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1 Introduction

The toroidal compactification of eleven-dimensional supergravity [1] to various dimensions
leads to hidden symmetries [2-6], which have influenced many important developments.
Arguably, they have played an integral part in the set of ideas leading to U-dualities and the
conjecture of M-theory [7, 8]. Furthermore, they continue to provide insights into a wide-
range of problems associated with string/M-theory. However, the role of these symmetries
in the full eleven-dimensional theory remains unclear. While these symmetries only appear
upon reduction, early seminal work [9, 10] found evidence that these symmetries are not
merely artifacts of the reduction. They showed that eleven-dimensional supergravity can
be reformulated in a way that makes the local symmetries associated with the global
exceptional symmetries F7 and Ejg, respectively, manifest. Moreover, they were able to
assemble some bosonic degrees of freedom into representations of the global symmetry
groups. While eleven-dimensional supergravity does not admit the global symmetries,
these work hint at structures in eleven dimensions that naturally encompass the duality
structure that appears under reduction. Such a framework would provide a more direct
understanding of these duality symmetries from an eleven dimensional perspective and
possibly shed light on M-theory.

More recent attempts in trying to understand these duality symmetries have centred
on generalised geometry [11-16] and related ideas of exceptional geometry [17, 18]. These
ideas are based on the extension of the tangent space of a geometry to include p-form
bundles, and in some cases, also an extension of the base space to include dependence on
new coordinates that are seen as windings of branes. The extension of the space geometry



to include windings associated to the branes leads to the unification of gravity and the
fields sourced by the branes in a single description [19-21]. In this approach, the dynamics
of fields along the internal directions are formulated in terms of a generalised metric that is
found from membrane duality arguments [22] or constructed from the duality coset. Thus
rendering the description duality-manifest.

In the context of string theory, similar considerations have been made with respect to
the T-duality group. In the double field theory [23-26] approach to closed string theory,
motivated by string field theory, all fields are taken to depend on dual (winding) coordinates
as well as spacetime coordinates. This naturally leads to a generalised geometric structure
in which the extended diffeomorphism contains both spacetime diffeomorphism and the
gauge symmetry of the NS-NS 2-form. The generalised diffeomorphism algebra closes on
the assumption that generalised fields satisfy a differential constraint, known as the section
condition, that reduces their dependence to a subset of coordinates. From a physical point
of view, the section condition is the level matching condition in string theory. While this
geometry does not admit some familiar notions of differential geometry, such as the usual
concept of a connection, it does possess a structure [26-32] that in particular contains
analogues of the Ricci tensor and scalar — the equation of motion and Lagrangian of
the low-energy effective description of closed string theory. The generalised geometric
descriptions of heterotic [33, 34] and type II theories [32, 35, 36] also exist.

The generalised geometries associated with the M-theory dualities admit similar, but
richer structures given the existence of higher rank p-forms sourced by various branes [15].
As with double field theory, the generalised geometries in this context also contain notions
of a generalised diffeomorphism algebra that unifies spacetime diffeomorphims and gauge
symmetries and closes on a section condition [37-39], as well as other structures [40-43].

In [21], the SL(5), SO(5,5) Es, and E7 duality groups were considered and the dynam-
ics of the corresponding internal fields were described by a non-linear realisation [44-47] of
the respective groups seen as subgroups of F1. The focus of this paper is the non-linear re-
alisation of Eg. This is the duality group of maximally supersymmetric three-dimensional
supergravity [48] that appears upon the toroidal reduction of eleven-dimensional super-
gravity [49].

As eluded to earlier, a reformulation of eleven-dimensional supergravity with respect
to the Eg duality group was first considered by Nicolai in [10] and elaborated on further
in [17]. In particular, in [17], the authors provide evidence for a ‘generalised vielbein’
in the 248 ® 248 of Fg and the unification of spacetime and gauge symmetries in the
internal directions. The study of supersymmetry transformations and the treatment of the
3-form potential as an independent field is central to their argument and what emerges
is a structure that can be viewed as belonging to the Eg tensor product representation
36 ® 248. From the perspective of this work, the failure of a generalisation of this structure
to a 248 ® 248 object there is due to the absence of dualisation of relevant fields. Therefore,
to understand the significance of duality symmetries in the eleven-dimensional theory, it
is necessary to have in mind a ‘democratic formulation’ in which the supergravity fields
are supplemented by their duals, i.e. the 6-form and the dual gravity field [6]. This is not
so surprising when viewed from the perspective of the reduced theory and the necessity of



dualisations for the appearance of symmetries. Furthermore, dualisation is necessary in the
local SU(8) [9] and SO(16) [10] invariant reformulations of eleven-dimensional supergravity.

Whereas the dualisation of form-fields is well-understood, the dualisation of the metric
field is more intricate. The interpretation of the curvature tensor as a 2-form field strength
of the metric field allows for a natural generalisation of dualisation in this context [50-54].
In the linearised theory, this leads to actions for gauge fields in exotic representations of
the Lorentz group first considered by Curtright [55]. It has been argued [56] that the
extension of such an idea to the non-linear theory is not possible in a local and covariant
manner, in general. Although, the existence of isometries is one way to circumvent this [53].
In such a setting, the dual gravity field is the dual of the graviphoton gauge field. The
relevance of a dual gravity formulation in the context of M-theory dualities [57, 58], in
particular the E7; proposal, has been of much recent interest [59-63]. In these papers the
possibility of introducing dual gravity fields transforming under the gauge symmetries of
the matter fields of eleven-dimensional supergravity has been investigated. In particular,
in [62] the dependence of the dual gravity field on the 3-form gauge field and its dual has
been predicted from Fiq.

The Fg duality group is particularly interesting from the point of view that the po-
tential of the dual gravity field is expected to appear in the generalised metric for the first
time.! As has been observed in [38, 39], the presence of dual gravity poses difficulties for
the formulation of an Fg generalised geometry.

The goal of this paper is to construct the non-linear realisation of the Eg group and
compare it with what one would expect from the bosonic sector of eleven-dimensional
supergravity. In section 2, we begin by constructing the non-linear realisation of the Ejg
motion group. The main steps in this construction are as follows.

e We ascertain the Eg motion group, which is the semi-direct product of the Eg group
with that of its adjoint representation. The adjoint representation can be thought of
as being generated by translations. This is analogous to the definition of the Poincaré
group as the the semi-direct product of the Lorentz group with that of its vector
representation, the elements of which are viewed as translation generators. The Ejg
motion group is given in terms of an SL(8) decomposition of the Fg algebra and its
adjoint representation. This is because from an eleven-dimensional perspective, the
Fs duality group appears in the reduction to three dimensions on an 8-torus. Thus,
we would like the duality group to act on the eight spatial directions that would be
associated with the torus under the reduction.

e We construct the generalised Fg vielbein by conjugating the Maurer-Cartan form of
an element of the adjoint representation with an element of the Eg group. This is
equivalent to calculating the Maurer-Cartan form of an element of the motion group
and reading off the part that appears as a coefficient of the translation generators.
Given its transformation properties, this object defines a vielbein.

