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Abstract
Maxwell test fields as well as solutions of linearized gravity on the Kerr exterior
admit non-radiating modes i.e. non-trivial time-independent solutions. These
are closely related to conserved charges. In this paper we discuss the non-
radiating modes for linearized gravity which may be seen to correspond to the
Poincaré Lie algebra. The two-dimensional isometry group of Kerr corresponds
to a two-parameter family of gauge-invariant non-radiating modes representing
infinitesimal perturbations of mass and azimuthal angular momentum. We
calculate the linearized mass charge in terms of linearized Newman–Penrose
scalars.

PACS number: 04.20.Gz

1. Introduction

The black hole stability problem, i.e. the problem of proving dynamical stability for the Kerr
family of black hole spacetimes, is one of the central open problems in General Relativity.
The analysis of linear test fields on the exterior Kerr spacetime is an important step towards
the full nonlinear stability problem. For test fields of spin 0, i.e. solutions of the wave equation
∇a∇a� = 0, estimates proving boundedness and decay in time are known to hold. See
[20, 14, 2, 43] for references and background.

The field equations for linear test fields of spins 1 and 2 are the Maxwell and linearized
gravity4 equations, respectively. These equations imply wave equations for the Newman–
Penrose Maxwell and linearized Weyl scalars. In particular, the Newman–Penrose scalars of
spin weight zero satisfy (assuming a suitable gauge condition for the case of linearized gravity)
the analogues of the Regge–Wheeler equation. These wave equations take the form

(∇a∇a + cs�2)�s = 0,

4 Note that linearized gravity is distinct from the massless spin-2 equation. On a type D background, any solution
to the massless spin-2 equation is proportional to the Weyl tensor of the spacetime. This fact is referred to as the
Buchdahl constraint, cf [8], see also equation (5.8.2) in [37].
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where for spin s = 1, c1 = 2, �1 = �
−1/3
2 φ1, while for spin s = 2, c2 = 8 and �2 = �

−2/3
2 �̇2.

Here, �̇2 is the linearized Weyl scalar of spin weight zero. See [1] for details. As these scalars
can be used as potentials for the Maxwell and linearized Weyl fields, one may apply the
techniques developed in the previously mentioned papers to prove estimates also for the
Maxwell and linearized gravity equations. This approach has been applied in the case of
the Maxwell field on the Schwarzschild background in [7].

In contrast to the spin-0 case, the spin 1 and 2 field equations on the Kerr exterior admit non-
trivial finite-energy time-independent solutions. We shall refer to time-independent solutions as
non-radiating modes. There is a close relation between gauge-invariant non-radiating modes
and conserved charge integrals. For the Maxwell field, there is a two-parameter family of
non-radiating, Coulomb-type solutions which carry the two conserved electric and magnetic
charges. In fact, a Maxwell field on the Kerr exterior will disperse exactly when it has vanishing
charges. For linearized gravity, however, there are both non-radiating modes corresponding to
gauge-invariant conserved charges and ‘pure gauge’ non-radiating modes. Thus, conditions
ensuring that a solution of linearized gravity will disperse must be a combination of charge-
vanishing and gauge conditions.

From the discussion above, it is clear that in order to prove boundedness and decay for
higher spin test fields on the Kerr exterior, it is a necessary step to eliminate the non-radiating
modes. Due in part to this additional difficulty, decay estimates for the higher spin fields have
been proved only for Maxwell test fields. See [7] for the Schwarzschild case and [3] for the
Kerr case. In view of the just mentioned relation between non-radiating modes and charges,
an essential step in doing so involves setting conserved charges to zero. In order to make
effective use of such charge-vanishing conditions, it is necessary to have simple expressions
for the charge integrals in terms of the field strengths. The main result of this paper is to
provide an expression for the conserved charge corresponding to the linearized mass, in terms
of linearized curvature quantities on the Kerr background.

We start by discussing the relation between charges and non-radiating modes for the case
of the Maxwell field. Let the symmetric valence-2 spinor φAB be the Maxwell spinor5, i.e. a
solution of the massless spin-1 (source-free Maxwell) equation

∇A′ AφAB = 0,

and let Fab = φABεA′B′ be the corresponding complex self-dual 2-form. The Maxwell equation
takes the form dF = 0 and hence the charge integral∫

S
F ,

depends only on the homology class of the surface S. Here, the real and imaginary
parts correspond to electric and magnetic charges, respectively. The Kerr exterior, being
diffeomorphic to R

4 with a solid cylinder removed, contains topologically non-trivial
2-spheres, and hence the Maxwell equation on the Kerr exterior admits solutions with non-
vanishing charges. In view of the fact that the charges are conserved, it is natural that there is
a time-independent solution which ‘carries’ the charge. In Boyer–Lindquist coordinates, this
takes the explicit form

φAB = c

(r − ia cos θ )2
ι(AoB) , (1)

where c is a complex number, and ιA, oA are principal spinors for Kerr.

5 The following discussion is in terms of the 2-spinor formalism, cf [37, 38].
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In order to prove boundedness and decay for the Maxwell field, it is necessary to make use
of the above-mentioned facts, see [3]. In particular, one eliminates the non-radiating modes
by imposing the charge-vanishing condition∫

S
F = 0 . (2)

Written in terms of the Newman–Penrose scalars φI , I = 0, 1, 2, the charge-vanishing
condition (2) in the Carter tetrad [46] takes the form [3]∫

S2(t,r)
2V −1/2

L φ1 + ia sin θ (φ0 − φ2) dμ = 0, (3)

where S2(t, r) is a sphere of constant t, r in the Boyer–Lindquist coordinates, VL =
�/(r2 + a2)2 and dμ = sin θdθdϕ. This yields a relation between the 
 = 0, m = 0 spherical
harmonic of φ1 and the 
 = 1, m = 0 spherical harmonics with spin weights 1, −1 of φ0, φ2,
respectively.

Next, we consider the spin-2 case. Recall that the Kerr spacetime is a vacuum space
of Petrov type D and hence, in addition to the Killing vector fields ∂t, ∂φ admits a ‘hidden
symmetry’ manifested by the existence of the valence-2 Killing spinor κAB = −2ψ ι(AoB).
Here, the scalar ψ is determined up to a constant, which we fix by setting6 Mψ−3 = −�2 on
a Kerr background. In this situation, one may consider the spin-lowered version

�ABCDκCD,

of the Weyl spinor, which is again a massless spin-1 field and hence the complex self-dual
2-form

Mab = �ABCDκCDεA′B′ ,

satisfies the Maxwell equations dM = 0. The charge for this field defined on any topologically
non-trivial 2-sphere in the Kerr exterior is

1

4π i

∫
S
M = M; (4)

cf [32] for a tensorial version (the calculation has been performed much earlier in [34], but
not in the context of Killing spinors and spin-lowering). Here, M is the ADM mass [4] of the
Kerr spacetime7. The relation between the mass and charge for the spin-lowered Weyl tensor
M is natural in view of the fact that the divergence

ξA′A = ∇A′
BκAB

is proportional to ∂t ; see section 3.3, in particular, (43) and the discussion in [38, chapter 6].
Note that the charge (4) is in general complex. The imaginary part corresponds to the NUT

charge, which is the gravitational analogue of a magnetic charge. Details are not discussed in
this paper; see [39] for the construction of charge integrals in NUT spacetime.

