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Abstract

We construct the non-linear realisation of the Eg motion group and compare this with the bosonic
sector of eleven dimensional supergravity. The construction naturally leads to the introduction
of a new potential field. We identify this new field with the dual gravity field by considering the
reduction of the eleven-dimensional theory to three dimensions.
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1 Introduction

The toroidal compactification of eleven-dimensional supergravity [1] to various dimensions leads to
hidden symmetries [2-5], which have influenced many important developments. Arguably, they have
played an integral part in the set of ideas leading to U-dualities and the conjecture of M-theory
[6,7]. Furthermore, they continue to provide insights into a wide-range of problems associated
with string/M-theory. However, the role of these symmetries in the full eleven-dimensional theory
remains unclear. While these symmetries only appear upon reduction, early seminal work [8, 9] found
evidence that these symmetries are not merely artifacts of the reduction. They showed that eleven-
dimensional supergravity can be reformulated in a way that makes the local symmetries associated
with the global exceptional symmetries F7 and Eg, respectively, manifest. Moreover, they were able
to assemble some bosonic degrees of freedom into representations of the global symmetry groups.

More recent attempts in trying to understand these duality symmetries have centred on gener-
alised geometry [10-15] and related ideas of exceptional geometry [16,17]. These ideas are based on
the extension of the tangent space of a geometry to include p-form bundles, and in some cases, also
an extension of the base space to include dependence on new coordinates that are seen as windings
of branes. The extension of the space geometry to include windings associated to the branes leads to
the unification of gravity and the fields sourced by the branes in a single description [18-20]. In this
approach, the dynamics of fields along the internal directions are formulated in terms of a generalised
metric that is found from membrane duality arguments [21] or constructed from the duality coset.
Thus rendering the description duality-manifest.

In the context of string theory, similar considerations have been made with respect to the T-
duality group. In the double field theory [22-25] approach to closed string theory, motivated by
string field theory, all fields are taken to depend on dual (winding) coordinates as well as spacetime
coordinates. This naturally leads to a generalised geometric structure in which the extended diffeo-
morphism contains both spacetime diffeomorphism and the gauge symmetry of the NS-NS 2-form.
The generalised diffeomorphism algebra closes on the assumption that generalised fields satisfy a
differential constraint, known as the section condition, that reduces their dependence to a subset of
coordinates. From a physical point of view, the section condition is the level matching condition in
string theory. While this geometry does not admit some familiar notions of differential geometry,
such as the usual concept of a connection, it does possess a structure [26][25] [27-30] that in partic-
ular contains analogues of the Ricci tensor and scalar—the equation of motion and Lagrangian of
the low-energy effective description of closed string theory. The generalised geometric descriptions
of heterotic [31,32] and type II theories [33][30][34] also exist.

The generalised geometries associated with the M-theory dualities admit similar, but richer struc-
tures given the existence of higher rank p-forms sourced by various branes [14]. As with double field
theory, the generalised geometries in this context also contain notions of a generalised diffeomor-
phism algebra that unifies spacetime diffeomorphims and gauge symmetries and closes on a section
condition [35-37], as well as other structures [38-40].

In [20], the SL(5), SO(5,5) Eg, and E7 duality groups were considered and the dynamics of
the corresponding internal fields were described by a non-linear realisation [41-44] of the respective
groups seen as subgroups of Fy1. The focus of this paper is the non-linear realisation of Fg. This
is the duality group of maximally supersymmetric three-dimensional supergravity [45] that appears
upon the toroidal reduction of eleven-dimensional supergravity [46].

As eluded to earlier, a reformulation of eleven-dimensional supergravity with respect to the Fg
duality group was first considered by Nicolai in [9] and elaborated on further in [16]. In particular,
in [16], the authors provide evidence for a ‘generalised vielbein’ in the 248 ® 248 of Eg and the uni-
fication of spacetime and gauge symmetries in the internal directions. The study of supersymmetry



transformations and the treatment of the 3-form potential as an independent field is central to their
argument and what emerges is a structure that can be viewed as belonging to the Eg tensor product
representation 36 ® 248. From the perspective of this work, the failure of a generalisation of this
structure to a 248 ® 248 object there is due to the absence of dualisation of relevant fields. Therefore,
to understand the significance of duality symmetries in the eleven-dimensional theory, it is necessary
to have in mind a ‘democratic formulation’ in which the supergravity fields are supplemented by
their duals, i.e. the 6-form and the dual gravity field [5]. This is not so surprising when viewed
from the perspective of the reduced theory and the necessity of dualisations for the appearance of
symmetries. Furthermore, dualisation is necessary in the local SU(8) [8] and SO(16) [9] invariant
reformulations of eleven-dimensional supergravity.

Whereas the dualisation of form-fields is well-understood, the dualisation of the metric field is
more intricate. The interpretation of the curvature tensor as a 2-form field strength of the metric
field allows for a natural generalisation of dualisation in this context [47-51]. In the linearised theory,
this leads to actions for gauge fields in exotic representations of the Lorentz group first considered by
Curtright [52]. It has been argued [53] that the extension of such an idea to the non-linear theory is
not possible in a local and covariant manner, in general. Although, the existence of isometries is one
way to circumvent this [50]. In such a setting, the dual gravity field is the dual of the graviphoton
gauge field. The relevance of a dual gravity formulation in the context of M-theory dualities, in
particular the E; proposal, has been of much recent interest [54-58]. In these papers the possibility
of introducing dual gravity fields transforming under the gauge symmetries of the matter fields of
eleven-dimensional supergravity has been investigated. In particular, in [57] the dependence of the
dual gravity field on the 3-form gauge field and its dual has been predicted from FEj;.

The Eg duality group is particularly interesting from the point of view that the potential of
the dual gravity field is expected to appear in the generalised metric for the first time.! As has
been observed in [36, 37], the presence of dual gravity poses difficulties for the formulation of an Fg
generalised geometry.

The goal of this paper is to construct the non-linear realisation of the Eg group and compare it
with what one would expect from the bosonic sector of eleven-dimensional supergravity. In section
2, we begin by constructing the non-linear realisation of the Eg motion group. The main steps in
this construction are as follows.

e We ascertain the FEg motion group, which is the semi-direct product of the Fg group with that
of its adjoint representation. The adjoint representation can be thought of as being generated
by translations. This is analogous to the definition of the Poincaré group as the the semi-
direct product of the Lorentz group with that of its vector representation, the elements of
which are viewed as translation generators. The Eg motion group is given in terms of an SL(8)
decomposition of the Eg algebra and its adjoint representation. This is because from an eleven-
dimensional perspective, the Eg duality group appears in the reduction to three dimensions on
an 8-torus. Thus, we would like the duality group to act on the eight spatial directions that
would be associated with the torus under the reduction.

e We construct the generalised Eg vielbein by conjugating the Maurer-Cartan form of an element
of the adjoint representation with an element of the Fg group. This is equivalent to calculating
the Maurer-Cartan form of an element of the motion group and reading off the part that appears
as a coefficient of the translation generators. Given its transformation properties, this object
defines a vielbein.

"Winding coordinates that can be interpreted as those of a Kaluza-Klein monopole do appear in the E7 algebra,
but the potential associated with these coordinates does not appear in the generalised metric.



e We formulate the Eg invariant dynamics for the eight-dimensional space in a canonical ap-
proach. In such a description, the dynamics is given by a potential and a kinetic term. The
strategy in this construction is to write down all Fg invariant terms constructed from the gen-
eralised metric and fix their coefficients by requiring that the expression reduces to what one
would expect for the gravitational sector. Once the coefficients are fixed the full expression
with all fields turned on can be computed with the assumption that fields do not depend on
the generalised coordinates.

The potential term that is obtained includes an Einstein-Hilbert term, which appears by con-
struction; gauge-invariant field strengths of a 3-form (Cy.) and a 6-form (C,,. 4) potential and a
term involving a potential with a mixed symmetric Young tableau diagram

Cal...as,b = C[al...ag},b-

Except for the term involving Cy, . 44 b, the potential is the same as that obtained in the E7 non-linear
realisation [20]:

1 1
V= R(g) - _ga1---a4,b1---b4F(4) F(4) - _ga1---a7,b1---b7F(7) F(7)

48 ai...a4” by...by 8! ai...ar” by...by
L b
+ @ga greger s IS, b Fe s (1)
where R(g) is the Ricci scalar of metric g and
thil.)..m; = 48[(11 Ca2a3a4}7 (2)
F(Sl?.)..tm =7 (a[al Caz...a7] + 200[a1a2a38a40a5a6a7}) ) (3)
560
Fa,el...eg,b = aaCel...eg,b - 280[51...66|aa0\e7es}b - TCb[ewz 0636465\&10\666768}' (4)

The antisymmetrisation over inverse metrics is defined as follows

al---avubl---bn —

g — <g‘“b1 gt 4 (remaining even permutations of ay,...,ay)

n!