"Winding coordinates that can be interpreted as those of a Kaluza-Klein monopole do appear in the F7
algebra, but the potential associated with these coordinates does not appear in the generalised metric.



e We formulate the Fg invariant dynamics for the eight-dimensional space in a canonical
approach. In such a description, the dynamics is given by a potential and a kinetic
term. The strategy in this construction is to write down all Fg invariant terms
constructed from the generalised metric and fix their coefficients by requiring that
the expression reduces to what one would expect for the gravitational sector. Once
the coefficients are fixed the full expression with all fields turned on can be computed
with the assumption that fields do not depend on the generalised coordinates.

The potential term that is obtained includes an Einstein-Hilbert term, which appears
by construction; gauge-invariant field strengths of a 3-form (Cyp.) and a 6-form (Cy, .. 44)
potential and a term involving a potential with a mixed symmetric Young tableau diagram

Cal...ag,b = C[al...ag],b'

Except for the term involving C,, 44, the potential is the same as that obtained in the
E7 non-linear realisation [21]:

1 b 1 1 by 7
V= Rig)— Lguahebeg® B0, - Lgnnnongm g0
1
+ 8(8!)gadgbcgelmes’fl.”st‘L@l-..6s7bFC7f1~~~f87d7
(1.1)
where R(g) is the Ricci scalar of metric g and
chil.)..azl - 4a[a1 Ca2a3a4]a (12)
th17-)--a7 =7 ((9[a10a2__a7] + 200[,11&2(13@@40&5&6&7]) , (1.3)
560
Fa,e1---68,b = aacel---e&b - 280[61---€6|aacle7eg}b - 7017[61820636465‘00«0‘668768}‘ (1'4)
The antisymmetrisation over inverse metrics is defined as follows
1
g anbebn — — <g“1b1 ...g*" 4 (remaining even permutations of ay, ..., ay,)
n!
— (odd permutations of aq, ..., an)> .
(1.5)

From an eleven-dimensional perspective the field strength F(7) is the Hodge dual of F(*,
while the interpretation of Fj,p, 4. is unclear. Although the structure of the potential
Ca,..as,p Suggests a relation to the dual gravity field.

To establish such a relation, in section 3, we dimensionally reduce the bosonic action
of eleven-dimensional supergravity to three dimensions. The reduced theory is known to
exhibit Fg global symmetry. Indeed upon dualising the one-forms, the scalars of the theory
parametrise the coset Eg/SO(16) and their action is written in terms of the generalised met-
ric. Whereupon, we identify the 6-form potential as the dual of the 3-form. Furthermore,
the potential Cy, . 44 is the dual of the graviphoton with field strength

Hiay..asp = 0iCay...a50 — 28C1a;..a619iClazas]h — ?Cb[alag Cuzasas|%Clagaras]
in the three-dimensional theory.

We discuss the possible implications of these results at the end of the paper.

— 4 —



2 Non-linear realisation of Eg

In this section, we construct the non-linear realisation of the Fg motion group.? The
dynamics obtained from this construction can then be compared with eleven-dimensional
supergravity. Due to the many technicalities and long calculations involved in obtaining
this result much of the details concerning the calculations have been explained in the
appendices for ease of reading.

As emphasised before, the key ingredient in the construction of the Eg invariant dy-
namics is the Fg generalised metric, which is constructed using a non-linear realisation of
the Fg motion group. In [21], the non-linear realisation method was used to calculate the
generalised metrics relevant for the SL(5), SO(5,5), Es and E7 duality groups. In that
paper, the duality groups were regarded as subgroups of E1; and the generalised metrics
were found by performing a non-linear realisation of E7; X [; decomposed to the appropri-
ate duality subgroup. As was stressed in that paper the only difference in carrying out the
non-linear realisation of Fp; truncated to the aforementioned mentioned duality groups as
opposed to doing the non-linear realisation of the duality group itself is an overall factor
of the determinant of the spatial metric to some power multiplying the generalised metric.
The approach that we will take in this paper is to calculate the non-linear realisation of
the Fg duality group. We comment on the overall factor of the generalised metric later in
this section.

The first step in constructing the non-linear realisation is to find the Fg motion group,
which is done in appendix A. In order to do this, first the Eg algebra, which is usually
written in terms of an SL(9) decomposition of Eg, needs to be rewritten in terms of an
SL(8) decomposition. This is because in the 8+3 splitting of the eleven-dimensional theory
that we are considering here, the Eg duality group acts only on the eight spatial directions.
In an SL(9) representation, the Eg algebra is given by the following three generators

M9, VY Vg, (2.1)

where the underlined Greek indices are SL(9) indices that run from 1 to 9. An SL(8)
decomposition of these generators is simply of the form

M%g, M%), M%, VPV VPO V. o Vs, (2.2)

where lowercase Greek indices run from 1 to 8. The above objects and the alternating tensor
€ay .05 10 eight dimensions can then be used to define the generators of the particular SL(8)
decomposition of the Eg algebra used here

Ka,@v Raﬁ'y’ Raﬂ'ya R(Xl...aﬁ’ Ral...aea Rog...ag,ﬁ’ Ra1...o¢g,,3- (23)

The precise relation between these generators and those listed above is given in appendix A.
Note that as emphasised there, the definition of these generators is one particular choice
out of many possibilities and has been made with the efficient calculation of the non-linear

2See appendix A for a review of the Fg algebra.



realisation in mind. Now the Fg algebra reduces to a set of commutation relations involving
the generators listed in (2.3) (see equations (A.15)—(A.34) in appendix A).

Given the SL(8) decomposition of the Eg group, the next step is to define the trans-
lation generators. Consider the 248-dimensional fundamental (and adjoint) representation
of Eg given by generators

%, 7% Zap, (2.4)

which are of the same form as the Eg generators. The SL(8) decomposition of the trace-free
generator P94 gives the following generators

Pa, W, W, Z°, (2.5)

where W€ is trace-free. A simple counting confirms that these generators have the same
—afy

degrees of freedom as P%5. Similarly, the totally antisymmetric generators Z=— and Z 3+
are rewritten in terms of SL(8) indices as

A (2.6)

and
Wasy, Wag, (2.7)

respectively. The precise definition of the above generators is given in equations (A.44)—
(A.51) in appendix A. In addition, the necessary commutation relations and inner products
involving the translation generators are given in appendix A.