For linearized gravity on the Kerr background, the non-radiating modes include
perturbations within the Kerr family, i.e. infinitesimal changes of mass and axial rotation
speed. We denote the parameters for these deformations Ṁ, ȧ. Since M, a are gauge-invariant
quantities, it is not possible to eliminate these modes by imposing a gauge condition. A
canonical analysis along the lines of [28], see below, yields conserved charges corresponding
to the Killing fields ∂t, ∂φ , which in turn correspond to the gauge-invariant deformations Ṁ, ȧ
mentioned above.

6 This choice has the natural (non-vanishing) Minkowski limit ψ = r, see section 3.3.
7 Equivalently, the mass parameter in the Boyer–Lindquist form of the Kerr line element.
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The infinitesimal boosts, translations and (non-axial) rotations of the black hole yield
further non-radiating modes which are, however, ‘pure gauge’ in the sense that they are
generated by infinitesimal coordinate changes. If one imposes suitable regularity8 conditions
on the perturbations which exclude e.g. those which turn on the NUT charge, then a ten-
dimensional space of non-radiating modes remains. This is spanned by the two-dimensional
space of non-gauge modes which carry the Ṁ, ȧ charges, together with the ‘pure gauge’ non-
radiating modes, and corresponds in a natural way to the Lie algebra of the Poincaré group. It
can be seen from this discussion that a combination of charge-vanishing conditions and gauge
conditions allows one to eliminate all non-radiating solutions of linearized gravity.

The constraint equations implied by the Maxwell and linearized gravity equations are
underdetermined elliptic systems, and therefore admit solutions of compact support; see [16]
and references therein. In particular, one may find the solutions of the Maxwell constraint
equations with arbitrarily rapid fall-off at infinity. The corresponding solutions of the Maxwell
equations have vanishing charges. For the case of linearized gravity, the charges corresponding
to Ṁ, ȧ vanish for the solutions of the field equations with rapid fall-off at infinity. For such
solutions, all non-radiating modes may therefore be eliminated by imposing suitable gauge
conditions.

The following discussion may easily be extended to the Einstein–Maxwell equations.
Given an asymptotically flat vacuum spacetime (N, gab), a solution of the linearized Einstein
equations ġab (satisfying suitable asymptotic conditions) and a Killing field ξ a∂a we have that
the variation of the Hamiltonian current is an exact form, which yields the relation

Ṗξ ;∞ =
∫

S
Q̇[ξ ] − ξ · �. (5)

Here, Pξ ;∞ is the Hamiltonian charge at infinity, generating the action of ξ , Q[ξ ] is the Noether
charge 2-form for ξ and � is the symplectic current 3-form, defined with respect to the variation
ġab. We use a ˙ to denote variations along ġab; thus, Ṗξ ;∞ and Q̇[ξ ] denote the variation of the
Hamiltonian and the Noether 2-form, respectively. The integral on the right-hand side of (5)
is evaluated over an arbitrary sphere, which generates the second homology class.

For the case of ξ = ∂t , and considering solutions of the linearized Einstein equations on
the Kerr background we have, following the discussion above,

Ṁ = Ṗ∂t ;∞.

Working with the Carter tetrad, let �i, i = 0, . . . , 4, be the Weyl scalars and let ZI , I = 0, 1, 2
denote the corresponding basis for the space of complex, self-dual 2-forms; see section 2 for
details. In this paper, we shall show that the natural linearization of the spin-lowered Weyl
tensor M is the 2-form

Ṁ = ψ�̇1Z0 + ψ�̇2Z1 + ψ�̇3Z2 + 3
2ψ�2Ż1.

As will be demonstrated, see section 4 below, Ṁ is closed, and hence the integral∫
S
Ṁ (6)

defines a conserved charge. A charge-vanishing condition for the linearized mass, analogous to
the one discussed above for the charges of the Maxwell field, may be introduced by requiring
that this integral vanishes. The coordinate form of this charge-vanishing condition is∫

S2(t,r)

(
2V −1/2

L
˙̂�2 + ia sin θ�̇diff

)
(r − ia cos θ )dμ = 0, (7)

8 The Kerr family of line elements may be viewed as part of the type D family of vacuum metrics which includes,
among others, the NUT and C-metrics. See section 3.3 for further discussion. The perturbations corresponding e.g.
to infinitesimal deformations of the NUT parameter are singular and may thus be excluded by suitable regularity and
decay conditions. See [44, 29] for remarks.
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which should be compared to the corresponding condition for the Maxwell case, cf (3). Here,
˙̂�2 and �̇diff are the suitable combinations of the linearized curvature scalars �̇1, �̇2, �̇3 and

linearized tetrad.
Let ġab be a solution of the linearized Einstein equation on the Kerr background, satisfying

suitable asymptotic conditions, and let Ṁ be the corresponding perturbation of the ADM mass.
Letting S = S2(t, r) and evaluating the limit of (6) as r → ∞ one finds, in view of the fact
that (6) is conserved, the identity

Ṁ = 1

4π i

∫
S
Ṁ,

for any smooth 2-sphere S in the exterior of the Kerr black hole. Thus, we have the relation∫
S

Q̇[∂t] − ∂t · � = 1

4π i

∫
S
Ṁ , (8)

for any surface S in the Kerr exterior. We remark that the left-hand side of (8) can be evaluated
in terms of the metric perturbation using the expressions for Q and � given in [28, section 5].
On the other hand, the right-hand side has been calculated in terms of linearized curvature. It
would be of interest to have a direct derivation of the resulting identity.

The canonical analysis following [28] which has been discussed above shows that in
addition to the conserved charge corresponding to Ṁ, equation (5) with ξ = ∂φ , the angular
Killing field, gives a conserved charge integral for linearized angular momentum ȧ. If ∂φ is
tangent to S, then the term ∂φ · � does not contribute in (5). We remark that an expression
for ȧ for linearized gravity on the Schwarzschild background was given in [30, section 3]. A
charge integral for ȧ for linearized gravity on the Kerr background will be considered in a
future paper.

Remark 1.1.

