �Þ

p
ðf1 þ 2f2Þ�̂q�

�
mnpqrstS

�rst�
: (96)

This is only defined up to gauge transformations, hence to make a comparison with the known G2 invariant solution, we
calculate its field strength. Using Eqs. (33), (34), and (36), the field strength of the potential above,

Fmnpq ¼ 4D
�
½mAnpq�;

is

Fmnpq ¼ 4
ffiffiffi
2

p
m7

6b1 � b2ð3þ �Þ
�
ðf3 � 4f2Þ��mnpqrstS

�rst � 2ð21þ �Þ
3½6b1 � b2ð3þ �Þ� ½b2ðf1 � f2Þð�� 27Þ � 3b1ðf1 � 4f2Þ

þ 9b2ð3f1 � 4f2Þ��̂½m�
�
npq�rstu�̂

rS
�stu � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið21þ �Þð3� �Þp
6b1 � b2ð3þ �Þ ½b2ðf1 � f2Þð51� �Þ þ 3b1ðf1 � 4f2Þ

� 3b2ð17f1 � 16f2 � f3Þ�S
�
½mnp�̂q�

�
: (97)

Substituting relations (77), valid at the G2 stationary point, we get

Fmnpq ¼ 32
ffiffiffi
2

p ðf1 � f2Þ
b2ð15� �Þ m7

�
�
�
mnpqrstS

�rst � ð21þ �Þ
12ð15� �Þ

�
�� 27þ 18f1

f1 � f2

�
�̂½m�

�
npq�rstu�̂

rS
�stu

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið21þ �Þð3� �Þp
2ð15� �Þ

�
�� 51þ 18f1

f1 � f2

�
S
�
½mnp�̂q�

�
: (98)

Using Eqs. (70)–(72), the expression above reduces to

Fmnpq ¼ 4� 3�1=4

15� �
m7

�
�
�
mnpqrstS

�rst � ð21þ �Þð�� 27þ 12
ffiffiffi
3

p Þ
12ð15� �Þ �̂½m�

�
npq�rstu�̂

rS
�stu

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð21þ �Þð3� �Þ

p ð�� 51þ 12
ffiffiffi
3

p Þ
2ð15� �Þ S

�
½mnp�̂q�

�
: (99)

This is in perfect agreement with the flux of the G2 invari-
ant solution [11] given in Eq. (48). It is remarkable that
there is not only an agreement with the general structure,
but also the precise coefficients.

IV. THE SUð4Þ� INVARIANT SOLUTION

A. The SUð4Þ� invariant solution of
11-dimensional supergravity

The SUð4Þ� invariant solution [33] is a compactification
of 11-dimensional supergravity to a maximally symmetric
four-dimensional spacetime with the internal space given
by a stretched U(1) fibration over CP3. In Ref. [33], the
solution was expressed in terms of structures onCP3. Here,
in order to compare the SUð4Þ� invariant solution with the
result given by the nonlinear Ansätze, we express the
SUð4Þ� invariant solution in terms of geometrical quanti-
ties defined on a round S7.

The antiself-dual SO(8) tensor Y�
IJKL, satisfying [11]

Y�
IJMNY

�
MNKL ¼ 8�KL

IJ � 8F�½K
½I F�L�

J� ; (100)

Y�
IJKLY

�
MNPQY

�
PQKL ¼ 16Y�

IJPQ (101)

preserves SUð4Þ�. The antisymmetric tensor F�
IJ is an

almost complex structure,

F�K
I F�J

K ¼ ��J
I : (102)

Using the properties of Y�
IJKL and F�

IJ, it is straight-
forward to show that

Y�
MIJKF

�M
L ¼ Y�

M½IJKF
�M
L� ; (103)

Y�
MIJKF

�M
L ¼ � 1

4!
�IJKLPQRSY

�
MPQRF

�M
S ; (104)
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F�
½IJF

�
KL� ¼ � 1

4!
�IJKLPQRSF

�
PQF

�
RS: (105)

The SO(8) objects can be used to define the SO(7)
tensors

Ka ¼ 1

4
KIJ

a F�
IJ; Kab ¼ 1

4
KIJ

abF
�
IJ;

Tabc ¼ 1

16
KIJ

½abK
KL
c� Y�

IJKL;

(106)

where KIJ
a and KIJ

ab have been defined in Eq. (11). Using

the relations given in Appendix C, the following identities
hold

KaKa ¼ 1; KaKab ¼ 0; KacKcb ¼ KaKb � �ab;

(107)

KaTabc ¼ 0; TacdTbcd ¼ 4ð�a
b � KaKbÞ;

�abcdefgKdKehThfg ¼ �6Tabc:
(108)

