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1 Introduction

The toroidal compactification of eleven-dimensional supergravity [1] to various dimensions

leads to hidden symmetries [2–6], which have influenced many important developments.

Arguably, they have played an integral part in the set of ideas leading to U-dualities and the

conjecture of M-theory [7, 8]. Furthermore, they continue to provide insights into a wide-

range of problems associated with string/M-theory. However, the role of these symmetries

in the full eleven-dimensional theory remains unclear. While these symmetries only appear

upon reduction, early seminal work [9, 10] found evidence that these symmetries are not

merely artifacts of the reduction. They showed that eleven-dimensional supergravity can

be reformulated in a way that makes the local symmetries associated with the global

exceptional symmetries E7 and E8, respectively, manifest. Moreover, they were able to

assemble some bosonic degrees of freedom into representations of the global symmetry

groups. While eleven-dimensional supergravity does not admit the global symmetries,

these work hint at structures in eleven dimensions that naturally encompass the duality

structure that appears under reduction. Such a framework would provide a more direct

understanding of these duality symmetries from an eleven dimensional perspective and

possibly shed light on M-theory.

More recent attempts in trying to understand these duality symmetries have centred

on generalised geometry [11–16] and related ideas of exceptional geometry [17, 18]. These

ideas are based on the extension of the tangent space of a geometry to include p-form

bundles, and in some cases, also an extension of the base space to include dependence on

new coordinates that are seen as windings of branes. The extension of the space geometry
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to include windings associated to the branes leads to the unification of gravity and the

fields sourced by the branes in a single description [19–21]. In this approach, the dynamics

of fields along the internal directions are formulated in terms of a generalised metric that is

found from membrane duality arguments [22] or constructed from the duality coset. Thus

rendering the description duality-manifest.

In the context of string theory, similar considerations have been made with respect to

the T-duality group. In the double field theory [23–26] approach to closed string theory,

motivated by string field theory, all fields are taken to depend on dual (winding) coordinates

as well as spacetime coordinates. This naturally leads to a generalised geometric structure

in which the extended diffeomorphism contains both spacetime diffeomorphism and the

gauge symmetry of the NS-NS 2-form. The generalised diffeomorphism algebra closes on

the assumption that generalised fields satisfy a differential constraint, known as the section

condition, that reduces their dependence to a subset of coordinates. From a physical point

of view, the section condition is the level matching condition in string theory. While this

geometry does not admit some familiar notions of differential geometry, such as the usual

concept of a connection, it does possess a structure [26–32] that in particular contains

analogues of the Ricci tensor and scalar — the equation of motion and Lagrangian of

the low-energy effective description of closed string theory. The generalised geometric

descriptions of heterotic [33, 34] and type II theories [32, 35, 36] also exist.

The generalised geometries associated with the M-theory dualities admit similar, but

richer structures given the existence of higher rank p-forms sourced by various branes [15].

As with double field theory, the generalised geometries in this context also contain notions

of a generalised diffeomorphism algebra that unifies spacetime diffeomorphims and gauge

symmetries and closes on a section condition [37–39], as well as other structures [40–43].

In [21], the SL(5), SO(5,5) E6, and E7 duality groups were considered and the dynam-

ics of the corresponding internal fields were described by a non-linear realisation [44–47] of

the respective groups seen as subgroups of E11. The focus of this paper is the non-linear re-

alisation of E8. This is the duality group of maximally supersymmetric three-dimensional

supergravity [48] that appears upon the toroidal reduction of eleven-dimensional super-

gravity [49].

As eluded to earlier, a reformulation of eleven-dimensional supergravity with respect

to the E8 duality group was first considered by Nicolai in [10] and elaborated on further

in [17]. In particular, in [17], the authors provide evidence for a ‘generalised vielbein’

in the 248 ⊗ 248 of E8 and the unification of spacetime and gauge symmetries in the

internal directions. The study of supersymmetry transformations and the treatment of the

3-form potential as an independent field is central to their argument and what emerges

is a structure that can be viewed as belonging to the E8 tensor product representation

36⊗248. From the perspective of this work, the failure of a generalisation of this structure

to a 248⊗248 object there is due to the absence of dualisation of relevant fields. Therefore,

to understand the significance of duality symmetries in the eleven-dimensional theory, it

is necessary to have in mind a ‘democratic formulation’ in which the supergravity fields

are supplemented by their duals, i.e. the 6-form and the dual gravity field [6]. This is not

so surprising when viewed from the perspective of the reduced theory and the necessity of
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dualisations for the appearance of symmetries. Furthermore, dualisation is necessary in the

local SU(8) [9] and SO(16) [10] invariant reformulations of eleven-dimensional supergravity.

Whereas the dualisation of form-fields is well-understood, the dualisation of the metric

field is more intricate. The interpretation of the curvature tensor as a 2-form field strength

of the metric field allows for a natural generalisation of dualisation in this context [50–54].

In the linearised theory, this leads to actions for gauge fields in exotic representations of

the Lorentz group first considered by Curtright [55]. It has been argued [56] that the

extension of such an idea to the non-linear theory is not possible in a local and covariant

manner, in general. Although, the existence of isometries is one way to circumvent this [53].

In such a setting, the dual gravity field is the dual of the graviphoton gauge field. The

relevance of a dual gravity formulation in the context of M-theory dualities [57, 58], in

particular the E11 proposal, has been of much recent interest [59–63]. In these papers the

possibility of introducing dual gravity fields transforming under the gauge symmetries of

the matter fields of eleven-dimensional supergravity has been investigated. In particular,

in [62] the dependence of the dual gravity field on the 3-form gauge field and its dual has

been predicted from E11.

The E8 duality group is particularly interesting from the point of view that the po-

tential of the dual gravity field is expected to appear in the generalised metric for the first

time.1 As has been observed in [38, 39], the presence of dual gravity poses difficulties for

the formulation of an E8 generalised geometry.

The goal of this paper is to construct the non-linear realisation of the E8 group and

compare it with what one would expect from the bosonic sector of eleven-dimensional

supergravity. In section 2, we begin by constructing the non-linear realisation of the E8

motion group. The main steps in this construction are as follows.

• We ascertain the E8 motion group, which is the semi-direct product of the E8 group

with that of its adjoint representation. The adjoint representation can be thought of

as being generated by translations. This is analogous to the definition of the Poincaré

group as the the semi-direct product of the Lorentz group with that of its vector

representation, the elements of which are viewed as translation generators. The E8

motion group is given in terms of an SL(8) decomposition of the E8 algebra and its

adjoint representation. This is because from an eleven-dimensional perspective, the

E8 duality group appears in the reduction to three dimensions on an 8-torus. Thus,

we would like the duality group to act on the eight spatial directions that would be

associated with the torus under the reduction.

• We construct the generalised E8 vielbein by conjugating the Maurer-Cartan form of

an element of the adjoint representation with an element of the E8 group. This is

equivalent to calculating the Maurer-Cartan form of an element of the motion group

and reading off the part that appears as a coefficient of the translation generators.

Given its transformation properties, this object defines a vielbein.

1Winding coordinates that can be interpreted as those of a Kaluza-Klein monopole do appear in the E7

algebra, but the potential associated with these coordinates does not appear in the generalised metric.
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• We formulate the E8 invariant dynamics for the eight-dimensional space in a canonical

approach. In such a description, the dynamics is given by a potential and a kinetic

term. The strategy in this construction is to write down all E8 invariant terms

constructed from the generalised metric and fix their coefficients by requiring that

the expression reduces to what one would expect for the gravitational sector. Once

the coefficients are fixed the full expression with all fields turned on can be computed

with the assumption that fields do not depend on the generalised coordinates.

The potential term that is obtained includes an Einstein-Hilbert term, which appears

by construction; gauge-invariant field strengths of a 3-form (Cabc) and a 6-form (Ca1...a6)

potential and a term involving a potential with a mixed symmetric Young tableau diagram

Ca1...a8,b = C[a1...a8],b.

Except for the term involving Ca1...a8,b, the potential is the same as that obtained in the

E7 non-linear realisation [21]:

V = R(g)− 1

48
ga1...a4,b1...b4F (4)

a1...a4F
(4)
b1...b4

− 1

8!
ga1...a7,b1...b7F (7)

a1...a7F
(7)
b1...b7

+
1

8(8!)
gadgbcge1...e8,f1...f8Fa,e1...e8,bFc,f1...f8,d,

(1.1)

where R(g) is the Ricci scalar of metric g and

F (4)
a1...a4 = 4∂[a1Ca2a3a4], (1.2)

F (7)
a1...a7 = 7

(
∂[a1Ca2...a7] + 20C[a1a2a3∂a4Ca5a6a7]

)
, (1.3)

Fa,e1...e8,b = ∂aCe1...e8,b − 28C[e1...e6|∂aC|e7e8]b −
560

3
Cb[e1e2Ce3e4e5|∂aC|e6e7e8]. (1.4)

The antisymmetrisation over inverse metrics is defined as follows

ga1...an,b1...bn =
1

n!

(
ga1b1 . . . ganbn + (remaining even permutations of a1, . . . , an)

− (odd permutations of a1, . . . , an)
)
.

(1.5)

From an eleven-dimensional perspective the field strength F (7) is the Hodge dual of F (4),

while the interpretation of Fa,b1...b8,c is unclear. Although the structure of the potential

Ca1...a8,b suggests a relation to the dual gravity field.

To establish such a relation, in section 3, we dimensionally reduce the bosonic action

of eleven-dimensional supergravity to three dimensions. The reduced theory is known to

exhibit E8 global symmetry. Indeed upon dualising the one-forms, the scalars of the theory

parametrise the coset E8/SO(16) and their action is written in terms of the generalised met-

ric. Whereupon, we identify the 6-form potential as the dual of the 3-form. Furthermore,

the potential Ca1...a8,b is the dual of the graviphoton with field strength

Hi,a1...a8,b = ∂iCa1...a8,b − 28C[a1...a6|∂iC|a7a8]b −
560

3
Cb[a1a2Ca3a4a5|∂iC|a6a7a8]

in the three-dimensional theory.

We discuss the possible implications of these results at the end of the paper.
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2 Non-linear realisation of E8

In this section, we construct the non-linear realisation of the E8 motion group.2 The

dynamics obtained from this construction can then be compared with eleven-dimensional

supergravity. Due to the many technicalities and long calculations involved in obtaining

this result much of the details concerning the calculations have been explained in the

appendices for ease of reading.