(1) There are many candidates for a quasi-local mass expression in the literature including, to
mention just a few, those put forward by Penrose, Brown and York, and Wang and Yau. See
the review of Szabados [42] for background and references. Although as discussed above,
cf equation (4), for a spacetime of type D, there is a quasi-local mass charge, it must be
emphasized that for a general spacetime one cannot expect the existence of a quasi-local
mass which is conserved, i.e. independent of the 2-surface used in its definition. The same
is true for linearized gravity on a general background. Thus, the existence of a conserved
charge integral for the linearized mass is a feature which is special to linearized gravity
on a background with Killing symmetries.

(2) If we consider linearized gravity without sources, on the Minkowski background, the
linearized mass must vanish due to the fact that Minkowski space is topologically trivial.
This reflects the fact that when viewed as a function on the space of Cauchy data, the ADM
mass vanishes quadratically at the trivial data, cf [10]. On the other hand, by the positive
mass theorem, for any non-flat vacuum spacetime, asymptotic to Minkowski space in a
suitable sense, the ADM mass defined at infinity must be positive.

This paper is organized as follows. In section 2, we introduce the bivector formalism
and notation for linearized gravity. Conformal Killing–Yano tensors and Killing spinors
are discussed in section 3.1. Section 3.2 deals with conserved charges for spin-2 fields on
Minkowski and section 3.3 for type D spacetimes. The main result, a charge integral in terms
of linearized curvature, is derived in section 4, and finally, section 5 contains some concluding
remarks.
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2. Preliminaries and notation

Let (N, gab) be a four-dimensional Lorentzian spacetime of signature + − −−, admitting a
spinor structure. Although most of the results can be generalized to the electrovac case with a
cosmological constant, we restrict in this paper to the vacuum case. In particular, we consider
test Maxwell fields and linearized gravity on vacuum type D background spacetimes.

2.1. Bivector formalism

Let oA, ιA be a spinor dyad, normalized so that oAιA = 1, and let

la = oAōA′
, ma = oA ῑA

′
, m̄a = ιAōA′

, na = ιA ῑA
′

be the corresponding null tetrad, satisfying lana = −mam̄a = 1, with the other inner
products being zero. The 2-spinor calculus provides a powerful tool for computations in
four-dimensional geometry. The GHP formalism deals with the dyad (or equivalently tetrad)
components of geometric objects and exploits the simplifications arising by taking into account
the action of dyad rescalings and permutations. These formalisms are closely related to the
less widely used bivector formalism [34, 6, 9, 27] in which the basic quantity is a basis for
the three-dimensional space of complex self-dual 2-forms. A 2-form Z is called self-dual, if
∗Z = iZ and anti self-dual, if ∗Z = −iZ. Given a spinor dyad, a natural choice9 is

Z0
ab = 2m̄[anb] = ιAιBεA′B′ (9a)

Z1
ab = 2n[alb] − 2m̄[amb] = −2o(AιB)εA′B′ (9b)

Z2
ab = 2l[amb] = oAoBεA′B′ , (9c)

where the notation 2x[ayb] = xayb − yaxb for anti-symmetrization and 2x(ayb) = xayb + yaxb

for symmetrization is used. We use capital latin indices I, J, K taking values in 0, 1, 2 for the
elements in the bivector triad ZI . The metric gab induces a triad metric GIJ and its inverse GIJ

is given by

GIJ = ZI · ZJ =
⎛⎝0 0 1

0 −2 0
1 0 0

⎞⎠, GIJ =
⎛⎝0 0 1

0 − 1
2 0

1 0 0

⎞⎠.

Here, · is the induced inner product on 2-form, ZI · ZJ = 1
2 ZI

abZJab. Triad indices are raised
and lowered with this metric,

Z0 = Z2, Z1 = − 1
2 Z1, Z2 = Z0.

More generally, we have

Proposition 2.1.

ZJ
a

cZK
bc = 1

2 GJKgab + εJKLZLab, (10a)

ZJ
[a

cZ̄K
b]c = 0, (10b)

ZJabZ̄K
ab = 0, (10c)

with εJKL being the totally antisymmetric symbol fixed by ε012 = 1.

9 We use the convention of [18], which differs from [27, 17] by a factor of 2 in the middle component and the
numbering.

6



Class. Quantum Grav. 30 (2013) 155016 S Aksteiner and L Andersson

A real 2-form Fab, e.g. the Maxwell field strength, has the spinor representation

Fab = φABεA′B′ + φA′B′εAB.

It is equivalent to the symmetric 2-spinor φAB = φ2oAoB − 2φ1o(AιB) + φ0ιAιB, where the six
real degrees of freedom of Fab are encoded in three complex scalars

φ0 = φABoAoB = Fablamb = F · Z0,

φ1 = φABιAoB = 1
2 Fab(l

anb − mam̄b) = F · Z1,

φ2 = φABιAιB = Fabm̄anb = F · Z2.

So the real 2-form has a bivector representation

F = φ0Z0 + φ1Z1 + φ2Z2 + φ0Z
0 + φ1Z

1 + φ2Z
2
,

or in index notation φI = F · ZI and F = φIZI + φIZ
I
.

The Weyl tensor is a symmetric 2-tensor over bivector space and has the spinor
representation

−Cabcd = �ABCDεA′B′εC′D′ + �A′B′C′D′εABεCD,

where �ABCD is a completely symmetric 4-spinor. The ten degrees of freedom of the Weyl
tensor are given by five complex scalars10

�0 = �ABCDoAoBoCoD = −Cabcdlamblcmd = −C · (Z0, Z0),

�1 = �ABCDoAoBoCιD = −Cabcdlanblcmd = −C · (Z0, Z1),

�2 = �ABCDoAoBιCιD = −Cabcdlambm̄cnd = −C · (Z0, Z2) = −C · (Z1, Z1),

�3 = �ABCDoAιBιCιD = −Cabcdlanbm̄cnd = −C · (Z2, Z1),

�4 = �ABCDιAιBιCιD = −Cabcdnam̄bncm̄d = −C · (Z2, Z2).

Similarly, we could have used the Weyl 2-bivector

CIJ = −1

4
CabcdZab

I Zcd
J =

⎛⎝�0 �1 �2

�1 �2 �3

�2 �3 �4

⎞⎠,

which relates to the real Weyl tensor via

− Cabcd = CIJZI
ab ⊗ ZJ

cd + CIJZ
I
ab ⊗ Z

J
cd . (11)

Because of different conventions and normalizations in the literature [34, 6, 9, 27], we
rederive here the equations of structure in a bivector formalism. Making use of Cartan’s
equations of structure for tetrad 1-forms11

dea = −ωa
b ∧ eb, �a

b = dωa
b + ωa

c ∧ ωc
b, (12)

Bianchi identities

�a
b ∧ eb = 0, d�a

b = �a
c ∧ ωc

b − ωa
c ∧ �c

b, (13)

and definitions of connection 1-forms σJ and curvature 1-forms �J in bivector formalism,

ωabea ∧ eb = −2σJZJ − 2σ̄JZ̄J, �abea ∧ eb = −2�JZJ − 2�̄JZ̄J, (14)

we have the following result.