The Fg non-linear realisation is constructed using the motion group element

9 = 919F,

where

e

1 1
:ehaBKaﬁeﬁcal...agRal 3 Cal.”aGRal a6€§

oBl 5Ra1“‘a8’ﬁ

aj...ag,

9E
is an Eg group element. This group element has been gauge-fixed so that it mostly contains
generators corresponding to negative roots, i.e. generators of the Borel subalgebra. The
only exception being the K“g which contains generators corresponding to both positive
and negative roots as well as Cartan subalgebra generators. This group element introduces
the fields
hoéﬁ? Ca1-~~0437 Cal--~a67 COél---Oégﬁ'

The group element

1 af 1 ,,aBy 2 aBy
gl — em"‘Pae\@yaBZ e\/gw Waﬁ’yewaﬁwa@eQ\/ﬁwwezl\/;ZaB'yZ 64\/§w°‘ﬂWa568zaZa

is generated by the translation generators. The coefficient of each exponent in the group
element has been chosen based on the normalisation of the translation generator, given in
appendix A, so that the flat metric takes the canonical form

ds® =0ap dz®da” + %P1 dyagdyys + Gapy,sec dw™ dw’® + 5365 dw®gdws

+ dwdw + 62970 dzo gy d2sec + Sapqs dw™Pdw?® + 6% dzadzg,



where

1
§or--an,f1.fn _ - <5O‘151 e (remaining even permutations of aq, ..., ay)
n!

— (odd permutations of oy, ..., an)) ) (2.8)
The generalised vielbein is given by conjugating the Maurer-Cartan form of g; by gg
Pal 4dZ% = g5 (9; ' dgr) g (2.9)

In this paper uppercase Greek letters denote generalised tangent space indices, while up-
percase Latin indices denote generalised coordinate indices.?
Using Hadamard’s Lemma
o0
eXYe X =3 L(ad"X)Y,

n=0
where

(adX)Y = [X,Y],

and the commutation relations between K%g and the translation generators, equa-
tions (A.52)~(A.77), we find L4, the generalised vielbein. This is a 8x8 block, lower
triangular matrix that is sextic in Uy, ...a4, cubic in Cy, ..o and quadratic in Cy, . o4 3. The
generalised metric is given by

Myp = dus LM AL 5.
However, for calculating the action, it is much easier to use the following rewriting of the
generalised metric

Mag = GepL©ALP s, (2.10)
where

!

didz,e1ez jiki . J1 sk mi..ms,ni..n3 Ty
7gg1...gg,h1...h37 g g]zk)z 8532 5k27 17 g 7gq1q2,7“17‘27.g )

Gap = diag(ga: 9
The index
A = (a,did, g1-..93,51J2, D, m1 ...M3,q1q2, T)

and similarly
B = (b, erea, hi...hg, kiko, I, ny ... 03,7172, y),

where @ denotes the fact that the corresponding object has no index. Furthermore,

LAp = eg L, (2.11)
where
e’ =diag(es?, e[dlﬂl edQ]ﬂ2, ey, o .67393],
éé;fég;, Lepn, e emy) e [qle@‘n], ex").

3Note that in [21], opposite conventions were used for uppercase Greek and Latin indices.

01, J2
€jp €57 —
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eq” is the spatial vielbein,

Jab = 5a5€aaebﬁa

and e, is the inverse vielbein. The index

II = (o, B1B2, 71 -..73,0102, D, €1 ...€3,(1(2, 7).

By introducing L“ g, we have removed spatial vielbeine from the generalised vielbein
and instead only work with the spatial metric. This is more convenient and it is the form of
the generalised vielbein that will be used to calculate the action. Note that the generalised
metric constructed from the Eg motion group, M , is unit determinant. We will consider
a rescaling of this generalised metric by the determinant of the spatial metric. As was
explained in [21]—in particular appendix B — this can be thought of as considering Eg
as a subgroup of a larger group, Fii1, for example. Or alternatively we can think of the
SL(8) in Eg as a subgroup of a larger special linear group, SL(11) for instance. This makes
sense physically because the theory of course only makes sense in eleven-dimensions and
we should always view the eight spatial coordinates we have here as being augmented by
three other directions. The rescaled generalised vielbein that we use is

DAy = g0,

where ¢ is the determinant of the spatial metric. The generalised metric that we use to

construct the dynamics is
Map = GCDLCALDB = g_lMAB. (2.12)

The components of LA g are given in appendix B.

We follow the canonical approach of [19] to formulate the dynamics. In this approach,
there is a potential and kinetic term for the fields. In a duality-invariant description both
of these are given as a scalar in terms of the generalised metric. In order to find this
description, consider first the potential and write a combination of terms that reduces to
the Ricci scalar when the fields are independent of the generalised coordinates:

1 1 1
V= mMMNE)MJ\4KL5)NJ\4KL - 5MMNaNM“aLM]\M - @MKLaMMMNaNMKL
23

MAP is the inverse of the generalised metric. When the fields are taken to only depend on
the eight usual directions this expression reduces to

1 4 1 7
V= R(g) . @galma47b1mb4Féf,),,a4Fb(1.)“b4 . ggal...(17,1)1...b7}715'17')“0{7}7}7(1.)“b7
1
+ @gadgbcgq'..es’flmsta,el..‘eg,ch,fl,..fg,da

(2.13)



where R(g) is the Ricci scalar of metric g and

thil)az; = 48[(11 Ca2a3a4]7 (214)
ch.)..a7 =7 (a[m Caz...aﬂ =+ 200[a1a2a38a40a5a6a7]) ) (215)
560

Fa,el...eg,b = aaCel...eg,b - 280[51...66\aa0|67eg]b - Cb[61620636465|aac|666768]' (216)

3

The details of this calculation are in appendix C. The kinetic term can be evaluated simi-
larly and contains the kinetic terms associated with the metric and the 3-form [19] and an
analogous term for the 6-form. Moreover, it contains a term quadratic in time-derivatives
of Cal,...ag,b-

The interpretation of the appearance of a field with mixed indices, especially in the
form above, in the dynamics is unclear. However, the structure of the potential is clearly
reminiscent of a dual gravity field. In the next section, we show that the potential Cy, a4 is
the dual of the graviphoton in the dimensional reduction of eleven-dimensional supergravity
to three dimensions. Thus, given the evidence for the relation between dualisation of fields
before and after reduction [6, 64], from an eleven-dimensional perspective this potential is
indeed to be interpreted as a dual gravity field.