— (odd permutations of aq, ... ,an)> . (5

From an eleven-dimensional perspective the field strength F(7) is the Hodge dual of F®) | while the
interpretation of F,p,  ps . is unclear. Although the structure of the potential C,, 45 suggests a
relation to the dual gravity field.

To establish such a relation, in section 3, we dimensionally reduce the bosonic action of eleven-
dimensional supergravity to three dimensions. The reduced theory is known to exhibit Eg global
symmetry. Indeed upon dualising the one-forms, the scalars of the theory parametrise the coset
E5/SO(16) and their action is written in terms of the generalised metric. Whereupon, we identify
the 6-form potential as the dual of the 3-form. Furthermore, the potential Cy, . 45 is the dual of
the graviphoton with field strength

560

Cb[al as Ca3a4a5 | az C\agawzg}

Hi,al...ag,b = aical...ag,b - 280[a1...a6|8i0\a7a8}b - 3

in the three-dimensional theory.
We discuss the possible implications of these results at the end of the paper.



2 Non-linear realisation of FEg

In this section, we construct the non-linear realisation of the Eg motion group.? The dynamics
obtained from this construction can then be compared with eleven-dimensional supergravity. Due
to the many technicalities and long calculations involved in obtaining this result much of the details
concerning the calculations have been explained in the appendices for ease of reading.

As emphasised before, the key ingredient in the construction of the Eg invariant dynamics is the
FEgs generalised metric, which is constructed using a non-linear realisation of the Eg motion group.
In [20], the non-linear realisation method was used to calculate the generalised metrics relevant for
the SL(5), SO(5,5), E¢ and E; duality groups. In that paper, the duality groups were regarded
as subgroups of F1; and the generalised metrics were found by performing a non-linear realisation
of Fq11 X l; decomposed to the appropriate duality subgroup. As was stressed in that paper the
only difference in carrying out the non-linear realisation of E1; truncated to the aforementioned
mentioned duality groups as opposed to doing the non-linear realisation of the duality group itself is
an overall factor of the determinant of the spatial metric to some power multiplying the generalised
metric. The approach that we will take in this paper is to calculate the non-linear realisation of the
FEg duality group. We comment on the overall factor of the generalised metric later in this section.

The first step in constructing the non-linear realisation is to find the Fg motion group, which is
done in appendix A. In order to do this, first the Fg algebra, which is usually written in terms of
an SL(9) decomposition of Eg, needs to be rewritten in terms of an SL(8) decomposition. This is
because in the 843 splitting of the eleven-dimensional theory that we are considering here, the Fjg
duality group acts only on the eight spatial directions. In an SL(9) representation, the Eg algebra
is given by the following three generators

Mg, VY, Vg, (6)

where the underlined Greek indices are SL(9) indices that run from 1 to 9. An SL(8) decomposition
of these generators is simply of the form

Ma57 Ma97 Mgﬁa Vaﬁﬁ{, Vaﬁga Vaﬁ'yy Vaﬁga (7)

where lowercase Greek indices run from 1 to 8. The above objects and the alternating tensor €4, g
in eight dimensions can then be used to define the generators of the particular SL(8) decomposition
of the Fg algebra used here

Kaﬁa Raﬁ'y7 Raﬁ’yy Ral...ag;’ Ral...agy Ral...aS,Bj Ral...a&ﬁ- (8)

The precise relation between these generators and those listed above is given in appendix A. Note
that as emphasised there, the definition of these generators is one particular choice out of many
possibilities and has been made with the efficient calculation of the non-linear realisation in mind.
Now the Ejg algebra reduces to a set of commutation relations involving the generators listed in (8)
(see equations (57)—(76) in appendix A).

Given the SL(8) decomposition of the Eg group, the next step is to define the translation gen-
erators. Consider the 248-dimensional fundamental (and adjoint) representation of Eg given by
generators

Pgﬁv 7g@= 7gﬁ“/= (9)

which are of the same form as the Eg generators. The SL(8) decomposition of the trace-free generator
Peg gives the following generators
Paa Waﬁv W/) Zav (10)

2See appendix A for a review of the Eg algebra.



where W3 is trace-free. A simple counting confirms that these generators have the same degrees
of freedom as P%g. Similarly, the totally antisymmetric generators 7% and 7257 are rewritten in
terms of SL(8) indices as

VAR A (11)

and
Wocﬁ'yy Waﬁa (12)

respectively. The precise definition of the above generators is given in equations (86)—(93) in ap-
pendix A. In addition, the necessary commutation relations and inner products involving the trans-
lation generators are given in appendix A.

The Fs non-linear realisation is constructed using the motion group element

9 = 919k,

where

LC,

1 1
:ehaBKaﬁeycalmaSRal 3 CalmaﬁRal aGeg aj...ag,

e@ ﬁRal‘“a&ﬂ

9E

is an Fg group element. This group element has been gauge-fixed so that it mostly contains gener-
ators corresponding to negative roots, i.e. generators of the Borel subalgebra. The only exception
being the K“g which contains generators corresponding to both positive and negative roots as well
as Cartan subalgebra generators. This group element introduces the fields

hozﬁa Coq...ocga Ca1...0567 Cal...ag,ﬁ-
The group element

1 B 1,08 2 B
g = el‘apaeﬂyaﬁza e\/gwa ’YWaﬁ'ye’waﬁWageQ\/ine4\/;Zaﬁ’yZa ’Ye4\/§’waﬂWa5682aza

is generated by the translation generators. The coefficient of each exponent in the group element
has been chosen based on the normalisation of the translation generator, given in appendix A, so
that the flat metric takes the canonical form

ds? =0ap dz®dz” + 677 dy,sdyys + Gagy,sec dw™dw’® + 63,65 dw® gdw’s
+ dwdw + §*P7°€ dzo g, dzsec + Sap e dw™ dw?® + 6P dzadzg,
where
1
5o 0nsfr . — (50‘161 ... 0% P 4 (remaining even permutations of ar, ..., op,)
n!

— (odd permutations of g, . .. ,an)) . (13)

The generalised vielbein is given by conjugating the Maurer-Cartan form of g; by gg
PpLlM 4 dz4 = ggl(gl_ldgl)gE. (14)

In this paper uppercase Greek letters denote generalised tangent space indices, while uppercase Latin
indices denote generalised coordinate indices?.

Using Hadamard’s Lemma
o0

eXye X = Z 1 (ad"X)Y,

n=0

3Note that in [20], opposite conventions were used for uppercase Greek and Latin indices



where

(adX)Y = [X,Y],

and the commutation relations between Kg and the translation generators, equations (94)—(119),
we find L4, the generalised vielbein. This is a 8x8 block, lower triangular matrix that is sextic in
Ca...as, cubic in Cy, . oy and quadratic in Cy,. a4 3. The generalised metric is given by

Map = ons LM AL 5.

However, for calculating the action, it is much easier to use the following rewriting of the generalised
metric ~ o
Map = GepL© AL 5, (15)

where

didz,e1e2

— 1 i1k 1j k mi...M3,M1...10 x
Gap = diag(gap, g s 9g1..g3,hn ks 97 Giaks — géjzék;’ L, gm TS g g rires §Y).

The index
A= (CL, d1d27gl e g37j1j27 @,ml e m37Q1q27‘T)

and similarly
B = (b, erea,hy ... hg, kike, D, nq ... n3,7‘17’2,y),

where @ denotes the fact that the corresponding object has no index. Furthermore,
LAp = en L1, (16)
where

A .
en” =diag(es”, ejq, A edz]ﬁz s €y lor eﬁ,393] ,

W Oles, 2 — 15]:2651

€1 €3 lq1, . 2] n
e ) 00 52,1,e[m1 ey e e, ™ e ).

eq” is the spatial vielbein,
Gab = 5aﬁeaaebﬁy

and e, is the inverse vielbein. The index

II = (a,B1PB2,71-..73,0102, D, €1 ...€3,(1(2, 7).