10 Due to its symmetries, the Weyl tensor is a symmetric 2-tensor over the space of 2-forms. The induced inner product
is C · (ZI , ZJ ) = 1

4CabcdZab
I Zcd

J .
11 Connection and curvature are defined by ωa

bμ = ea
ν∇μeb

ν and �a
bμν = 2ea

σ ∇[μ∇ν]eb
σ , respectively.
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Proposition 2.2. The bivector equations of structure are

dZJ = −2εJKLσK ∧ ZL, �J = dσJ + 1
2εJKLσ

K ∧ σ L, (15)

while the Bianchi identities read

�[J ∧ ZK] = 0, d�J = −εJKL�
K ∧ σ L. (16)

Here, ∧ is the usual wedge product of 1-forms σ J and 2-forms ZJ, �J.

Proof. Expanding the bivectors ZJ = 1
2 ZJ

abea ∧ eb, we find

dZJ = 1
2 ZJ

ab(dea ∧ eb − ea ∧ deb) = ZJ
abdea ∧ eb

= −ZJ
abω

a
cec ∧ eb

= ZJ
ab(σKZKa

c + σ̄KZ̄Ka
c) ∧ ec ∧ eb

= εJKLZLbcσK ∧ ec ∧ eb

= −2εJKLσK ∧ ZL,

where proposition 2.1 has been used in the third step. For the second equation of structure, we
plug (14) into (12),

−�JZJ
ab − �̄JZ̄J

ab = −dσJZJ
ab − dσ̄JZ̄J

ab + (
σJZJ

ac + σ̄JZ̄J
ac

) ∧ (
σKZKc

b + σ̄KZ̄Kc
b
)
.

Using proposition 2.1, the self-dual part reads

�JZJ
ab = dσJZJ

ab + εKLJZJabσK ∧ σL.

Changing index positions on εKLJ and using det GJK = 1
2 gives the second equation of structure.

For the first Bianchi identity, look at

0 = 1
2 d2ZJ

= −εJKL (dσK ∧ ZL − σK ∧ dZL)

= −εJKL
(
�K ∧ ZL − 1

2εKNMσ N ∧ σ M ∧ ZL + σK ∧ εLNMσ N ∧ ZM
)

= −εJKL�K ∧ ZL +σ L ∧ σ J ∧ ZL − σ J ∧ σ L ∧ ZL − 2σL ∧ σ J ∧ ZL︸ ︷︷ ︸
=0

+ σK ∧ σ K︸ ︷︷ ︸
=0

∧ZJ,

where the identity εIJKεINM = δJ
NδK

M −δJ
MδK

N has been used. Finally, the second Bianchi identity
is

d�J = −εJKLdσ K ∧ σ L

= −εJKL(�K − εKMNσM ∧ σN ) ∧ σ L

= −εJKL�
K ∧ σ L + σL ∧ σJ ∧ σ L︸ ︷︷ ︸

=0

−σJ ∧ σL ∧ σ L︸ ︷︷ ︸
=0

.

�

Remark 2.3. Instead of using Cartan equations for the tetrad one could have used the bivector
connection form

ωIJa := εIJKσ K
a = Zbc

[J ∇aZI]bc. (17)

For later use, it is convenient to write the components of the equations of structure
explicitly. The connection 1-forms, for example, can be expressed in terms of NP spin
coefficients,

8
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σ0a = mb∇alb = τ la + κna − ρma − σ m̄a, (18a)

σ1a = 1
2 (nb∇alb − m̄b∇amb) = −ε′la + εna + β ′ma − βm̄a, (18b)

σ2a = −m̄b∇anb = −κ ′la − τ ′na + σ ′ma + ρ ′m̄a. (18c)

The middle component σ1a collects all unweighted coefficients and so can be used to
define the GHP covariant derivative �aη = (∇a − pσ1a − qσ 1a)η. To avoid clutter in the
notation, we write � := σ0 and σ2 = −�′, where ′ is the GHP prime operation [21]. The
derivatives of the spinor dyad can now be written in the compact form �aoA = −�aι

A and
�aι

A = −�′
aoA, and the components of the first equations of structure, which we present

here for convenience with the usual exterior derivative and with weighted exterior derivative
d� = d − pσ1 ∧ −qσ 1∧, read

d�Z0 = �′ ∧ Z1 ⇔ dZ0 = −2σ1 ∧ Z0 + �′ ∧ Z1, (19a)

d�Z1 = 2� ∧ Z0 + 2�′ ∧ Z2 ⇔ dZ1 = 2� ∧ Z0 + 2�′ ∧ Z2, (19b)

d�Z2 = � ∧ Z1 ⇔ dZ2 = 2σ1 ∧ Z2 + � ∧ Z1. (19c)

Note that the middle component can be simplified to dZ1 = −h ∧ Z1 with the 1-form
h = 2(ρ ′l + ρn − τ ′m − τ m̄). This fact and a relation between the type D curvature �2 and h
will be crucial in the derivation of the conservation law in section 4.

In vacuum, we have for the curvature 2-forms �J = CJKZK and the components of the
second equations of structure read

�0 = C0JZJ = d�� = d� − 2σ1 ∧ �, (20a)

�1 = C1JZJ = dσ1 − � ∧ �′, (20b)

�2 = C2JZJ = −d��′ = −d�′ − 2σ1 ∧ �′. (20c)

Finally, the Bianchi identities are

d��0 = −2� ∧ �1 ⇔ d�0 = 2σ1 ∧ �0 − 2� ∧ �1, (21a)

d��1 = −�′ ∧ �0 − � ∧ �2 ⇔ d�1 = −�′ ∧ �0 − � ∧ �2, (21b)

d��2 = −2�′ ∧ �1 ⇔ d�2 = −2σ1 ∧ �2 − 2�′ ∧ �1. (21c)

2.2. Linearized gravity

Linearized gravity describes perturbations to first order in some parameter ε of a given solution
to the field equations of General Relativity. We use an overdot or a subscript B for quantities
of O(ε), with some exceptions which are explained below.

