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Abstract

We construct the non-linear realisation of the E8 motion group and compare this with the bosonic
sector of eleven dimensional supergravity. The construction naturally leads to the introduction
of a new potential field. We identify this new field with the dual gravity field by considering the
reduction of the eleven-dimensional theory to three dimensions.
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1 Introduction

The toroidal compactification of eleven-dimensional supergravity [1] to various dimensions leads to
hidden symmetries [2–5], which have influenced many important developments. Arguably, they have
played an integral part in the set of ideas leading to U-dualities and the conjecture of M-theory
[6, 7]. Furthermore, they continue to provide insights into a wide-range of problems associated
with string/M-theory. However, the role of these symmetries in the full eleven-dimensional theory
remains unclear. While these symmetries only appear upon reduction, early seminal work [8, 9] found
evidence that these symmetries are not merely artifacts of the reduction. They showed that eleven-
dimensional supergravity can be reformulated in a way that makes the local symmetries associated
with the global exceptional symmetries E7 and E8, respectively, manifest. Moreover, they were able
to assemble some bosonic degrees of freedom into representations of the global symmetry groups.

More recent attempts in trying to understand these duality symmetries have centred on gener-
alised geometry [10–15] and related ideas of exceptional geometry [16, 17]. These ideas are based on
the extension of the tangent space of a geometry to include p-form bundles, and in some cases, also
an extension of the base space to include dependence on new coordinates that are seen as windings
of branes. The extension of the space geometry to include windings associated to the branes leads to
the unification of gravity and the fields sourced by the branes in a single description [18–20]. In this
approach, the dynamics of fields along the internal directions are formulated in terms of a generalised
metric that is found from membrane duality arguments [21] or constructed from the duality coset.
Thus rendering the description duality-manifest.

In the context of string theory, similar considerations have been made with respect to the T-
duality group. In the double field theory [22–25] approach to closed string theory, motivated by
string field theory, all fields are taken to depend on dual (winding) coordinates as well as spacetime
coordinates. This naturally leads to a generalised geometric structure in which the extended diffeo-
morphism contains both spacetime diffeomorphism and the gauge symmetry of the NS-NS 2-form.
The generalised diffeomorphism algebra closes on the assumption that generalised fields satisfy a
differential constraint, known as the section condition, that reduces their dependence to a subset of
coordinates. From a physical point of view, the section condition is the level matching condition in
string theory. While this geometry does not admit some familiar notions of differential geometry,
such as the usual concept of a connection, it does possess a structure [26][25] [27–30] that in partic-
ular contains analogues of the Ricci tensor and scalar—the equation of motion and Lagrangian of
the low-energy effective description of closed string theory. The generalised geometric descriptions
of heterotic [31, 32] and type II theories [33][30][34] also exist.

The generalised geometries associated with the M-theory dualities admit similar, but richer struc-
tures given the existence of higher rank p-forms sourced by various branes [14]. As with double field
theory, the generalised geometries in this context also contain notions of a generalised diffeomor-
phism algebra that unifies spacetime diffeomorphims and gauge symmetries and closes on a section
condition [35–37], as well as other structures [38–40].

In [20], the SL(5), SO(5,5) E6, and E7 duality groups were considered and the dynamics of
the corresponding internal fields were described by a non-linear realisation [41–44] of the respective
groups seen as subgroups of E11. The focus of this paper is the non-linear realisation of E8. This
is the duality group of maximally supersymmetric three-dimensional supergravity [45] that appears
upon the toroidal reduction of eleven-dimensional supergravity [46].

As eluded to earlier, a reformulation of eleven-dimensional supergravity with respect to the E8

duality group was first considered by Nicolai in [9] and elaborated on further in [16]. In particular,
in [16], the authors provide evidence for a ‘generalised vielbein’ in the 248⊗ 248 of E8 and the uni-
fication of spacetime and gauge symmetries in the internal directions. The study of supersymmetry
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transformations and the treatment of the 3-form potential as an independent field is central to their
argument and what emerges is a structure that can be viewed as belonging to the E8 tensor product
representation 36 ⊗ 248. From the perspective of this work, the failure of a generalisation of this
structure to a 248⊗248 object there is due to the absence of dualisation of relevant fields. Therefore,
to understand the significance of duality symmetries in the eleven-dimensional theory, it is necessary
to have in mind a ‘democratic formulation’ in which the supergravity fields are supplemented by
their duals, i.e. the 6-form and the dual gravity field [5]. This is not so surprising when viewed
from the perspective of the reduced theory and the necessity of dualisations for the appearance of
symmetries. Furthermore, dualisation is necessary in the local SU(8) [8] and SO(16) [9] invariant
reformulations of eleven-dimensional supergravity.

Whereas the dualisation of form-fields is well-understood, the dualisation of the metric field is
more intricate. The interpretation of the curvature tensor as a 2-form field strength of the metric
field allows for a natural generalisation of dualisation in this context [47–51]. In the linearised theory,
this leads to actions for gauge fields in exotic representations of the Lorentz group first considered by
Curtright [52]. It has been argued [53] that the extension of such an idea to the non-linear theory is
not possible in a local and covariant manner, in general. Although, the existence of isometries is one
way to circumvent this [50]. In such a setting, the dual gravity field is the dual of the graviphoton
gauge field. The relevance of a dual gravity formulation in the context of M-theory dualities, in
particular the E11 proposal, has been of much recent interest [54–58]. In these papers the possibility
of introducing dual gravity fields transforming under the gauge symmetries of the matter fields of
eleven-dimensional supergravity has been investigated. In particular, in [57] the dependence of the
dual gravity field on the 3-form gauge field and its dual has been predicted from E11.

The E8 duality group is particularly interesting from the point of view that the potential of
the dual gravity field is expected to appear in the generalised metric for the first time.1 As has
been observed in [36, 37], the presence of dual gravity poses difficulties for the formulation of an E8

generalised geometry.
The goal of this paper is to construct the non-linear realisation of the E8 group and compare it

with what one would expect from the bosonic sector of eleven-dimensional supergravity. In section
2, we begin by constructing the non-linear realisation of the E8 motion group. The main steps in
this construction are as follows.

• We ascertain the E8 motion group, which is the semi-direct product of the E8 group with that
of its adjoint representation. The adjoint representation can be thought of as being generated
by translations. This is analogous to the definition of the Poincaré group as the the semi-
direct product of the Lorentz group with that of its vector representation, the elements of
which are viewed as translation generators. The E8 motion group is given in terms of an SL(8)
decomposition of the E8 algebra and its adjoint representation. This is because from an eleven-
dimensional perspective, the E8 duality group appears in the reduction to three dimensions on
an 8-torus. Thus, we would like the duality group to act on the eight spatial directions that
would be associated with the torus under the reduction.

• We construct the generalised E8 vielbein by conjugating the Maurer-Cartan form of an element
of the adjoint representation with an element of the E8 group. This is equivalent to calculating
the Maurer-Cartan form of an element of the motion group and reading off the part that appears
as a coefficient of the translation generators. Given its transformation properties, this object
defines a vielbein.

1Winding coordinates that can be interpreted as those of a Kaluza-Klein monopole do appear in the E7 algebra,
but the potential associated with these coordinates does not appear in the generalised metric.
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• We formulate the E8 invariant dynamics for the eight-dimensional space in a canonical ap-
proach. In such a description, the dynamics is given by a potential and a kinetic term. The
strategy in this construction is to write down all E8 invariant terms constructed from the gen-
eralised metric and fix their coefficients by requiring that the expression reduces to what one
would expect for the gravitational sector. Once the coefficients are fixed the full expression
with all fields turned on can be computed with the assumption that fields do not depend on
the generalised coordinates.

The potential term that is obtained includes an Einstein-Hilbert term, which appears by con-
struction; gauge-invariant field strengths of a 3-form (Cabc) and a 6-form (Ca1...a6) potential and a
term involving a potential with a mixed symmetric Young tableau diagram

Ca1...a8,b = C[a1...a8],b.

Except for the term involving Ca1...a8,b, the potential is the same as that obtained in the E7 non-linear
realisation [20]:

V = R(g)−
1

48
ga1...a4,b1...b4F (4)

a1...a4F
(4)
b1...b4

−
1

8!
ga1...a7,b1...b7F (7)

a1...a7F
(7)
b1...b7

+
1

8(8!)
gadgbcge1...e8,f1...f8Fa,e1...e8,bFc,f1...f8,d, (1)

where R(g) is the Ricci scalar of metric g and

F (4)
a1...a4 = 4∂[a1Ca2a3a4], (2)

F (7)
a1...a7 = 7

(

∂[a1Ca2...a7] + 20C[a1a2a3∂a4Ca5a6a7]

)

, (3)

Fa,e1...e8,b = ∂aCe1...e8,b − 28C[e1...e6|∂aC|e7e8]b −
560

3
Cb[e1e2Ce3e4e5|∂aC|e6e7e8]. (4)

The antisymmetrisation over inverse metrics is defined as follows

ga1...an,b1...bn =
1

n!

(

ga1b1 . . . ganbn + (remaining even permutations of a1, . . . , an)

− (odd permutations of a1, . . . , an)
)

. (5)

From an eleven-dimensional perspective the field strength F (7) is the Hodge dual of F (4), while the
interpretation of Fa,b1...b8,c is unclear. Although the structure of the potential Ca1...a8,b suggests a
relation to the dual gravity field.

To establish such a relation, in section 3, we dimensionally reduce the bosonic action of eleven-
dimensional supergravity to three dimensions. The reduced theory is known to exhibit E8 global
symmetry. Indeed upon dualising the one-forms, the scalars of the theory parametrise the coset
E8/SO(16) and their action is written in terms of the generalised metric. Whereupon, we identify
the 6-form potential as the dual of the 3-form. Furthermore, the potential Ca1...a8,b is the dual of
the graviphoton with field strength

Hi,a1...a8,b = ∂iCa1...a8,b − 28C[a1...a6|∂iC|a7a8]b −
560

3
Cb[a1a2Ca3a4a5|∂iC|a6a7a8]

in the three-dimensional theory.
We discuss the possible implications of these results at the end of the paper.
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2 Non-linear realisation of E8

In this section, we construct the non-linear realisation of the E8 motion group.2 The dynamics
obtained from this construction can then be compared with eleven-dimensional supergravity. Due
to the many technicalities and long calculations involved in obtaining this result much of the details
concerning the calculations have been explained in the appendices for ease of reading.