By introducing L 5, we have removed spatial vielbeine from the generalised vielbein and instead
only work with the spatial metric. This is more convenient and it is the form of the generalised
vielbein that will be used to calculate the action. Note that the generalised metric constructed
from the Fg motion group, M, is unit determinant. We will consider a rescaling of this generalised
metric by the determinant of the spatial metric. As was explained in [20]—in particular appendix
B—this can be thought of as considering Fg as a subgroup of a larger group, Fi1, for example.
Or alternatively we can think of the SL(8) in Eg as a subgroup of a larger special linear group,
SL(11) for instance. This makes sense physically because the theory of course only makes sense in
eleven-dimensions and we should always view the eight spatial coordinates we have here as being
augmented by three other directions. The rescaled generalised vielbein that we use is

DA = g,



where g is the determinant of the spatial metric. The generalised metric that we use to construct
the dynamics is 3
Myp :GCDLCALDB :g_lMAB. (17)

The components of LA are given in appendix B.

We follow the canonical approach of [18] to formulate the dynamics. In this approach, there
is a potential and kinetic term for the fields. In a duality-invariant description both of these are
given as a scalar in terms of the generalised metric. In order to find this description, consider first
the potential and write a combination of terms that reduces to the Ricci scalar when the fields are
independent of the generalised coordinates:

1 1 1
V= %MMNC‘)MMK%NMKL — 5MMNaNMKLaLMW — @MKLaMMMNaNMKL

23
+WMMN(MKLaMMKL)(MRSaNMRS)-

MAB is the inverse of the generalised metric. When the fields are taken to only depend on the eight
usual directions this expression reduces to

1 4 1 7
Vo Rlg) - g B0, L g g,

1
+ —gadgbcgelmesjlmnga,el~~~687bFC,f1~~f87d7 (18)

8(8!)
where R(g) is the Ricci scalar of metric g and
Féf.)..azx = 48[a1ca2a3a4}7 (19)
Ft£17~)~a7 =7 (a[alcaz...cw] + 200[%&2&38&40&5&6&7}) ) (20)
560
Fa,el...eg,b = aacel...eg,b - 280[61...66|aa0\e768}b - ch[elegcege4e5\8a0\666768}' (21)

The details of this calculation are in appendix C. The kinetic term can be evaluated similarly and
contains the kinetic terms associated with the metric and the 3-form [18] and an analogous term for
the 6-form. Moreover, it contains a term quadratic in time-derivatives of Cy, ag.0-

The interpretation of the appearance of a field with mixed indices, especially in the form above,
in the dynamics is unclear. However, the structure of the potential is clearly reminiscent of a dual
gravity field. In the next section, we show that the potential Cy, . 44 is the dual of the graviphoton
in the dimensional reduction of eleven-dimensional supergravity to three dimensions. Thus, given
the evidence for the relation between dualisation of fields before and after reduction [5, 59], from an
eleven-dimensional perspective this potential is indeed to be interpreted as a dual gravity field.

3 Dimensional reduction of the bosonic sector of eleven-dimensional
supergravity

In this section, we dimensionally reduce the bosonic part of eleven-dimensional supergravity [1] a
la Cremmer-Julia [2] to three dimensions and relate Ce, 4 to the dual gravity field. This is the
dimensional reduction in which the Eg symmetry appears [46]. In particular the scalars of the
reduced theory are described by an Eg/SO(16) coset, which we will demonstrate explicitly in this
section.



The bosonic part of the action of eleven-dimensional supergravity is

1 1
S = /\/5 <R(G) — 4—8FABCDFABCD — @6141"'1411FAl...A4FA5...AsCA6A7As> . (22)

Here G is the eleven-dimensional metric, C'4p¢ is the 3-form of eleven-dimensional supergravity and

Fapop = 404Cpcpy-

The index notation used in this section is different to that used elsewhere. In this section uppercase
Latin letters run from 0 to 10, lowercase letters from the start of the Latin alphabet, a, b, c, ..., denote
internal indices, while those from the middle of the alphabet, 7, j, k, . .., denote 3-dimensional indices.
The symbol € in equation (22), as elsewhere in this paper, denotes an alternating tensor.

To perform the reduction, we take all fields to be independent of the internal directions. First,
consider the gravitational part. We take the following ansatz for the elfbein

(g e Biaéﬁ) (23)

0 €a”

where e;# and €, are the dreibein and achtbein. In this section, lowercase Greek indices from
the beginning and middle of the alphabet denote internal and 3-dimensional tangent space indices,
respectively. We define the three-dimensional and eight-dimensional metrics as follows:

Yij = eit'e; N (24)
and Jab = éaaébﬁaaﬁa (25)

so that g in expression (23) denotes the determinant of metric g,,. Given the vielbein ansatz (23),

1 .. 1 .. 1 ., .
VGR(G) = /7 <R(7) + 577 (0ig™)(D39a) = 377 (9" Digan) (9°Dj9ea) — _Q'VZkV]lgabFijaFklb> ,

4
(26)
where
is the field strength of the graviphoton.
Under the reduction, the second term in the action, given in (22), becomes
1 JGFABCD L 5 rijka L ~iiab L iabe
_4_8 GF FABCD = ﬁ _Eg F F‘z'jka - ggF Ejab - EF Eabc . (27)

In the above expression the indices are raised with inverses of the metrics v and ¢ defined in equations
(24) and (25), so for example

Fijab — ’Yik’}’jlgacgbdﬁklcd-

Moreover, the field strengths

Fjke = 30;iCjpc — 6(0Cjpe) Biry” + 3(0ps) Cave) By *Biy, (28)
Fijbe = 20Cjjpe — 200 Cave By 29
Fmbc - 8iCabc (30)

are defined so that they are invariant under coordinate transformations of the internal directions—see
[2] for more details.



Similarly, in terms of the gauge-invariant field strengths defined above, the Chern-Simons term
of the action reduces to

2 iy -
_@ﬁ\/ﬁemkeal...ag <3Fija102 Fka3a4a5 - Fitllazas Oawstjkb) 006“708‘ (31)
In obtaining the above result we have integrated by parts twice and used

Fi[alazasIFj\a4a5a6Ca7asa9] =0.

Putting together equations (26), (27) and (31), we obtain the action for the reduced theory
3) 1 ij ab 1 iy ( ab cd 1 ik gl a b
S = [ vy B0+ 777(0i97)(059a0) — 177 (970i9a6) (97 059ca) — 797" JavFij Fia

1 A 1 ~.. , ~ 1 .
= 0 F Ejra = G9F " Fijap = 75 B Fiape

2

_@\/‘aeijkealmas (3Eja1a2Fka3a4a5 - Ea1a2a3Ca4a5bF1jkb) Ca6a7a8> . (32)

We are interested in the scalars of the reduced theory because it is these that parametrise the
Eg/SO(16) coset. From the above action we can see that the scalars of the theory are 36 gq, 56
Cupe- Furthermore, since we are in three dimensions, one-forms are dual to scalars so we have 28 +
8 scalars from dualising the one-forms A;,, and B;*. Therefore, in all we have

128 = 248 — 120 = dim(Eg) — dim(SO(16))

scalars. We concentrate on the action of the scalars and one-forms and augment the action by a
Lagrange multiplier that imposes the closedness of the one-form field strengths.

1, 1 ..
s = / Vi {ﬂﬂ(@ga%(ajyab) = 77 (9™ 0igab) (9°0;ca)

1 ., . 1 ~.. , ~ 1 .
= 397" g g F” — P Fijay, — o F' Fiape

9 g -
- @\/aeukem...as (3—Fija1a2Fka3a4a5 - Ea1a2a3Ca4a5bF1jkb> Ca6a7ag
1 ijk a 1 ab _ijk I c
— 4 Pat 0 Fy" + g?ﬁ € <5iFj1mb — 2Fjqpc Fiji, ) . (33)
On a three-dimensional manifold with trivial homology, integrating out ¢, gives
Fij® = 20, B;"

for some B. While the equation of motion for the second Lagrange multiplier, v, gives that

Fikap + 2Fjape Bi*

is closed, from which we recover equation (29). Therefore, this first-order formulation is, at least
classically, equivalent to the action for the scalars and one-form of the original reduced action S).
Hence, Fjpqp and F;;* are independent fields not given in terms of potential forms. By integrating
out these fields we dualise the one-forms of the original action, Bf* and Cju, into scalars ¢, and b,
In fact, this is the reason why these duality symmetries are sometimes called hidden symmetries.