As emphasised before, the key ingredient in the construction of the E8 invariant dy-

namics is the E8 generalised metric, which is constructed using a non-linear realisation of

the E8 motion group. In [21], the non-linear realisation method was used to calculate the

generalised metrics relevant for the SL(5), SO(5,5), E6 and E7 duality groups. In that

paper, the duality groups were regarded as subgroups of E11 and the generalised metrics

were found by performing a non-linear realisation of E11 � l1 decomposed to the appropri-

ate duality subgroup. As was stressed in that paper the only difference in carrying out the

non-linear realisation of E11 truncated to the aforementioned mentioned duality groups as

opposed to doing the non-linear realisation of the duality group itself is an overall factor

of the determinant of the spatial metric to some power multiplying the generalised metric.

The approach that we will take in this paper is to calculate the non-linear realisation of

the E8 duality group. We comment on the overall factor of the generalised metric later in

this section.

The first step in constructing the non-linear realisation is to find the E8 motion group,

which is done in appendix A. In order to do this, first the E8 algebra, which is usually

written in terms of an SL(9) decomposition of E8, needs to be rewritten in terms of an

SL(8) decomposition. This is because in the 8+3 splitting of the eleven-dimensional theory

that we are considering here, the E8 duality group acts only on the eight spatial directions.

In an SL(9) representation, the E8 algebra is given by the following three generators

Mα
β , V

αβγ , Vαβγ , (2.1)

where the underlined Greek indices are SL(9) indices that run from 1 to 9. An SL(8)

decomposition of these generators is simply of the form

Mα
β , M

α
9, M

9
β , V

αβγ , V αβ9, Vαβγ , Vαβ9, (2.2)

where lowercase Greek indices run from 1 to 8. The above objects and the alternating tensor

εα1...α8 in eight dimensions can then be used to define the generators of the particular SL(8)

decomposition of the E8 algebra used here

Kα
β, R

αβγ , Rαβγ , R
α1...α6 , Rα1...α6 , R

α1...α8,β , Rα1...α8,β . (2.3)

The precise relation between these generators and those listed above is given in appendix A.

Note that as emphasised there, the definition of these generators is one particular choice

out of many possibilities and has been made with the efficient calculation of the non-linear

2See appendix A for a review of the E8 algebra.
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realisation in mind. Now the E8 algebra reduces to a set of commutation relations involving

the generators listed in (2.3) (see equations (A.15)–(A.34) in appendix A).

Given the SL(8) decomposition of the E8 group, the next step is to define the trans-

lation generators. Consider the 248-dimensional fundamental (and adjoint) representation

of E8 given by generators

Pα
β , Z

αβγ
, Zαβγ , (2.4)

which are of the same form as the E8 generators. The SL(8) decomposition of the trace-free

generator Pα
β gives the following generators

Pα, W
α
β, W, Z

α, (2.5)

where Wα
β is trace-free. A simple counting confirms that these generators have the same

degrees of freedom as Pα
β . Similarly, the totally antisymmetric generators Z

αβγ
and Zαβγ

are rewritten in terms of SL(8) indices as

Zαβγ , Zαβ (2.6)

and

Wαβγ , Wαβ , (2.7)

respectively. The precise definition of the above generators is given in equations (A.44)–

(A.51) in appendix A. In addition, the necessary commutation relations and inner products

involving the translation generators are given in appendix A.

The E8 non-linear realisation is constructed using the motion group element

g = glgE ,

where

gE = ehα
βKα

βe
1
3!
Cα1...α3R

α1...α3
e

1
6!
Cα1...α6R

α1...α6
e

1
8!
Cα1...α8,β

Rα1...α8,β

is an E8 group element. This group element has been gauge-fixed so that it mostly contains

generators corresponding to negative roots, i.e. generators of the Borel subalgebra. The

only exception being the Kα
β which contains generators corresponding to both positive

and negative roots as well as Cartan subalgebra generators. This group element introduces

the fields

hα
β , Cα1...α3 , Cα1...α6 , Cα1...α8,β .

The group element

gl = ex
αPαe

1√
2
yαβZ

αβ

e
1√
6
wαβγWαβγewα

βWα
βe2

√
2wW e

4
√

2
3
zαβγZ

αβγ

e4
√
2wαβWαβe8zαZ

α

is generated by the translation generators. The coefficient of each exponent in the group

element has been chosen based on the normalisation of the translation generator, given in

appendix A, so that the flat metric takes the canonical form

ds2 =δαβ dxαdxβ + δαβ,γδ dyαβdyγδ + δαβγ,δεζ dw
αβγdwδεζ + δδαδ

β
γ dwα

βdw
γ
δ

+ dwdw + δαβγ,δεζ dzαβγdzδεζ + δαβ,γδ dw
αβdwγδ + δαβ dzαdzβ,

– 6 –
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where

δα1...αn,β1...βn =
1

n!

(
δα1β1 . . . δαnβn + (remaining even permutations of α1, . . . , αn)

− (odd permutations of α1, . . . , αn)
)
. (2.8)

The generalised vielbein is given by conjugating the Maurer-Cartan form of gl by gE

PΠL̃
Π
AdZ

A = g−1
E (g−1

l dgl)gE . (2.9)

In this paper uppercase Greek letters denote generalised tangent space indices, while up-

percase Latin indices denote generalised coordinate indices.3

Using Hadamard’s Lemma

eXY e−X =
∞∑
n=0

1
n!(ad

nX)Y,

where

(adX)Y = [X,Y ],

and the commutation relations between Kα
β and the translation generators, equa-

tions (A.52)–(A.77), we find L̃Π
A, the generalised vielbein. This is a 8×8 block, lower

triangular matrix that is sextic in Cα1...α3 , cubic in Cα1...α6 and quadratic in Cα1...α8,β . The

generalised metric is given by

M̃AB = δΠΣL̃
Π
AL̃

Σ
B.

However, for calculating the action, it is much easier to use the following rewriting of the

generalised metric

M̃AB = GCDL̃
C
AL̃

D
B, (2.10)

where

GAB = diag(gab, g
d1d2,e1e2 , gg1...g3,h1...h3 , g

j1k1gj2k2−
1

8
δj1j2δ

k1
k2
, 1, gm1...m3,n1...n3 , gq1q2,r1r2 , g

xy).

The index

A = (a, d1d2, g1 . . . g3, j1j2,∅,m1 . . .m3, q1q2, x)

and similarly

B = (b, e1e2, h1 . . . h3, k1k2,∅, n1 . . . n3, r1r2, y),

where ∅ denotes the fact that the corresponding object has no index. Furthermore,

L̃A
B = eΠ

AL̃Π
B, (2.11)

where

eΠ
A =diag(eα

a, e[d1
β1ed2]

β2 , eγ1
[g1 . . . eγ3

g3],

ej1
δ1eδ2

j2 − 1

8
δj2j1δ

δ1
δ2
, 1, e[m1

ε1 . . . em3]
ε3 , eζ1

[q1eζ2
q2], ex

η).

3Note that in [21], opposite conventions were used for uppercase Greek and Latin indices.
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ea
α is the spatial vielbein,

gab = δαβea
αeb

β ,

and eα
a is the inverse vielbein. The index

Π = (α, β1β2, γ1 . . . γ3, δ1δ2,∅, ε1 . . . ε3, ζ1ζ2, η).

By introducing L̃A
B, we have removed spatial vielbeine from the generalised vielbein

and instead only work with the spatial metric. This is more convenient and it is the form of

the generalised vielbein that will be used to calculate the action. Note that the generalised

metric constructed from the E8 motion group, M̃, is unit determinant. We will consider

a rescaling of this generalised metric by the determinant of the spatial metric. As was

explained in [21]—in particular appendix B — this can be thought of as considering E8

as a subgroup of a larger group, E11, for example. Or alternatively we can think of the

SL(8) in E8 as a subgroup of a larger special linear group, SL(11) for instance. This makes

sense physically because the theory of course only makes sense in eleven-dimensions and

we should always view the eight spatial coordinates we have here as being augmented by

three other directions. The rescaled generalised vielbein that we use is

LA
B = g−1/2L̃A

B,

where g is the determinant of the spatial metric. The generalised metric that we use to

construct the dynamics is

MAB = GCDL
C
AL

D
B = g−1M̃AB. (2.12)

The components of LA
B are given in appendix B.

We follow the canonical approach of [19] to formulate the dynamics. In this approach,

there is a potential and kinetic term for the fields. In a duality-invariant description both

of these are given as a scalar in terms of the generalised metric. In order to find this

description, consider first the potential and write a combination of terms that reduces to

the Ricci scalar when the fields are independent of the generalised coordinates:

V =
1

240
MMN∂MM

KL∂NMKL − 1

2
MMN∂NM

KL∂LMMK − 1

496
MKL∂MM

MN∂NMKL

+
23

15(248)2
MMN (MKL∂MMKL)(M

RS∂NMRS).

MAB is the inverse of the generalised metric. When the fields are taken to only depend on

the eight usual directions this expression reduces to

V = R(g)− 1

48
ga1...a4,b1...b4F (4)

a1...a4F
(4)
b1...b4

− 1

8!
ga1...a7,b1...b7F (7)

a1...a7F
(7)
b1...b7

+
1

8(8!)
gadgbcge1...e8,f1...f8Fa,e1...e8,bFc,f1...f8,d,

(2.13)
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where R(g) is the Ricci scalar of metric g and

F (4)
a1...a4 = 4∂[a1Ca2a3a4], (2.14)

F (7)
a1...a7 = 7

(
∂[a1Ca2...a7] + 20C[a1a2a3∂a4Ca5a6a7]

)
, (2.15)

Fa,e1...e8,b = ∂aCe1...e8,b − 28C[e1...e6|∂aC|e7e8]b −
560

3
Cb[e1e2Ce3e4e5|∂aC|e6e7e8]. (2.16)

The details of this calculation are in appendix C. The kinetic term can be evaluated simi-

larly and contains the kinetic terms associated with the metric and the 3-form [19] and an

analogous term for the 6-form. Moreover, it contains a term quadratic in time-derivatives

of Ca1,...a8,b.

The interpretation of the appearance of a field with mixed indices, especially in the

form above, in the dynamics is unclear. However, the structure of the potential is clearly

reminiscent of a dual gravity field. In the next section, we show that the potential Ca1...a8,b is

the dual of the graviphoton in the dimensional reduction of eleven-dimensional supergravity

to three dimensions. Thus, given the evidence for the relation between dualisation of fields

before and after reduction [6, 64], from an eleven-dimensional perspective this potential is

indeed to be interpreted as a dual gravity field.

3 Dimensional reduction of the bosonic sector of eleven-dimensional su-

pergravity

In this section, we dimensionally reduce the bosonic part of eleven-dimensional supergrav-

ity [1] à la Cremmer-Julia [2] to three dimensions and relate Ce1...e8,b to the dual gravity

field. This is the dimensional reduction in which the E8 symmetry appears [49]. In partic-

ular the scalars of the reduced theory are described by an E8/SO(16) coset, which we will

demonstrate explicitly in this section.