As emphasised before, the key ingredient in the construction of the E8 invariant dynamics is the
E8 generalised metric, which is constructed using a non-linear realisation of the E8 motion group.
In [20], the non-linear realisation method was used to calculate the generalised metrics relevant for
the SL(5), SO(5,5), E6 and E7 duality groups. In that paper, the duality groups were regarded
as subgroups of E11 and the generalised metrics were found by performing a non-linear realisation
of E11 ⋉ l1 decomposed to the appropriate duality subgroup. As was stressed in that paper the
only difference in carrying out the non-linear realisation of E11 truncated to the aforementioned
mentioned duality groups as opposed to doing the non-linear realisation of the duality group itself is
an overall factor of the determinant of the spatial metric to some power multiplying the generalised
metric. The approach that we will take in this paper is to calculate the non-linear realisation of the
E8 duality group. We comment on the overall factor of the generalised metric later in this section.

The first step in constructing the non-linear realisation is to find the E8 motion group, which is
done in appendix A. In order to do this, first the E8 algebra, which is usually written in terms of
an SL(9) decomposition of E8, needs to be rewritten in terms of an SL(8) decomposition. This is
because in the 8+3 splitting of the eleven-dimensional theory that we are considering here, the E8

duality group acts only on the eight spatial directions. In an SL(9) representation, the E8 algebra
is given by the following three generators

Mα
β, V

αβγ , Vαβγ , (6)

where the underlined Greek indices are SL(9) indices that run from 1 to 9. An SL(8) decomposition
of these generators is simply of the form

Mα
β, M

α
9, M

9
β, V

αβγ , V αβ9, Vαβγ , Vαβ9, (7)

where lowercase Greek indices run from 1 to 8. The above objects and the alternating tensor ǫα1...α8

in eight dimensions can then be used to define the generators of the particular SL(8) decomposition
of the E8 algebra used here

Kα
β, R

αβγ , Rαβγ , R
α1...α6 , Rα1...α6 , R

α1...α8,β, Rα1...α8,β. (8)

The precise relation between these generators and those listed above is given in appendix A. Note
that as emphasised there, the definition of these generators is one particular choice out of many
possibilities and has been made with the efficient calculation of the non-linear realisation in mind.
Now the E8 algebra reduces to a set of commutation relations involving the generators listed in (8)
(see equations (57)–(76) in appendix A).

Given the SL(8) decomposition of the E8 group, the next step is to define the translation gen-
erators. Consider the 248-dimensional fundamental (and adjoint) representation of E8 given by
generators

Pα
β, Z

αβγ
, Zαβγ , (9)

which are of the same form as the E8 generators. The SL(8) decomposition of the trace-free generator
Pα

β gives the following generators
Pα, W

α
β , W, Z

α, (10)

2See appendix A for a review of the E8 algebra.
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where Wα
β is trace-free. A simple counting confirms that these generators have the same degrees

of freedom as Pα
β. Similarly, the totally antisymmetric generators Z

αβγ
and Zαβγ are rewritten in

terms of SL(8) indices as
Zαβγ , Zαβ (11)

and
Wαβγ , Wαβ, (12)

respectively. The precise definition of the above generators is given in equations (86)–(93) in ap-
pendix A. In addition, the necessary commutation relations and inner products involving the trans-
lation generators are given in appendix A.

The E8 non-linear realisation is constructed using the motion group element

g = glgE ,

where
gE = ehα

βKα
βe

1
3!
Cα1...α3R

α1...α3
e

1
6!
Cα1...α6R

α1...α6
e

1
8!
Cα1...α8,β

Rα1...α8,β

is an E8 group element. This group element has been gauge-fixed so that it mostly contains gener-
ators corresponding to negative roots, i.e. generators of the Borel subalgebra. The only exception
being the Kα

β which contains generators corresponding to both positive and negative roots as well
as Cartan subalgebra generators. This group element introduces the fields

hα
β , Cα1...α3 , Cα1...α6 , Cα1...α8,β.

The group element

gl = ex
αPαe

1
√

2
yαβZ

αβ

e
1

√

6
wαβγWαβγewα

βWα
βe2

√
2wW e

4
√

2
3
zαβγZ

αβγ

e4
√
2wαβWαβe8zαZ

α

is generated by the translation generators. The coefficient of each exponent in the group element
has been chosen based on the normalisation of the translation generator, given in appendix A, so
that the flat metric takes the canonical form

ds2 =δαβ dxαdxβ + δαβ,γδ dyαβdyγδ + δαβγ,δǫζ dw
αβγdwδǫζ + δδαδ

β
γ dwα

βdw
γ
δ

+ dwdw + δαβγ,δǫζ dzαβγdzδǫζ + δαβ,γδ dw
αβdwγδ + δαβ dzαdzβ ,

where

δα1...αn,β1...βn =
1

n!

(

δα1β1 . . . δαnβn + (remaining even permutations of α1, . . . , αn)

− (odd permutations of α1, . . . , αn)
)

. (13)

The generalised vielbein is given by conjugating the Maurer-Cartan form of gl by gE

PΠL̃
Π
AdZ

A = g−1
E (g−1

l dgl)gE . (14)

In this paper uppercase Greek letters denote generalised tangent space indices, while uppercase Latin
indices denote generalised coordinate indices3.

Using Hadamard’s Lemma

eXY e−X =

∞
∑

n=0

1
n!(ad

nX)Y,

3Note that in [20], opposite conventions were used for uppercase Greek and Latin indices
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where
(adX)Y = [X,Y ],

and the commutation relations between Kα
β and the translation generators, equations (94)–(119),

we find L̃Π
A, the generalised vielbein. This is a 8×8 block, lower triangular matrix that is sextic in

Cα1...α3 , cubic in Cα1...α6 and quadratic in Cα1...α8,β. The generalised metric is given by

M̃AB = δΠΣL̃
Π
AL̃

Σ
B .

However, for calculating the action, it is much easier to use the following rewriting of the generalised
metric

M̃AB = GCDL̃
C
AL̃

D
B , (15)

where

GAB = diag(gab, g
d1d2,e1e2 , gg1...g3,h1...h3 , g

j1k1gj2k2 −
1

8
δj1j2δ

k1
k2
, 1, gm1 ...m3,n1...n3 , gq1q2,r1r2 , g

xy).

The index
A = (a, d1d2, g1 . . . g3, j1j2,∅,m1 . . . m3, q1q2, x)

and similarly
B = (b, e1e2, h1 . . . h3, k1k2,∅, n1 . . . n3, r1r2, y),

where ∅ denotes the fact that the corresponding object has no index. Furthermore,

L̃A
B = eΠ

AL̃Π
B, (16)

where

eΠ
A =diag(eα

a, e[d1
β1ed2]

β2 , eγ1
[g1 . . . eγ3

g3],

ej1
δ1eδ2

j2 −
1

8
δj2j1 δ

δ1
δ2
, 1, e[m1

ǫ1 . . . em3]
ǫ3 , eζ1

[q1eζ2
q2], ex

η).

ea
α is the spatial vielbein,

gab = δαβea
αeb

β,

and eα
a is the inverse vielbein. The index

Π = (α, β1β2, γ1 . . . γ3, δ1δ2,∅, ǫ1 . . . ǫ3, ζ1ζ2, η).

By introducing L̃A
B , we have removed spatial vielbeine from the generalised vielbein and instead

only work with the spatial metric. This is more convenient and it is the form of the generalised
vielbein that will be used to calculate the action. Note that the generalised metric constructed
from the E8 motion group, M̃, is unit determinant. We will consider a rescaling of this generalised
metric by the determinant of the spatial metric. As was explained in [20]—in particular appendix
B—this can be thought of as considering E8 as a subgroup of a larger group, E11, for example.
Or alternatively we can think of the SL(8) in E8 as a subgroup of a larger special linear group,
SL(11) for instance. This makes sense physically because the theory of course only makes sense in
eleven-dimensions and we should always view the eight spatial coordinates we have here as being
augmented by three other directions. The rescaled generalised vielbein that we use is

LA
B = g−1/2L̃A

B ,
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where g is the determinant of the spatial metric. The generalised metric that we use to construct
the dynamics is

MAB = GCDL
C
AL

D
B = g−1M̃AB . (17)

The components of LA
B are given in appendix B.

We follow the canonical approach of [18] to formulate the dynamics. In this approach, there
is a potential and kinetic term for the fields. In a duality-invariant description both of these are
given as a scalar in terms of the generalised metric. In order to find this description, consider first
the potential and write a combination of terms that reduces to the Ricci scalar when the fields are
independent of the generalised coordinates:

V =
1

240
MMN∂MM

KL∂NMKL −
1

2
MMN∂NM

KL∂LMMK −
1

496
MKL∂MM

MN∂NMKL

+
23

15(248)2
MMN (MKL∂MMKL)(M

RS∂NMRS).

MAB is the inverse of the generalised metric. When the fields are taken to only depend on the eight
usual directions this expression reduces to

V = R(g)−
1

48
ga1...a4,b1...b4F (4)

a1...a4F
(4)
b1...b4

−
1

8!
ga1...a7,b1...b7F (7)

a1...a7F
(7)
b1...b7

+
1

8(8!)
gadgbcge1...e8,f1...f8Fa,e1...e8,bFc,f1...f8,d, (18)

where R(g) is the Ricci scalar of metric g and

F (4)
a1...a4 = 4∂[a1Ca2a3a4], (19)

F (7)
a1...a7 = 7

(

∂[a1Ca2...a7] + 20C[a1a2a3∂a4Ca5a6a7]

)

, (20)

Fa,e1...e8,b = ∂aCe1...e8,b − 28C[e1...e6|∂aC|e7e8]b −
560

3
Cb[e1e2Ce3e4e5|∂aC|e6e7e8]. (21)

The details of this calculation are in appendix C. The kinetic term can be evaluated similarly and
contains the kinetic terms associated with the metric and the 3-form [18] and an analogous term for
the 6-form. Moreover, it contains a term quadratic in time-derivatives of Ca1,...a8,b.