The symmetry is only manifest after dualisation of some of the fields. The new action that we obtain
is

1 .. 1 ..
SO = [ V7 (ﬁ(aig“bxajgab) — 277 (9°0,90) (9°0; 9ea)

1 .. 1 .. 1 .
_E,ngabc,defaicrabcajcdef _ §7mgabGianb _ EVZ]gab,chiabGde> ’ (34)

where, g“l“'“"’bl“'b" is defined as in equation (5). ga,..a,.b1..b, is defined analogously. The new fields

in the action are

1

Gi®* = g7 20" — oo™ iy Coeses, (35)
Gia = g 20100 — 1/29729"0,Cpe — %Ebl'“bscablbz Ch3b4b59i Chgbrbs - (36)
Defining
Carn = 59 ear.agret™ (37)
Caroash = 9 €y asb (38)

we can identify these fields with the dual of the 3-form and the dual gravity field. With this notation
for the fields the action of the scalars in three dimensions can be written

1 .. 1 ..
Ss(filars = / VY <Z’Y” (0:9°")(0;9a) — Z’Y” (9%°0;9ap) (9°%0; gea)

_ E,ngabc,defaicabcajcdef _ 8(6!) ,yzggm...ag,bl...bﬁ Hi,al...aﬁ Hj,[ll...[lg
1 ..
_ 8(81) fy”gal'-'as’bl'"bSQCdHi,al---as,ch,m...as,c> , (39)
where
Hiay...05 = 9iCay...a5 ~ 20001204/ 9iCasasas) (40)
560
Hi,ay..as,b = &'Cm...as,b - 28C[a1-..a6\8i0|a7as]b - ?Cb[alazCa3a4a5|aic\a6a7a8}~ (41)

As expected, since the scalars in the reduction parametrise the Fg/SO(16) coset, action (39) can be
written in terms of the Eg generalised metric, (17), in the following way

1 .
[ —’yZ]aiMKLajMKL +

scalars 240 MKLaiMKL)(MRSajMRS)v (42)

30(21118 777
)
where the uppercase Latin indices in the above equation run from 1 to 248 as in section 2. Note
that the calculation of the above terms is identical to the calculation of the potential in appendix C.

Comparing equations (41) and (21), we can see that it is the dual gravity field that appears in
the potential in section 2. This is in contrast to the Eg case considered in reference [20] where the
6-form field could have appeared in the potential but didn’t because there was an antisymmetrisation
over 7 indices. In the potential given in equation (18) there is no antisymmetrisation over the first
9 indices of Fyp,. g, 50 the dual gravity field appears. From a technical viewpoint, this is because
Ca, ...as,b has mixed indices. Note that, in contrast to the field strength F, ., 5 defined in equation
(21), the gauge invariance of H; 4, . 45, from a three-dimensional point-of-view is very clear to see.
This is because in the reduced theory, the fields Cype, Co,..aq and Cy, . qg,p are scalars.
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4 Discussion

In this paper, we formulated a non-linear realisation of the Eg group and found that the dynamics
includes a new field Uy, . 44,5 With mixed Young tableaux indices with field strength Fp, , g .. While
the gauge-invariance properties of Fy, 3, s ¢ are not clear, we show tantalising links with dual gravity.
Our difficulty in establishing the gauge-invariance of the field strength is related to the difficulty in
formulating a generalised geometry for Eg [36,37]. In both cases, knowledge of the transformation
of Cy, ...as,» under gauge transformations is a requisite.

In reference [37], the authors were unable to write down a generalised Lie derivative, even though
they showed that the gauge structure leads to the correct counting of the degrees of freedom. While,
as in [37], we cannot determine the gauge transformations of Cy, 445, We unambiguously show that
if the field strength is to be gauge-invariant, the new field must transform under 3-form and 6-form
gauge transformations. This result establishes the possible dependence of the dual gravity field on
the eleven-dimensional matter fields, namely the 3-form gauge field and its dual and may provide a
basis for evading the no-go theorems of [53,54]. This leads us to speculate the exciting possibility
that eleven-dimensional supergravity can be formulated with a dual gravity field because of the
existence of a special matter content imposed by supersymmetry along the lines also proposed by
E+1. We leave a precise description of such a possibility for future work.

Acknowledgements We would like to thank David Berman, Chris Blair, Axel Kleinschmidt and
Hermann Nicolai for discussions. HG would like to thank the CERN theory group, where part of
this work was done, for their hospitality. MJP is in part supported by the STFC rolling grant
STJ000434/1. MJP would like to thank the Mitchell foundation and Trinity College Cambridge for
their generous support.
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A Eg motion group from Cartan’s representation

In this appendix, we find the algebra of the Eg motion group, where the translation generators of
the motion group form the 248-dimensional representation of Eg. In particular, the algebra of the
Es motion group decomposed to SL(8) is found.

The Eg [60] group is generated by

Mgﬁ, 7528 Vagy (43)

where underlined Greek indices run from 1 to 9. In terms of these generators the Eg algebra is as
follows [60]:

(M5, M2g) = 35M%5 = 33 M, (44)

(M2, V2rTs] = 35[51 V25l %5%1/11"'13, (45)
(M2, Vs, n,] = =30, Vy 515+ %5;1/11,,_13, (46)
[Ver-ea, Vs s, ] = 185315 Ml g . (47)
[Vai-es Y88y = _%EQIQ293§1§2§3111213V11”'137 (48)

1
Ve, .50 Vs, ..8,] = 31 Carazag

B,8,8.7,7,7,V LT (49)

where 5% is the Kronecker delta symbol and €ay..ay 18 the alternating tensor in nine dimensions.

Furthermore,
Qyp...Qg

Egl"'g%ﬁlmﬁg =9! 551--@9'

The Eg algebra is expressed in terms of an SL(9) decomposition of Fg. In this paper, we are con-
sidering the action of the FEg duality group along eight dimensions. Hence we require an SL(8)
decomposition of the algebra. This is easily done by defining Eg generators in SL(8) representations
as follows

8
K% = M3 +385> M7, (50)
v=1

ROBY = By, (51)

Raﬁfy = Vaﬁﬁ/y (52)
1

ROt — —Zeal"'%ﬁy‘/gfyg, (53)

1

Ral...ag = Zeal...agﬁyvﬁfygy (54)
1

Ral...ag,ﬁ — §Ea1...a8Mﬁg, (55)
1

Ral...ag,ﬁ = 56(11...asM957 (56)

where Greek indices are SL(8) indices. The alternating tensor in eight dimensions is induced from
the nine-dimensional one in the following way:

_ ay...a8 . _Qq...089
€ar..08 = €ay...a89 and € =X .

12



(K%, K] = 6 K% — 05 K7,
(K5, RV = 35[6“/1R|06hﬂ3]7

[KaﬁvR’Yl---’Ya] = —347, R\ﬁhz’ys]’

(71

[K®g, R1+76] = 65[6“/1 R'a‘w“‘%},
[KOCB’R“/L.%] = _65%1R|5\72---76}7
[KaﬁjR’Yl---’Ys,(s] — 85£3’Y1R\a|'yz..-’ys],6 + (SgR'yl"'ﬂys’o"
[Kaﬁ7 R’*ﬂ...'\/g,(g] = _85%1R|5‘72---“{8L5 — 5§R’YI~~~’YS75’

Using equations (44)—(49) and the above equations, we find the FEg algebra given in terms of an
SL(8) decomposition. The commutation relations of the GL(8) generator are

(57)
(58)
(59)
(60)
(61)
(62)
(63)

These are the expected commutation relations of the GL(8) generator K*g with the other generators.
The generator K“g has been shifted by ZV M7, in such a way that its commutation relations with
the R generators do not contain any 6%g. Other choices can be made, but this choice is more
convenient and makes the non-linear realisation calculation easier. Furthermore, with this choice

the trace of K“g,

K=> K,
Y

counts the index of the GL(8) representations

[K, Ral...ag] — 3Ra1...a3’
[Ka Ral...ag] - _3Ro¢1...a37
[K, Ral...ag] — 6Ra1...a67
[Ka Ral...ag] - _6Ro¢1...a67
[K, Ral...ag,ﬁ] — gRal...aS,B,

[K7 Roq...ocs,ﬁ] = _9R¢X1---(1876'
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The rest of the commutations relations in the SL(8) decomposition are

[Ral~--a37 R51~ﬂ3] — 2R0110t20f3ﬁ1ﬁ2ﬁ37 (64)
[Ral...ag,Rﬁl...BS] _ _3Rﬁ1...56[a10¢27a3}, (65)
[RO193, Ry, go] = 18617192 5, 5, K% gy — 268159 K¢, (66)
[Rocl...Oé37 Rﬁlﬁti] = 606%11%2 RB4-..56]7 (67)
[R5, Ry ] = 12 (055 Ry — 03155 By 4] (©8)
[Ral'“%,Rﬁl,,ﬂ3] _ _605[501{1”.'.533Ra4...a6}, (69)
[Ral...a(;’ Rﬂlﬂ(;] — _9(5')6[[2511;‘55}(&6]56] + 5[5%11266}'{7 (70)
o 2 o o0 ..o
[R*9, Ry ] = 37! <5ﬂlﬁf..656366---581 - 5[611---62}2/3758”) : (70)
[R50, Ry ] = 112 (sl Roeelf - flosga pes-ol) ()
o 2 ai...a5 POG...Q aq...Q a7
[R 8’B=RV1--%] = _57! (551["/21---"/6R ool - 5[71?--766]% ' 8w> ’ (73)
[R sﬁjR%mWS’é] = Z(S’Yll-'-'-"yssKB‘;’ (74)
[Ral...a37R51...ﬁ3] = 2Ra, 0503618283 (75)
[Roa...aaa Rﬁl---ﬁ(ﬁ] = _3R51~~~56[ala270‘3]' (76)

All other commutation relations vanish.