The bosonic part of the action of eleven-dimensional supergravity is

S =

∫ √
G

(
R(G)− 1

48
FABCDFABCD − 1

124
εA1...A11FA1...A4FA5...A8CA6A7A8

)
. (3.1)

Here G is the eleven-dimensional metric, CABC is the 3-form of eleven-dimensional super-

gravity and

FABCD = 4∂[ACBCD].

The index notation used in this section is different to that used elsewhere. In this section

uppercase Latin letters run from 0 to 10, lowercase letters from the start of the Latin

alphabet, a, b, c, . . . , denote internal indices, while those from the middle of the alphabet,

i, j, k, . . . , denote 3-dimensional indices. The symbol ε in equation (3.1), as elsewhere in

this paper, denotes an alternating tensor.

To perform the reduction, we take all fields to be independent of the internal directions.

First, consider the gravitational part. We take the following ansatz for the elfbein(
g−1/2ei

μ Bi
aẽa

α

0 ẽa
α

)
, (3.2)
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where ei
μ and ẽa

α are the dreibein and achtbein. In this section, lowercase Greek indices

from the beginning and middle of the alphabet denote internal and 3-dimensional tangent

space indices, respectively. We define the three-dimensional and eight-dimensional metrics

as follows:

γij = ei
μej

νημν (3.3)

and gab = ẽa
αẽb

βδαβ , (3.4)

so that g in expression (3.2) denotes the determinant of metric gab. Given the vielbein

ansatz (3.2),

√
GR(G)=

√
γ

(
R(γ)+

1

4
γij(∂ig

ab)(∂jgab)−
1

4
γij(gab∂igab)(g

cd∂jgcd)−
1

4
gγikγjlgabFij

aFkl
b

)
,

(3.5)

where

Fij
a = 2∂[iBj]

a

is the field strength of the graviphoton.

Under the reduction, the second term in the action, given in (3.1), becomes

− 1

48

√
GFABCDFABCD =

√
γ

(
− 1

12
g2F̃ ijkaF̃ijka −

1

8
gF̃ ijabF̃ijab −

1

12
F iabcFiabc

)
. (3.6)

In the above expression the indices are raised with inverses of the metrics γ and g defined

in equations (3.3) and (3.4), so for example

F̃ ijab = γikγjlgacgbdF̃klcd.

Moreover, the field strengths

F̃ijkc = 3∂[iCjk]c − 6(∂[iCj|bc)B|k]b + 3(∂[i|Cabc)B|jaBk]
b, (3.7)

F̃ijbc = 2∂[iCj]bc − 2∂[i|CabcB|j]a, (3.8)

Fiabc = ∂iCabc (3.9)

are defined so that they are invariant under coordinate transformations of the internal

directions — see [2] for more details.

Similarly, in terms of the gauge-invariant field strengths defined above, the Chern-

Simons term of the action reduces to

− 2

123
√
γ
√
gεijkεa1...a8

(
3F̃ija1a2Fka3a4a5 − Fia1a2a3Ca4a5bFjk

b
)
Ca6a7a8 . (3.10)

In obtaining the above result we have integrated by parts twice and used

Fi[a1a2a3|Fj|a4a5a6Ca7a8a9] = 0.
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Putting together equations (3.5), (3.6) and (3.10), we obtain the action for the reduced

theory

S(3) =

∫ √
γ

(
R(γ) +

1

4
γij(∂ig

ab)(∂jgab)−
1

4
γij(gab∂igab)(g

cd∂jgcd)−
1

4
gγikγjlgabFij

aFkl
b

− 1

12
g2F̃ ijkaF̃ijka −

1

8
gF̃ ijabF̃ijab −

1

12
F iabcFiabc (3.11)

− 2

123
√
gεijkεa1...a8

(
3F̃ija1a2Fka3a4a5 − Fia1a2a3Ca4a5bFjk

b
)
Ca6a7a8

)
.

We are interested in the scalars of the reduced theory because it is these that parametrise

the E8/SO(16) coset. From the above action we can see that the scalars of the theory

are 36 gab, 56 Cabc. Furthermore, since we are in three dimensions, one-forms are dual to

scalars so we have 28 + 8 scalars from dualising the one-forms Aiab and Bi
a. Therefore, in

all we have

128 = 248− 120 = dim(E8)− dim(SO(16))

scalars. We concentrate on the action of the scalars and one-forms and augment the action

by a Lagrange multiplier that imposes the closedness of the one-form field strengths.

S′(3) =
∫ √

γ

{
1

4
γij(∂ig

ab)(∂jgab)−
1

4
γij(gab∂igab)(g

cd∂jgcd)

− 1

4
gγikγjlgabFij

aFkl
b − 1

8
gF̃ ijabF̃ijab −

1

12
F iabcFiabc

− 2

123
√
gεijkεa1...a8

(
3F̃ija1a2Fka3a4a5 − Fia1a2a3Ca4a5bFjk

b
)
Ca6a7a8

−1

4
ϕaε

ijk∂iFjk
a +

1

8
ψabεijk

(
∂iF̃jkab − 2FiabcFjk

c
)}

. (3.12)

On a three-dimensional manifold with trivial homology, integrating out ϕa gives

Fij
a = 2∂[iBj]

a

for some B. While the equation of motion for the second Lagrange multiplier, ψ, gives that

F̃jkab + 2FjabcBk
c

is closed, from which we recover equation (3.8). Therefore, this first-order formulation is,

at least classically, equivalent to the action for the scalars and one-form of the original

reduced action S(3). Hence, F̃ikab and Fij
a are independent fields not given in terms of

potential forms. By integrating out these fields we dualise the one-forms of the original

action, Ba
i and Ciab, into scalars ϕa and ψab. In fact, this is the reason why these duality

symmetries are sometimes called hidden symmetries. The symmetry is only manifest after

dualisation of some of the fields. The new action that we obtain is

S
(3)
scalars =

∫ √
γ

(
1

4
γij(∂ig

ab)(∂jgab)−
1

4
γij(gab∂igab)(g

cd∂jgcd)

− 1

12
γijgabc,def∂iCabc∂jCdef − 1

2
γijgabGiaGjb −

1

16
γijgab,cdGi

abGj
cd

)
,

(3.13)
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where, ga1...an,b1...bn is defined as in equation (1.5). ga1...an,b1...bn is defined analogously. The

new fields in the action are

Gi
ab = g−1/2∂iψ

ab − 1

36
εabc1...c6Cc1c2c3∂iCc4c5c6 , (3.14)

Gia = g−1/2∂iϕa − 1/2g−1/2ψbc∂iCabc −
1

216
εb1...b8Cab1b2Cb3b4b5∂iCb6b7b8 . (3.15)

Defining

Ca1...a6 =
1

2
g−1/2εa1...a6bcψ

bc, (3.16)

Ca1...a8,b = g−1/2εa1...a8ϕb (3.17)

we can identify these fields with the dual of the 3-form and the dual gravity field. With

this notation for the fields the action of the scalars in three dimensions can be written

S
(3)
scalars =

∫ √
γ

(
1

4
γij(∂ig

ab)(∂jgab)−
1

4
γij(gab∂igab)(g

cd∂jgcd)

− 1

12
γijgabc,def∂iCabc∂jCdef − 1

8(6!)
γijga1...a6,b1...b6Hi,a1...a6Hj,a1...a6

− 1

8(8!)
γijga1...a8,b1...b8gcdHi,a1...a8,cHj,a1...a8,c

)
, (3.18)

where

Hi,a1...a6 = ∂iCa1...a6 − 20C[a1a2a3|∂iC|a4a5a6], (3.19)

Hi,a1...a8,b = ∂iCa1...a8,b − 28C[a1...a6|∂iC|a7a8]b −
560

3
Cb[a1a2Ca3a4a5|∂iC|a6a7a8]. (3.20)

As expected, since the scalars in the reduction parametrise the E8/SO(16) coset, ac-

tion (3.18) can be written in terms of the E8 generalised metric, (2.12), in the following

way

S
(3)
scalars =

1

240
γij∂iM

KL∂jMKL +
31

30(248)2
γij(MKL∂iMKL)(M

RS∂jMRS), (3.21)

where the uppercase Latin indices in the above equation run from 1 to 248 as in section 2.

Note that the calculation of the above terms is identical to the calculation of the potential

in appendix C.

Comparing equations (3.20) and (2.16), we can see that it is the dual gravity field

that appears in the potential in section 2. This is in contrast to the E6 case considered in

reference [21] where the 6-form field could have appeared in the potential but didn’t because

there was an antisymmetrisation over 7 indices. In the potential given in equation (2.13)

there is no antisymmetrisation over the first 9 indices of Fa,b1...b8,c so the dual gravity field

appears. From a technical viewpoint, this is because Ca1...a8,b has mixed indices. Note that,

in contrast to the field strength Fa,e1...e8,b defined in equation (2.16), the gauge invariance

of Hi,a1...a8,b from a three-dimensional point-of-view is very clear to see. This is because in

the reduced theory, the fields Cabc, Ca1,...a6 and Ca1...a8,b are scalars.
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4 Discussion

In this paper, we formulated a non-linear realisation of the E8 group and found that the dy-

namics includes a new field Ca1...a8,b with mixed Young tableaux indices with field strength

Fa,b1...b8,c. While the gauge-invariance properties of Fa,b1...b8,c are not clear, we show tanta-

lising links with dual gravity. Our difficulty in establishing the gauge-invariance of the field

strength is related to the difficulty in formulating a generalised geometry for E8 [38, 39].

In both cases, knowledge of the transformation of Ca1...a8,b under gauge transformations is

a requisite.

In reference [39], the authors were unable to write down a generalised Lie derivative,

even though they showed that the gauge structure leads to the correct counting of the

degrees of freedom. While, as in [39], we cannot determine the gauge transformations of

Ca1...a8,b, we unambiguously show that if the field strength is to be gauge-invariant, the

new field must transform under 3-form and 6-form gauge transformations. This result

establishes the possible dependence of the dual gravity field on the eleven-dimensional

matter fields, namely the 3-form gauge field and its dual and may provide a basis for evading

the no-go theorems of [56, 59]. In reference [59], it was shown that even a linearised dual

gravity formulation is not possible in the presence of matter unless covariance or locality

is abandoned.4 It is possible that Ca1...a8,b is dual to a particular component of the eleven-

dimensional metric, which is consistent with the reduced theory perspective. We leave a

precise description of such a possibility for future work.
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A E8 motion group from Cartan’s representation

In this appendix, we find the algebra of the E8 motion group, where the translation gen-

erators of the motion group form the 248-dimensional representation of E8. In particular,

the algebra of the E8 motion group decomposed to SL(8) is found.