Furthermore, using Eq. (9)

D
�
aKb ¼ �m7Kab; (109)

D
�
aTbcd ¼ 1

6
m7�abcdefgT

efg: (110)

In terms of the tensorsKa and Tabc, the internal metric of
the SUð4Þ� invariant solution is given by6

gmn ¼ 2�1=3ðg�mn þ K
�
mK

�
nÞ; (111)

where as before g
�
mn is the round S7 metric and

K
�
m ¼ e

�
m

aKa

is defined with respect to the siebenbein on the round S7.
Using Eqs. (107) and (109), the Ricci tensor of this

metric is given by

Rmn ¼ R
�
mn þ 2m2

7g
�
mn � 20m2

7K
�
mK

�
n: (112)

The expression for the Ricci tensor of the round S7 metric
is given in Eq. (20).

The internal flux of the SUð4Þ� invariant solution is

Fmnpq ¼ 1

3
m7�

�
mnpqrstT

� rst
: (113)

To verify that the Einstein Eqs. (16) and (17), are satisfied it
is useful to note that

FmpqrF
npqr ¼ 48� 24=3m2

7ð�n
m þ KmK

nÞ; (114)

where we have used Eq. (108). On the left-hand side of the
above equation, the indices have been raised with inverse
of gmn given in Eq. (111).
Using the expression for the Ricci tensor in the internal

direction, (112) and (114), it is straightforward to verify
that gmn and Fmnpq solve the Einstein Eqs. (16) and (17),

with

m2
4 ¼

16

3
m2

7; f2FR ¼ 32m2
7: (115)

With the above value for fFR, the equation of motion for
Fmnpq, (18), is also satisfied.

B. The SUð4Þ� invariant stationary point
of gauged supergravity

The SUð4Þ� invariant stationary point of maximal
gauged supergravity is obtained for a purely pseudoscalar
expectation value 
IJKL of the form [31]


IJKL ¼ 1

2
i�Y�

IJKL; (116)

where Y�
IJKL is an antiself-dual object satisfying the prop-

erties presented in Eqs. (100)–(102).
Using Eq. (101), it is simple to show that for n > 0,

ðY�Y�ÞnIJKL ¼ 24ðn�1ÞðY�Y�ÞIJKL; (117)

where ðY�Y�ÞIJKL denotes a contraction of the form
Y�
IJMNY

�
MNKL.

As described in Sec. III B, it is fairly straightforward to
show that

uIJ
KL ¼ X1

n¼0

ð�=2Þ2n
ð2nÞ! ðY�Y�ÞnIJKL; (118)

Using Eqs. (117) and (100), the above expression
reduces to

uIJ
KL¼�KL

IJ þX1
n¼1

ð�=2Þ2n
ð2nÞ! 24n�1

�
�KL
IJ �F�½K

½I F�L�
J�

	

¼�KL
IJ þ1

2

�X1
n¼0

ð2�Þ2n
ð2nÞ! �1

��
�KL
IJ �F�½K

½I F�L�
J�

	

¼�KL
IJ þ1

2
ðcosh2��1Þ

�
�KL
IJ �F�½K

½I F�L�
J�

	
(119)

Defining c ¼ cosh ð2�Þ as before, and observing that the
expression is real,

uIJKL ¼ 1

2
ðcþ 1Þ�IJ

KL � 1

2
ðc� 1ÞF�½I

½K F�J�
L� : (120)

6As before, we have fixed the allowed arbitrary scaling (5) in
anticipation of the form of the metric given by the nonlinear
Ansatz.
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Similarly,

vIJKL ¼ �iY�
IJMN

X1
n¼0

ð�=2Þ2nþ1

ð2nþ 1Þ! ðY
�Y�ÞnMNKL ¼ � 1

2
iY�

IJMN

�
�þ 1

32

X1
n¼1

ð2�Þ2nþ1

ð2nþ 1Þ! ðY
�Y�ÞMNKL

�

¼ � 1

2
iY�

IJMN

�
�þ 1

32
½sinh ð2�Þ � 2��ðY�Y�ÞMNKL

�
¼ � 1

4
i sinh ð2�ÞY�

IJKL; (121)

where we have used Eq. (101) in the final equality in the
equation above. Defining s ¼ sinh ð2�Þ,

vIJKL ¼ � 1

4
isY�

IJKL: (122)

It is simple to verify that the u and v as given in Eqs. (120)
and (122) satisfy the E7 relations, Eqs. (83) and (84).