Since we are interested in the motion group of Fg with the translation generators in the adjoint
representation of FEjg, it is straightforward to find the algebra of the motion group from the FEg
algebra. Define translation generators

Py, 72@,7@_7.

Note that these are of the same form as Eg generators, (43), and they satisfy analogous commutation
relations with the Fg generators

(M5, PYs] = 63P%5 — 63 PL, (77)

(M2, 70 05] = B 7N a7, (78)
(M3, 7 4] = —35[“—117121315 + %%711...13, (79)
[vei-as ph ] — _35[1%7%%}5 + %5%721“'23, (80)
ver-as 78Ry _%Eglgzggﬁlﬁzégzlzﬂgzll“.13, (81)
Ve, Zg 5]= 186[%11?;P23] 8y (82)
Vay.a5s P2] = 35[% Zoyog)s %557%,,@3, (83)
Vg Z207%) = 186122 P2) (84)
Va0 Zp,-5) = 5yfoimns, 0,8,0,2,0, 77 (85)
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We similarly decompose the translation generators into an SL(8) decomposition:

P, =P, (86)
798 = 7% (87)
Waﬁy = _7(1577 (88)
1
Weg=—P%+ 205> Py, (89)
v
3 Y
W=-gPly, (90)
1—a
7% = 7 o, (91)
Was = gZas0, (92)
1
7% = 2P%. (93)

Other normalisations can be chosen for the translation generators. However, the above choice of
normalisation for the generators is made in order to make contact with the generators found when
decomposing the l; generators of Ej; into GL(3)x Eg [13]

1
Pou ZaB7 Zot = gealmaswfxe--.asa

1 1
ag...ar,B ay...agr7B ai...as aj...as
Z = —7!6 W?Pas, Z = —8!6 W,

Za1..a8,fy5 _ EQIMCVSZB'Y(S, 701.-08,81..86 _ %Eal"'ageﬁl"'BSWB?gs

Zo1..a8,01..087 — coa..a8 P1.-Bs 7

The generator Z®1+°7# satisfies
glaranfl _

because W3 is traceless. The [; representation of Ei; is the highest weight representation where
the highest weight corresponds to the P; translation generator. Recall that the roots of an algebra
correspond to the group generators, while the weights of a representation correspond to the trans-
lation generators, which generate a particular representation. In [20], the truncation of F1; X I3 to
the SL(5), Eg and E7 motion groups was shown to lead to correct duality-invariant dynamics.

The commutation relations of generators (86)—(93) with the Eg group generators are found by
inserting the SL(8) decomposition of the motion group generators into (77)—(85). Here, we list the
commutation relations that are required for the non-linear realisation of the Fg motion group. The
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commutation relations of the GL(8) generator with the translations generators is

(K%, Py = —03F5 — 896 Py, (94)
(K, 27°) = 20 7110 — 525277, (95)
(K8, Wyse| = —35%W5Em, (96)
(K5, Ws] = 03W5 — 0% Wy, (97)
K2, =0, (98)

[KQB, Z'yée] — 35[57266]06, (99)
[Kaﬁ, W,ﬂg] = —2(5?/W|5‘5] + 5agW»y5, (100)
(K%, 27 = §)2° + 6°5 27, (101)

These commutation relations are needed in order to find the dependence of the generalised metric
on the 8-dimensional metric. To find the dependence of the generalised metric on the 3-form and
6-form fields the following commutation relations are required

[Re-9, Py] = 305 2029, (102)
1

[Ral...agyzﬁfy] _ 56041...0435%51...53‘/‘/51.“537 (103)
(RO, W, y) = 1855157 W s, (104)
(R0 WP ] = 245La1 goaas]B 3552@1---0637 (105)
[RO1+03 W] = 70103, (106)

aq...q 1 ag..«o é
[R™ 8, 7 ﬁS] = 3¢ 1..a3f...B3y W,s, (107)
[R5 TWg,] = 6652 709), (108)

1
[RalmaG,PB] — Zeal---OlSWOwasB’ (109)
[Ral"'aﬁ, Zﬁ’y] — eal“‘a6[ﬁ|5WM5 _ 60‘1-“0‘657W7 (110)
[RO96, W, ps] = 4805%;[11-.-.-.;{33 ZMWOCG]’ (111)
1
[Ral...ag;’ WB»Y] — 46a1...a565Wﬁ/5 - 5656a1...a65ew667 (112)
1

[Rou-..oqs7 W] — _5601---06571/[/6“” (113)
[Ro-0 Zﬁl--ﬂa] _ geal---as[&ﬁzz&]‘ (114)

Finally, as the generalised metric is found by conjugating the translation generators by the FEg
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generators corresponding to the positive roots, we also need

1 3

[Ror-o8:8 p ) = _geal---%wﬁV — 55,{?6@1---“814/, (115)
ar..as,f 701 — g, 01...08 7370

(R , 270 = —4e 757, (116)

..as, _ ...ag B
(R85 Wi ng] = 126219367 W), (117)

1
[Rov-0s8 W3] = 4g 08 27 — Soenon 2P, (118)
[RO1-0%8 W] = ;ealm%zﬁ. (119)

Some of the commutation relations involving the generators corresponding to negative roots are
listed below:

[Ral...a;;y ZBPY] - 65€J71QQP043]7 (120)
1
[Ra1...a3v WB1---B3] = 5601--.0361---5375Z76’ (121)
3
[Ral...a?,) Wﬁfy] = 35[6;1 Wagagh - gégwou...agy (122)
1
[Ral...a:g)W] = gWal...ag,a (123)
9 3
[Rey...cns Zﬂ1...ﬁ3] — 1551522{/[/53]&3] + Zég}g?éVV, (124)
aip...a3 1 61...03
[R 7W5’y] - _geal...agﬁ’\/él...(ggz ) (125)
[Ros...a5: 2%] = 36,3, Wasas] (126)

We take the translation generators to mutually-commute.

The normalisations of these generators are needed in the calculation of the generalised metric
using non-linear realisation. Denoting the Cartan involution of a generator X by X™*, we can define
an inner product on the representation space generated by the translation generators [20]

(A4, B%) € R,
where A and B are translation generators. The inner product is Fg invariant
(X, A], B") = —(4,[X, BY]), (127)

where X is an Fg generator.
The Cartan involution interchanges negative and positive roots. Therefore,

* o * Q... * Q... * Q1...08
K B~ Kﬁaa R 8~ Ral...aga R 6~ Ral...aﬁa R B ~ Ral...ag,ﬁ-

We define
RO = _ Ry . (128)

The relative signs of the Cartan involution of the other generators is fixed by the above relation and
consistency with the Fg algebra. For example, the Cartan involution of equation (66)

[RF 9 R 5, py) = 18510102 (8182 K* aB}BS] o 25?3[11......533 K7,
= [Ras ..o RB1...63] — 185112 (8182 K a3}53] - 25?36:.':?33 K",
- _[Rﬂlmﬁ?’, Ra,y .05 = 1851012 318 K a3}53] - 25%11-'-'-'333 K,
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which from equation (66) gives that
K*%5 = —-K",. (129)

Similarly, the Cartan involution of the rest of the generators are
R* 1% = R\ ags (130)

RroveesB — R s (131)

Now to find the normalisation of the generators, we first define
(P, P*P) =45, (132)

The normalisation of all other translation generators are now fixed. For example, consider

o * 1 « *
(Z szws) = 5(2 672[76)5:7]}’
1, .5 1 .
= §(Z 67_§[R’y5?77P T]])

from the Cartan involution of equation (102). The Eg invariance of the inner product, (127), allows
us to write the inner product in terms of equation (120), hence giving

(29, 2%5) = 2055 .