The E8 [65] group is generated by

Mα
β , V

αβγ , Vαβγ , (A.1)

4We thank Axel Kleinschmidt for discussions on this point.
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where underlined Greek indices run from 1 to 9. In terms of these generators the E8 algebra

is as follows [65]:

[Mα
β ,M

γ
δ] = δ

γ

βM
α
δ − δ

α
δM

γ
β , (A.2)

[Mα
β , V

γ
1
...γ

3 ] = 3δ
[γ

1
β V γ

2
γ
3
]α − 1

3
δ
α
βV

γ
1
...γ

3 , (A.3)

[Mα
β , Vγ

1
...γ

3
] = −3δ

α
[γ

1

Vγ
2
γ
3
]β +

1

3
δ
α
βVγ1

...γ
3
, (A.4)

[V α1...α3 , Vβ
1
...β

3
] = 18δ

[α1α2

[β
1
β
2

Mα3]
β
3
], (A.5)

[V α1...α3 , V β
1
...β

3 ] = − 1

3!
εα1α2α3β1

β
2
β
3
γ
1
γ
2
γ
3Vγ

1
...γ

3
, (A.6)

[Vα1...α3
, Vβ

1
...β

3
] =

1

3!
εα1α2α3β1

β
2
β
3
γ
1
γ
2
γ
3
V γ

1
...γ

3 , (A.7)

where δ
α
β is the Kronecker delta symbol and εα1...α9

is the alternating tensor in nine dimen-

sions. Furthermore,

εα1...α9εβ
1
...β

9
= 9! δ

α1...α9
β
1
...β

9
.

The E8 algebra is expressed in terms of an SL(9) decomposition of E8. In this paper, we are

considering the action of the E8 duality group along eight dimensions. Hence we require

an SL(8) decomposition of the algebra. This is easily done by defining E8 generators in

SL(8) representations as follows

Kα
β =Mα

β + δαβ

8∑
γ=1

Mγ
γ , (A.8)

Rαβγ = V αβγ , (A.9)

Rαβγ = Vαβγ , (A.10)

Rα1...α6 = −1

4
εα1...α6βγVβγ9, (A.11)

Rα1...α6 =
1

4
εα1...α6βγV

βγ9, (A.12)

Rα1...α8,β =
1

2
εα1...α8Mβ

9, (A.13)

Rα1...α8,β =
1

2
εα1...α8M

9
β , (A.14)

where Greek indices are SL(8) indices. The alternating tensor in eight dimensions is induced

from the nine-dimensional one in the following way:

εα1...α8 = εα1...α89 and εα1...α8 = εα1...α89.

Using equations (A.2)–(A.7) and the above equations, we find the E8 algebra given in terms
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of an SL(8) decomposition. The commutation relations of the GL(8) generator are

[Kα
β ,K

γ
δ] = δγβK

α
δ − δαδK

γ
β , (A.15)

[Kα
β , R

γ1...γ3 ] = 3δ
[γ1
β R|α|γ2γ3], (A.16)

[Kα
β , Rγ1...γ3 ] = −3δα[γ1R|β|γ2γ3], (A.17)

[Kα
β , R

γ1...γ6 ] = 6δ
[γ1
β R|α|γ2...γ6], (A.18)

[Kα
β , Rγ1...γ6 ] = −6δα[γ1R|β|γ2...γ6], (A.19)

[Kα
β, R

γ1...γ8,δ] = 8δ
[γ1
β R|α|γ2...γ8],δ + δδβR

γ1...γ8,α, (A.20)

[Kα
β , Rγ1...γ8,δ] = −8δα[γ1R|β|γ2...γ8],δ − δαδ Rγ1...γ8,β . (A.21)

These are the expected commutation relations of the GL(8) generator Kα
β with the other

generators. The generator Kα
β has been shifted by

∑
γ M

γ
γ in such a way that its com-

mutation relations with the R generators do not contain any δαβ . Other choices can be

made, but this choice is more convenient and makes the non-linear realisation calculation

easier. Furthermore, with this choice the trace of Kα
β ,

K =
∑
γ

Kγ
γ ,

counts the index of the GL(8) representations

[K,Rα1...α3 ] = 3Rα1...α3 ,

[K,Rα1...α3 ] = −3Rα1...α3 ,

[K,Rα1...α6 ] = 6Rα1...α6 ,

[K,Rα1...α6 ] = −6Rα1...α6 ,

[K,Rα1...α8,β ] = 9Rα1...α8,β ,

[K,Rα1...α8,β ] = −9Rα1...α8,β .

The rest of the commutations relations in the SL(8) decomposition are

[Rα1...α3 , Rβ1...β3 ] = 2Rα1α2α3β1β2β3 , (A.22)

[Rα1...α3 , Rβ1...β6 ] = −3Rβ1...β6[α1α2,α3], (A.23)

[Rα1...α3 , Rβ1...β3 ] = 18δ[α1α2
[β1β2

Kα3]
β3] − 2δα1...α3

β1...β3
K, (A.24)

[Rα1...α3 , Rβ1...β6 ] = 60δα1...α3

[β1...β3
Rβ4...β6], (A.25)

[Rα1...α3 , Rβ1...β8,γ ] = 112
(
δα1...α3

[β1...β3
Rβ4...β8]γ − δα1α2α3

γ[β1β2
Rβ3...β8]

)
, (A.26)

[Rα1...α6 , Rβ1...β3 ] = −60δ
[α1...α3

β1...β3
Rα4...α6], (A.27)

[Rα1...α6 , Rβ1...β6 ] = −9(5!)δ
[α1...α5

[β1...β5
Kα6]

β6] + 5!δα1...α6
β1...β6

K, (A.28)

[Rα1...α6 , Rβ1...β8,γ ] =
2

3
7!
(
δα1α2...α6

γ[β1...β5
Rβ6...β8] − δα1...α6

[β1...β6
Rβ7β8]γ

)
, (A.29)

[Rα1...α8,β , Rγ1...γ3 ] = −112
(
δ[α1...α3
γ1...γ3 R

α4...α8]β − δβ[α1α2
γ1γ2γ3 R

α3...α8]
)
, (A.30)
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[Rα1...α8,β , Rγ1...γ6 ] = −2

3
7!
(
δβ[α1...α5
γ1γ2...γ6 R

α6...α8] − δ[α1...α6
γ1...γ6 R

α7α8]β
)
, (A.31)

[Rα1...α8,β , Rγ1...γ8,δ] =
8!

4
δα1...α8
γ1...γ8 K

β
δ, (A.32)

[Rα1...α3 , Rβ1...β3 ] = 2Rα1α2α3β1β2β3 , (A.33)

[Rα1...α3 , Rβ1...β6 ] = −3Rβ1...β6[α1α2,α3]. (A.34)

All other commutation relations vanish.

Since we are interested in the motion group of E8 with the translation generators in

the adjoint representation of E8, it is straightforward to find the algebra of the motion

group from the E8 algebra. Define translation generators

Pα
β , Z

αβγ
, Zαβγ .

Note that these are of the same form as E8 generators, (A.1), and they satisfy analogous

commutation relations with the E8 generators

[Mα
β , P

γ
δ] = δ

γ

βP
α
δ − δ

α
δ P

γ
β , (A.35)

[Mα
β, Z

γ
1
...γ

3 ] = 3δ
[γ

1
β Z

γ
2
γ
3
]α − 1

3
δ
α
βZ

γ
1
...γ

3 , (A.36)

[Mα
β, Zγ

1
...γ

3
] = −3δ

α
[γ

1

Zγ
2
γ
3
]β +

1

3
δ
α
βZγ

1
...γ

3
, (A.37)

[V α1...α3 , P β
γ ] = −3δ

[α1
γ Z

α2α3]β +
1

3
δ
β
γZ

α1...α3 , (A.38)

[V α1...α3 , Z
β
1
...β

3 ] = − 1

3!
εα1α2α3β1

β
2
β
3
γ
1
γ
2
γ
3Zγ

1
...γ

3
, (A.39)

[V α1...α3 , Zβ
1
...β

3
] = 18δ

[α1α2

[β
1
β
2

Pα3]
β
3
], (A.40)

[Vα1...α3
, P β

γ ] = 3δ
β

[α1
Zα2α3]γ

− 1

3
δ
β
γZα1...α3

, (A.41)

[Vα1...α3
, Z

β
1
...β

3 ] = −18δ
[β

1
β
2

[α1α2
P β

3
]
α3]
, (A.42)

[Vα1...α3
, Zβ

1
...β

3
] =

1

3!
εα1α2α3β1

β
2
β
3
γ
1
γ
2
γ
3
Z

γ
1
...γ

3 , (A.43)

We similarly decompose the translation generators into an SL(8) decomposition:

Pα = P 9
α, (A.44)

Zαβ = −Zαβ9
, (A.45)

Wαβγ = −Zαβγ , (A.46)

Wα
β = −Pα

β +
1

8
δαβ
∑
γ

P γ
γ , (A.47)

W = −3

8
P γ

γ , (A.48)

Zαβγ =
1

8
Z

αβγ
, (A.49)

Wαβ =
1

8
Zαβ9, (A.50)

Zα =
1

8
Pα

9. (A.51)
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Other normalisations can be chosen for the translation generators. However, the above

choice of normalisation for the generators is made in order to make contact with the

generators found when decomposing the l1 generators of E11 into GL(3)×E8 [14]

Pα, Zαβ , Zα1...α5 =
1

3!
εα1...α8Wα6...α8 ,

Zα1...α7,β =
1

7!
εα1...α8W β

α8 , Zα1...α8 =
1

8!
εα1...α8W,

Zα1...α8,βγδ = εα1...α8Zβγδ, Zα1...α8,β1...β6 =
1

2
εα1...α8εβ1...β8Wβ7β8

Zα1...α8,β1...β8,γ = εα1...α8εβ1...β8Zγ .

The generator Zα1...α7,β satisfies

Z [α1...α7,β] = 0

because Wα
β is traceless. The l1 representation of E11 is the highest weight representation

where the highest weight corresponds to the P1 translation generator. Recall that the roots

of an algebra correspond to the group generators, while the weights of a representation cor-

respond to the translation generators, which generate a particular representation. In [21],

the truncation of E11 � l1 to the SL(5), E6 and E7 motion groups was shown to lead to

correct duality-invariant dynamics.