3 Dimensional reduction of the bosonic sector of eleven-dimensional su-
pergravity

In this section, we dimensionally reduce the bosonic part of eleven-dimensional supergrav-
ity [1] @ la Cremmer-Julia [2] to three dimensions and relate Ce, 44 to the dual gravity
field. This is the dimensional reduction in which the Eg symmetry appears [49]. In partic-
ular the scalars of the reduced theory are described by an Eg/SO(16) coset, which we will
demonstrate explicitly in this section.

The bosonic part of the action of eleven-dimensional supergravity is

1 1
S = /\/5 (R(G) — @FABCDFABCD — 124eAl"'A“FAl...A4FA5...ABCA6A7A8) . (3.1)

Here G is the eleven-dimensional metric, Cygc is the 3-form of eleven-dimensional super-
gravity and
Fapep = 404Cpepy-

The index notation used in this section is different to that used elsewhere. In this section
uppercase Latin letters run from 0 to 10, lowercase letters from the start of the Latin
alphabet, a, b, c, ..., denote internal indices, while those from the middle of the alphabet,
i,7,k,..., denote 3-dimensional indices. The symbol € in equation (3.1), as elsewhere in
this paper, denotes an alternating tensor.

To perform the reduction, we take all fields to be independent of the internal directions.
First, consider the gravitational part. We take the following ansatz for the elfbein

<gl/026i,u Biaéaa) | (32)

€a”



where e;# and €,% are the dreibein and achtbein. In this section, lowercase Greek indices
from the beginning and middle of the alphabet denote internal and 3-dimensional tangent
space indices, respectively. We define the three-dimensional and eight-dimensional metrics
as follows:

Yij = eite;" N (3.3)

and  gap = €, 04,

so that ¢ in expression (3.2) denotes the determinant of metric gq. Given the vielbein
ansatz (3.2),

1 .. 1 .. 1 . .
VGR(G)= \ﬁ(R(’Y)+4’YZ] (0:9°") (0 9ap) — Z’V” (9°°0igab) (9703 gea) — 4972k’vﬂgabFijaszb> 7
(355)

Fij* = 20uB;"

is the field strength of the graviphoton.
Under the reduction, the second term in the action, given in (3.1), becomes

1 1 o a 1 ~.., =~ 1 .
_ @\/EFABCDFABCD _ \F’Y <_1292F”kaFi]’ka - ggF”abFijab o uFZabCFiabc> ] (3.6)

In the above expression the indices are raised with inverses of the metrics v and ¢ defined
in equations (3.3) and (3.4), so for example

Fijab _ ,yik:,yjlgacgbdﬁvklcd.

Moreover, the field strengths

Fijke = 303Cjn1e — 6(93Clpoe) Biy” + 3(8)5 Cave) B3 Biy”, (3.7)
Fijbe = 204,Cjjpc — 2031Cabe By, (3.8)
Fiabc = aic’abc (39)

are defined so that they are invariant under coordinate transformations of the internal
directions — see [2] for more details.

Similarly, in terms of the gauge-invariant field strengths defined above, the Chern-
Simons term of the action reduces to

2 g .
_ @ﬁ\/gel]kem...as (SFijalanga3a4a5 - Fia1a2a3Ca4a5ijkb> Cagfl?as‘ (310)
In obtaining the above result we have integrated by parts twice and used

C,

aragag] — 0.

E[a1a2a3|Fj

lasasag

,10,



Putting together equations (3.5), (3.6) and (3.10), we obtain the action for the reduced
theory

1 1 1
S8 = /\ﬁ (R(W) - Z'YU(aigab)(ajgab) - ZV” (9°°Digab) (9°*0;Gea) — ZQ’YZk'Y]lgabFijaFklb

1 s 1 ~.. =~ 1 .
_ Eg2FUkaFiﬂm _ ggFUabFijab _ ﬁFmchiabc (3.11)

9 g _
_@\/‘aemkeal...ag (3-Fija1a2Fka3a4a5 - -Fia1a2a30a4a5ijkb) Ca6a7ag> .

We are interested in the scalars of the reduced theory because it is these that parametrise
the Eg/SO(16) coset. From the above action we can see that the scalars of the theory
are 36 gup, 56 Cgype. Furthermore, since we are in three dimensions, one-forms are dual to
scalars so we have 28 + 8 scalars from dualising the one-forms A;,, and B;®. Therefore, in
all we have

128 = 248 — 120 = dim(Es) — dim(SO(16))

scalars. We concentrate on the action of the scalars and one-forms and augment the action
by a Lagrange multiplier that imposes the closedness of the one-form field strengths.

1 .. 1 ..
g/ = / \ﬁ{471](8i9ab)(ajgab) — 77 (9"0igab) (970 gea)

1 . 1 - 1
— EQ'Ylk'legabFijaFklb - ggF”abFijab - ﬁanbcEabc

2 .. ~
k b
- 123 \/gew Eal a8 <3Fija1a2Fka3a4a5 - Ea1a2a30a4a5ijk ) Ca6a7a8

1 . 1 » -
—Z%EW&'ij“ + gwabﬁwk (aiijab - 2Fz’achjkC> } . (3.12)
On a three-dimensional manifold with trivial homology, integrating out ¢, gives

Fij* = 20uB;"

for some B. While the equation of motion for the second Lagrange multiplier, v, gives that

Fikab + 2FjapeBr°

is closed, from which we recover equation (3.8). Therefore, this first-order formulation is,
at least classically, equivalent to the action for the scalars and one-form of the original
reduced action S®). Hence, Fikab and Fj;* are independent fields not given in terms of
potential forms. By integrating out these fields we dualise the one-forms of the original
action, B{ and Cjg,, into scalars ¢, and 1% In fact, this is the reason why these duality
symmetries are sometimes called hidden symmetries. The symmetry is only manifest after
dualisation of some of the fields. The new action that we obtain is

1 .. 1 ..
S = [ VA (79000 @s0) ~ 2760601000

1 .. 1 .. 1 ..
_ﬁ'ngabc’defaicabcajcdef - §ngabGianb — mVZJgab,chiabGde> ,

(3.13)
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where, gat-anb1bn ig defined as in equation (1.5). ga,..a, by..b, is defined analogously. The
new fields in the action are

G — g1/, 0b — %eabcl...0606182038icc46506’ (3.14)