Similarly, from equations (103)—(108) and equations (121)—(126), the inner product of the rest of
the translation generators is

(Wan oz, WHP58) = 660038 (133)
(W 5, W™, %) = 6258 — % a6, (134)
(W) = £ (135)
(20005, 2%, ) = 030, (136)
(W, WH1%) = 25075, (137
(2%, 2%5) = 6i45§. (138)
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B The Generalised Vielbein

In this appendix we give the components of L4 5, which is related to the generalised vielbein by
equation (16). The components of L4 g, see figure 1, are

(L11)", = ., (139)
1
(L21)ddy b = _ﬁcdldgb, (140)
V3 1
(L31)919293 , — __5b91 {79293 _ X198, (141)
22 4v6
. 1 . 1 ) 1 . 1. 1
(L41)j1j2 b= ﬂXUlWhjlculqu + §CUj1quJ2 - 1_65ﬁ u1u2qu1u2 + 551])2}/]'1 - 1_65;?}/?7 )
142
(L51)p = %EYI, — ﬁc«mquU@uuz’ (143)
V3 1
(L61)m1m2m3 b= _ﬁcb[mlmzymg} + Wculuzbmlmzmg yuv2
1 1
+ 48\/7_6 XulungbOuluQU3m1m2m3 - moul[m1m20m3}U2u3Xulu2u3b, (144)
3 u 1 1
L7111, — slhynely, 4+ XN,y C [ airu2g2
( ) b 4\/5 b u 8\/5 blu 4\/5 uiugb
1
+ 24\/§Cu1u2u3XU1U2 [qlbUtH}ug + 960\/5Cu1u2u3Xu1q1q2tXtu2u3b7 (145)
1 1 1 1
(LSl)x b= _ZYI% B ZculwaMWYUZ + §Cu1usz“1“2Yx - ECxuszulWUSme
1 1
+ @beul...m;Umuz [usu4 _ @Xulmu3qu4u50u1...u5x
1 ) 1 . .
+ @CM[t1t2Cx}ugngul'“u3bUt1t2 _ mcﬂq’uatlCuththU1'”u3£BXt1-“t3b7
(146)
(L22)aya, ' = 0gy g2 (147)
1
(L32)919293 erez __ 2\/§V£)1929361627 (148)
. 1 . 1 el 1
(LA2);, 72 ¢1°2 = ——_xJ2e1e2, | Ny g EIC e a— ) y TR (149)
4\/5 \/5 J1 8\/5 J1
1
(L52) 12 = Zerz’ (150)
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B = 2L
+ %CU[WWXUWW (151)
(L72)0192 €162 — _%quzewquu + iU[mlh Ulazlez _ éX6162[q1quz}u _ 19%2XthqzutXm621tu7
(152)
(L82), 12 = —;%U“[elyuagﬂ + 8—\1/§X6162“xyu - 4—\1/§U6162Ym
n Wi/éVelezulumUuwg,cm___usx _ ﬁcﬂmw terea prusuz
+ mcwluz)(uww%)(meztm (153)
(L33)919293 oy = g~ /26519298 | (154)
(LA3)j, 72 hihghy = —\/gg_l/ ? (le[hlhzéﬁ} - %5§fch1h2h3> , (155)
(L53) hihohs = _%\/gg_l/zohlhghga (156)
(L63)m1moms hihohs = 1—129_1/2 (Cm1m2m3h1h2h3 — CinimamsChihohs + 90[m1m2|[|h10h2h3|]|m3]) )
(157)
(LT3)1%  pohy = —?9_1/2 (Y[hﬁzﬁi] + Cu[hlth“[qW;Z]} + %Chlth‘“qz
T [hlchghg}u> , (158)
(L83)z hyhohs = %9—1/2 <Cx[h1h2Yh3} + 2—14U“1"20h1h2h3m1u2 + 1_12Ch1h2h30xu1u2Uu1u2
- iculug[hlchzhg}quluz - % wur[hy Chahslu, U™
+%XU1uzu3mCu1u2[h10h2h3]u3> ; (159)
(L44);, 72 Py, = g7/ <5;§ okt — %5;?5,’;;) : (160)
(L54) k1, =0, (161)
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3 _ 1
(L64)m1moms kle = _\/;g 12 <Ck2[m1m25fr33} a §6£;Cm1m2m3> ) (162)

(L74)719 k1k2 — %9—1/2 <Uk1[q15gz} + %5’2; Unae 4 %thlqzh) 7 (163)
k1 1 —-1/2 k1 1 k1 3 k1 ULUL 3 k1 ULUL
(L84)m k2 — —59 Ykzaw - §5k2 Yx - 55[1: ’UJUQVCQU + EékZ CZEUlUQU
1
+EXk1u1u2k2Cxu1u2> , (164)
L55 =g~ /2, (165)
1 _
(L65)m1m2m3 = —mg 1/2Cm1m2m37 (166)
(L75)1% = 29—1/2[]1111127 (167)
3 -1/2 1 uiug
(L85)96 = _mg Yx - ECxulugU s (168)
(L66) iy mams """ = g~ /2 ominans, | (169)
1
(L76)1® mMn2ns — __—_ o=1/2y/q1gamnans, (170)
2v/3
V3 1 1
(L86)m nim2n3 _ __ g / (U[n1n2523} . _Xn1n2n3m> : (171)
2v/2 6
(L77)1% ., = g 6012, (172)
1 _
(L87)96 rire — _Eg 1er1r27 (173)
(L88), ¥ =g 1ov. (174)

All of the lowercase Latin letters denote SL(8) indices. In the above expressions g is the determinant
of the spatial metric,

1
Val...as — geal---asc’a&“as’ (175)
Xal...tlgb — Val~~~a5 ‘asash (176)
1
Walaz — gEa«lmflsC’aBmaS’ (177)
1
Y}) — _Eal---asc’alhnas’b' (178)

8!
The € tensor is the alternating tensor in eight dimensions.
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Figure 1: The generalised vielbein
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Similarly, the components of the inverse generalised vielbein E4 g, see figure 2, are
(E11)*y = 6y,

1
(E21)d1d2 b= ﬁcdldzba

V3 1
[E31)919293 , — 1/2 ( slorqroz0s] _ = o198

. 1 . , .
(E41)j1j2 b= _ﬂgl/2 (Xu1u2jzjlcu1u2b _ 12Cuj1quy2 _ 65i2Cu1u2j1Umu2
9 . ) 3 .
750 CuruaU™" + 1267, — §5§f’@> |

3 1 ULU
(E51) b= _mgl/2 <Y;) - 60u1u2bU ! 2> )

V3 1
(E61)m1m2m3 b= — 1/2 <Cb[m1m2Ym3} — OuluzbmlmzmgU’uluz

272’ 21
5
+ EC[bu1U2Cm1m2m3]Uu1UQ
1
+£Cu1[m1m2 Cma}ﬂ2u3Xu1U2U3b> )
(E?l)QIQQ b= %g <5I[JUU¢]1Q2]YU _ équunbYu + %VqquU1U2USCbul___u5 Uu4u5

1 1
+ECU1[uzu3Xu1q1q2b]U“2“3 _ %CuluszuwltItituzugb) 7

1 1
(Egl)x b= _Zg <Y:cYb - Cu1mqu1u2Yu2 - §Cxulu2Uu1u2Y27

1 1
+ ECZBU1U2 Xu1u2u3bYu3 _|_ 4_8be1£1-“1£4 Uuluz Uu31,L4

. 1

+ %Xm-..quUMusCul--.usb - ﬁcul[tltz Cb]u2u3Xu1"'u3xUt1t2
1

+mCu1u2t1 Cu3t2t3Xu1...ungt1,,,t3b> :
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(E22)4,a, % = g1 (187)
1