The commutation relations of generators (A.44)–(A.51) with the E8 group generators

are found by inserting the SL(8) decomposition of the motion group generators into (A.35)–

(A.43). Here, we list the commutation relations that are required for the non-linear real-

isation of the E8 motion group. The commutation relations of the GL(8) generator with

the translations generators is

[Kα
β , Pγ ] = −δαγPβ − δαβPγ , (A.52)

[Kα
β , Z

γδ] = 2δ
[γ
β Z

|α|δ] − δαβZ
γδ, (A.53)

[Kα
β ,Wγδε] = −3δα[γWδε]β , (A.54)

[Kα
β ,W

γ
δ] = δγβW

α
δ − δαδW

γ
β , (A.55)

[Kα
β ,W ] = 0, (A.56)

[Kα
β , Z

γδε] = 3δ
[γ
β Z

δε]α, (A.57)

[Kα
β ,Wγδ] = −2δα[γW|β|δ] + δαβWγδ, (A.58)

[Kα
β , Z

γ ] = δγβZ
α + δαβZ

γ , (A.59)

These commutation relations are needed in order to find the dependence of the generalised

metric on the 8-dimensional metric. To find the dependence of the generalised metric on
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the 3-form and 6-form fields the following commutation relations are required

[Rα1...α3 , Pβ ] = 3δ
[α1

β Zα2α3], (A.60)

[Rα1...α3 , Zβγ ] =
1

3!
εα1...α3βγδ1...δ3Wδ1...δ3 , (A.61)

[Rα1...α3 ,Wβ1...β3 ] = 18δ
[α1α2

[β1β2
Wα3]

β3], (A.62)

[Rα1...α3 ,W β
γ ] = 24δ[α1

γ Zα2α3]β − 3δβγZ
α1...α3 , (A.63)

[Rα1...α3 ,W ] = Zα1...α3 , (A.64)

[Rα1...α3 , Zβ1...β3 ] = −1

2
εα1...α3β1...β3γδWγδ, (A.65)

[Rα1...α3 ,Wβγ ] = 6δ
[α1α2

βγ Zα3], (A.66)

[Rα1...α6 , Pβ ] =
1

4
εα1...α8Wα7α8β, (A.67)

[Rα1...α6 , Zβγ ] = εα1...α6[β|δW |γ]
δ − εα1...α6βγW, (A.68)

[Rα1...α6 ,Wβ1...β3 ] = 480δ
[α1...α3

[β1...β3
Zα4...α6], (A.69)

[Rα1...α6 ,W β
γ ] = 4εα1...α6βδWγδ −

1

2
δβγ ε

α1...α6δεWδε, (A.70)

[Rα1...α6 ,W ] = −1

2
εα1...α6βγWβγ , (A.71)

[Rα1...α6 , Zβ1...β3 ] =
3

2
εα1...α6[β1β2Zβ3]. (A.72)

Finally, as the generalised metric is found by conjugating the translation generators by the

E8 generators corresponding to the positive roots, we also need

[Rα1...α8,β , Pγ ] = −1

2
εα1...α8W β

γ −
3

2
δβγ ε

α1...α8W, (A.73)

[Rα1...α8,β , Zγδ] = −4εα1...α8Zβγδ, (A.74)

[Rα1...α8,β ,Wγ1...γ3 ] = 12εα1...α8δβ[γ1Wγ2γ3], (A.75)

[Rα1...α8,β ,W γ
δ] = 4δβδ ε

α1...α8Zγ − 1

2
δγδ ε

α1...α8Zβ , (A.76)

[Rα1...α8,β ,W ] =
3

2
εα1...α8Zβ . (A.77)

Some of the commutation relations involving the generators corresponding to negative roots

are listed below:

[Rα1...α3 , Z
βγ ] = 6δβγ[α1α2

Pα3], (A.78)

[Rα1...α3 ,Wβ1...β3 ] =
1

2
εα1...α3β1...β3γδZ

γδ, (A.79)

[Rα1...α3 ,W
β
γ ] = 3δβ[α1

Wα2α3]γ −
3

8
δβγWα1...α3 , (A.80)

[Rα1...α3 ,W ] =
1

8
Wα1...α3 , (A.81)

[Rα1...α3 , Z
β1...β3 ] =

9

4
δ
[β1β2

[α1α2
W β3]

α3] +
3

4
δβ1...β3
α1...α3

W, (A.82)
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[Rα1...α3 ,Wβγ ] = − 1

3!
εα1...α3βγδ1...δ3Z

δ1...δ3 , (A.83)

[Rα1...α3 , Z
β ] = 3δβ[α1

Wα2α3]. (A.84)

We take the translation generators to mutually-commute.

The normalisations of these generators are needed in the calculation of the generalised

metric using non-linear realisation. Denoting the Cartan involution of a generator X by

X∗, we can define an inner product on the representation space generated by the translation

generators [21]

(A,B∗) ∈ R,

where A and B are translation generators. The inner product is E8 invariant

([X,A], B∗) = −(A, [X,B∗]), (A.85)

where X is an E8 generator.

The Cartan involution interchanges negative and positive roots. Therefore,

K∗ α
β ∼ Kβ

α, R∗ α1...α3 ∼ Rα1...α3 , R∗ α1...α6 ∼ Rα1...α6 , R∗ α1...α8,β ∼ Rα1...α8,β .

We define

R∗ α1...α3 = −Rα1...α3 . (A.86)

The relative signs of the Cartan involution of the other generators is fixed by the above

relation and consistency with the E8 algebra. For example, the Cartan involution of equa-

tion (A.24)

[R∗ α1...α3 , R∗
β1...β3 ] = 18δ[α1α2

[β1β2
K∗ α3]

β3] − 2δα1...α3
β1...β3

K∗ ,

=⇒ [Rα1...α3 , R
β1...β3 ] = 18δ[α1α2

[β1β2
K∗ α3]

β3] − 2δα1...α3
β1...β3

K∗ ,

=⇒ −[Rβ1...β3 , Rα1...α3 ] = 18δ[α1α2
[β1β2

K∗ α3]
β3] − 2δα1...α3

β1...β3
K∗ ,

which from equation (A.24) gives that

K∗ α
β = −Kβ

α. (A.87)

Similarly, the Cartan involution of the rest of the generators are

R∗ α1...α6 = Rα1...α6 , (A.88)

R∗ α1...α8,β = −Rα1...α8,β . (A.89)

Now to find the normalisation of the generators, we first define

(Pα, P
∗β) = δβα. (A.90)

The normalisation of all other translation generators are now fixed. For example, consider

(Zαβ , Z∗
γδ) =

1

2
(Zαβ , Z∗

[γδ)δ
η
η],

=
1

2
(Zαβ ,−1

3
[Rγδη, P

∗ η])
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from the Cartan involution of equation (A.60). The E8 invariance of the inner prod-

uct, (A.85), allows us to write the inner product in terms of equation (A.78), hence giving

(Zαβ , Z∗
γδ) = 2δαβγδ .

Similarly, from equations (A.61)–(A.66) and equations (A.79)–(A.84), the inner product of

the rest of the translation generators is

(Wα1...α3 ,W
∗β1...β3) = 6δβ1...β3

α1...α3
, (A.91)

(Wα
β ,W

∗
γ
δ) = δαγ δ

δ
β − 1

8
δαβ δ

δ
γ , (A.92)

(W,W ∗) =
1

8
, (A.93)

(Zα1...α3 , Z∗
β1...β3) =

3

32
δα1...α3
β1...β3

, (A.94)

(Wαβ ,W
∗γδ) =

1

32
δγδαβ , (A.95)

(Zα, Z∗
β) =

1

64
δαβ . (A.96)

B The generalised vielbein

In this appendix we give the components of LA
B, which is related to the generalised vielbein

by equation (2.11). The components of LA
B, see figure 1, are

(L11)a b=δab , (B.1)

(L21)d1d2 b=− 1√
2
Cd1d2b, (B.2)

(L31)g1g2g3 b=−
√
3

2
√
2
δ
[g1
b Ug2g3] − 1

4
√
6
Xg1...g3

b, (B.3)

(L41)j1
j2

b=
1

24
Xu1u2j2

j1Cu1u2b+
1

2
Cuj1bU

uj2− 1

16
δj2j1Cu1u2bU

u1u2+
1

2
δj2b Yj1−

1

16
δj2j1Yb, (B.4)

(L51) b=
3

4
√
2
Yb −

1

4
√
2
Cu1u2bU

u1u2 , (B.5)

(L61)m1m2m3 b=−
√
3

2
√
2
Cb[m1m2

Ym3] +
1

16
√
6
Cu1u2bm1m2m3

Uu1u2

+
1

48
√
6
Xu1u2u3

bCu1u2u3m1m2m3
− 1

32
√
6
Cu1[m1m2

Cm3]u2u3
Xu1u2u3

b, (B.6)

(L71)q1q2 b=
3

4
√
2
δ
[u
b Uq1q2]Yu +

1

8
√
2
Xq1q2u

bYu − 1

4
√
2
Cu1u2bU

u1q1Uu2q2

+
1

24
√
2
Cu1u2u3

Xu1u2[q1
bU

q2]u3 +
1

960
√
2
Cu1u2u3

Xu1q1q2
tX

tu2u3
b, (B.7)

(L81)x b=−1

4
YxYb −

1

4
Cu1xbU

u1u2Yu2
+

1

8
Cu1u2bU

u1u2Yx − 1

48
Cxu1u2

Xu1u2u3
bYu3

+
1

192
Cxbu1...u4

Uu1u2Uu3u4 − 1

384
Xu1...u3

bU
u4u5Cu1...u5x

+
1

128
Cu1[t1t2Cx]u2u3

Xu1...u3
bU

t1t2 − 1

16(6!)
Cu1u2t1Cu3t2t3X

u1...u3
xX

t1...t3
b, (B.8)

(L22)d1d2
e1e2 =δe1e2d1d2

, (B.9)

(L32)g1g2g3 e1e2 =
1

2
√
3
V g1g2g3e1e2 , (B.10)

(L42)j1
j2 e1e2 =− 1

4
√
2
Xj2e1e2

j1 +
1√
2
Uj2[e1δ

e2]
j1

+
1

8
√
2
δj2j1U

e1e2 , (B.11)
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(L52) e1e2 =
1

4
Ue1e2 , (B.12)

(L62)m1m2m3

e1e2 =

√
3

2
Y[m1

δe1e2
m2m3]

− 1

24
√
3
V u1u2u3e1e2Cu1u2u3m1m2m3

+
1

8
√
3
Cu[m1m2

Xue1e2
m3], (B.13)

(L72)q1q2 e1e2 =−1

4
V q1q2e1e2uYu +

1

4
U [q1|e1U |q2]e2 − 1

8
Xe1e2[q1

uU
q2]u − 1

192
Xq1q2u

tX
e1e2t

u, (B.14)