Gia = g 2000 — 1/297 290, Cope — ﬁﬁblmbsCablbgcb3b4b5aicb6b7bs- (3.15)
Defining

Caras = 9 ear agset™ (3.16)

Cay.ass = 9 ay...as (3.17)

we can identify these fields with the dual of the 3-form and the dual gravity field. With
this notation for the fields the action of the scalars in three dimensions can be written

1 .. 1 ..
Ss((?a),lars = /ﬁ (47” (aigab)(ajgab) - ZWZJ (gabaigab)(g(:dajgcd)

1 . be.d 1 i 7 ...a6,b1...b
- E'YUQG © efaicabcajcdef - @'ngal 6.0 GHZ}Cle%HJ,alm%
1
_8(8!)’YUgalmas’bl“'bSQCdHZ}GL--as,CHj,m---a870> ’ (3‘18)
where
Hi,al...ag = aical...ae - 200[a1a2a3|8ic|a4a5a6]7 (319)

560
Hi,al...ag,b = aiCal...ag,b - 280[a1...a6|8i0|a7a8}b - ch[alagCa3a4a5\aic|a6a7a3]' (320)

As expected, since the scalars in the reduction parametrise the Eg/SO(16) coset, ac-
tion (3.18) can be written in terms of the Eg generalised metric, (2.12), in the following
way

@ _ L

. KL
scalars — 2407” alM 8jMKL +

30(28)2’Yij(MKLaiMKL)(MRsajMRS), (3.21)
where the uppercase Latin indices in the above equation run from 1 to 248 as in section 2.
Note that the calculation of the above terms is identical to the calculation of the potential
in appendix C.

Comparing equations (3.20) and (2.16), we can see that it is the dual gravity field
that appears in the potential in section 2. This is in contrast to the Eg case considered in
reference [21] where the 6-form field could have appeared in the potential but didn’t because
there was an antisymmetrisation over 7 indices. In the potential given in equation (2.13)
there is no antisymmetrisation over the first 9 indices of Fj, 3, 4. 50 the dual gravity field
appears. From a technical viewpoint, this is because Cy, . 44 » has mixed indices. Note that,
in contrast to the field strength F, ., ¢ defined in equation (2.16), the gauge invariance
of H; 4, as,p from a three-dimensional point-of-view is very clear to see. This is because in
the reduced theory, the fields Cype, Coy,...aq and Cy, . qgp are scalars.
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4 Discussion

In this paper, we formulated a non-linear realisation of the Eg group and found that the dy-
namics includes a new field Cy, . 44 With mixed Young tableaux indices with field strength
Fy b, . bg,c. While the gauge-invariance properties of Fy, 3, s, are not clear, we show tanta-
lising links with dual gravity. Our difficulty in establishing the gauge-invariance of the field
strength is related to the difficulty in formulating a generalised geometry for Eg [38, 39].
In both cases, knowledge of the transformation of Uy, 444 under gauge transformations is
a requisite.

In reference [39], the authors were unable to write down a generalised Lie derivative,
even though they showed that the gauge structure leads to the correct counting of the
degrees of freedom. While, as in [39], we cannot determine the gauge transformations of
Ca,...as,b» We unambiguously show that if the field strength is to be gauge-invariant, the
new field must transform under 3-form and 6-form gauge transformations. This result
establishes the possible dependence of the dual gravity field on the eleven-dimensional
matter fields, namely the 3-form gauge field and its dual and may provide a basis for evading
the no-go theorems of [56, 59]. In reference [59], it was shown that even a linearised dual
gravity formulation is not possible in the presence of matter unless covariance or locality
is abandoned.* It is possible that Cay ...ag.,p 1s dual to a particular component of the eleven-
dimensional metric, which is consistent with the reduced theory perspective. We leave a
precise description of such a possibility for future work.
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A FEg motion group from Cartan’s representation

In this appendix, we find the algebra of the Fg motion group, where the translation gen-
erators of the motion group form the 248-dimensional representation of Eg. In particular,
the algebra of the Eg motion group decomposed to SL(8) is found.

The Eg [65] group is generated by

M5, VO Vo, (A1)

4We thank Axel Kleinschmidt for discussions on this point.
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where underlined Greek indices run from 1 to 9. In terms of these generators the Eg algebra
is as follows [65]:

[Meg, M2g) = 55M%5 — 55 Mg, (A.2)
[Meg, V1] = 35[51 V2a2sle %5%1/11"'13, (A.3)
(M5, V5 ] = —36%1 Vy a8+ éégvll,,,lg, (A.4)

[Veses, Vy g ] = 185552 Ml . (A.5)
[Ver-es -8y = _%6g19293é1§2§3111213 Vy oy (A.6)
Va0 V3,..8,] = %fglgz%glgzgﬂlzﬂsVll"'ls7 (A7)

where 5% is the Kronecker delta symbol and €, Lo is the alternating tensor in nine dimen-
sions. Furthermore,

Qg

Qq...Q _ 0ol 5§%1-
1 Seg g = 9! 5&“@9.

The Ejg algebra is expressed in terms of an SL(9) decomposition of Eg. In this paper, we are
considering the action of the Fg duality group along eight dimensions. Hence we require
an SL(8) decomposition of the algebra. This is easily done by defining Eg generators in
SL(8) representations as follows

8
K% =M +065> M7, (A.8)
y=1
Raﬁv — Va,B'y’ (A.g)
Raﬁ'y = Vaﬁfw (AlO)
1
Ral...a6 — —Zﬁal"'%ﬁ'yvﬂyg, (All)
1
Roq...oeg = Zeal...agﬁwvﬁ’yga (A12)
1
Ral...ocg,ﬁ — 56041...018]\4'/397 (A13)
1
Ral...ag,,é’ = §6a1...a8M9ﬂ7 (A14)

where Greek indices are SL(8) indices. The alternating tensor in eight dimensions is induced
from the nine-dimensional one in the following way:

aq...a8 aq...a89

€aq...ag — €aq...a89 a»nd € =€

Using equations (A.2)—(A.7) and the above equations, we find the Eg algebra given in terms
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of an SL(8) decomposition. The commutation relations of the GL(8) generator are

(K%, K] = 65K — 05 K75, (A.15)
[K%g, R = 352“3‘“””3}, (A.16)
[K 'Yl '73] = 35[0';/1R‘ﬁ|72'yg]7 (Al?)
[Kaﬂa R7-6] = 66/[671R‘O‘|'Y2~~'Y6]’ (A.18)
[Ka/37 R’Yl 6] = 65?}/1R\ﬁ|"/2...76]a (Alg)