[32)919293 e1e2 — __ ~ 1/2Vg1gzgae1ez, 188
(E32) e (158)
. 1 . erces] 1o
(B42);,72 ©1¢2 = ——g'/? (X]26162j1 + Ayizlegel | _522Ue162> , (189)
4\/§ J1 2 1
1
E52) €1e2 — _—  l/2rrere: 190
(552) Lo, (190)
V3
(E62)m1m2m3 e = _791/2 <}ﬁm15f£:fn3} + Cu[mlszu[eléii:]ﬂ
1 1
+60m1m2m3U6162 * Ecu[mlszuewsz}) ’ (191)
(E72)7192 €102 — _lg (Vq1qzelezuyu _ ylailergrlazle
4
_i_%quqz[eluUeQ]u + 4_18X¢J1f12utXe1eztu> , (192)

1

E82), ©1¢ — —
(E82) Wil

1 1
<Uu[61Yu5;2] + Z‘)(*61621%6}/*“ + §U6162Y:c

1 1
B §Cu1u2:cU61U1 Uet + ﬁCu1u2u3Xu1u2[ele62]u3

+ﬁctumx"1“2“3mxele2zg> : (193)
(3391929 1 any = 9250725, (194)
(E43)5, 7 s = \/g 2 (le[hlhﬁﬁ} - %5jfchlh2h3> : (195)
(E53) hyhohs = ﬁglﬂchlhghy (196)

(E63)mymams hihahs = —%91/2 (Crymamshihohs + Cmymams Chihohs — 9Chmymal (1 Chahs|ljms])
(197)

(ET3)1% pyhohy = ?9 <Y[h15212%23] - %Vq1q2u1u2u30u1u2u3h1h2h3

o [m%mh) , (198)

(E83)z hihohy = %9 (Cm[h1h2yh3] + %U“mchlhzhgxuluz — %Xulu?u?’wculuzuzghlhzhzg
+%Xﬂlu2u3xcu1u2[h1Chghg]ﬂg) ; (199)
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: . 1.
k k
(B44);,72 M), = g2 <5i225j11 - §5§f5k;> :

(E54) %1, =0,

3 k 1
(E64)m17712m3 h ko = \/;91/2 <Ck2[m1m257r;3] - éék; Cm1m2m3> )
1 1
ko k q2]
(E74)naz k1 — _\/ig <U 1[Q15k2 + <

1 1 1
(B0 5, = o (Tiab = LY. + o = L1 Co U

1
5:; Une _ ZXquunkQ) 7

1
+EXk1u1u2k2 CEUWz) ,

E55 = g'/2,

1
(E65)m1m2m3 = 4—\/391/2Cm1m2m37
(ET5)149 = —lququ
4 )

3 1
E r = T = Yx__ TULU a2 ’
(E39). = 5 (Ye = g Connat™ )

ningns _ 1/2 ¢ninans
(E66)m1m2m3 =g 5m1m2m37

1
(E76)792 mn2ns — gV aamnans

2V3

(E86), ™" = %9 (U["l"%;“] + éan) :
(BT, = gi0E,
1
(E87)m r17r2 = ﬁgc"ﬂ’r‘l’r‘zy

(E88), Y = gdY.
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C Calculation of potential

The potential of the canonical formulation of eleven-dimensional supergravity is given by

1 1 1
V= %MMNﬁMMKLaNMKL - 5MMNaNMKLaLMMK - @MKLﬁMMMNﬁNMKL
23
1

MN /1 sKL RS
WM (M™ =0y My p)(M™ OnMgs), (215)

where M 4p is the generalised metric, (17), found from the non-realisation of the Eg motion group
and MMV is its inverse. The indices run from 1 to 248 and represent the adjoint representation of
Eg. In the decomposition of this representation by SL(8) irreducible representations,

248 =80 28056063 D1 D56 D28 D8,

we find the eight usual spatial directions along which the duality is acting along with 240 other
directions that correspond to winding modes of branes. To produce a usual supergravity de-
scription from the duality-invariant description, from now on we take all the supergravity fields
9ab> Cabes Cay ...ag» Cay...ag,p t0 be independent of the winding coordinates. Lowercase Latin indices are
spatial coordinates and run from 1 to 8.

The coefficients in equation (215) are fixed by requiring usual diffeomorphism invariance. Equiv-
alently, they are fixed by requiring that when the gauge fields are zero the potential reduces to the
Ricci scalar of metric g. We now find what the potential is in terms of the supergravity fields.

Since M“P is the matrix inverse of the generalised metric,

MAP = GCPEACED ), (216)
where E4p is the inverse of the generalised vielbein,
EARLBo =64 = LAREB¢
and
G = diag(g*, gardy.eres 973, g1k 9722 — %5§f5',§f, L, Gy g .ms G277 Gay). (217)

is the inverse of
G = di didz,e1ez Jiki 1 53'1 5k1 1. g1+ M3sm-n3 Ty 218
AB — la‘g(gabag 7gg1...gg,h1...h37.q gjgkz - g 52 Yka , g 7gq1q2,r1r27g ) ( )

Using the equation (17),
MAB = GCPEACEB ), (219)

and equation (216) it is easy to show that

MMNﬁMMKLaNMKL = 4gab(8aEKc)GCELFK(abGEF) + 29“b(8aEKc) (abLCK)
- QQabGCDGFgLFKLGL(aaEKc)(abELD)
+ 9" (0.G*F) (0GEr) (220)

and

MMNoN MELO, My = —gP G LX NLE v (0o EN ) (0aEM o) + 9% (069°") (Oagac).  (221)
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Furthermore,
MPo,Mcp = —248 ¢°'0uged,

hence
ML MMNON M = —248(0a9") (9 Obgea) (222)
and
MMN (MREOp M) (M 05 Mps) = (248)% 9 (9 0ugea) (9 Dpgey)- (223)

A simple calculation using the components of GA% and G 45, equations (217) and (218), and the
components of L4 g and E4p given in appendix B shows that

9 (0. E® 0)GOP LY k (0GEF) = 69 (9°0uged) (9% Opger), (224)
9" (0 EX ) (0pLE i) = —809™(9°Dugea) (9% Dpgey), (225)
9 (0.GFF)(0,GEr) = 609" (029°") (Doged) — 129°°(9°Oagea) (9 Dpgey). (226)

In particular, note that these are independent of the form fields and only depend on the metric g.
This is because G4 and GAE only depend on gg,. Moreover, Gap and GAB are diagonal and L
and E are lower triangular so

(0. EX )G LE (0,GEr) and  (0,EX ) (0L k)

only depend on the diagonal elements of L and E which are proportional to determinant of ggup.
To calculate
9GP G LY Kk LY [ (0,EX o) (0E* p) (227)

in equation (220) and
9”9 G L LX v L* N (O, EM o) (04BN o) (228)

in equation (221), we note that the building block of both these terms is
D,*p = L4 (0,E p). (229)

The components of D, see figure 3, are given at the end of this appendix.
The evaluation of the components of D requires use of identities such as

Clayapp V1ot = 2X 1123 54 (230)

al aﬂa

where X is defined in equation (176). This identity is proved by using equation (175) to write C' as
a Hodge dual of V in the expression above and V in terms of C. Then the two epsilon tensors are
contracted to give a Kronecker delta. Finally using

b1b2b
Calazagvcwzmazag — §€c1cza1a2a3 102 BC[a1a2a3Cb1b2b3} =0,

we find the relation given above, equation (230). Other useful identities are

g_l/2Ca1a2a38u (91/2V6102a1a2a3> — _V6102b1b2b38ucb162b37 (231)

g_l/zcabcl...m;au <gl/2Uab) = Uabaucabcl...ap (232)
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9_1/2Ca1a2b8u <gl/2V010203a1a2> _ V010203u1u28u0u1u2b . Vu1u2u3[6102523]au0u1u2u3- (233)

Note that g'/2e?-8 is the alternating symbol

1 for (a; ...ag) = positive permutations of (12345678)
n* " = ¢ —1  for (a...as) = negative permutations of (12345678) ,

0 otherwise

hence

o (gV5e) —.
Furthermore, our convention for the contraction of two epsilon tensors is

ai...a;biy1...bg _ 180104
€ v €cy...cibiyy..bg = Z'(8 Z)!(Scl...c;'

As an example, consider the evaluation of D31,

(D31),919293, = (L31)919293 .9, (E11)¢y, + (L32)9192g3flfzau(E?l)flbe
+ (L33)glg2g3i1i2i3 au(E31)i1i2i3b'

Note that since L is lower triangular there are only three terms contributing to D31. The components
of L and E can be read from appendix B and inserted into the expression above *

V3 1
V919293f1f28uc —1/23u 1/25[91(]9293} _ g\ /2x91--93
fifzb T 2\/59 g b 69 b

1 \/g
— 919293 f1f2 —-1/2 1/2 5191179295
14 aqu1f2b+2\/§g O (g o U )
1

2\/6
1
s V) 1/2y791--.93f1f2 ) _ g1---93f1f2

wG? | Cnmo (47 ) v NuCrin

where we have used the definition of X given in equation (176). Now, upon using identity (233),
this reduces to

1
D31 ugng.gS -
(DS =576

(D31)u 919293 p = \/g 1
22 4/6

With the exception of D61, D71, D81 and D72, the other components can be simply derived using
identities (230)—(233).