(L82)x
e1e2 =− 1

2
√
2
Uu[e1Yuδ

e2]
x +

1

8
√
2
Xe1e2u

xYu − 1

4
√
2
Ue1e2Yx

+
1

96
√
2
V e1e2u1u2u3Uu4u5Cu1...u5x − 1

16
√
2
Ct[u1u2

Xte1e2
x]U

u1u2

+
1

960
√
2
Ctu1u2

Xu1u2u3
xX

e1e2t
u3

(B.15)

(L33)g1g2g3 h1h2h3
=g−1/2δg1g2g3h1h2h3

, (B.16)

(L43)j1
j2

h1h2h3
=−

√
3

2
g−1/2

(
Cj1[h1h2

δj2
h3]

− 1

8
δj2j1Ch1h2h3

)
, (B.17)

(L53) h1h2h3
=− 1

4
√
3
g−1/2Ch1h2h3

, (B.18)

(L63)m1m2m3 h1h2h3
=

1

12
g−1/2

(
Cm1m2m3h1h2h3

− Cm1m2m3
Ch1h2h3

+ 9C[m1m2|[|h1
Ch2h3|]|m3]

)
, (B.19)

(L73)q1q2 h1h2h3
=−

√
3

2
g−1/2

(
Y[h1

δq1q2
h2h3]

+ Cu[h1h2
Uu[q1δ

q2]
h3]

+
1

6
Ch1h2h3

Uq1q2

+
1

12
Xuq1q2

[h1
Ch2h3]u

)
, (B.20)

(L83)x h1h2h3
=

√
3

2
√
2
g−1/2

(
Cx[h1h2

Yh3] +
1

24
Uu1u2Ch1h2h3xu1u2

+
1

12
Ch1h2h3

Cxu1u2
Uu1u2

− 1

4
Cu1u2[h1

Ch2h3]xU
u1u2 − 1

2
Cxu1[h1

Ch2h3]u2
Uu1u2

+
1

48
Xu1u2u3

xCu1u2[h1
Ch2h3]u3

)
, (B.21)

(L44)j1
j2 k1

k2
=g−1/2

(
δj2k2

δk1

j1
− 1

8
δj2j1 δ

k1

k2

)
, (B.22)

(L54) k1
k2

=0, (B.23)

(L64)m1m2m3

k1
k2

=−
√

3

2
g−1/2

(
Ck2[m1m2

δk1

m3]
− 1

8
δk1

k2
Cm1m2m3

)
, (B.24)

(L74)q1q2 k1
k2

=
1√
2
g−1/2

(
Uk1[q1δ

q2]
k2

+
1

8
δk1

k2
Uq1q2 +

1

4
Xk1q1q2

k2

)
, (B.25)

(L84)x
k1

k2
=−1

2
g−1/2

(
Yk2

δk1
x − 1

8
δk1

k2
Yx − 3

2
δk1

[x
Cu1u2]k2

Uu1u2 +
3

16
δk1

k2
Cxu1u2

Uu1u2

+
1

12
Xk1u1u2

k2
Cxu1u2

)
, (B.26)

L55=g−1/2, (B.27)

(L65)m1m2m3
=− 1

4
√
3
g−1/2Cm1m2m3

, (B.28)

(L75)q1q2 =
1

4
g−1/2Uq1q2 , (B.29)

(L85)x=− 3

4
√
2
g−1/2

(
Yx − 1

6
Cxu1u2

Uu1u2

)
, (B.30)

(L66)m1m2m3

n1n2n3 =g−1/2δn1n2n3
m1m2m3

, (B.31)

(L76)q1q2 n1n2n3 =− 1

2
√
3
g−1/2V q1q2n1n2n3 , (B.32)

(L86)x
n1n2n3 =−

√
3

2
√
2
g−1/2

(
U [n1n2δ

n3]
x − 1

6
Xn1n2n3

x

)
, (B.33)

(L77)q1q2 r1r2 =g−1δq1q2r1r2
, (B.34)
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(L87)x r1r2 =− 1√
2
g−1Cxr1r2 , (B.35)

(L88)x
y=g−1δyx. (B.36)

All of the lowercase Latin letters denote SL(8) indices. In the above expressions g is the

determinant of the spatial metric,

V a1...a5 =
1

3!
εa1...a8Ca6...a8 , (B.37)

Xa1...a3
b = V a1...a5Ca4a5b, (B.38)

W a1a2 =
1

6!
εa1...a8Ca3...a8 , (B.39)

Yb =
1

8!
εa1...a8Ca1...a8,b. (B.40)

The ε tensor is the alternating tensor in eight dimensions.
Similarly, the components of the inverse generalised vielbein EA

B, see figure 2, are

(E11)a b = δab , (B.41)

(E21)d1d2 b =
1√
2
Cd1d2b, (B.42)

(E31)g1g2g3 b =

√
3

2
√
2
g1/2

(
δ
[g1
b Ug2g3] − 1

6
Xg1...g3

b

)
, (B.43)

(E41)j1
j2

b = − 1

24
g1/2

(
Xu1u2j2

j1Cu1u2b − 12Cuj1bU
uj2 − 6δj2b Cu1u2j1U

u1u2

+
9

4
δj2j1Cu1u2bU

u1u2 + 12δj2b Yj1 −
3

2
δj2j1Yb

)
, (B.44)

(E51) b = − 3

4
√
2
g1/2

(
Yb −

1

6
Cu1u2bU

u1u2

)
, (B.45)

(E61)m1m2m3 b = −
√
3

2
√
2
g1/2

(
Cb[m1m2

Ym3] −
1

24
Cu1u2bm1m2m3

Uu1u2

+
5

6
C[bu1u2

Cm1m2m3]U
u1u2

+
1

48
Cu1[m1m2

Cm3]u2u3
Xu1u2u3

b

)
, (B.46)

(E71)q1q2 b =
3

4
√
2
g

(
δ
[u
b U

q1q2]Yu − 1

6
Xq1q2u

bYu +
1

72
V q1q2u1u2u3Cbu1...u5

Uu4u5

+
1

12
Cu1[u2u3

Xu1q1q2
b]U

u2u3 − 1

720
Cu1u2u3

Xu1q1q2
tX

tu2u3

b

)
,

(B.47)

(E81)x b = −1

4
g

(
YxYb − Cu1xbU

u1u2Yu2
− 1

2
Cxu1u2

Uu1u2Yb

+
1

12
Cxu1u2

Xu1u2u3

bYu3
+

1

48
Cxbu1...u4

Uu1u2Uu3u4

+
1

96
Xu1...u3

xU
u4u5Cu1...u5b −

1

32
Cu1[t1t2Cb]u2u3

Xu1...u3

xU
t1t2

+
1

4(6!)
Cu1u2t1Cu3t2t3X

u1...u3

xX
t1...t3

b

)
, (B.48)

(E22)d1d2

e1e2 = δe1e2d1d2
, (B.49)
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(L21)d1d2 b (L22)d1d2
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(L31)g1...g3 b (L32)g1...g3 e1e2 (L33)g1...g3 h1...h3
0 0 0 0 0

(L41)j1
j2

b (L42)j1
j2 e1e2 (L43)j1

j2
h1...h3

(L44)j1
j2 k1

k2
0 0 0 0

(L51) b (L52) e1e2 (L53) h1...h3
(L54) k1

k2
L55 0 0 0

(L61)m1...m3 b (L62)m1...m3

e1e2 (L63)m1...m3 h1...h3
(L64)m1...m3
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k2
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(E32)g1g2g3 e1e2 = − 1

2
√
3
g1/2V g1g2g3e1e2 , (B.50)

(E42)j1
j2 e1e2 = − 1

4
√
2
g1/2

(
Xj2e1e2

j1 + 4U j2[e1δ
e2]
j1

+
1

2
δj2j1U

e1e2

)
, (B.51)

(E52) e1e2 = −1

4
g1/2Ue1e2 , (B.52)

(E62)m1m2m3

e1e2 = −
√
3

2
g1/2

(
Y[m1

δe1e2m2m3]
+ Cu[m1m2

Uu[e1δ
e2]
m3]

+
1

6
Cm1m2m3

Ue1e2 +
1

12
Cu[m1m2

Xue1e2
m3]

)
, (B.53)

(E72)q1q2 e1e2 = −1

4
g
(
V q1q2e1e2uYu − U [q1|e1U |q2]e2

+
1

2
Xq1q2[e1

uU
e2]u +

1

48
Xq1q2u

tX
e1e2t

u

)
, (B.54)

(E82)x
e1e2 = − 1

2
√
2
g

(
Uu[e1Yuδ

e2]
x +

1

4
Xe1e2u

xYu +
1

2
Ue1e2Yx

− 1

2
Cu1u2xU

e1u1Ue2u2 +
1

12
Cu1u2u3

Xu1u2[e1
xU

e2]u3

+
1

480
Ctu1u2

Xu1u2u3

xX
e1e2t

u3

)
, (B.55)

(E33)g1g2g3 h1h2h3
= g1/2δg1g2g3h1h2h3

, (B.56)

(E43)j1
j2

h1h2h3
=

√
3

2
g1/2

(
Cj1[h1h2

δj2h3]
− 1

8
δj2j1Ch1h2h3

)
, (B.57)

(E53) h1h2h3
=

1

4
√
3
g1/2Ch1h2h3

, (B.58)

(E63)m1m2m3 h1h2h3
= − 1

12
g1/2

(
Cm1m2m3h1h2h3

+ Cm1m2m3
Ch1h2h3

− 9C[m1m2|[|h1
Ch2h3|]|m3]

)
,

(B.59)

(E73)q1q2 h1h2h3
=

√
3

2
g

(
Y[h1

δq1q2h2h3]
− 1

36
V q1q2u1u2u3Cu1u2u3h1h2h3

+
1

12
Xuq1q2

[h1
Ch2h3]u

)
, (B.60)

(E83)x h1h2h3
=

√
3

2
√
2
g

(
Cx[h1h2

Yh3] +
1

24
Uu1u2Ch1h2h3xu1u2

− 1

72
Xu1u2u3

xCu1u2u3h1h2h3

+
1

48
Xu1u2u3

xCu1u2[h1
Ch2h3]u3

)
, (B.61)

(E44)j1
j2 k1

k2
= g1/2

(
δj2k2

δk1

j1
− 1

8
δj2j1 δ

k1

k2

)
, (B.62)

(E54) k1

k2
= 0, (B.63)

(E64)m1m2m3

k1

k2
=

√
3

2
g1/2

(
Ck2[m1m2

δk1

m3]
− 1

8
δk1

k2
Cm1m2m3

)
, (B.64)