(K5, RV Y80 = 85[6'le‘0‘|72---78]75 + (5%R71'“78’°‘, (A.20)
(K% 85 5] = 86[6}}’1RW|'Y2~~’78]75 — 05 Ryy.ys8 (A.21)

These are the expected commutation relations of the GL(8) generator K®g with the other
generators. The generator K%z has been shifted by Zﬂ/ M7, in such a way that its com-
mutation relations with the R generators do not contain any d“g. Other choices can be
made, but this choice is more convenient and makes the non-linear realisation calculation
easier. Furthermore, with this choice the trace of K%g,

K=Y K,
vy

counts the index of the GL(8) representations

[K Ral ch] — 3RO¢14 a37
[K Roq a3] - 3Roc1 as»
[I, RY1++06] = 6RO,
[K7 Roq .aa] - 6Ra1 gy
[ Ral ag,ﬁ] _ 9R061 ag,B
[K R, .. asﬂ] = —9R,, as,B

The rest of the commutations relations in the SL(8) decomposition are

[Roi-03, Ri-fs] g panasasfifafs (A.22)
(Rov--cs | phrnfo] = _g pbr--Bolonaz.os) (A.23)
[ROV9, Ry, ) = 186171925, 5, K© ]63}_2631 8 1 (A-24)
[R*1%2, R, o] = 600155 R, o) (4.25)

R Ro, ) = 12 (035 Ry = 0555 R ) (26)
o By = 0 R, (a2
[R1% Ry 5] = 4(5!)5{311;;_';;}(%1 g6) + 51651 GO K, (A.28)

[Ral"'QG,R,Bl..ﬂg,'y]zg (%5200 Ry ) = 005, % Rty ) (A.29)

[Rev-osf R 112 (5[a1 o5 o] _ gfloncs po. as]) (A.30)
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al...Q0 2 o Nej (0% Ne? o (e} 0% 40%
[R* S’B’Rw.%] = _§7' (551[73 ’Y(?R o] — 5%11 ’Y()GR ! EM)?

8!

[Ra1...o¢8,/5’ R’Yl--~'¥8,5] — 5’(;411 %8}'(/8

[Ra1---a37 Rﬁlnﬂs] = 2Ra1a26¥35152537
[Ral...ag,a Rﬁ156] = _3R51---,36[0410¢270¢3]'

All other commutation relations vanish.

(A.31)

(A.32)

(A.33)
(A.34)

Since we are interested in the motion group of Eg with the translation generators in

the adjoint representation of FEjg, it is straightforward to find the algebra of the motion

group from the Fg algebra. Define translation generators

HaBy
23, 25, Zapy-

Note that these are of the same form as Eg generators, (A.1), and they satisfy analogous

commutation relations with the Eg generators

(M9, P2g] = (%P% — 8§ P,
— v, = la 1
[MQE, Zl1 13] — 35§121213 a g(sg?ll 137
[MQE,ZL. 13] 35[ V518 + 55 Jye

[Vgl"'g:",Pé,\/] _ _35%&1 Zgzgg]ﬁ + 5 Zocl a3

37

[Vﬁy.-Qg’Zél.--ﬁB] — _%eaﬂlza?’é é ﬁ 7y 1213Z Yy s

s T [
Vi, Zp 5] = 180552 P2olg ),

1 8=
Va5, P24] = 3% Zayagy — 30770, .0y
= 8,8

Vo, g0 270 %5) = =186, 2 PPal .

10

72 1 AR
[VQ1---237Z§1~--§3] 3'6a1a2a35 ﬁ ﬁ oi 7273zi 737

We similarly decompose the translation generators into an SL(8) decomposition:

Poc = Pgon
ZC“,B — _7aﬁ9
Wapy = _Zaﬁw

1
Wag = —Pag + gég ZP’Y’W
Y

3
W - _gp’y’}/?
oy _ Lo
] )
1
Wa,B = §Zo¢,897
1
Za — gpag.

,16,

(A.35)
(A.36)
(A.37)
(A.38)

(A.39)

(A.40)
(A.41)
(A.42)

(A.43)

(A.50)

(A51)



Other normalisations can be chosen for the translation generators. However, the above
choice of normalisation for the generators is made in order to make contact with the
generators found when decomposing the [; generators of Eq; into GL(3)x Eg [14]

1
P,, Zaﬂ, Zo = gealmagwaa‘..asa

Zal...on,ﬁ — %eal...agwﬁ 70108 leal...agvv’

ag 8'
Za1..as,fy6 _ €a1--~a82575’ Zo1.-a8,f1..86 ; a1..as S ﬁSWBﬂig

Zoa8,f1Psy  caras fi08 7y

The generator Z1 77 satisfies

Z[Oq---omﬁ] -0

because W3 is traceless. The [; representation of F1; is the highest weight representation
where the highest weight corresponds to the P; translation generator. Recall that the roots
of an algebra correspond to the group generators, while the weights of a representation cor-
respond to the translation generators, which generate a particular representation. In [21],
the truncation of F1; X [ to the SL(5), Eg and E; motion groups was shown to lead to
correct duality-invariant dynamics.

The commutation relations of generators (A.44)—(A.51) with the Eg group generators
are found by inserting the SL(8) decomposition of the motion group generators into (A.35)—
(A.43). Here, we list the commutation relations that are required for the non-linear real-
isation of the Eg motion group. The commutation relations of the GL(8) generator with
the translations generators is

(K%, Py] = =05 P5 — 6% Py, (A.52)
(K5, 27°) = 265 7120 — 525777 (A.53)
K 5, Wase] = —308 Wi, (A.54)
(K©5, W5) = W25 — §%5W7, (A.55)
(K5, W] =0, (A.56)
[ Z’y&e] 36 [’YZ56 a (A57)
(K%, W] = =207, Wig)5) + 6% 3 Wi, (A.58)
[ 5 ZW] = 512+ 67527, (A.59)

These commutation relations are needed in order to find the dependence of the generalised
metric on the 8-dimensional metric. To find the dependence of the generalised metric on
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the 3-form and 6-form fields the following commutation relations are required