The interpretation of the appearance of a field with mixed indices, especially in the form above,
in the dynamics is unclear. However, the structure of the potential is clearly reminiscent of a dual
gravity field. In the next section, we show that the potential Ca1...a8,b is the dual of the graviphoton
in the dimensional reduction of eleven-dimensional supergravity to three dimensions. Thus, given
the evidence for the relation between dualisation of fields before and after reduction [5, 59], from an
eleven-dimensional perspective this potential is indeed to be interpreted as a dual gravity field.

3 Dimensional reduction of the bosonic sector of eleven-dimensional

supergravity

In this section, we dimensionally reduce the bosonic part of eleven-dimensional supergravity [1] à
la Cremmer-Julia [2] to three dimensions and relate Ce1...e8,b to the dual gravity field. This is the
dimensional reduction in which the E8 symmetry appears [46]. In particular the scalars of the
reduced theory are described by an E8/SO(16) coset, which we will demonstrate explicitly in this
section.
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The bosonic part of the action of eleven-dimensional supergravity is

S =

∫ √
G

(

R(G) −
1

48
FABCDFABCD −

1

124
ǫA1...A11FA1...A4FA5...A8CA6A7A8

)

. (22)

Here G is the eleven-dimensional metric, CABC is the 3-form of eleven-dimensional supergravity and

FABCD = 4∂[ACBCD].

The index notation used in this section is different to that used elsewhere. In this section uppercase
Latin letters run from 0 to 10, lowercase letters from the start of the Latin alphabet, a, b, c, . . . , denote
internal indices, while those from the middle of the alphabet, i, j, k, . . . , denote 3-dimensional indices.
The symbol ǫ in equation (22), as elsewhere in this paper, denotes an alternating tensor.

To perform the reduction, we take all fields to be independent of the internal directions. First,
consider the gravitational part. We take the following ansatz for the elfbein

(

g−1/2ei
µ Bi

aẽa
α

0 ẽa
α

)

, (23)

where ei
µ and ẽa

α are the dreibein and achtbein. In this section, lowercase Greek indices from
the beginning and middle of the alphabet denote internal and 3-dimensional tangent space indices,
respectively. We define the three-dimensional and eight-dimensional metrics as follows:

γij = ei
µej

νηµν (24)

and gab = ẽa
αẽb

βδαβ , (25)

so that g in expression (23) denotes the determinant of metric gab. Given the vielbein ansatz (23),

√
GR(G) =

√
γ

(

R(γ) +
1

4
γij(∂ig

ab)(∂jgab)−
1

4
γij(gab∂igab)(g

cd∂jgcd)−
1

4
gγikγjlgabFij

aFkl
b

)

,

(26)
where

Fij
a = 2∂[iBj]

a

is the field strength of the graviphoton.
Under the reduction, the second term in the action, given in (22), becomes

−
1

48

√
GFABCDFABCD =

√
γ

(

−
1

12
g2F̃ ijkaF̃ijka −

1

8
gF̃ ijabF̃ijab −

1

12
F iabcFiabc

)

. (27)

In the above expression the indices are raised with inverses of the metrics γ and g defined in equations
(24) and (25), so for example

F̃ ijab = γikγjlgacgbdF̃klcd.

Moreover, the field strengths

F̃ijkc = 3∂[iCjk]c − 6(∂[iCj|bc)B|k]
b + 3(∂[i|Cabc)B|j

aBk]
b, (28)

F̃ijbc = 2∂[iCj]bc − 2∂[i|CabcB|j]
a, (29)

Fiabc = ∂iCabc (30)

are defined so that they are invariant under coordinate transformations of the internal directions—see
[2] for more details.
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Similarly, in terms of the gauge-invariant field strengths defined above, the Chern-Simons term
of the action reduces to

−
2

123
√
γ
√
gǫijkǫa1...a8

(

3F̃ija1a2Fka3a4a5 − Fia1a2a3Ca4a5bFjk
b
)

Ca6a7a8 . (31)

In obtaining the above result we have integrated by parts twice and used

Fi[a1a2a3|Fj|a4a5a6Ca7a8a9] = 0.

Putting together equations (26), (27) and (31), we obtain the action for the reduced theory

S(3) =

∫

√
γ

(

R(γ) +
1

4
γij(∂ig

ab)(∂jgab)−
1

4
γij(gab∂igab)(g

cd∂jgcd)−
1

4
gγikγjlgabFij

aFkl
b

−
1

12
g2F̃ ijkaF̃ijka −

1

8
gF̃ ijabF̃ijab −

1

12
F iabcFiabc

−
2

123
√
gǫijkǫa1...a8

(

3F̃ija1a2Fka3a4a5 − Fia1a2a3Ca4a5bFjk
b
)

Ca6a7a8

)

. (32)

We are interested in the scalars of the reduced theory because it is these that parametrise the
E8/SO(16) coset. From the above action we can see that the scalars of the theory are 36 gab, 56
Cabc. Furthermore, since we are in three dimensions, one-forms are dual to scalars so we have 28 +
8 scalars from dualising the one-forms Aiab and Bi

a. Therefore, in all we have

128 = 248− 120 = dim(E8)− dim(SO(16))

scalars. We concentrate on the action of the scalars and one-forms and augment the action by a
Lagrange multiplier that imposes the closedness of the one-form field strengths.

S′(3) =
∫

√
γ

{

1

4
γij(∂ig

ab)(∂jgab)−
1

4
γij(gab∂igab)(g

cd∂jgcd)

−
1

4
gγikγjlgabFij

aFkl
b −

1

8
gF̃ ijabF̃ijab −

1

12
F iabcFiabc

−
2

123
√
gǫijkǫa1...a8

(

3F̃ija1a2Fka3a4a5 − Fia1a2a3Ca4a5bFjk
b
)

Ca6a7a8

−
1

4
ϕaǫ

ijk∂iFjk
a +

1

8
ψabǫijk

(

∂iF̃jkab − 2FiabcFjk
c
)

}

. (33)

On a three-dimensional manifold with trivial homology, integrating out ϕa gives

Fij
a = 2∂[iBj]

a

for some B. While the equation of motion for the second Lagrange multiplier, ψ, gives that

F̃jkab + 2FjabcBk
c

is closed, from which we recover equation (29). Therefore, this first-order formulation is, at least
classically, equivalent to the action for the scalars and one-form of the original reduced action S(3).
Hence, F̃ikab and Fij

a are independent fields not given in terms of potential forms. By integrating
out these fields we dualise the one-forms of the original action, Ba

i and Ciab, into scalars ϕa and ψab.
In fact, this is the reason why these duality symmetries are sometimes called hidden symmetries.

9



The symmetry is only manifest after dualisation of some of the fields. The new action that we obtain
is

S
(3)
scalars =

∫

√
γ

(

1

4
γij(∂ig

ab)(∂jgab)−
1

4
γij(gab∂igab)(g

cd∂jgcd)

−
1

12
γijgabc,def∂iCabc∂jCdef −

1

2
γijgabGiaGjb −

1

16
γijgab,cdGi

abGj
cd

)

, (34)

where, ga1...an,b1...bn is defined as in equation (5). ga1...an,b1...bn is defined analogously. The new fields
in the action are

Gi
ab = g−1/2∂iψ

ab −
1

36
ǫabc1...c6Cc1c2c3∂iCc4c5c6 , (35)

Gia = g−1/2∂iϕa − 1/2g−1/2ψbc∂iCabc −
1

216
ǫb1...b8Cab1b2Cb3b4b5∂iCb6b7b8 . (36)

Defining

Ca1...a6 =
1

2
g−1/2ǫa1...a6bcψ

bc, (37)

Ca1...a8,b = g−1/2ǫa1...a8ϕb (38)

we can identify these fields with the dual of the 3-form and the dual gravity field. With this notation
for the fields the action of the scalars in three dimensions can be written

S
(3)
scalars =

∫

√
γ

(

1

4
γij(∂ig

ab)(∂jgab)−
1

4
γij(gab∂igab)(g

cd∂jgcd)

−
1

12
γijgabc,def∂iCabc∂jCdef −

1

8(6!)
γijga1...a6,b1...b6Hi,a1...a6Hj,a1...a6

−
1

8(8!)
γijga1...a8,b1...b8gcdHi,a1...a8,cHj,a1...a8,c

)

, (39)

where

Hi,a1...a6 = ∂iCa1...a6 − 20C[a1a2a3|∂iC|a4a5a6], (40)

Hi,a1...a8,b = ∂iCa1...a8,b − 28C[a1...a6|∂iC|a7a8]b −
560

3
Cb[a1a2Ca3a4a5|∂iC|a6a7a8]. (41)

As expected, since the scalars in the reduction parametrise the E8/SO(16) coset, action (39) can be
written in terms of the E8 generalised metric, (17), in the following way

S
(3)
scalars =

1

240
γij∂iM

KL∂jMKL +
31

30(248)2
γij(MKL∂iMKL)(M

RS∂jMRS), (42)

where the uppercase Latin indices in the above equation run from 1 to 248 as in section 2. Note
that the calculation of the above terms is identical to the calculation of the potential in appendix C.

Comparing equations (41) and (21), we can see that it is the dual gravity field that appears in
the potential in section 2. This is in contrast to the E6 case considered in reference [20] where the
6-form field could have appeared in the potential but didn’t because there was an antisymmetrisation
over 7 indices. In the potential given in equation (18) there is no antisymmetrisation over the first
9 indices of Fa,b1...b8,c so the dual gravity field appears. From a technical viewpoint, this is because
Ca1...a8,b has mixed indices. Note that, in contrast to the field strength Fa,e1...e8,b defined in equation
(21), the gauge invariance of Hi,a1...a8,b from a three-dimensional point-of-view is very clear to see.
This is because in the reduced theory, the fields Cabc, Ca1,...a6 and Ca1...a8,b are scalars.

10



4 Discussion

In this paper, we formulated a non-linear realisation of the E8 group and found that the dynamics
includes a new field Ca1...a8,b with mixed Young tableaux indices with field strength Fa,b1...b8,c. While
the gauge-invariance properties of Fa,b1...b8,c are not clear, we show tantalising links with dual gravity.
Our difficulty in establishing the gauge-invariance of the field strength is related to the difficulty in
formulating a generalised geometry for E8 [36, 37]. In both cases, knowledge of the transformation
of Ca1...a8,b under gauge transformations is a requisite.