(E74)q1q2 k1

k2
= − 1√

2
g

(
Uk1[q1δ

q2]
k2

+
1

8
δk1

k2
U q1q2 − 1

4
Xk1q1q2

k2

)
, (B.65)
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(E84)x
k1

k2
=

1

2
g

(
Yk2

δk1

x − 1

8
δk1

k2
Yx + Cxuk2

Uuk1 − 1

8
δk1

k2
Cxu1u2

Uu1u2

+
1

12
Xk1u1u2

k2
Cxu1u2

)
, (B.66)

E55 = g1/2, (B.67)

(E65)m1m2m3
=

1

4
√
3
g1/2Cm1m2m3

, (B.68)

(E75)q1q2 = −1

4
gU q1q2 , (B.69)

(E85)x =
3

4
√
2
g

(
Yx − 1

3
Cxu1u2

Uu1u2

)
, (B.70)

(E66)m1m2m3

n1n2n3 = g1/2δn1n2n3

m1m2m3
, (B.71)

(E76)q1q2 n1n2n3 =
1

2
√
3
gV q1q2n1n2n3 , (B.72)

(E86)x
n1n2n3 =

√
3

2
√
2
g

(
U [n1n2δn3]

x +
1

6
Xn1n2n3

x

)
, (B.73)

(E77)q1q2 r1r2 = gδq1q2r1r2 , (B.74)

(E87)x r1r2 =
1√
2
gCxr1r2 , (B.75)

(E88)x
y = gδyx. (B.76)

C Calculation of potential

The potential of the canonical formulation of eleven-dimensional supergravity is given by

V =
1

240
MMN∂MM

KL∂NMKL − 1

2
MMN∂NM

KL∂LMMK − 1

496
MKL∂MM

MN∂NMKL

+
23

15(248)2
MMN (MKL∂MMKL)(M

RS∂NMRS), (C.1)

where MAB is the generalised metric, (2.12), found from the non-realisation of the E8

motion group and MMN is its inverse. The indices run from 1 to 248 and represent

the adjoint representation of E8. In the decomposition of this representation by SL(8)

irreducible representations,

248 = 8⊕ 28⊕ 56⊕ 63⊕ 1⊕ 56⊕ 28⊕ 8,

we find the eight usual spatial directions along which the duality is acting along with

240 other directions that correspond to winding modes of branes. To produce a usual

supergravity description from the duality-invariant description, from now on we take all the

supergravity fields gab, Cabc, Ca1...a6 , Ca1...a8,b to be independent of the winding coordinates.

Lowercase Latin indices are spatial coordinates and run from 1 to 8.

The coefficients in equation (C.1) are fixed by requiring usual diffeomorphism invari-

ance. Equivalently, they are fixed by requiring that when the gauge fields are zero the
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(E11)a b 0 0 0 0 0 0 0

(E21)d1d2 b (E22)d1d2

e1e2 0 0 0 0 0 0

(E31)g1...g3 b (E32)g1...g3 e1e2 (E33)g1...g3 h1...h3
0 0 0 0 0

(E41)j1
j2

b (E42)j1
j2 e1e2 (E43)j1

j2
h1...h3

(E44)j1
j2 k1

k2
0 0 0 0

(E51) b (E52) e1e2 (E53) h1...h3
(E54) k1

k2
E55 0 0 0

(E61)m1...m3 b (E62)m1...m3

e1e2 (E63)m1...m3 h1...h3
(E64)m1...m3

k1
k2

(E65)m1...m3
(E66)m1...m3

n1...n3 0 0

(E71)q1q2 b (E72)q1q2 e1e2 (E73)q1q2 h1...h3
(E74)q1q2 k1

k2
(E75)q1q2 (E76)q1q2 n1...n3 (E77)q1q2 r1r2 0

(E81)x b (E82)x
e1e2 (E83)x h1...h3

(E84)x
k1

k2
(E85)x (E86)x

n1...n3 (E87)x r1r2 (E88)x
y
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potential reduces to the Ricci scalar of metric g. We now find what the potential is in

terms of the supergravity fields.

Since MAB is the matrix inverse of the generalised metric,

MAB = GCDEA
CE

B
D, (C.2)

where EA
B is the inverse of the generalised vielbein,

EA
BL

B
C = δAC = LA

BE
B
C

and

GAB = diag(gab, gd1d2,e1e2 , g
g1...g3,h1...h3 , gj1k1g

j2k2− 1

8
δj2j1δ

k2
k1
, 1, gm1...m3,n1...n3 , g

q1q2,r1r2 , gxy).

(C.3)

is the inverse of

GAB = diag(gab, g
d1d2,e1e2 , gg1...g3,h1...h3 , g

j1k1gj2k2−
1

8
δj1j2δ

k1
k2
, 1, gm1...m3,n1...n3 , gq1q2,r1r2 , g

xy).

(C.4)

Using the equation (2.12),

MAB = GCDEA
CE

B
D, (C.5)

and equation (C.2) it is easy to show that

MMN∂MM
KL∂NMKL = 4gab(∂aE

K
C)G

CELF
K(∂bGEF ) + 2gab(∂aE

K
C)(∂bL

C
K)

− 2gabGCDGFGL
F
KL

G
L(∂aE

K
C)(∂bE

L
D)

+ gab(∂aG
EF )(∂bGEF ) (C.6)

and

MMN∂NM
KL∂LMMK = −gabgcdGKLL

K
NL

L
M (∂bE

N
c)(∂dE

M
a) + gab(∂bg

cd)(∂dgac).

(C.7)

Furthermore,

MCD∂aMCD = −248 gcd∂agcd,

hence

MKL∂MM
MN∂NMKL = −248(∂ag

ab)(gcd∂bgcd) (C.8)

and

MMN (MKL∂MMKL)(M
RS∂NMRS) = (248)2gab(gcd∂agcd)(g

ef∂bgef ). (C.9)

A simple calculation using the components ofGAB andGAB, equations (C.3) and (C.4),

and the components of LA
B and EA

B given in appendix B shows that

gab(∂aE
K

C)G
CELF

K(∂bGEF ) = 6gab(gcd∂agcd)(g
ef∂bgef ), (C.10)

gab(∂aE
K

C)(∂bL
C
K) = −80gab(gcd∂agcd)(g

ef∂bgef ), (C.11)

gab(∂aG
EF )(∂bGEF ) = 60gab(∂ag

cd)(∂bgcd)− 12gab(gcd∂agcd)(g
ef∂bgef ). (C.12)
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In particular, note that these are independent of the form fields and only depend on the

metric g. This is because GAB and GAB only depend on gab. Moreover, GAB and GAB are

diagonal and L and E are lower triangular so

(∂aE
K

C)G
CFLE

K(∂bGEF ) and (∂aE
K

C)(∂bL
C
K)

only depend on the diagonal elements of L and E which are proportional to determinant

of gab.

To calculate

gabGCDGFGL
F
KL

G
L(∂aE

K
C)(∂bE

L
D) (C.13)

in equation (C.6) and

gabgcdGKLL
K

ML
L
N (∂bE

M
c)(∂dE

N
a) (C.14)

in equation (C.7), we note that the building block of both these terms is

Du
A
B = LA

C(∂uE
C
B). (C.15)

The components of D, see figure 3, are given at the end of this appendix.

The evaluation of the components of D requires use of identities such as

Ca1a2bV
bc1...c4 = 2X [c1c2c3

[a1δ
c4]
a2]
, (C.16)

where X is defined in equation (B.38). This identity is proved by using equation (B.37) to

write C as a Hodge dual of V in the expression above and V in terms of C. Then the two

epsilon tensors are contracted to give a Kronecker delta. Finally using

Ca1a2a3V
c1c2a1a2a3 =

1

3!
εc1c2a1a2a3b1b2b3C[a1a2a3Cb1b2b3] = 0,

we find the relation given above, equation (C.16). Other useful identities are

g−1/2Ca1a2a3∂u

(
g1/2V c1c2a1a2a3

)
= −V c1c2b1b2b3∂uCb1b2b3 , (C.17)

g−1/2Cabc1...a4∂u

(
g1/2Uab

)
= Uab∂uCabc1...c4 , (C.18)

g−1/2Ca1a2b∂u

(
g1/2V c1c2c3a1a2

)
= V c1c2c3u1u2∂uCu1u2b − V u1u2u3[c1c2δ

c3]
b ∂uCu1u2u3 .

(C.19)

Note that g1/2εa1...a8 is the alternating symbol

ηa1...a8 =

⎧⎪⎪⎨
⎪⎪⎩
1 for (a1 . . . a8) = positive permutations of (12345678)

−1 for (a1 . . . a8) = negative permutations of (12345678)

0 otherwise

,

hence

∂u

(
g1/2εa1...a8

)
= 0.
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Furthermore, our convention for the contraction of two epsilon tensors is

εa1...aibi+1...b8εc1...cibi+1...b8 = i!(8− i)!δa1...aic1...ci .

As an example, consider the evaluation of D31,

(D31)u
g1g2g3

b = (L31)g1g2g3c∂u(E11)cb + (L32)g1g2g3f1f2∂u(E21)f1f2b

+ (L33)g1g2g3 i1i2i3∂u(E31)i1i2i3b.

Note that since L is lower triangular there are only three terms contributing to D31. The

components of L and E can be read from appendix B and inserted into the expression

above5

(D31)u
g1g2g3

b =
1

2
√
6
V g1g2g3f1f2∂uCf1f2b +

√
3

2
√
2
g−1/2∂u

(
g1/2δ

[g1
b Ug2g3] − 1

6
g1/2Xg1...g3

b

)

=
1

2
√
6
V g1g2g3f1f2∂uCf1f2b +

√
3

2
√
2
g−1/2∂u

(
g1/2δ

[g1
b Ug2g3]

)
− 1

4
√
6
g−1/2Cf1f2b∂u

(
g1/2V g1...g3f1f2

)
− 1

4
√
6
V g1...g3f1f2∂uCf1f2b,

where we have used the definition of X given in equation (B.38). Now, upon using iden-

tity (C.19), this reduces to

(D31)u
g1g2g3

b =

√
3

2
√
2
g−1/2∂u

(
g1/2δ

[g1
b Ug2g3]

)
+

1

4
√
6
V t1t2t3[g1g2δ

g3]
b ∂uCt1t2t3 .

With the exception ofD61, D71, D81 andD72, the other components can be simply derived

using identities (C.16)–(C.19).