[Ret-aa, Py = 35101 zozaal, (A.60)
[Rers 78] = 31' e dayy (A.61)
[RO1-03, W, ] = 18551525, (4.62)
[Rov-03 B = 245La1 zaaslB 35§Za1---a3’ (A.63)
(Ro1-03 ] = Zo1-0s (A.64)
[Ro1-03 | 7B1-Bs] — _%Eal...agm..ﬂsvéww (A.65)
(RO /5] = 65[[;171“2 zosl, (A.66)
(R0, Pg] = L€ Wz (A.67)
[R1-6 7P7] = eor-aslBloyyhl s _ gonasbryy (A.68)
(R0, W, _g,] = 480013152 Z04--00], (A.69)
(R0 /9] — geon-aofbyy | %56 or.agdepy (A.70)
(R0 ] = ; aasBpy, (A.71)
[Ro1--00 | 7B1-Bs] _ geal...aﬁwlﬂz 7Bs] (A.72)

Finally, as the generalised metric is found by conjugating the translation generators by the
Fg generators corresponding to the positive roots, we also need

1
[R5 Py] = =gt os Wl %556"‘1““8W, (A.73)
[Ral...ag,ﬁ7 Zﬂ/é] _ _46041...068Z5'Y5’ (A.74)
[Ral...ag,ﬁ7 qu...'yg,] — 126(11"'0[8(5[671 W’Y2’73]7 (A75)
1
[Ral---asﬁ, Wﬂ/é] _ 45?€a1...aszv _ iégeay..aszﬂ’ (A?ﬁ)
(RO .ag,3 W] = g ai..ag 7B (A.T7)

Some of the commutation relations involving the generators corresponding to negative roots
are listed below:

[Ras..ags 2°7) = 63 . Pay), (A.78)
[Ray .. Wa,..85) = %an..agﬁy‘.,@g'yéz’y&a (A.79)
[Rey .o, W2, = 35{1 Woasagly — gaﬁwal,,,%, (A.80)
[Ray...as, W] = %Wal.‘.ag, (A.81)
Rasag 295) = S0l w4 25w, (A.52)
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Q..o 1 :
[R teesy W/BV] = _gem.~-0135’Y51~-53261m637 (A'83)
[Ral...a37 Zﬁ] = 35ﬁ 1%

o Wz

(A.84)

We take the translation generators to mutually-commute.

The normalisations of these generators are needed in the calculation of the generalised
metric using non-linear realisation. Denoting the Cartan involution of a generator X by
X*, we can define an inner product on the representation space generated by the translation
generators [21]

(A, B*) € R,

where A and B are translation generators. The inner product is Fg invariant

where X is an Eg generator.
The Cartan involution interchanges negative and positive roots. Therefore,

* * (]...0¢3 * (]...06 * (]...(x8
K ~K’, R ~ Roy ogs R ~ Ray .05 R B~ Ray..os.6-

We define
R¥ 19 = —Ryag- (A.86)

The relative signs of the Cartan involution of the other generators is fixed by the above
relation and consistency with the Eg algebra. For example, the Cartan involution of equa-
tion (A.24)

[R* s R 51~~53] = 185[a1a2 [ﬁlﬁzK* a3]53] B 26%11......50;3]{* ’
— [Ray...ass RBIMBS] = 18plo1e [5152K* a3]53] - 25%11-.::533[(* ’
= _[RBI.”537 Ra1---0¢3] = 185[a1a2 [ﬁlﬁzK* a3]53] B 262(11.'.':;33K* ’

which from equation (A.24) gives that
K*%5 = —K”,. (A.87)
Similarly, the Cartan involution of the rest of the generators are
R* 1% = R\ ae) (A.88)

R* ai...ag,f —Roq...ag,ﬁ' (A.89)

Now to find the normalisation of the generators, we first define
(P, P*8) = 5. (A.90)

The normalisation of all other translation generators are now fixed. For example, consider

1

(290, 235) = 120, 25,080,
1, 1 N
= E(Z 6a_§[R75n>P TI])
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from the Cartan involution of equation (A.60). The FEjg invariance of the inner prod-

uct, (A.85), allows us to write the inner product in terms of equation (A.78), hence giving

(Zocﬁ, Z*'\/(S) = 25’6;66

Similarly, from equations (A.61)—(A.66) and equations (A.79)—(A.84), the inner product of

the rest of the translation generators is

(Walm%’ W*Blnﬂs) _ 6551 B3

a37

« x* 0\ __ sagd asd
(W 5,W7 )—5,7613—§6136,y,

1
W, W) = <
( ) ) 8’

Q1..003 7k 3 a1...a3
(Z 27y Bs) = @651---,33’
*v0
(Wag, W) = 32%/37

1
Z%,7%5) = —03.
(2%,2%) = ¢,95

B The generalised vielbein

(A.91)
(A.92)

(A.93)
(A.94)
(A.95)

(A.96)

In this appendix we give the components of L* g, which is related to the generalised vielbein

by equation (2.11). The components of LAg, see figure 1, are
(L11)* =6y,

1
(L21)a,d, b= _ﬁcdldgh

V3 1

1,31)919293 , — _ 5[91Ug293] _ X193,
(£31) T TR R 4\/6 b
) 1 . ) 1 . 1 .
(L41)jl = ﬂxuluwzfl mezbJr C“ qu]z 7E5ﬁ0u1u2qu1“2 +§51J72 7R§nyb’
1
(L51) — ——=Cy up U142,
4\/ 4/2
1
(Lﬁl)rmmWRB b:_icb[mlmzymg] + 7Cu1u2bmnmm3Uulu2
22 16v6
1 1 .
+ qulu?‘ujbculugugnanmg - mc’ul[mlﬂlqCmg]u2u3Xu1UQu3b7
1 1
(L71)192 , = 4\[51[7qu1112]3/” + &/ﬁquQubY“ _ 4\/§Cu1u2qu1q1 U292
1
+ 24fcu1u2u3Xu1u2[41qu2]u3 + 960\/§Cu1u2u3Xultnqzt)(tuzusb7
1 1 1
(LSl)z b:*ZYsz - Zculxquluzyug + gculquUu“QYz - @Czulugxuluy‘gbyug
1 1
+ @beul.qu”l“Z yusta — @X“I"'“SbU“4“5Cu14..usz
1 1
+ ﬁcm[htzcz]uz%X“l'““%U“tz _ 16(6!) Cu1u2tlou3t2t3 Xul...ungtlu
(L22)g,q, T2 =06"F,
1d2
1
1,32)919293 e1e2 — y919293€1€2
(L32) Wi
1

_ = xJ2e1e2 g+ 7(]]2[61552] + 5]2Ue1€2

. J2 erex __
(L42)312 192 =— f 8\/§ J1

42
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(B.1)

(B.2)

(B.3)
(B.4)

(B.5)

(B.6)

(B.7)

s b (BS)

(B.9)

(B.10)

(B.11)