Following [13], we introduce four real functions N1, N2, L1, L2 and six complex functions
L3, N3, Mi, i = 1, . . . , 4 to relate the linearized tetrad to the background tetrad⎛⎜⎜⎝

la

na

ma

ma

⎞⎟⎟⎠
B

=

⎛⎜⎜⎝
L1 L2 L3 L3

N1 N2 N3 N3

M1 M2 M3 M4

M1 M2 M4 M3

⎞⎟⎟⎠
⎛⎜⎜⎝

la

na

ma

ma

⎞⎟⎟⎠. (22)

9
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Here, we use a subscript B instead of a dot for the linearized tetrad. Note that the matrix entries
are by definition linearized quantities and we suppress an overdot to avoid clutter. There are
16 degrees of freedom at a point, 10 correspond to metric perturbations and 6 are infinitesimal
Lorentz transformations (tetrad gauge). The linearized tetrad 1-forms have the representation⎛⎜⎜⎝

la
na

ma

ma

⎞⎟⎟⎠
B

=

⎛⎜⎜⎝
−N2 −L2 M2 M2

−N1 −L1 M1 M1

N3 L3 −M3 −M4

N3 L3 −M4 −M3

⎞⎟⎟⎠
⎛⎜⎜⎝

la
na

ma

ma

⎞⎟⎟⎠. (23)

For the bivectors (9), it follows

Ż0 = −(L1 + M3)Z
0 + 1

2 (M1 + N3)Z
1 − M4Z

0 − 1
2 (M1 − N3)Z

1 + N1Z
2
,

Ż1 = −(M2 + L3)Z
0 − 1

2 (L1 + N2 + M3 + M3)Z
1 − (M1 + N3)Z

2,

+ (L3 − M2)Z
0 − 1

2 (L1 + N2 − M3 − M3)Z
1 + (N3 − M1)Z

2
,

Ż2 = − 1
2 (M2 + L3)Z

1 − (N2 + M3)Z
2 + L2Z

0 + 1
2 (M2 − L3)Z

1 − M4Z
2
. (24)

Linearization of the tetrad representation of the metric, gab = 2l(anb) − 2m(am̄b), yields

hln = −L1 − N2, hmm̄ = M3 + M3, hnm̄ = N3 − M1, hlm = L3 − M2,

and therefore trgh = −2(L1 +N2 +M3 +M3). Linearization of the NP curvature scalars shows

�̇0 = −Ċ · (Z0, Z0), (25a)

�̇1 = −Ċ · (Z0, Z1) + 3
2 (L3 + M2)�2, (25b)

�̇2 = −Ċ · (Z1, Z1) + (L1 + N2 + M3 + M3)�2, (25c)

�̇3 = −Ċ · (Z2, Z1) + 3
2 (N3 + M1)�2, (25d)

�̇4 = −Ċ · (Z2, Z2). (25e)

For linearized gravity in a tetrad-based approach, there are gauge degrees of freedom
corresponding to infinitesimal changes of the coordinates (coordinate gauge) and of the tetrad
(tetrad gauge). Here we only give some basics, which are needed in section 4 and refer to
[41] for details. Under infinitesimal coordinate transformations xa → xa + ξ a, a tensor field Ṫ
transforms as Ṫ → Ṫ + δṪ with

δT = −Lξ T. (26)

A tetrad gauge transformation ėa → ėa + δėa changes the tetrad (22) as follows,

δ

⎛⎜⎜⎝
la

na

ma

m̄a

⎞⎟⎟⎠
B

=

⎛⎜⎜⎝
A 0 b̄ b
0 −A ā a
a b iϑ 0
ā b̄ 0 −iϑ

⎞⎟⎟⎠
⎛⎜⎜⎝

la

na

ma

m̄a

⎞⎟⎟⎠, (27)

with a, b being complex and A, ϑ real valued. Here again, the subscript B denotes linearized
quantities, δ stands for an infinitesimal tetrad transformation and the matrix entries themselves
are linear in the perturbation parameter.

10
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3. Killing spinors and conserved charges

3.1. Conformal Killing–Yano tensors and Killing spinors

Conformal Killing–Yano tensors of rank 2 are 2-forms Yab solving the conformal Killing–Yano
equation,

Ya(b;c) = gbcξa − ga(bξc), where ξa = 1
3Ya

b;b. (28)

It is well known that the divergence ξ a is a Killing vector and in case it vanishes, Yab is called
a Killing–Yano tensor. The symmetrized product Xc(aYb)

c =: Kab of Killing–Yano tensors
Xab and Yab is a Killing tensor, ∇(aKbc) = 0, which can be used to construct a constant of
motion or a symmetry operator for e.g. the scalar wave equation, known as Carter’s constant
and Carter operator, respectively. By inserting Yab = κABεA′B′ + κ̄A′B′εAB into (28) one can show
that κAB and κ̄A′B′ satisfy the Killing spinor equation

∇A′(AκBC) = 0, (29)

and its complex conjugated version. For the spinor components κAB = κ2oAoB − 2κ1o(AιB) +
κ0ιAιB (or equivalently the self dual bivector components of Yab), we find the following set of
eight scalar equations:

þκ0 = −2κκ1, ðκ0 = −2σκ1, þ′κ2 = −2κ ′κ1, ð′κ2 = −2σ ′κ1, (30)

(ð′ + 2τ ′)κ0 + 2(þ + ρ)κ1 = −2κκ2, (þ′ + 2ρ ′)κ0 + 2(ð + τ )κ1 = −2σκ0,

(ð + 2τ )κ2 + 2(þ′ + ρ ′)κ1 = −2κ ′κ0, (þ + 2ρ)κ2 + 2(ð′ + τ ′)κ1 = −2σ ′κ2, (31)

by projecting (29) into a spinor dyad. Thus, we have three different sets of equations, (28), (29)
and ((30), (31)), which are equivalent and we will use the most appropriate for the problem at
hand.

As spin-s fields are heavily restricted on curved backgrounds (see footnote 4), so are
Killing spinors. Consider a Killing spinor κA1...An = κ(A1...An ) which satisfies the Killing spinor
equation of valence n,

∇B′(BκA1...An) = 0. (32)

Contracting a second derivative ∇B′
C and symmetrizing gives

0 = ∇B′
(C∇|B′|BκA1...An )

= −�(BCκA1...An)

= �(BCA1
DκDA2...An ) + . . . + �(BCAn

DκA1...An−1D)

= n�(BCA1
DκDA2...An).

For Killing spinors of valence 1 (satisfying the twistor equation), this yields 0 = �ABCDκD as
can be found in [38, equation (6.1.6)]. For 2-spinors, we find

0 = �(ABC
DκDE ). (33)

For non-trivial κAB, this restricts the spacetime to be of Petrov type D, N or O. For a given
spacetime of type D in a principal tetrad (only �2 
= 0), (33) becomes

0 = �2o(AoBιCιD(κ0ι
DιE ) + κ1oDιE ) + κ1ι

DoE ) + κ2oDoE ))

= �2(C1κ0o(AιBιCιE ) + C2κ2ι(AoBoCoE )),

with constants C1,C2 and it follows κ0 ≡ 0 ≡ κ2. The remaining component satisfies the
simplified equations (39), which have only one non-trivial complex solution (see section 3.3
for details), cf [22] where explicit integration of the conformal Killing–Yano equation was
done.

11
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Table 1. Poincaré isometries and corresponding charges.

Label Isometry Charge No.