In reference [37], the authors were unable to write down a generalised Lie derivative, even though
they showed that the gauge structure leads to the correct counting of the degrees of freedom. While,
as in [37], we cannot determine the gauge transformations of Ca1...a8,b, we unambiguously show that
if the field strength is to be gauge-invariant, the new field must transform under 3-form and 6-form
gauge transformations. This result establishes the possible dependence of the dual gravity field on
the eleven-dimensional matter fields, namely the 3-form gauge field and its dual and may provide a
basis for evading the no-go theorems of [53, 54]. This leads us to speculate the exciting possibility
that eleven-dimensional supergravity can be formulated with a dual gravity field because of the
existence of a special matter content imposed by supersymmetry along the lines also proposed by
E11. We leave a precise description of such a possibility for future work.

Acknowledgements We would like to thank David Berman, Chris Blair, Axel Kleinschmidt and
Hermann Nicolai for discussions. HG would like to thank the CERN theory group, where part of
this work was done, for their hospitality. MJP is in part supported by the STFC rolling grant
STJ000434/1. MJP would like to thank the Mitchell foundation and Trinity College Cambridge for
their generous support.
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A E8 motion group from Cartan’s representation

In this appendix, we find the algebra of the E8 motion group, where the translation generators of
the motion group form the 248-dimensional representation of E8. In particular, the algebra of the
E8 motion group decomposed to SL(8) is found.

The E8 [60] group is generated by

Mα
β, V

αβγ , Vαβγ , (43)

where underlined Greek indices run from 1 to 9. In terms of these generators the E8 algebra is as
follows [60]:

[Mα
β ,M

γ
δ] = δ

γ

βM
α
δ − δ

α
δM

γ
β, (44)

[Mα
β, V

γ
1
...γ

3 ] = 3δ
[γ

1
β V γ

2
γ
3
]α −

1

3
δ
α
βV

γ
1
...γ

3 , (45)

[Mα
β, Vγ

1
...γ

3
] = −3δ

α
[γ

1

Vγ
2
γ
3
]β +

1

3
δ
α
βVγ1

...γ
3
, (46)

[V α1...α3 , Vβ
1
...β

3
] = 18δ

[α1α2

[β
1
β
2

Mα3]
β
3
], (47)

[V α1...α3 , V β
1
...β

3 ] = −
1

3!
ǫα1α2α3β1

β
2
β
3
γ
1
γ
2
γ
3Vγ

1
...γ

3
, (48)

[Vα1...α3
, Vβ

1
...β

3
] =

1

3!
ǫα1α2α3β1

β
2
β
3
γ
1
γ
2
γ
3
V γ

1
...γ

3 , (49)

where δ
α
β is the Kronecker delta symbol and ǫα1...α9

is the alternating tensor in nine dimensions.

Furthermore,
ǫα1...α9ǫβ

1
...β

9
= 9! δ

α1...α9
β
1
...β

9
.

The E8 algebra is expressed in terms of an SL(9) decomposition of E8. In this paper, we are con-
sidering the action of the E8 duality group along eight dimensions. Hence we require an SL(8)
decomposition of the algebra. This is easily done by defining E8 generators in SL(8) representations
as follows

Kα
β =Mα

β + δαβ

8
∑

γ=1

Mγ
γ , (50)

Rαβγ = V αβγ , (51)

Rαβγ = Vαβγ , (52)

Rα1...α6 = −
1

4
ǫα1...α6βγVβγ9, (53)

Rα1...α6 =
1

4
ǫα1...α6βγV

βγ9, (54)

Rα1...α8,β =
1

2
ǫα1...α8Mβ

9, (55)

Rα1...α8,β =
1

2
ǫα1...α8M

9
β, (56)

where Greek indices are SL(8) indices. The alternating tensor in eight dimensions is induced from
the nine-dimensional one in the following way:

ǫα1...α8 = ǫα1...α89 and ǫα1...α8 = ǫα1...α89.
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Using equations (44)–(49) and the above equations, we find the E8 algebra given in terms of an
SL(8) decomposition. The commutation relations of the GL(8) generator are

[Kα
β,K

γ
δ] = δγβK

α
δ − δαδK

γ
β, (57)

[Kα
β, R

γ1...γ3 ] = 3δ
[γ1
β R|α|γ2γ3], (58)

[Kα
β, Rγ1...γ3 ] = −3δα[γ1R|β|γ2γ3], (59)

[Kα
β, R

γ1...γ6 ] = 6δ
[γ1
β R|α|γ2...γ6], (60)

[Kα
β, Rγ1...γ6 ] = −6δα[γ1R|β|γ2...γ6], (61)

[Kα
β, R

γ1...γ8,δ] = 8δ
[γ1
β R|α|γ2...γ8],δ + δδβR

γ1...γ8,α, (62)

[Kα
β, Rγ1...γ8,δ] = −8δα[γ1R|β|γ2...γ8],δ − δαδ Rγ1...γ8,β. (63)

These are the expected commutation relations of the GL(8) generator Kα
β with the other generators.

The generator Kα
β has been shifted by

∑

γ M
γ
γ in such a way that its commutation relations with

the R generators do not contain any δαβ. Other choices can be made, but this choice is more
convenient and makes the non-linear realisation calculation easier. Furthermore, with this choice
the trace of Kα

β,

K =
∑

γ

Kγ
γ ,

counts the index of the GL(8) representations

[K,Rα1...α3 ] = 3Rα1...α3 ,

[K,Rα1...α3 ] = −3Rα1...α3 ,

[K,Rα1...α6 ] = 6Rα1...α6 ,

[K,Rα1...α6 ] = −6Rα1...α6 ,

[K,Rα1...α8,β] = 9Rα1...α8,β,

[K,Rα1...α8,β] = −9Rα1...α8,β.
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The rest of the commutations relations in the SL(8) decomposition are

[Rα1...α3 , Rβ1...β3 ] = 2Rα1α2α3β1β2β3 , (64)

[Rα1...α3 , Rβ1...β6 ] = −3Rβ1...β6[α1α2,α3], (65)

[Rα1...α3 , Rβ1...β3 ] = 18δ[α1α2
[β1β2

Kα3]
β3] − 2δα1...α3

β1...β3
K, (66)

[Rα1...α3 , Rβ1...β6 ] = 60δα1...α3

[β1...β3
Rβ4...β6], (67)

[Rα1...α3 , Rβ1...β8,γ ] = 112
(

δα1...α3

[β1...β3
Rβ4...β8]γ − δα1α2α3

γ[β1β2
Rβ3...β8]

)

, (68)

[Rα1...α6 , Rβ1...β3 ] = −60δ
[α1...α3

β1...β3
Rα4...α6], (69)

[Rα1...α6 , Rβ1...β6 ] = −9(5!)δ
[α1 ...α5

[β1...β5
Kα6]

β6] + 5!δα1...α6
β1...β6

K, (70)

[Rα1...α6 , Rβ1...β8,γ ] =
2

3
7!
(

δα1α2...α6

γ[β1...β5
Rβ6...β8] − δα1...α6

[β1...β6
Rβ7β8]γ

)

, (71)

[Rα1...α8,β, Rγ1...γ3 ] = −112
(

δ[α1...α3
γ1...γ3 R

α4...α8]β − δβ[α1α2
γ1γ2γ3 R

α3...α8]
)

, (72)

[Rα1...α8,β, Rγ1...γ6 ] = −
2

3
7!
(

δβ[α1...α5
γ1γ2...γ6 R

α6...α8] − δ[α1...α6
γ1...γ6 R

α7α8]β
)

, (73)

[Rα1...α8,β, Rγ1...γ8,δ] =
8!

4
δα1...α8
γ1...γ8 K

β
δ, (74)

[Rα1...α3 , Rβ1...β3 ] = 2Rα1α2α3β1β2β3 , (75)

[Rα1...α3 , Rβ1...β6 ] = −3Rβ1...β6[α1α2,α3]. (76)

All other commutation relations vanish.
Since we are interested in the motion group of E8 with the translation generators in the adjoint

representation of E8, it is straightforward to find the algebra of the motion group from the E8

algebra. Define translation generators

Pα
β, Z

αβγ
, Zαβγ .

Note that these are of the same form as E8 generators, (43), and they satisfy analogous commutation
relations with the E8 generators

[Mα
β, P

γ
δ] = δ

γ

βP
α
δ − δ

α
δ P

γ
β, (77)

[Mα
β, Z

γ
1
...γ

3 ] = 3δ
[γ

1
β Z

γ
2
γ
3
]α
−

1

3
δ
α
βZ

γ
1
...γ

3 , (78)

[Mα
β, Zγ

1
...γ

3
] = −3δ

α
[γ

1

Zγ
2
γ
3
]β +

1

3
δ
α
βZγ

1
...γ

3
, (79)

[V α1...α3 , P β
γ ] = −3δ

[α1
γ Z

α2α3]β +
1

3
δ
β
γZ

α1...α3 , (80)

[V α1...α3 , Z
β
1
...β

3 ] = −
1

3!
ǫα1α2α3β1

β
2
β
3
γ
1
γ
2
γ
3Zγ

1
...γ

3
, (81)

[V α1...α3 , Zβ
1
...β

3
] = 18δ

[α1α2

[β
1
β
2

Pα3]
β
3
], (82)

[Vα1...α3
, P β

γ ] = 3δ
β

[α1
Zα2α3]γ

−
1

3
δ
β
γZα1...α3

, (83)

[Vα1...α3
, Z

β
1
...β

3 ] = −18δ
[β

1
β
2

[α1α2
P β

3
]
α3]
, (84)

[Vα1...α3
, Zβ

1
...β

3
] =

1

3!
ǫα1α2α3β1

β
2
β
3
γ
1
γ
2
γ
3
Z

γ
1
...γ

3 , (85)
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We similarly decompose the translation generators into an SL(8) decomposition:

Pα = P 9
α, (86)

Zαβ = −Z
αβ9

, (87)

Wαβγ = −Zαβγ , (88)

Wα
β = −Pα

β +
1

8
δαβ

∑

γ

P γ
γ , (89)

W = −
3

8
P γ

γ , (90)

Zαβγ =
1

8
Z

αβγ
, (91)

Wαβ =
1

8
Zαβ9, (92)

Zα =
1

8
Pα

9. (93)

Other normalisations can be chosen for the translation generators. However, the above choice of
normalisation for the generators is made in order to make contact with the generators found when
decomposing the l1 generators of E11 into GL(3)×E8 [13]

Pα, Zαβ, Zα1...α5 =
1

3!
ǫα1...α8Wα6...α8 ,

Zα1...α7,β =
1

7!
ǫα1...α8W β

α8 , Zα1...α8 =
1

8!
ǫα1...α8W,

Zα1...α8,βγδ = ǫα1...α8Zβγδ, Zα1...α8,β1...β6 =
1

2
ǫα1...α8ǫβ1...β8Wβ7β8

Zα1...α8,β1...β8,γ = ǫα1...α8ǫβ1...β8Zγ .