From the metric Ansatz [11],

��1gmn ¼ fc2g�mn � s2K
�m

K
� ng: (123)

Equivalently,

�gmn ¼ c�2fg�mn þ s2K
�
mK

�
ng: (124)

The SUð4Þ� invariant stationary point is given by [31]

c2 ¼ 2; s2 ¼ 1: (125)

Substituting these values into the expression above and
taking the determinant of the resulting expression gives

� ¼ 2�2=3: (126)

Hence, the metric is of the form

gmn ¼ 2�1=3fg�mn þ K
�
mK

�
ng; (127)

which agrees with that given in Eq. (111).
Substituting the expression for u and v given in

Eqs. (120) and (122), and the form of the metric given in
Eq. (124) into Eq. (79), it is simple to show that

Amnp ¼ � 1ffiffiffi
2

p ðs=cÞT�mnp; (128)

where we have used the first equation in (108). Now, using
Eq. (110), the field strength is simply

Fmnpq ¼ �
ffiffiffi
2

p
3

ðs=cÞm7�
�
mnpqrstT

� rst
: (129)

Substituting the values of c and s given in Eq. (125) gives

Fmnpq ¼ � 1

3
m7�

�
mnpqrstT

� rst
: (130)

Note that the Einstein Eqs. (16) and (17) and the equation
of motion for the flux (18) are satisfied regardless of the
overall sign of the flux. Thus, again, we have precise
agreement with the flux of the SUð4Þ� solution given in
Eq. (113).
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APPENDIX A: SOð7Þ� INVARIANT SOLUTIONS

For completeness we here reproduce the metric and
flux of the SOð7Þ�—invariant solutions, even though
these are simpler than the ones discussed in the text.
The relevant solutions can be found in analogy with the
general metric and flux of the G2 invariant family, given
in Eqs. (81) and (97), and by restricting the scalar fields
in (51) to � ¼ 0 and � ¼ �=2, respectively.
The SOð7Þþ invariant stationary point of maximally

gauged supergravity is given by [31]

c2¼1

2
ð3= ffiffiffi

5
p þ1Þ; s2¼1

2
ð3= ffiffiffi

5
p �1Þ; v¼1: (A1)

In particular, these imply that f1, f2, f3 as defined in
Eqs. (74)–(76) vanish. It immediately follows that

Fmnpq ¼ 0; (A2)

as expected. The metric is

�gmn ¼ 6� 51=4

9� �

�
ðg�mn � �̂m�̂nÞ þ ð9� �Þ

30
�̂m�̂n

�
:

(A3)

This is the solution of Ref. [34]; see also Refs. [9,11]. In
particular, in Ref. [11], the solution is given in the form

�gmn ¼ 30
�1=2

9� �

�
ðg�mn � �̂m�̂nÞ þ ð9� �Þ

30
�̂m�̂n

�
; (A4)

which agrees with metric (A3) for


 ¼ 53=2:

Similarly, the SOð7Þ� stationary point is given by

c2 ¼ 5

4
; s2 ¼ 1

4
; v ¼ 0: (A5)

Since v ¼ 0, b2 as defined in Eq. (73) vanishes and the
metric is given by the round S7 metric

�gmn ¼ c�3g
�
mn: (A6)

Moreover the flux for the SOð7Þ� family is

Fmnpq ¼
ffiffiffi
2

p
3

ðs=cÞm7�
�
mnpqrstS

�rst
: (A7)
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This is consistent with the Englert solution [30]; see also
Refs. [9,11]. In Ref. [11], the solution is expressed as

�gmn ¼ 
�1=2g
�
mn; (A8)

Fmnpq ¼ 1

3
ffiffiffi
2

p 
�1=6m7�
�
mnpqrstS

�rst
; (A9)

which agree with Eqs. (A6) and (A7) at the stationary
point for


1=3 ¼ 5=4:

APPENDIX B: USEFUL G2 IDENTITIES

In this Appendix, we derive identities relating the
contraction of G2 invariants C� and D�, adopting the
shorthand notation (53) throughout. In deriving these
identities it is useful to observe that viewed as E7 ma-
trices, C� and Dþ are generators of an SU(1, 1) sub-
algebra of E7. This is the unique subalgebra of E7 that
commutes with G2 [11], cf.