Tt Time translation Mass 1
Ti Spatial translations Linear momenta 3
Li j Rotations Angular momenta 3
Lti Boosts Center of mass 3

3.2. Conserved charges for Minkowski spacetime

The Killing spinor equation or conformal Killing–Yano equation on Minkowski space has been
widely discussed in the literature [38, 32, 25] and the explicit solution in Cartesian coordinates
is well known,

κAB = UAB + 2xA′(AVA′ B) + xA′AxB′BWA′B′ . (34)

Here, UAB and WA′B′ are constant, symmetric spinors and VA′ B a constant complex vector
which yield 2 · 6 + 8 = 20 independent real solutions. Each solution gives a charge when
contracted into a spin-2 field, e.g. the linearized Weyl tensor, and integrated over a 2-sphere. In
[38, p 99], ten of these charges are related to a source for linearized gravity in the following
sense. Given a divergence-free, symmetric energy–momentum tensor Tab, one has for each
Killing field ξ b the divergence-free current Ja = Tabξ

b. Using the linearized Einstein equations

Ġab = Ṙacb
c − 1

2 gabṘcd
cd = −8πGṪab, (35)

and the conformal Killing–Yano equation (28), they showed

3
∫

∂�

Ṙabcd ∗ Y cddxa ∧ dxb = 16πG
∫

�

eabc
dṪdf ξ

f dxa ∧ dxb ∧ dxc. (36)

Here, � denotes a three-dimensional hypersurface with boundary ∂� and eabcd is the Levi-
Civita tensor. The left-hand side is the charge integral described above, while the right-hand
side gives the more familiar form of a conserved 3-form corresponding to a linearized source
and a Killing vector ξ a = 1

3Y ab;b. Note that it is the dual conformal Killing–Yano tensor
on the left-hand side, which gives the charge associated with the isometry ξ a. In Cartesian
coordinates xa = (t, x, y, z) the Poincaré isometries read

Ta = ∂

∂xa
, Lab = xa

∂

∂xb
− xb

∂

∂xa
, (37)

and the relation to the charges is listed in table 1. The angular momentum around the z-axis is
found in the component Lxy = ∂φ .

Explicit expressions for linearized sources generating these charges can be found in [29,
equation (27)].

The ten remaining charges cannot be generated this way, since the corresponding
conformal Killing–Yano tensors have vanishing divergence (they are Killing–Yano tensors).
One of these charges corresponds to the NUT parameter12, and the remaining nine are three
dual linear momenta and six ofam13 charges. In the expression (34) for a general Killing spinor,
they correspond to U and the imaginary part of V . For a metric perturbation, which one might
interpret as a potential for the linearized curvature, these ten additional charges vanish, see
[38, section 6.5].

To understand the charges as projections into l = 0 and l = 1 modes, we rederive the
complete set of solutions in spherical coordinates using spin weighted spherical harmonics.

12 Sometimes called dual mass, because of duality rotation from Schwarzschild to NUT, see the appendix of [39].
13 Obstructions for angular momentum, see [31].

12
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Table 2. Solutions to the Killing spinor equation on Minkowski spacetime in spherical coordinates.

Components Divergence

Label κ0/
√

2 κ1 κ2/
√

2 Combination Re Im

�0
−1 0 0

�0
m 1Y1m 0Y1m −1Y1m �0

0 0 0
�0

1 0 0

�1 0 r 0 �1 Tt 0
�1

1 − �1
−1 Tx 0

�1
m (t − r)1Y1m t0Y1m (t + r)−1Y1m i�1

1 + i�1
−1 Ty 0

�1
0 Tz 0

�2
1 − �2

−1 Ltx Lyz

�2
m (t − r)2

1Y1m (t2 − r2)0Y1m (t + r)2−1Y1m i�2
1 + i�2

−1 Lty Lxz

�2
0 Ltz Lxy

A null tetrad for Minkowski spacetime in spherical coordinates (t, r, θ, φ) (symmetric Carter
tetrad) is given by

la = 1√
2

[1, 1, 0, 0], na = 1√
2

[1,−1, 0, 0], ma = 1√
2r

[
0, 0, 1,

i

sin θ

]
,

with non-vanishing spin coefficients

ρ = − 1√
2r

= −ρ ′, β = cot θ

2
√

2r
= β ′.

A general 2-form can be expanded

Y = + κ2
r

2
(dr − dt) ∧ (dθ + i sin θdϕ)

− κ1(dt ∧ dr + ir2 sin θdθ ∧ dϕ)

+ κ0
r

2
(dr + dt) ∧ (dθ − i sin θdϕ) + c.c.,

and it is a conformal Killing–Yano tensor, if the components κi satisfy (30) and (31). The
subset (30) of the Killing spinor equation becomes

(∂t + ∂r) κ0 = 0,

(
∂θ + i

sin θ
∂ϕ − cot θ

)
κ0 = 0,

(∂t − ∂r) κ2 = 0,

(
∂θ − i

sin θ
∂ϕ − cot θ

)
κ2 = 0,

so κ0 = f0(t − r)1Y1m and κ2 = f1(t + r)−1Y1m, where the functions fi depend on advanced and
retarded coordinates only and sYlm are the spin weighted spherical harmonics, see e.g. section
4.15 in [37]. Finally, (31) can be solved for κ1, which is only possible for particular functions
fi. The result is given in table 2.

There, �1 represents one complex solution of the Killing spinor equation, while
�i

m, i = 0, 1, 2 represent three complex solutions each (m = 0,±1). We find the following
correspondence to the solutions (34) in Cartesian coordinates:

�0
m ↔ UAB, �1,�1

m ↔ VA′ A, �2
m ↔ WA′B′ .

13
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3.3. Conserved charges for type D spacetimes

The vacuum field equations in the algebraically special case of Petrov type D have been
integrated explicitly by Kinnersley [36]. An explicit type D line element solving the Einstein–
Maxwell equations with a cosmological constant is known, from which all type D line elements
of this type can be derived by certain limiting procedures; see [40, section 19.1.2], and also
[15]. The family of type D spacetimes contains the Kerr and Schwarzschild solutions, but
also solutions with more complicated topology and asymptotic behavior, such as the NUT-
or C-metrics, and solutions whose orbits of the isometry group are null. In the following, we
again restrict to the vacuum case.

A Newman–Penrose tetrad such that the two real null vectors la, na are aligned with the
two repeated principal null directions of a Weyl tensor of Petrov type D is called a principal
tetrad. In this case,

�0 = �1 = 0 = �3 = �4, κ = κ ′ = 0 = σ = σ ′

and �2 
= 0. For convenience, we introduce a new variable ψ , which is related to the non-
vanishing curvature scalar via,

ψ ∝ �
−1/3
2 . (38)

Due to the integrability condition (33), we have κ0 = 0 = κ2. Hence, the components (30, 31)
of the Killing spinor equation simplify to

(þ + ρ)κ1 = 0, (ð + τ )κ1 = 0, (þ′ + ρ ′)κ1 = 0, (ð′ + τ ′)κ1 = 0. (39)

Comparison with the Bianchi identities

(þ − 3ρ)�2 = 0, (ð − 3τ )�2 = 0, (ð′ − 3ρ ′)�2 = 0, (ð′ − 3τ ′)�2 = 0 (40)

shows that κ1 := ψ is a solution, and in fact is the only non-trivial solution of the Killing
spinor equation.