The generator Zα1...α7,β satisfies
Z [α1...α7,β] = 0

because Wα
β is traceless. The l1 representation of E11 is the highest weight representation where

the highest weight corresponds to the P1 translation generator. Recall that the roots of an algebra
correspond to the group generators, while the weights of a representation correspond to the trans-
lation generators, which generate a particular representation. In [20], the truncation of E11 ⋉ l1 to
the SL(5), E6 and E7 motion groups was shown to lead to correct duality-invariant dynamics.

The commutation relations of generators (86)–(93) with the E8 group generators are found by
inserting the SL(8) decomposition of the motion group generators into (77)–(85). Here, we list the
commutation relations that are required for the non-linear realisation of the E8 motion group. The
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commutation relations of the GL(8) generator with the translations generators is

[Kα
β, Pγ ] = −δαγPβ − δαβPγ , (94)

[Kα
β, Z

γδ] = 2δ
[γ
β Z

|α|δ] − δαβZ
γδ, (95)

[Kα
β ,Wγδǫ] = −3δα[γWδǫ]β, (96)

[Kα
β,W

γ
δ] = δγβW

α
δ − δαδW

γ
β , (97)

[Kα
β ,W ] = 0, (98)

[Kα
β, Z

γδǫ] = 3δ
[γ
β Z

δǫ]α, (99)

[Kα
β ,Wγδ] = −2δα[γW|β|δ] + δαβWγδ, (100)

[Kα
β , Z

γ ] = δγβZ
α + δαβZ

γ , (101)

These commutation relations are needed in order to find the dependence of the generalised metric
on the 8-dimensional metric. To find the dependence of the generalised metric on the 3-form and
6-form fields the following commutation relations are required

[Rα1...α3 , Pβ ] = 3δ
[α1

β Zα2α3], (102)

[Rα1...α3 , Zβγ ] =
1

3!
ǫα1...α3βγδ1...δ3Wδ1...δ3 , (103)

[Rα1...α3 ,Wβ1...β3 ] = 18δ
[α1α2

[β1β2
Wα3]

β3], (104)

[Rα1...α3 ,W β
γ ] = 24δ[α1

γ Zα2α3]β − 3δβγZ
α1...α3 , (105)

[Rα1...α3 ,W ] = Zα1...α3 , (106)

[Rα1...α3 , Zβ1...β3 ] = −
1

2
ǫα1...α3β1...β3γδWγδ, (107)

[Rα1...α3 ,Wβγ ] = 6δ
[α1α2

βγ Zα3], (108)

[Rα1...α6 , Pβ ] =
1

4
ǫα1...α8Wα7α8β, (109)

[Rα1...α6 , Zβγ ] = ǫα1...α6[β|δW |γ]
δ − ǫα1...α6βγW, (110)

[Rα1...α6 ,Wβ1...β3 ] = 480δ
[α1 ...α3

[β1...β3
Zα4...α6], (111)

[Rα1...α6 ,W β
γ ] = 4ǫα1...α6βδWγδ −

1

2
δβγ ǫ

α1...α6δǫWδǫ, (112)

[Rα1...α6 ,W ] = −
1

2
ǫα1...α6βγWβγ , (113)

[Rα1...α6 , Zβ1...β3 ] =
3

2
ǫα1...α6[β1β2Zβ3]. (114)

Finally, as the generalised metric is found by conjugating the translation generators by the E8
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generators corresponding to the positive roots, we also need

[Rα1...α8,β, Pγ ] = −
1

2
ǫα1...α8W β

γ −
3

2
δβγ ǫ

α1...α8W, (115)

[Rα1...α8,β, Zγδ] = −4ǫα1...α8Zβγδ, (116)

[Rα1...α8,β,Wγ1...γ3 ] = 12ǫα1...α8δβ[γ1Wγ2γ3], (117)

[Rα1...α8,β,W γ
δ] = 4δβδ ǫ

α1...α8Zγ −
1

2
δγδ ǫ

α1...α8Zβ, (118)

[Rα1...α8,β,W ] =
3

2
ǫα1...α8Zβ. (119)

Some of the commutation relations involving the generators corresponding to negative roots are
listed below:

[Rα1...α3 , Z
βγ ] = 6δβγ[α1α2

Pα3], (120)

[Rα1...α3 ,Wβ1...β3 ] =
1

2
ǫα1...α3β1...β3γδZ

γδ, (121)

[Rα1...α3 ,W
β
γ ] = 3δβ[α1

Wα2α3]γ −
3

8
δβγWα1...α3 , (122)

[Rα1...α3 ,W ] =
1

8
Wα1...α3 , (123)

[Rα1...α3 , Z
β1...β3 ] =

9

4
δ
[β1β2

[α1α2
W β3]

α3] +
3

4
δβ1...β3
α1...α3

W, (124)

[Rα1...α3 ,Wβγ ] = −
1

3!
ǫα1...α3βγδ1...δ3Z

δ1...δ3 , (125)

[Rα1...α3 , Z
β] = 3δβ[α1

Wα2α3]. (126)

We take the translation generators to mutually-commute.
The normalisations of these generators are needed in the calculation of the generalised metric

using non-linear realisation. Denoting the Cartan involution of a generator X by X∗, we can define
an inner product on the representation space generated by the translation generators [20]

(A,B∗) ∈ R,

where A and B are translation generators. The inner product is E8 invariant

([X,A], B∗) = −(A, [X,B∗]), (127)

where X is an E8 generator.
The Cartan involution interchanges negative and positive roots. Therefore,

K∗ α
β ∼ Kβ

α, R∗ α1...α3 ∼ Rα1...α3 , R∗ α1...α6 ∼ Rα1...α6 , R∗ α1...α8,β ∼ Rα1...α8,β.

We define
R∗ α1...α3 = −Rα1...α3 . (128)

The relative signs of the Cartan involution of the other generators is fixed by the above relation and
consistency with the E8 algebra. For example, the Cartan involution of equation (66)

[R∗ α1...α3 , R∗
β1...β3 ] = 18δ[α1α2

[β1β2
K∗ α3]

β3] − 2δα1...α3
β1...β3

K∗ ,

=⇒ [Rα1...α3 , R
β1...β3 ] = 18δ[α1α2

[β1β2
K∗ α3]

β3] − 2δα1...α3
β1...β3

K∗ ,

=⇒ −[Rβ1...β3 , Rα1...α3 ] = 18δ[α1α2
[β1β2

K∗ α3]
β3] − 2δα1...α3

β1...β3
K∗ ,
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which from equation (66) gives that
K∗ α

β = −Kβ
α. (129)

Similarly, the Cartan involution of the rest of the generators are

R∗ α1...α6 = Rα1...α6 , (130)

R∗ α1...α8,β = −Rα1...α8,β. (131)

Now to find the normalisation of the generators, we first define

(Pα, P
∗β) = δβα. (132)

The normalisation of all other translation generators are now fixed. For example, consider

(Zαβ , Z∗
γδ) =

1

2
(Zαβ , Z∗

[γδ)δ
η
η],

=
1

2
(Zαβ ,−

1

3
[Rγδη , P

∗ η])

from the Cartan involution of equation (102). The E8 invariance of the inner product, (127), allows
us to write the inner product in terms of equation (120), hence giving

(Zαβ , Z∗
γδ) = 2δαβγδ .

Similarly, from equations (103)–(108) and equations (121)–(126), the inner product of the rest of
the translation generators is

(Wα1...α3 ,W
∗β1...β3) = 6δβ1...β3

α1...α3
, (133)

(Wα
β,W

∗
γ
δ) = δαγ δ

δ
β −

1

8
δαβ δ

δ
γ , (134)

(W,W ∗) =
1

8
, (135)

(Zα1...α3 , Z∗
β1...β3) =

3

32
δα1...α3
β1...β3

, (136)

(Wαβ ,W
∗γδ) =

1

32
δγδαβ , (137)

(Zα, Z∗
β) =

1

64
δαβ . (138)
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B The Generalised Vielbein

In this appendix we give the components of LA
B , which is related to the generalised vielbein by

equation (16). The components of LA
B, see figure 1, are

(L11)a b = δab , (139)

(L21)d1d2 b = −
1
√
2
Cd1d2b, (140)

(L31)g1g2g3 b = −

√
3

2
√
2
δ
[g1
b Ug2g3] −

1

4
√
6
Xg1...g3

b, (141)

(L41)j1
j2

b =
1

24
Xu1u2j2

j1Cu1u2b +
1

2
Cuj1bU

uj2 −
1

16
δj2j1Cu1u2bU

u1u2 +
1

2
δj2b Yj1 −

1

16
δj2j1Yb,

(142)

(L51) b =
3

4
√
2
Yb −

1

4
√
2
Cu1u2bU

u1u2 , (143)

(L61)m1m2m3 b = −

√
3

2
√
2
Cb[m1m2

Ym3] +
1

16
√
6
Cu1u2bm1m2m3U

u1u2

+
1

48
√
6
Xu1u2u3

bCu1u2u3m1m2m3 −
1

32
√
6
Cu1[m1m2

Cm3]u2u3
Xu1u2u3

b, (144)

(L71)q1q2 b =
3

4
√
2
δ
[u
b U

q1q2]Yu +
1

8
√
2
Xq1q2u

bYu −
1

4
√
2
Cu1u2bU

u1q1Uu2q2

+
1

24
√
2
Cu1u2u3X

u1u2[q1
bU

q2]u3 +
1

960
√
2
Cu1u2u3X

u1q1q2
tX

tu2u3
b, (145)