Showing that D61, D71, D81 and D72, vanish is not straightforward and involves the repeated
use of identities (230)—(233). Expanding the D61 component we find thirteen terms of the form

g—1/2au <gl/251[)91 Ug2gs}) + ytitatslgige 553]au0t1t2t3-

cOvac®, cOc®ay, vc®ac®, c®cB®yac® and c®c®c® oy,

where C®) and C(® denote the 3 and 6-form, respectively. Expressing C®VaC®) and ¢©C® oy
as terms of the form UC®)HC®) it is easy to see that terms involving the 6-form cancel among each
other. Further, writing terms of the form C®CGVHCH) and CBCBICBIV as the epsilon tensor
multiplied by terms of the form C®VVIC®) we find that

7
_Wecl...%mlmgmg

4This can either be done by hand or using the computer algebra software Cadabra, [61].

(D61)u mimams b — Ca1a2bv[c1...05 Vd1d2d3a1]a26u0d1d2d3-
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This vanishes because an antisymmetrisation over nine indices in eight dimensions is zero. Similarly,
D71, D81 and D72, also vanish upon repeated use of identities (230)—(233).

Given the components of D it is now straightforward to evaluate expressions (227) and (228). In
terms of the supergravity fields these terms are

9GP G ra LY kLY (0, EX o) (0, EL p) (234)
=g*GPGraD, Dy p
=809 (§°10090a) (9 Dpgey) + 109" g5 1283 (9, Cr ) (05Cly.. )

1
+ —gtgermcadids (g O o — 200 ere50aClseses ) (O6Cay...ds — 20C, dods OClydsds)

48
15
+ ggabgmgel"'eg’fl"'fSFa,el...es,ch,fl...fg,d, (235)
where 560
Fa,el...eg,b - aacel...eg,b - 28C[el...eg|aac\e7es}b - ch[elezce:g&;es\8110\@6@7@8}- (236)
Similarly,

9 G L LE \ LE N (O, EM ) (04 EN o)

=g" g G Dy Dy

=S g 0, C ) (OhCaa) — gV ED L FD
- ﬁg“l’gcl"'cﬁ’dl"'d6 (0aCe...c; — 20C¢;c30500aCcsc5¢5)(06Cls ...ds — 20C4, dyds O Cdydsds )
+ ﬁgabgwgelmegjlmfsFa,el...eg,ch,fl...fg,d + Tlgl)gadgbcgel"'es’fl"'fSFa,el...eg,ch7f1...fs,da
(237)
where F, o, ¢ is as in equation (236) and
F{D) 4r = (9, Cay...ar] + 20C10030501 Casagar]) - (238)
Therefore, using equations (220), (224)—(226) and (235),
MMN oy M5O Mk,
=609"°00g ' Opgea — 3089 (9" Dagea) (9 ygey) — 209" g1 N9, Ce1 ey ) (0pCoy...a)
- 2—29“b901"'06’d1"'d6(aaC'cl...cﬁ — 200, 5590 Ceyeses ) (ObCly..dg — 20C 0, dydy WoClydsds)
- 2—?9ab90d961"'68’ﬁ"'fSFa,el...eg,ch,fl...fg,d, (239)
and from equations (221) and (237)
MMN gy MELd My
= (000°) Dagac) — 5" 50, o) (OCit ) + %g‘“---“%“"'b7F£I?..a7FéZ?.b7
- ﬁgabgq”'%’dl”'%(C%Ccl...ca = 20C ¢ ¢3¢300C4e5¢6) (0Ca;...dg — 20Ca, dyds OClydsde )
- r;!)gabg“lgel"'es’fl"'fSFa,el...es,ch,fl...fg,d — ﬁgadgbcgel“.687f1mfgFa,el...eg,ch,fl...fg,d- (240)
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Finally, putting together equations (222), (223), (239), (240), in terms of the supergravity fields
the potential, (215), is

1 1 1 1
V= Zg“b&zg“l@bgcd - §g“b8b90d8dgac + 5(8ag“b)(90d5b9cd) + Zg“b(gc‘i@agcd)(gef Gef)

1 1 -
_ Egabgcwzcs,chdzdgaacqczcg (abcd1d2d3 _ 3ad1 dest) B ggm...a7,b1...b7chl7.)na7Fb(l')”b7
1
4 8(8') gadgbcgel“'es’fl“‘fSFa,el...es,ch,fl...fg,d' (241)

The first term is the Ricci scalar of metric g, up to integration by parts. This expected because the
coefficients of the terms in V| equation (215), were fixed so that the Ricci scalar would be recovered
when all other fields are zero. However, the potential also gives the dynamics of the other fields as
well. Defining

F(4) = 48[111 Ca2a3a4}7

aj...aq

1

4 1 .
V = R(g) _ 4_8-ga1ma4’b1mb4Ft£il.)..a4Fb(1 .)..b4 - ggal...a7,b1...b7F[£17.)“a7Fb(1 -)“b7
1
+ 50 gadgbcge1...es7f1---f8Fa,el...es,ch,fl...fg,d- (242)

C.1 Components of D, 5

The components of
D, " p=L*0,E%

are given below:

(D11)y 4 =0, (243)
1
(D21)y dydy b = ﬁaucdldgb, (244)
1
(D31),, 919293 = %g—l/2au <gl/251[)91 Ug2gs}) + mVt1t2t3[9192553]au0t1t2t3, (245)

. 1. 1 1
(D41)u j1]2 b— — 5522 <g_1/28U(91/2YJ'1) - §Ut1t28ucj1t1t2 + %thtﬁghauchtzta)

1 _ 1 1
+ 76 <g 128, (4%Y;) — SU20uCnyt, + %thtztabauctltﬁg) ,(246)

3 _ 1 1
(D51)u b= _m (g 1/28u(gl/2}/b) _ §Ut1t28u0bt1t2 + %thQtSbauCtltﬁS) , (247)
(D61)y, mymoms b =0, (248)
(DT71), B9, = 0, (249)
(D81)y » 5 =0, (250)
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(D22)y dyay, =0, (251)

1
D32),, 919293 ere2 — —1/2@u 1/2y/7919293¢€1€2
(D32) 559 20 (9 ). (252)
i ere 1 e B o114 1 .
(D42),, j,72 c1¢2 :%5]['12 <g 1/23u(gl/2U 1]32) + Evelhztltztgauctltzt3>
1 _ ere 1
_ ﬁéﬁ <g 1/28u(gl/2U 1e2) _ 6Vt1t2t361628u0t1t2t3> ,
(253)
eije 1 ele: 1 -
(D52),, € = _ﬂv 1 2t1t2t38uct1t2t3 _ Zg 1/28u <gl/2Ue162) , (254)
ere \/g €1 e — 1
(D62)y mymoms 7 = _75[73112m2| <g 1/2({)“(91/2}/\"13]) - iUtltzauclma]tltz
1
+%Xt1t2t3m3]au0tlt2t3> , (255)
(D72), 19212 =, (256)
1
(D33)u 919293 hihohs = 55}2%22%3 (g_laug)7 (257)
. 3 . 1.
(D43)u J1 2 hihohs — \/; <8u0j1[h1h25;53} — g(s:ﬁauchlhzh;g) ) (258)
1
(D53)u hihzhs = 4—\/§auch1h2h37 (259)
1 5)
(D63), mimam3 hihahy = _Eaucmlm2m3hlh2h3 + gC[m1m2m3|auC|h1h2h3}7 (260)
(Dad), 7 by, = L (2t~ Lggh) (410
u j1 k2 = 5\ %% ~ ] 71 %: (97 0ug), (261)
(D54), %y, =0, (262)
(263)
D55 = L(g!
5= (0709, (264
ninan, 1 ninan, -
(D66)u mimams 1R = §5m117r21,23n3(g 1aug)7 (265)
(D77)y 1% 110y = 6117297 Dug), (266)
(D88)y » ¥ = 6Y(g97 ' 0ug). (267)
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Figure 3: Components of D,4p = LA¢(0,E° )
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