The divergence ξAA′ = ∇A′
BκAB is a Killing vector field, which is proportional to a real

Killing vector field for all type D spacetimes except for Kinnersley class IIIB, cf [11]. If ξAA′

is real, then the imaginary part of κAB is a Killing–Yano tensor. Spacetimes satisfying the
just mentioned condition are called generalized Kerr–NUT spacetimes [19]. The square of the
Killing–Yano tensor is a symmetric Killing tensor Kab = YacY c

b and it follows that ηa = Kabξb

is a Killing vector. On a Kerr background, ξ a and ηa are linearly independent and span the
space of isometries, see [26]. In the special case of a Schwarzschild background, ηa vanishes,
see also [12] for details.

For Kerr spacetime in Boyer–Lindquist coordinates, we find

�2 = − M

(r − ia cos θ )3
, ψ ∝ r − ia cos θ,

and we set the factor of proportionality to 1, so that the solution

κ0 = 0, κ1 = ψ, κ2 = 0, (41)

reduces to �1 as given in table 2, in the Minkowski limit M, a → 0. The Killing spinor with
components given by (41) is

κAB = −2ψo(AιB). (42)

and its divergence is the timelike Killing vector,

(∂t )a = 1
3∇b

(
ψZ1

ab

) = 1
3∇B′B(κABεA′B′ ) = − 1

3∇A′ BκAB. (43)

14



Class. Quantum Grav. 30 (2013) 155016 S Aksteiner and L Andersson

As discussed in the introduction, spin lowering the Weyl spinor using (42) gives the Maxwell
field �ABCDκCD, which has charges proportional to mass and dual mass, see also [33]. Letting
M(C, κ ) denote the corresponding closed complex 2-form we have

M(C, κ ) = ψ�2Z1. (44)

Evaluating the charge for the Kerr metric yields

1

4π i

∫
S2
M(C, κ ) = 1

4π i

∫
S2

− M

(r − ia cos θ )2
(−i)(r2 + a2) sin θdθ ∧ dϕ = M, (45)

where M is the ADM mass while the dual mass is zero.

4. Fackerell’s conservation law

The closed 2-form (44) has been derived already in 1961 by Jordan et al [34]. We will repeat
the derivation here, since this formulation can be generalized to linearized gravity most easily.
On a type D background, the curvature forms and the connection simplifies to

�0 = �2Z2, �1 = �2Z1, �2 = �2Z0, � = τ l − ρm, (46)

so the middle Bianchi identity (21b) becomes

2d�1 = 2�2[(ρ ′m̄ − τ ′n) ∧ l ∧ m + (ρm − τ l) ∧ m̄ ∧ n]

= 2�2(ρ
′l + ρn − τ ′m − τ m̄) ∧ Z1

= h ∧ �1,

where h = 2(ρ ′l + ρn − τ ′m − τ m̄) is used. As noted in [18], the Bianchi identities (40) can
be rewritten as 2d�2 = 3h�2 and one obtains

d(�2Z1) = d�1 = 1
2 h ∧ �1 = 1

3 d�2 ∧ Z1,

which yields the Jordan–Ehlers–Sachs conservation law [34],

d
(
�

2/3
2 Z1) = 0. (47)

Using (38), this is the same result as (44). See also [27], where the conservation law is
generalized to the spacetimes of Petrov type II. The result for type D backgrounds fits into
the picture of Penrose potentials [23] and it generalizes to the linear perturbations of such
backgrounds.

One can of course linearize the 2-form (44), which would provide a charge for
perturbations within the class of type D spacetimes. But more generally, Fackerell [17] derived
a closed 2-form for arbitrary linear perturbations around a type D background14. Starting from
this conservation law, Fackerell and Crossmann derived field equations for perturbations of
Kerr–Newmann spacetime. We summarize the result and give a shortened proof for the vacuum
case.

Lemma 4.1. A series expansion (in ε) of the Bianchi identities around a spacetime of Petrov
type D yields (

d − 1
2 h∧)

�1 = O(ε2), (48)

where h = 2(ρ ′l + ρn − τ ′m − τ m̄).

14 One can expect that such a structure for perturbations of algebraically special solutions exists also for other
signatures. A classification of the Weyl tensor in Euclidean signature can be found in [35], see also [24], a unified
formulation for arbitrary signature is given in [5].
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Proof. Equation (48) is the expansion of the middle Bianchi identity (21b). Since

�0 = �0Z0 + �1Z1 + �2Z2,

�1 = �1Z0 + �2Z1 + �3Z2,

�2 = �2Z0 + �3Z1 + �4Z2,

and

Z0 = m̄ ∧ n, Z1 = n ∧ l − m̄ ∧ m, Z2 = l ∧ m,

we have

�′ ∧ �0 = (τ ′n + κl − ρ ′m̄ − σm) ∧ (�0Z0 + �1Z1 + �2Z2)

= �0(κl ∧ m̄ ∧ n − σm ∧ m̄ ∧ n)

− �1(ρ
′m̄ ∧ n ∧ l + σm ∧ n ∧ l + τ ′n ∧ m̄ ∧ m + κl ∧ m̄ ∧ m)

+ �2(τ
′n ∧ l ∧ m − ρ ′m̄ ∧ l ∧ m)

= − �1(ρ
′m̄ ∧ n ∧ l + τ ′n ∧ m̄ ∧ m) + �2(τ

′n ∧ l ∧ m − ρ ′m̄ ∧ l ∧ m) + O(ε2)

= �1(−ρ ′l + τ ′m) ∧ Z0 + �2(τ
′m − ρ ′l) ∧ Z1 + O(ε2)

= (τ ′m − ρ ′l) ∧ �1 + O(ε2).

The last equality holds, because �3(τ
′m − ρ ′l) ∧ Z2 = 0. A calculation along the same lines

(or using the GHP prime operation) yields

� ∧ �2 = (−τ m̄ + ρn) ∧ �1 + O(ε2).

Now expanding the Bianchi identity, we find

d�1 = 1
2 h ∧ �1 + O(ε2).

�
Now we state the main result of this paper.

Theorem 4.2. For linearized gravity on a vacuum type D background in principal tetrad, there
exists a closed 2-form

Ṁ = ψ�̇1Z0 + ψ�̇2Z1 + ψ�̇3Z2 + 3
2ψ�2Ż1, (49)

which can be used to calculate the ‘linearized mass’. Here, ψ is the coefficient of the Killing
spinor (42).