(L81)x b = −
1

4
YxYb −

1

4
Cu1xbU

u1u2Yu2 +
1

8
Cu1u2bU

u1u2Yx −
1

48
Cxu1u2X

u1u2u3
bYu3

+
1

192
Cxbu1...u4U

u1u2Uu3u4 −
1

384
Xu1...u3

bU
u4u5Cu1...u5x

+
1

128
Cu1[t1t2Cx]u2u3

Xu1...u3
bU

t1t2 −
1

16(6!)
Cu1u2t1Cu3t2t3X

u1...u3
xX

t1...t3
b,

(146)

(L22)d1d2
e1e2 = δe1e2d1d2

, (147)

(L32)g1g2g3 e1e2 =
1

2
√
3
V g1g2g3e1e2 , (148)

(L42)j1
j2 e1e2 = −

1

4
√
2
Xj2e1e2

j1 +
1
√
2
U j2[e1δ

e2]
j1

+
1

8
√
2
δj2j1U

e1e2 , (149)

(L52) e1e2 =
1

4
U e1e2 , (150)
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(L62)m1m2m3
e1e2 =

√
3

2
Y[m1

δe1e2m2m3]
−

1

24
√
3
V u1u2u3e1e2Cu1u2u3m1m2m3

+
1

8
√
3
Cu[m1m2

Xue1e2
m3], (151)

(L72)q1q2 e1e2 = −
1

4
V q1q2e1e2uYu +

1

4
U [q1|e1U |q2]e2 −

1

8
Xe1e2[q1

uU
q2]u −

1

192
Xq1q2u

tX
e1e2t

u,

(152)

(L82)x
e1e2 = −

1

2
√
2
Uu[e1Yuδ

e2]
x +

1

8
√
2
Xe1e2u

xYu −
1

4
√
2
U e1e2Yx

+
1

96
√
2
V e1e2u1u2u3Uu4u5Cu1...u5x −

1

16
√
2
Ct[u1u2

Xte1e2
x]U

u1u2

+
1

960
√
2
Ctu1u2X

u1u2u3
xX

e1e2t
u3 (153)

(L33)g1g2g3 h1h2h3 = g−1/2δg1g2g3h1h2h3
, (154)

(L43)j1
j2

h1h2h3 = −

√

3

2
g−1/2

(

Cj1[h1h2
δj2h3]

−
1

8
δj2j1Ch1h2h3

)

, (155)

(L53) h1h2h3 = −
1

4
√
3
g−1/2Ch1h2h3 , (156)

(L63)m1m2m3 h1h2h3 =
1

12
g−1/2

(

Cm1m2m3h1h2h3 − Cm1m2m3Ch1h2h3 + 9C[m1m2|[|h1
Ch2h3|]|m3]

)

,

(157)

(L73)q1q2 h1h2h3 = −

√
3

2
g−1/2

(

Y[h1
δq1q2h2h3]

+ Cu[h1h2
Uu[q1δ

q2]
h3]

+
1

6
Ch1h2h3U

q1q2

+
1

12
Xuq1q2

[h1
Ch2h3]u

)

, (158)

(L83)x h1h2h3 =

√
3

2
√
2
g−1/2

(

Cx[h1h2
Yh3] +

1

24
Uu1u2Ch1h2h3xu1u2 +

1

12
Ch1h2h3Cxu1u2U

u1u2

−
1

4
Cu1u2[h1

Ch2h3]xU
u1u2 −

1

2
Cxu1[h1

Ch2h3]u2
Uu1u2

+
1

48
Xu1u2u3

xCu1u2[h1
Ch2h3]u3

)

, (159)

(L44)j1
j2 k1

k2 = g−1/2

(

δj2k2δ
k1
j1

−
1

8
δj2j1 δ

k1
k2

)

, (160)

(L54) k1
k2 = 0, (161)
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(L64)m1m2m3
k1

k2 = −

√

3

2
g−1/2

(

Ck2[m1m2
δk1m3]

−
1

8
δk1k2Cm1m2m3

)

, (162)

(L74)q1q2 k1
k2 =

1
√
2
g−1/2

(

Uk1[q1δ
q2]
k2

+
1

8
δk1k2U

q1q2 +
1

4
Xk1q1q2

k2

)

, (163)

(L84)x
k1

k2 = −
1

2
g−1/2

(

Yk2δ
k1
x −

1

8
δk1k2Yx −

3

2
δk1[x Cu1u2]k2U

u1u2 +
3

16
δk1k2Cxu1u2U

u1u2

+
1

12
Xk1u1u2

k2Cxu1u2

)

, (164)

L55 = g−1/2, (165)

(L65)m1m2m3 = −
1

4
√
3
g−1/2Cm1m2m3 , (166)

(L75)q1q2 =
1

4
g−1/2U q1q2 , (167)

(L85)x = −
3

4
√
2
g−1/2

(

Yx −
1

6
Cxu1u2U

u1u2

)

, (168)

(L66)m1m2m3
n1n2n3 = g−1/2δn1n2n3

m1m2m3
, (169)

(L76)q1q2 n1n2n3 = −
1

2
√
3
g−1/2V q1q2n1n2n3 , (170)

(L86)x
n1n2n3 = −

√
3

2
√
2
g−1/2

(

U [n1n2δn3]
x −

1

6
Xn1n2n3

x

)

, (171)

(L77)q1q2 r1r2 = g−1δq1q2r1r2 , (172)

(L87)x r1r2 = −
1
√
2
g−1Cxr1r2 , (173)

(L88)x
y = g−1δyx. (174)

All of the lowercase Latin letters denote SL(8) indices. In the above expressions g is the determinant
of the spatial metric,

V a1...a5 =
1

3!
ǫa1...a8Ca6...a8 , (175)

Xa1...a3
b = V a1...a5Ca4a5b, (176)

W a1a2 =
1

6!
ǫa1...a8Ca3...a8 , (177)

Yb =
1

8!
ǫa1...a8Ca1...a8,b. (178)

The ǫ tensor is the alternating tensor in eight dimensions.
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Figure 1: The generalised vielbein
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Similarly, the components of the inverse generalised vielbein EA
B , see figure 2, are

(E11)a b = δab , (179)

(E21)d1d2 b =
1
√
2
Cd1d2b, (180)

(E31)g1g2g3 b =

√
3

2
√
2
g1/2

(

δ
[g1
b Ug2g3] −

1

6
Xg1...g3

b

)

, (181)

(E41)j1
j2

b = −
1

24
g1/2

(

Xu1u2j2
j1Cu1u2b − 12Cuj1bU

uj2 − 6δj2b Cu1u2j1U
u1u2

+
9

4
δj2j1Cu1u2bU

u1u2 + 12δj2b Yj1 −
3

2
δj2j1Yb

)

, (182)

(E51) b = −
3

4
√
2
g1/2

(

Yb −
1

6
Cu1u2bU

u1u2

)

, (183)

(E61)m1m2m3 b = −

√
3

2
√
2
g1/2

(

Cb[m1m2
Ym3] −

1

24
Cu1u2bm1m2m3U

u1u2

+
5

6
C[bu1u2

Cm1m2m3]U
u1u2

+
1

48
Cu1[m1m2

Cm3]u2u3
Xu1u2u3

b

)

, (184)

(E71)q1q2 b =
3

4
√
2
g

(

δ
[u
b U

q1q2]Yu −
1

6
Xq1q2u

bYu +
1

72
V q1q2u1u2u3Cbu1...u5U

u4u5

+
1

12
Cu1[u2u3

Xu1q1q2
b]U

u2u3 −
1

720
Cu1u2u3X

u1q1q2
tX

tu2u3
b

)

, (185)

(E81)x b = −
1

4
g

(

YxYb − Cu1xbU
u1u2Yu2 −

1

2
Cxu1u2U

u1u2Yb

+
1

12
Cxu1u2X

u1u2u3
bYu3 +

1

48
Cxbu1...u4U

u1u2Uu3u4

+
1

96
Xu1...u3

xU
u4u5Cu1...u5b −

1

32
Cu1[t1t2Cb]u2u3

Xu1...u3
xU

t1t2

+
1

4(6!)
Cu1u2t1Cu3t2t3X

u1...u3
xX

t1...t3
b

)

, (186)
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(E22)d1d2
e1e2 = δe1e2d1d2

, (187)

(E32)g1g2g3 e1e2 = −
1

2
√
3
g1/2V g1g2g3e1e2 , (188)

(E42)j1
j2 e1e2 = −

1

4
√
2
g1/2

(

Xj2e1e2
j1 + 4U j2[e1δ

e2]
j1

+
1

2
δj2j1U

e1e2

)

, (189)

(E52) e1e2 = −
1

4
g1/2U e1e2 , (190)

(E62)m1m2m3
e1e2 = −

√
3

2
g1/2

(

Y[m1
δe1e2m2m3]

+ Cu[m1m2
Uu[e1δ

e2]
m3]

+
1

6
Cm1m2m3U

e1e2 +
1

12
Cu[m1m2

Xue1e2
m3]

)

, (191)

(E72)q1q2 e1e2 = −
1

4
g
(

V q1q2e1e2uYu − U [q1|e1U |q2]e2

+
1

2
Xq1q2[e1

uU
e2]u +

1

48
Xq1q2u

tX
e1e2t

u

)

, (192)

(E82)x
e1e2 = −

1

2
√
2
g

(

Uu[e1Yuδ
e2]
x +

1

4
Xe1e2u

xYu +
1

2
U e1e2Yx

−
1

2
Cu1u2xU

e1u1U e2u2 +
1

12
Cu1u2u3X

u1u2[e1
xU

e2]u3

+
1

480
Ctu1u2X

u1u2u3
xX

e1e2t
u3

)

, (193)

(E33)g1g2g3 h1h2h3 = g1/2δg1g2g3h1h2h3
, (194)

(E43)j1
j2

h1h2h3 =

√

3

2
g1/2

(

Cj1[h1h2
δj2
h3]

−
1

8
δj2j1Ch1h2h3

)

, (195)

(E53) h1h2h3 =
1

4
√
3
g1/2Ch1h2h3 , (196)

(E63)m1m2m3 h1h2h3 = −
1

12
g1/2

(

Cm1m2m3h1h2h3 + Cm1m2m3Ch1h2h3 − 9C[m1m2|[|h1
Ch2h3|]|m3]

)

,

(197)

(E73)q1q2 h1h2h3 =

√
3

2
g

(

Y[h1
δq1q2h2h3]

−
1

36
V q1q2u1u2u3Cu1u2u3h1h2h3

+
1

12
Xuq1q2

[h1
Ch2h3]u

)