Showing that D61, D71, D81 and D72, vanish is not straightforward and involves the

repeated use of identities (C.16)–(C.19). Expanding the D61 component we find thirteen

terms of the form

C(6)V ∂C(3), C(6)C(3)∂V, UC(3)∂C(3), C(3)C(3)V ∂C(3) and C(3)C(3)C(3)∂V,

where C(3) and C(6) denote the 3 and 6-form, respectively. Expressing C(6)V ∂C(3) and

C(6)C(3)∂V as terms of the form UC(3)∂C(3), it is easy to see that terms involving the

6-form cancel among each other. Further, writing terms of the form C(3)C(3)V ∂C(3)

and C(3)C(3)C(3)∂V as the epsilon tensor multiplied by terms of the form C(3)V V ∂C(3)

we find that

(D61)u m1m2m3 b = − 7

16(5!)
√
6
εc1...c5m1m2m3Ca1a2bV

[c1...c5V d1d2d3a1]a2∂uCd1d2d3 .

This vanishes because an antisymmetrisation over nine indices in eight dimensions is zero.

Similarly, D71, D81 and D72, also vanish upon repeated use of identities (C.16)–(C.19).

5This can either be done by hand or using the computer algebra software Cadabra [66].
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Given the components of D it is now straightforward to evaluate expressions (C.13)

and (C.14). In terms of the supergravity fields these terms are

gabGCDGFGL
F
KL

G
L(∂aE

K
C)(∂bE

L
D) (C.20)

= gabGCDGFGDa
F
CDb

G
D

= 80gab(gcd∂agcd)(g
ef∂bgef ) + 10gabgc1c2c3,d1d2d3(∂aCc1...c3)(∂bCd1...d3)

+
1

48
gabgc1...c6,d1...d6(∂aCc1...c6 − 20Cc1c2c3∂aCc4c5c6)(∂bCd1...d6 − 20Cd1d2d3∂bCd4d5d6)

+
15

8!
gabgcdge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d, (C.21)

where

Fa,e1...e8,b = ∂aCe1...e8,b − 28C[e1...e6|∂aC|e7e8]b −
560

3
Cb[e1e2Ce3e4e5|∂aC|e6e7e8]. (C.22)

Similarly,

gabgcdGKLL
K

ML
L
N (∂bE

M
c)(∂dE

N
a)

= gabgcdGKLDb
K

cDd
L
a

=
1

2
gad1gc1c2c3,bd2d3(∂aCc1...c3)(∂bCd1...d3)−

2

8!
ga1...a7,b1...b7F (7)

a1...a7F
(7)
b1...b7

+
1

4(6!)
gabgc1...c6,d1...d6(∂aCc1...c6 − 20Cc1c2c3∂aCc4c5c6)(∂bCd1...d6 − 20Cd1d2d3∂bCd4d5d6)

+
1

4(8!)
gabgcdge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d+

1

4(8!)
gadgbcge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d,

(C.23)

where Fa,e1...e8,b is as in equation (C.22) and

F (7)
a1...a7 = 7

(
∂[a1Ca2...a7] + 20C[a1a2a3∂a4Ca5a6a7]

)
. (C.24)

Therefore, using equations (C.6), (C.10)–(C.12) and (C.21),

MMN∂MM
KL∂NMKL

= 60gab∂ag
cd∂bgcd − 308gab(gcd∂agcd)(g

ef∂bgef )− 20gabgc1c2c3,d1d2d3(∂aCc1...c3)(∂bCd1...d3)

− 1

24
gabgc1...c6,d1...d6(∂aCc1...c6 − 20Cc1c2c3∂aCc4c5c6)(∂bCd1...d6 − 20Cd1d2d3∂bCd4d5d6)

− 30

8!
gabgcdge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d, (C.25)

and from equations (C.7) and (C.23)

MMN∂NM
KL∂LMMK

= gab(∂bg
cd)(∂dgac)−

1

2
gad1gc1c2c3,bd2d3(∂aCc1...c3)(∂bCd1...d3)+

2

8!
ga1...a7,b1...b7F (7)

a1...a7F
(7)
b1...b7

− 1

4(6!)
gabgc1...c6,d1...d6(∂aCc1...c6 − 20Cc1c2c3∂aCc4c5c6)(∂bCd1...d6 − 20Cd1d2d3∂bCd4d5d6)

− 1

4(8!)
gabgcdge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d−

1

4(8!)
gadgbcge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d.

(C.26)
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Finally, putting together equations (C.8), (C.9), (C.25), (C.26), in terms of the super-

gravity fields the potential, (C.1), is

V =
1

4
gab∂ag

cd∂bgcd −
1

2
gab∂bg

cd∂dgac +
1

2
(∂ag

ab)(gcd∂bgcd) +
1

4
gab(gcd∂agcd)(g

ef∂bgef )

− 1

12
gabgc1c2c3,d1d2d3∂aCc1c2c3 (∂bCd1d2d3 − 3∂d1Cbd2d3)−

1

8!
ga1...a7,b1...b7F (7)

a1...a7F
(7)
b1...b7

+
1

8(8!)
gadgbcge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d. (C.27)

The first term is the Ricci scalar of metric g, up to integration by parts. This expected

because the coefficients of the terms in V, equation (C.1), were fixed so that the Ricci scalar

would be recovered when all other fields are zero. However, the potential also gives the

dynamics of the other fields as well. Defining

F (4)
a1...a4 = 4∂[a1Ca2a3a4],

V = R(g)− 1

48
ga1...a4,b1...b4F (4)

a1...a4F
(4)
b1...b4

− 1

8!
ga1...a7,b1...b7F (7)

a1...a7F
(7)
b1...b7

+
1

8(8!)
gadgbcge1...e8,f1...f8Fa,e1...e8,cFb,f1...f8,d.

(C.28)

C.1 Components of Du
A

B

The components of

Du
A

B = LA
C∂uE

C
B

are given below:

(D11)u
a

b = 0, (C.29)

(D21)u d1d2 b =
1√
2
∂uCd1d2b, (C.30)

(D31)u
g1g2g3

b =

√
3

2
√
2
g−1/2∂u

(
g1/2δ

[g1
b Ug2g3]

)
+

1

4
√
6
V t1t2t3[g1g2δ

g3]
b ∂uCt1t2t3 , (C.31)

(D41)u j1
j2

b =− 1

2
δj2b

(
g−1/2∂u(g

1/2Yj1)−
1

2
U t1t2∂uCj1t1t2 +

1

36
Xt1t2t3

j1∂uCt1t2t3

)

+
1

16
δj2j1

(
g−1/2∂u(g

1/2Yb)−
1

2
U t1t2∂uCbt1t2 +

1

36
Xt1t2t3

b∂uCt1t2t3

)
,

(C.32)

(D51)u b = − 3

4
√
2

(
g−1/2∂u(g

1/2Yb)−
1

2
U t1t2∂uCbt1t2 +

1

36
Xt1t2t3

b∂uCt1t2t3

)
,

(C.33)

(D61)u m1m2m3 b = 0, (C.34)

(D71)u
q1q2

b = 0, (C.35)

(D81)u x b = 0, (C.36)

(D22)u d1d2

e1e2 = 0, (C.37)

(D32)u
g1g2g3 e1e2 = − 1

2
√
3
g−1/2∂u

(
g1/2V g1g2g3e1e2

)
, (C.38)
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(D11)u a
b 0 0 0 0 0 0 0

(D21)u d1d2 b (D22)u d1d2
e1e2 0 0 0 0 0 0

(D31)u g1...g3
b (D32)u g1...g3 e1e2 (D33)u g1...g3

h1...h3
0 0 0 0 0

(D41)u j1
j2

b (D42)u j1
j2 e1e2 (D43)u j1

j2
h1...h3

(D44)u j1
j2 k1

k2
0 0 0 0

(D51)u b (D52)u e1e2 (D53)u h1...h3
(D54)u k1

k2
D55 0 0 0

(D61)u m1...m3 b (D62)u m1...m3

e1e2 (D63)u m1...m3 h1...h3
(D43)u k2

k1 m1...m3
(D53)u m1...m3

(D66)u m1...m3

n1...n3 0 0

(D71)u q1q2
b (D72)u q1q2 e1e2 −(D62)u h1...h3

q1q2 (D42)u k2

k1 q1q2 (D52)u q1q2 −(D32)u n1...n3 q1q2 (D77)u q1q2 r1r2 0

(D81)u x b (D71)u e1e2 x (D61)u h1...h3 x −(D41)u k2
k1 x −(D51)u x (D31)u n1...n3 x (D21)u r1r2 x (D88)u x

y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T
a
b
le

3
.
C
om

p
on

en
ts

of
D

u
A
B
=
L
A
C
(∂

u
E

C
B
).

–
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(D42)u j1
j2 e1e2 =

1√
2
δ
[e2
j1

(
g−1/2∂u(g

1/2Ue1]j2) +
1

6
V e1]j2t1t2t3∂uCt1t2t3

)

− 1

8
√
2
δj2j1

(
g−1/2∂u(g

1/2Ue1e2)− 1

6
V t1t2t3e1e2∂uCt1t2t3

)
, (C.39)

(D52)u
e1e2 = − 1

24
V e1e2t1t2t3∂uCt1t2t3 −

1

4
g−1/2∂u

(
g1/2Ue1e2

)
, (C.40)

(D62)u m1m2m3

e1e2 = −
√
3

2
δe1e2[m1m2|

(
g−1/2∂u(g

1/2Y|m3])−
1

2
U t1t2∂uC|m3]t1t2

+
1

36
Xt1t2t3

|m3]∂uCt1t2t3

)
, (C.41)

(D72)u
q1q2 e1e2 = 0, (C.42)

(D33)u
g1g2g3

h1h2h3
=

1

2
δg1g2g3h1h2h3

(g−1∂ug), (C.43)

(D43)u j1
j2

h1h2h3
=

√
3

2

(
∂uCj1[h1h2

δj2h3]
− 1

8
δj2j1∂uCh1h2h3

)
, (C.44)

(D53)u h1h2h3
=

1

4
√
3
∂uCh1h2h3

, (C.45)

(D63)u m1m2m3 h1h2h3
= − 1

12
∂uCm1m2m3h1h2h3

+
5

3
C[m1m2m3|∂uC|h1h2h3], (C.46)

(D44)u j1
j2 k1

k2
=

1

2

(
δj2k2

δk1

j1
− 1

8
δj2j1 δ

k1

k2

)
(g−1∂ug), (C.47)

(D54)u
k1

k2
= 0, (C.48)

D55 =
1

2
(g−1∂ug), (C.49)

(D66)u m1m2m3

n1n2n3 =
1

2
δn1n2n3

m1m2m3
(g−1∂ug), (C.50)

(D77)u
q1q2

r1r2 = δq1q2r1r2 (g
−1∂ug), (C.51)

(D88)u x
y = δyx(g

−1∂ug). (C.52)
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[64] E. Cremmer, B. Julia, H. Lü and C. Pope, Dualization of dualities. 2. Twisted selfduality of

doubled fields and superdualities, Nucl. Phys. B 535 (1998) 242 [hep-th/9806106] [INSPIRE].
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