The 2-form Ṁ is tetrad gauge invariant and changes only with a term χ which is exact,
χ = d f , under coordinate gauge transformations. Hence, the integral

1

4π i

∫
S2
Ṁ, (50)

is conserved and gauge invariant. It equals the linearized ADM mass.

Proof. For linearized gravity, making use of (48) and 3h�2 = 2d�2, we find the identity

0 = ψ
(
d − 1

2 h∧)
�̇1 − 1

2ψ ḣ ∧ �1

= d(ψ�̇1Z0 + ψ�̇2Z1 + ψ�̇3Z2 + ψ�2Ż1) − 1
2ψ�2ḣ ∧ Z1

= d
(
ψ�̇1Z0 + ψ�̇2Z1 + ψ�̇3Z2 + 3

2ψ�2Ż1
)

, (51)

where the linearized version of dZ1 = −h ∧ Z1 is used in the last step. Note that also

0 = d(ψ�̇1Z0 + ψ�̇2Z1 + ψ�̇3Z2) − 3
2ψ�2ḣ ∧ Z1 (52)

holds, which looks similar to Maxwell equations with a source.
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Now consider the coordinate gauge transformations (26) and use Cartan’s identity
Lξω = d(ξ�ω) + ξ�dω, which holds for arbitrary forms ω. It follows for Ṁ,

δṀ = −ψξ(�2)Z
1 − 3

2ψ�2[d(ξ�Z1) + ξ�dZ1]

= − 3
2ψ�2(d + h∧)(ξ�Z1)

= − 3
2 d[ψ�2(ξ�Z1)] , (53)

where ξ�h = 2
3�−1

2 ξ (�2) and ξ�(h ∧ Z1) = (ξ�h)Z1 − h ∧ (ξ�Z1) was used. The 2-form
(53) is exact and hence integrates to zero.

The tetrad gauge independence of Ṁ can be seen as follows. From (27), we find for (24)

δŻ1 = −2bZ0 − 2āZ2. (54)

This exactly cancels the terms arising from �̇1 and �̇3, as can be seen from (25). �̇2 is
tetrad gauge invariant, since the linearized Weyl tensor and trgh do not depend on the tetrad,
see (25c). This shows the tetrad gauge invariance of Ṁ and therefore gauge invariance
of (50). The relation to the ADM mass is discussed in the introduction, see in particular
equation (8). �

Remark 4.3.

(i) Equation (48) is to zeroth order the Jordan–Ehlers–Sachs conservation law (47) and to
first order Fackerell’s conservation law, dṀ = 0. In the Minkowski limit, M, a → 0, it
reduces to the l = 0 Penrose charge with the Killing spinor �1, see table 2.

(ii) In the work of Fayos et al [18], a gauge in which d(ψ�2Ż1) = 0 was used. It is not clear
from that work whether this gauge condition is compatible with a hyperbolic system of
evolution equations for linearized gravity.

(iii) The closed 2-form, with Ṁ in the form (49), has been derived by Fackerell and
Crossmann, see [17]. In the present paper, we give a short and simple proof of (48),
from which Fackerell’s conservation law can be deduced. We also calculate the explicit
gauge transformation behavior of Ṁ, from which the gauge invariance of linearized mass
follows. The interpretation of (50) as the linearized ADM mass Ṁ, and also its relation to
Penrose’s idea of spin lowering are the main results of this paper.

Finally, to express the charge integral in a form similar to the Maxwell case (3), we need
the θφ components of the bivectors,

Z1
θφ = −i(r2 + a2) sin θ, Z0

θφ = −Z2
θφ = a

√
�

2
sin2 θ. (55)

The charge integral becomes

2i√
�

∫
S2(t,r)

Ṁ =
∫

S2(t,r)

(
2V −1/2

L
˙̂�2 + ia sin θ�diff

)
(r − ia cos θ )dμ, (56)

with VL = �/(r2 + a2)2, dμ = sin θdθdϕ and

˙̂�2 = �̇2 − �2(M3 + M̄3), (57a)

�diff = �̇1 − �̇3 − 3�2(Re(M2 − M1) − i Im(L3 + N3)). (57b)
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5. Conclusions

For each isometry of a given background, there is a conserved charge for the linearized
gravitational field. Working in terms of linearized curvature, we derived a linearized mass
charge (corresponding to the time translation isometry) for Petrov type D backgrounds, by
using Penrose’s idea of spin-lowering with a Killing spinor.

A second Killing spinor, corresponding to the axial isometry of Kerr spacetime does not
exist, cf (39). Hence, spin lowering cannot be used directly to derive a linearized angular
momentum charge, even though a canonical analysis provides one in terms of the linearized
metric.

For a Schwarzschild background, gauge conditions are known, which eliminate the gauge-
dependent non-radiating modes [45, 30]. Understanding these conditions in a geometric way
and generalizing them to a Kerr background needs further investigation.
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Appendix. Coordinate expressions

For a Kerr spacetime in Boyer–Lindquist coordinates, the bivectors and connection forms in
a Carter tetrad are

Z1
ab =

⎛⎜⎜⎝
0 −1 −ia sin θ 0
1 0 0 −a sin2 θ

ia sin θ 0 0 −i(r2 + a2) sin θ

0 a sin2 θ i(r2 + a2) sin θ 0

⎞⎟⎟⎠, (A.1a)

Z0
ab = 1

2
√

�

⎛⎜⎜⎝
0 −ia sin θ � −i� sin θ

ia sin θ 0 � −i(r2 + a2) sin θ

−� −� 0 a� sin2 θ

i� sin θ i(r2 + a2) sin θ −a� sin2 θ 0

⎞⎟⎟⎠, (A.1b)

Z2
ab = 1

2
√

�

⎛⎜⎜⎝
0 ia sin θ −� −i� sin θ

−ia sin θ 0 � i(r2 + a2) sin θ

� −� 0 −a� sin2 θ

i� sin θ −i(r2 + a2) sin θ a� sin2 θ 0

⎞⎟⎟⎠, (A.1c)

σ0a =
(

0,
ia sin θ

2p
√

�
,−

√
�

2p
,− i

√
� sin θ

2p

)
, (A.2a)

σ1a =
(

M

2p2
, 0, 0,−Ma sin2 θ

2p2
− a + ir cos θ

2p

)
, (A.2b)

18



Class. Quantum Grav. 30 (2013) 155016 S Aksteiner and L Andersson

σ2a =
(

0,
ia sin θ

2p
√

�
,−

√
�

2p
,

i
√

� sin θ

2p

)
. (A.2c)

Here, we used

p = r − ia cos θ, � = pp̄, � = r2 − 2Mr + a2.
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