, (198)

(E83)x h1h2h3 =

√
3

2
√
2
g

(

Cx[h1h2
Yh3] +

1

24
Uu1u2Ch1h2h3xu1u2 −

1

72
Xu1u2u3

xCu1u2u3h1h2h3

+
1

48
Xu1u2u3

xCu1u2[h1
Ch2h3]u3

)

, (199)
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(E44)j1
j2 k1

k2 = g1/2
(

δj2k2δ
k1
j1

−
1

8
δj2j1δ

k1
k2

)

, (200)

(E54) k1
k2 = 0, (201)

(E64)m1m2m3
k1

k2 =

√

3

2
g1/2

(

Ck2[m1m2
δk1m3]

−
1

8
δk1k2Cm1m2m3

)

, (202)

(E74)q1q2 k1
k2 = −

1
√
2
g

(

Uk1[q1δ
q2]
k2

+
1

8
δk1k2U

q1q2 −
1

4
Xk1q1q2

k2

)

, (203)

(E84)x
k1

k2 =
1

2
g

(

Yk2δ
k1
x −

1

8
δk1k2Yx + Cxuk2U

uk1 −
1

8
δk1k2Cxu1u2U

u1u2

+
1

12
Xk1u1u2

k2Cxu1u2

)

, (204)

E55 = g1/2, (205)

(E65)m1m2m3 =
1

4
√
3
g1/2Cm1m2m3 , (206)

(E75)q1q2 = −
1

4
gU q1q2 , (207)

(E85)x =
3

4
√
2
g

(

Yx −
1

3
Cxu1u2U

u1u2

)

, (208)

(E66)m1m2m3
n1n2n3 = g1/2δn1n2n3

m1m2m3
, (209)

(E76)q1q2 n1n2n3 =
1

2
√
3
gV q1q2n1n2n3 , (210)

(E86)x
n1n2n3 =

√
3

2
√
2
g

(

U [n1n2δn3]
x +

1

6
Xn1n2n3

x

)

, (211)

(E77)q1q2 r1r2 = gδq1q2r1r2 , (212)

(E87)x r1r2 =
1
√
2
gCxr1r2 , (213)

(E88)x
y = gδyx. (214)
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(E81)x b (E82)x
e1e2 (E83)x h1...h3 (E84)x

k1
k2 (E85)x (E86)x

n1...n3 (E87)x r1r2 (E88)x
y
























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








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


























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
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Figure 2: The inverse generalised vielbein
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C Calculation of potential

The potential of the canonical formulation of eleven-dimensional supergravity is given by

V =
1

240
MMN∂MM

KL∂NMKL −
1

2
MMN∂NM

KL∂LMMK −
1

496
MKL∂MM

MN∂NMKL

+
23

15(248)2
MMN (MKL∂MMKL)(M

RS∂NMRS), (215)

where MAB is the generalised metric, (17), found from the non-realisation of the E8 motion group
and MMN is its inverse. The indices run from 1 to 248 and represent the adjoint representation of
E8. In the decomposition of this representation by SL(8) irreducible representations,

248 = 8⊕ 28⊕ 56⊕ 63⊕ 1⊕ 56⊕ 28⊕ 8,

we find the eight usual spatial directions along which the duality is acting along with 240 other
directions that correspond to winding modes of branes. To produce a usual supergravity de-
scription from the duality-invariant description, from now on we take all the supergravity fields
gab, Cabc, Ca1...a6 , Ca1...a8,b to be independent of the winding coordinates. Lowercase Latin indices are
spatial coordinates and run from 1 to 8.

The coefficients in equation (215) are fixed by requiring usual diffeomorphism invariance. Equiv-
alently, they are fixed by requiring that when the gauge fields are zero the potential reduces to the
Ricci scalar of metric g. We now find what the potential is in terms of the supergravity fields.

Since MAB is the matrix inverse of the generalised metric,

MAB = GCDEA
CE

B
D, (216)

where EA
B is the inverse of the generalised vielbein,

EA
BL

B
C = δAC = LA

BE
B
C

and

GAB = diag(gab, gd1d2,e1e2 , g
g1...g3,h1...h3 , gj1k1g

j2k2 −
1

8
δj2j1 δ

k2
k1
, 1, gm1...m3,n1...n3 , g

q1q2,r1r2 , gxy). (217)

is the inverse of

GAB = diag(gab, g
d1d2,e1e2 , gg1...g3,h1...h3 , g

j1k1gj2k2 −
1

8
δj1j2δ

k1
k2
, 1, gm1...m3,n1...n3 , gq1q2,r1r2 , g

xy). (218)

Using the equation (17),
MAB = GCDEA

CE
B
D, (219)

and equation (216) it is easy to show that

MMN∂MM
KL∂NMKL = 4gab(∂aE

K
C)G

CELF
K(∂bGEF ) + 2gab(∂aE

K
C)(∂bL

C
K)

− 2gabGCDGFGL
F
KL

G
L(∂aE

K
C)(∂bE

L
D)

+ gab(∂aG
EF )(∂bGEF ) (220)

and

MMN∂NM
KL∂LMMK = −gabgcdGKLL

K
NL

L
M (∂bE

N
c)(∂dE

M
a) + gab(∂bg

cd)(∂dgac). (221)
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Furthermore,
MCD∂aMCD = −248 gcd∂agcd,

hence

MKL∂MM
MN∂NMKL = −248(∂ag

ab)(gcd∂bgcd) (222)

and

MMN (MKL∂MMKL)(M
RS∂NMRS) = (248)2gab(gcd∂agcd)(g

ef∂bgef ). (223)

A simple calculation using the components of GAB and GAB , equations (217) and (218), and the
components of LA

B and EA
B given in appendix B shows that

gab(∂aE
K

C)G
CELF

K(∂bGEF ) = 6gab(gcd∂agcd)(g
ef∂bgef ), (224)

gab(∂aE
K

C)(∂bL
C
K) = −80gab(gcd∂agcd)(g

ef∂bgef ), (225)

gab(∂aG
EF )(∂bGEF ) = 60gab(∂ag

cd)(∂bgcd)− 12gab(gcd∂agcd)(g
ef∂bgef ). (226)

In particular, note that these are independent of the form fields and only depend on the metric g.
This is because GAB and GAB only depend on gab. Moreover, GAB and GAB are diagonal and L
and E are lower triangular so

(∂aE
K

C)G
CFLE

K(∂bGEF ) and (∂aE
K

C)(∂bL
C
K)

only depend on the diagonal elements of L and E which are proportional to determinant of gab.
To calculate

gabGCDGFGL
F
KL

G
L(∂aE

K
C)(∂bE

L
D) (227)

in equation (220) and
gabgcdGKLL

K
ML

L
N (∂bE

M
c)(∂dE

N
a) (228)

in equation (221), we note that the building block of both these terms is

Du
A
B = LA

C(∂uE
C
B). (229)

The components of D, see figure 3, are given at the end of this appendix.
The evaluation of the components of D requires use of identities such as

Ca1a2bV
bc1...c4 = 2X [c1c2c3

[a1δ
c4]
a2]
, (230)

where X is defined in equation (176). This identity is proved by using equation (175) to write C as
a Hodge dual of V in the expression above and V in terms of C. Then the two epsilon tensors are
contracted to give a Kronecker delta. Finally using

Ca1a2a3V
c1c2a1a2a3 =

1

3!
ǫc1c2a1a2a3b1b2b3C[a1a2a3Cb1b2b3] = 0,

we find the relation given above, equation (230). Other useful identities are

g−1/2Ca1a2a3∂u

(

g1/2V c1c2a1a2a3
)

= −V c1c2b1b2b3∂uCb1b2b3 , (231)

g−1/2Cabc1...a4∂u

(

g1/2Uab
)

= Uab∂uCabc1...c4 , (232)
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g−1/2Ca1a2b∂u

(

g1/2V c1c2c3a1a2
)

= V c1c2c3u1u2∂uCu1u2b − V u1u2u3[c1c2δ
c3]
b ∂uCu1u2u3 . (233)

Note that g1/2ǫa1...a8 is the alternating symbol

ηa1...a8 =











1 for (a1 . . . a8) = positive permutations of (12345678)

−1 for (a1 . . . a8) = negative permutations of (12345678)

0 otherwise

,

hence
∂u

(

g1/2ǫa1...a8
)

= 0.

Furthermore, our convention for the contraction of two epsilon tensors is

ǫa1...aibi+1...b8ǫc1...cibi+1...b8 = i!(8 − i)!δa1 ...aic1...ci .

As an example, consider the evaluation of D31,

(D31)u
g1g2g3

b = (L31)g1g2g3c∂u(E11)cb + (L32)g1g2g3f1f2∂u(E21)f1f2b

+ (L33)g1g2g3 i1i2i3∂u(E31)i1i2i3b.

Note that since L is lower triangular there are only three terms contributing to D31. The components
of L and E can be read from appendix B and inserted into the expression above 4

(D31)u
g1g2g3

b =
1

2
√
6
V g1g2g3f1f2∂uCf1f2b +

√
3

2
√
2
g−1/2∂u

(

g1/2δ
[g1
b Ug2g3] −

1

6
g1/2Xg1...g3

b

)

=
1

2
√
6
V g1g2g3f1f2∂uCf1f2b +

√
3

2
√
2
g−1/2∂u

(

g1/2δ
[g1
b Ug2g3]

)

−
1

4
√
6
g−1/2Cf1f2b∂u

(

g1/2V g1...g3f1f2
)

−
1

4
√
6
V g1...g3f1f2∂uCf1f2b,

where we have used the definition of X given in equation (176). Now, upon using identity (233),
this reduces to

(D31)u
g1g2g3

b =

√
3

2
√
2
g−1/2∂u

(

g1/2δ
[g1
b Ug2g3]

)

+
1

4
√
6
V t1t2t3[g1g2δ

g3]
b ∂uCt1t2t3 .

With the exception of D61,D71,D81 and D72, the other components can be simply derived using
identities (230)–(233).