�1 	 0 Cþ
Cþ 0

 !
; �2 	 0 �iC�

iC� 0

 !
;

�3 	 iDþ 0

0 �iDþ

 !
:

(B1)

Thus,

iDþ 0

0 �iDþ

 !
;

0 Cþ
Cþ 0

 !" #
/ 0 �iC�

iC� 0

 !
; (B2)

which implies that

ðCþC�Cþ þ 4DþÞ / C�: (B3)

Consistency with Eq. (22) fixes the constant of
proportionality,

CþC�Cþ ¼ �4ðC� þDþÞ: (B4)

Similarly,

C�CþC� ¼ �4ðC� �DþÞ: (B5)

Using Eqs. (22), (23), (B4), and (B5), it is straight-
forward to prove the following identities:

CþDþ ¼ 4C� þ 2D�; DþCþ ¼ 4C� � 2D� (B6)

C�Dþ ¼ 4Cþ þ 2D�; DþC� ¼ 4Cþ � 2D�; (B7)

CþD� ¼ 8C� þ 4Dþ þ 2D�;

D�Cþ ¼ �8C� � 4Dþ þ 2D�;
(B8)

C�D� ¼ �8Cþ þ 4Dþ � 2D�;

D�C� ¼ 8Cþ � 4Dþ � 2D�;
(B9)

DþDþ ¼ 48þ 8Dþ;

D�Dþ ¼ 16Cþ þ 16C� þ 4D�;
(B10)

DþD� ¼ �16Cþ � 16C� þ 4D�;

D�D� ¼ �96� 16Cþ þ 16C� � 8Dþ:
(B11)

APPENDIX C: SEVEN-DIMENSIONAL
�-MATRIX IDENTITIES

For the reader’s convenience, here we give a list
of useful �-matrix identities, see also the appendices
of Refs. [5,10]. The seven-dimensional, Euclidean
8� 8 �a matrices, where a is a seven-dimensional
flat index, satisfy

f�a;�bg ¼ 2�ab: (C1)

The Clifford algebra admits a Majorana representa-
tion, which in our conventions corresponds to a purely
imaginary representation of the � matrices. We use a
representation in which all � matrices are Hermitian
and antisymmetric or, equivalently, in our representa-
tion the charge conjugation matrix is the identity
matrix. Moreover,

�abcdefg ¼ �i�abcdefg1; (C2)

where

�abcdefg ¼ �½a . . . �g�

and 1 is the 8� 8 identity matrix.
The �a can be regarded as seven out of the eight

components of Spinð8Þ gamma matrices in a Majorana-
Weyl representation. In this way, one can use SO(8)
triality to prove the following important relations [5,10]

�a
½AB�

b
CD� ¼

1

24
�ABCDEFGH�

a
EF�

b
GH; (C3)

�a
½AB�

ab
CD� ¼

1

24
�ABCDEFGH�

a
EF�

ab
GH; (C4)

�½a
½AB�

bc�
CD� ¼ � 1

24
�ABCDEFGH�

½a
EF�

bc�
GH; (C5)

�½a
½AB�

bc�
CD� ¼

1

24
i�abcdefg�de

½AB�
fg
CD�: (C6)

The uppercase latin indices are spinor indices and run from
1 to 8.
Further �-matrix identities can be proved using the Fierz

identity, which in Euclidean seven-dimensions takes the
form
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XABYCD ¼ 1

8
�BCðXYÞAD � 1

8
�a
BCðX�aYÞAD

þ 1

16
�ab
BCðX�abYÞAD � 1

48
�abc
BC ðX�abcYÞAD;

(C7)

where X and Y are arbitrary 8� 8 matrices. The identity
above is obtained by noting that

f�AB;�
a
AB;�

ab
AB;�

abc
AB g

span the vector space of 8� 8 matrices.
The Fierz identity can be used to show

�a
AB�

a
CD ¼ �a

½AB�
a
CD� � 2�AB

CD; (C8)

�a
AB�

ab
CD þ �a

CD�
ab
AB ¼ 2�a

½AB�
ab
CD�; (C9)

�a
AB�

ab
CD � �a

CD�
ab
AB ¼ �4ð�C½A�b

B�D � �D½A�b
B�CÞ; (C10)

�ab
AB�

ab
CD ¼ 2�a

AB�
a
CD þ 16�AB

CD; (C11)

�cða
AB�

bÞc
CD ¼ 6

5
�cða
½AB�

bÞc
CD� � �ða

AB�
bÞ
CD

þ 1

5
�ab�c

AB�
c
CD � 8

5
�ab�AB

CD; (C12)

�c½a
AB�

b�c
CD ¼ ��½a

AB�
b�
CD � 2ð�C½A�ab

B�D � �D½A�ab
B�CÞ; (C13)

�ca
½AB�

bc
CD� ¼ 5�a

½AB�
b
CD� � �ab�c

AB�
c
CD: (C14)

Furthermore, it is also useful to note that (see Appendix of
Ref. [10])

�ab
½AB�

c
CD�j� ¼ �½ab

½AB�
c�
CD�; (C15)

�ab
½AB�

cd
CD�j� ¼ �½ab

½AB�
cd�
CD�; (C16)

where the vertical bar j� denotes projection to the antiself-
dual part.
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