Showing that D61,D71,D81 and D72, vanish is not straightforward and involves the repeated
use of identities (230)–(233). Expanding the D61 component we find thirteen terms of the form

C(6)V ∂C(3), C(6)C(3)∂V, UC(3)∂C(3), C(3)C(3)V ∂C(3) and C(3)C(3)C(3)∂V,

where C(3) and C(6) denote the 3 and 6-form, respectively. Expressing C(6)V ∂C(3) and C(6)C(3)∂V
as terms of the form UC(3)∂C(3), it is easy to see that terms involving the 6-form cancel among each
other. Further, writing terms of the form C(3)C(3)V ∂C(3) and C(3)C(3)C(3)∂V as the epsilon tensor
multiplied by terms of the form C(3)V V ∂C(3) we find that

(D61)u m1m2m3 b = −
7

16(5!)
√
6
ǫc1...c5m1m2m3Ca1a2bV

[c1...c5V d1d2d3a1]a2∂uCd1d2d3 .

4This can either be done by hand or using the computer algebra software Cadabra [61].
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This vanishes because an antisymmetrisation over nine indices in eight dimensions is zero. Similarly,
D71,D81 and D72, also vanish upon repeated use of identities (230)–(233).

Given the components of D it is now straightforward to evaluate expressions (227) and (228). In
terms of the supergravity fields these terms are

gabGCDGFGL
F
KL

G
L(∂aE

K
C)(∂bE

L
D) (234)

=gabGCDGFGDa
F
CDb

G
D

=80gab(gcd∂agcd)(g
ef∂bgef ) + 10gabgc1c2c3,d1d2d3(∂aCc1...c3)(∂bCd1...d3)

+
1

48
gabgc1...c6,d1...d6(∂aCc1...c6 − 20Cc1c2c3∂aCc4c5c6)(∂bCd1...d6 − 20Cd1d2d3∂bCd4d5d6)

+
15

8!
gabgcdge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d, (235)

where

Fa,e1...e8,b = ∂aCe1...e8,b − 28C[e1...e6|∂aC|e7e8]b −
560

3
Cb[e1e2Ce3e4e5|∂aC|e6e7e8]. (236)

Similarly,

gabgcdGKLL
K

ML
L
N (∂bE

M
c)(∂dE

N
a)

=gabgcdGKLDb
K

cDd
L
a

=
1

2
gad1gc1c2c3,bd2d3(∂aCc1...c3)(∂bCd1...d3)−

2

8!
ga1...a7,b1...b7F (7)

a1...a7F
(7)
b1...b7

+
1

4(6!)
gabgc1...c6,d1...d6(∂aCc1...c6 − 20Cc1c2c3∂aCc4c5c6)(∂bCd1...d6 − 20Cd1d2d3∂bCd4d5d6)

+
1

4(8!)
gabgcdge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d +

1

4(8!)
gadgbcge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d,

(237)

where Fa,e1...e8,b is as in equation (236) and

F (7)
a1...a7 = 7

(

∂[a1Ca2...a7] + 20C[a1a2a3∂a4Ca5a6a7]

)

. (238)

Therefore, using equations (220), (224)–(226) and (235),

MMN∂MM
KL∂NMKL

=60gab∂ag
cd∂bgcd − 308gab(gcd∂agcd)(g

ef∂bgef )− 20gabgc1c2c3,d1d2d3(∂aCc1...c3)(∂bCd1...d3)

−
1

24
gabgc1...c6,d1...d6(∂aCc1...c6 − 20Cc1c2c3∂aCc4c5c6)(∂bCd1...d6 − 20Cd1d2d3∂bCd4d5d6)

−
30

8!
gabgcdge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d, (239)

and from equations (221) and (237)

MMN∂NM
KL∂LMMK

= gab(∂bg
cd)(∂dgac)−

1

2
gad1gc1c2c3,bd2d3(∂aCc1...c3)(∂bCd1...d3) +

2

8!
ga1...a7,b1...b7F (7)

a1...a7F
(7)
b1...b7

−
1

4(6!)
gabgc1...c6,d1...d6(∂aCc1...c6 − 20Cc1c2c3∂aCc4c5c6)(∂bCd1...d6 − 20Cd1d2d3∂bCd4d5d6)

−
1

4(8!)
gabgcdge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d −

1

4(8!)
gadgbcge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d. (240)
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Finally, putting together equations (222), (223), (239), (240), in terms of the supergravity fields
the potential, (215), is

V =
1

4
gab∂ag

cd∂bgcd −
1

2
gab∂bg

cd∂dgac +
1

2
(∂ag

ab)(gcd∂bgcd) +
1

4
gab(gcd∂agcd)(g

ef∂bgef )

−
1

12
gabgc1c2c3,d1d2d3∂aCc1c2c3 (∂bCd1d2d3 − 3∂d1Cbd2d3)−

1

8!
ga1...a7,b1...b7F (7)

a1...a7F
(7)
b1...b7

+
1

8(8!)
gadgbcge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d. (241)

The first term is the Ricci scalar of metric g, up to integration by parts. This expected because the
coefficients of the terms in V, equation (215), were fixed so that the Ricci scalar would be recovered
when all other fields are zero. However, the potential also gives the dynamics of the other fields as
well. Defining

F (4)
a1...a4 = 4∂[a1Ca2a3a4],

V = R(g)−
1

48
ga1...a4,b1...b4F (4)

a1...a4F
(4)
b1...b4

−
1

8!
ga1...a7,b1...b7F (7)

a1...a7F
(7)
b1...b7

+
1

8(8!)
gadgbcge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d. (242)

C.1 Components of Du
A

B

The components of
Du

A
B = LA

C∂uE
C
B

are given below:

(D11)u
a
b = 0, (243)

(D21)u d1d2 b =
1
√
2
∂uCd1d2b, (244)

(D31)u
g1g2g3

b =

√
3

2
√
2
g−1/2∂u

(

g1/2δ
[g1
b Ug2g3]

)

+
1

4
√
6
V t1t2t3[g1g2δ

g3]
b ∂uCt1t2t3 , (245)

(D41)u j1
j2

b =−
1

2
δj2b

(

g−1/2∂u(g
1/2Yj1)−

1

2
U t1t2∂uCj1t1t2 +

1

36
Xt1t2t3

j1∂uCt1t2t3

)

+
1

16
δj2j1

(

g−1/2∂u(g
1/2Yb)−

1

2
U t1t2∂uCbt1t2 +

1

36
Xt1t2t3

b∂uCt1t2t3

)

, (246)

(D51)u b = −
3

4
√
2

(

g−1/2∂u(g
1/2Yb)−

1

2
U t1t2∂uCbt1t2 +

1

36
Xt1t2t3

b∂uCt1t2t3

)

, (247)

(D61)u m1m2m3 b = 0, (248)

(D71)u
q1q2

b = 0, (249)

(D81)u x b = 0, (250)
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(D22)u d1d2
e1e2 = 0, (251)

(D32)u
g1g2g3 e1e2 = −

1

2
√
3
g−1/2∂u

(

g1/2V g1g2g3e1e2
)

, (252)

(D42)u j1
j2 e1e2 =

1
√
2
δ
[e2
j1

(

g−1/2∂u(g
1/2U e1]j2) +

1

6
V e1]j2t1t2t3∂uCt1t2t3

)

−
1

8
√
2
δj2j1

(

g−1/2∂u(g
1/2U e1e2)−

1

6
V t1t2t3e1e2∂uCt1t2t3

)

,

(253)

(D52)u
e1e2 = −

1

24
V e1e2t1t2t3∂uCt1t2t3 −

1

4
g−1/2∂u

(

g1/2U e1e2
)

, (254)

(D62)u m1m2m3
e1e2 = −

√
3

2
δe1e2[m1m2|

(

g−1/2∂u(g
1/2Y|m3])−

1

2
U t1t2∂uC|m3]t1t2

+
1

36
Xt1t2t3 |m3]∂uCt1t2t3

)

, (255)

(D72)u
q1q2 e1e2 = 0, (256)

(D33)u
g1g2g3

h1h2h3 =
1

2
δg1g2g3h1h2h3

(g−1∂ug), (257)

(D43)u j1
j2

h1h2h3 =

√

3

2

(

∂uCj1[h1h2
δj2h3]

−
1

8
δj2j1∂uCh1h2h3

)

, (258)

(D53)u h1h2h3 =
1

4
√
3
∂uCh1h2h3 , (259)

(D63)u m1m2m3 h1h2h3 = −
1

12
∂uCm1m2m3h1h2h3 +

5

3
C[m1m2m3|∂uC|h1h2h3], (260)

(D44)u j1
j2 k1

k2 =
1

2

(

δj2k2δ
k1
j1

−
1

8
δj2j1δ

k1
k2

)

(g−1∂ug), (261)

(D54)u
k1

k2 = 0, (262)

(263)

D55 =
1

2
(g−1∂ug), (264)

(D66)u m1m2m3
n1n2n3 =

1

2
δn1n2n3
m1m2m3

(g−1∂ug), (265)

(D77)u
q1q2

r1r2 = δq1q2r1r2(g
−1∂ug), (266)

(D88)u x
y = δyx(g

−1∂ug). (267)
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











(D11)u
a

b 0 0 0 0 0 0 0

(D21)u d1d2 b (D22)u d1d2
e1e2 0 0 0 0 0 0

(D31)u
g1...g3

b (D32)u
g1...g3 e1e2 (D33)u

g1...g3
h1...h3

0 0 0 0 0

(D41)u j1
j2

b (D42)u j1
j2 e1e2 (D43)u j1

j2
h1...h3

(D44)u j1
j2 k1

k2
0 0 0 0

(D51)u b (D52)u
e1e2 (D53)u h1...h3

(D54)u
k1

k2
D55 0 0 0

(D61)u m1...m3 b (D62)u m1...m3

e1e2 (D63)u m1...m3 h1...h3
(D43)u k2

k1 m1...m3
(D53)u m1...m3

(D66)u m1...m3

n1...n3 0 0

(D71)u
q1q2

b (D72)u
q1q2 e1e2 −(D62)u h1...h3

q1q2 (D42)u k2
k1 q1q2 (D52)u

q1q2 −(D32)u
n1...n3 q1q2 (D77)u

q1q2 r1r2
0

(D81)u x b (D71)u
e1e2 x (D61)u h1...h3

x −(D41)u k2
k1 x −(D51)u x (D31)u

n1...n3 x (D21)u r1r2 x (D88)u x
y








































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
















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




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




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

Figure 3: Components of Du
A
B = LA

C(∂uE
C
B)
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