(L52) ©12 — iUEleZ, (B.12)
V3 eres 1

eiez _ ¥ — ujuguU3e]e
(L62)m1m2m3 - 2 Yv[mlé — ——=rnesel 20u1u2u3m1m2m3

mamsl - 94./3

1
+ ﬁou[mlmgXuEIEzmgh (B13)
(L72)9192 €1e2 :_ivqlqzelezuyu 4 EU[th\el Ulazlez _ éxelez la1, prazlv 19%2Xt;{lqzutxelezfu7 (B.14)

1 1 1
L82), €12 = _—_pulery, (562] + —=Xa1e2v )y, — —=U°1°?Y,
( e 2v/2 w 8v/2 o 42 *

n mcmluﬂuwzugﬂmegtug (B.15)

(L33)919295 oy =g~ /25719293 (B.16)
(L43)j, 92 1 hohs :—\/3971/2 (le[hlhzéizs] - %5§fch1hgh3) ; (B.17)
(L53) hihohs :_ﬁg_l/Qchthhgv (B.18)
(L63)imy moms hyhohs = %g‘”? (Conymamghyhahs — Cmymams Chihohs + 9Cmyma|[|hy Chahs]|ms]) » (B.19)

V3 1
(LT3)T92 j oy =59 1/2 (Y[hl(sqlqz] + Cu[hthU“[qltsfél + 8Ch1h2h3Uq1q2

hahg ]
1 XUQ1CI2 C
+E h1Chohslu | > (B.20)
V3 _ 1 1
(L83)z hihohs = ﬁg 1/2 (C:c[h1h2Yh3] + ﬂUUluachlhzhgzulug 4 Ech1h2hgczu1u2 u1u2
1 1
- ZCuluz[hlchzhs]lUulu2 ) Iul[h1ch2h3]u2Uu1u2
1 )
+EXu1u2uszCulu2[hlChzhs]ua) , (B.21)
ok _ o ck1 L ojo ok
(LA44);, 72 F1p = g=1/2 (5@5],11 - gaﬁak;), (B.22)
(L54) *1y, =0, (B.23)
3 1
k —
(L64)m1mams ™ iy :‘\/;9 1/2 (Ck2[m1m255,33] - gé’,j; cm1m2m3> , (B.24)
1 1 1
qraz ki, _ _* _—1/2 k1lq1 5921 | *ski7rq L vk
(L74) b= 5 (U agiel 4 Saune 4o X 1‘11q2k2), (B.25)
(L84), ¥y =— 27172 (a0 — Lakry, — sk gz 4 2 gk uLuz
T ko = 29 ko Og ] ko T T 5 [z uiuglks + E ko CzuluZU
+ L xkwe, o (B.26
12 2 YrTuUU2 | . )
Ls5=g"'/2, (B.27)
1
(L65)m1m2m3 :*47\/?—)9_1/2Cm1m2m3, (B,28)
(L75)9192 = 39*1/2Uq1qz7 (B.29)
L _ 3 —-1/2 1 uu
( 85)70*_@9 Y — gcxulugU 5 (B430)
(L66)mymymsg ™72 =g~ 1/ 257amans (B.31)
(L76)9192 m1n2ns — _ g~ 1/2ya1azninans (B.32)
23 ’
(L86), "1mams =—%g—”2 (U[”I"‘zs;:“ - éX""n) , (B.33)
(L7192 .y =g~ t 60102, (B.34)
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1 _
(L87)z riTy = *ﬁg lczrl 9 (B35)

(L88), Y=g 16¥. (B.36)

All of the lowercase Latin letters denote SL(8) indices. In the above expressions g is the
determinant of the spatial metric,

1
yai-as _ 56‘““'“80%,_@8, (B.37)
X8, = aascy (B.38)
1
Wcuaz — a6611---@861a3mag, (B39)
1
Y, = gEal---asCal._.a&b_ (B.40)

The € tensor is the alternating tensor in eight dimensions.
Similarly, the components of the inverse generalised vielbein E4 5, see figure 2, are

(E11)* , = 68, (B.41)

(E21)g,a, b = %Cdlm, (B.42)

(E31)919295 , = 2\\/291/2 (5,[5“ Uoe9sl — éxglwgsb> , (B.43)
(BA1);,02 ) = —2—1491/2 (X“lum i1 Cusgy — 12C05, 0 U2 — 6672 Cy, s, U™

%5;’5 U2 + 12607, — 25;.'%) : (B.44)

(E51) = —%ﬂglﬂ (Yb - éCulusz“l““‘) , (B.45)

(E61)mmyms b = 2\\//%91/2 <cb[mlm2ym3} — iculuz,bmlmmmm
+4180ul[mlmzcm]umxuwws,,) , (B.46)

3 u 1 u 1 12Ul UU. ULUS
(ET1)142 |, = 4\/59 (51[7 ynely, — gquqz WY + 5Vq GuRUs Yy [T

1 1
+Ecu1[u2u3Xu1q1qz b Uvaus _ ﬁocmuzm Xu1q1qtituzu3 b) ,
(B.A7)
]' UL U 1 UL U2
(ESl)x b = _Zg an - Culsz Yug - iczulugU Y—b
1 UL U2U3 1 ULU2 TTU3U4
+ ﬁcxuluzX bYu3 + @beul‘..m;U U
1 1
+ %XulmuawUuélusCul...u@ - 37204“[tthCb]uzu:\,XulmusmUtltz
1
+4(6!)Culu?tlCu3t2t3Xu1"'ungtl"'t3b> s (B48)
(E22)a,d, ' = 03, 4s (B.49)
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1 X 1 1
(E84), "4, = 59 (Ykzé’;l = 200 Ye + Cour, U™ = 201 Cruy U™

1
+12Xk1u1u2k2czu1U2> R (BGG)
E55 = ¢'/2, (B.67)
1
(E65)m1m2m3 = mgl/Qlemsz, (B68)
(E75)"9 = —igU“‘”, (B.69)
3 1
(B66)mymomy """ = g'/2ommams (B.71)
1
(T s = L_gyamnans, (8.72)
2v/3
V3 1
(E86)z ninang _ g (U[Tblng(s;lg] + annzngm) , (B73)
2v/2 6
q192 — q192
(E77) 172 gdrlrza (B74)
1
(E87)56 riry — ﬁgczrlrga (B75)
(E88), ¥ = gov. (B.76)

C Calculation of potential

The potential of the canonical formulation of eleven-dimensional supergravity is given by

1 1 1
V= %MMNaMMKL(‘)NMKL - 5MMNaNMKLaLMMK - @MKLaMMMNaNMKL
23

+WMMN(MKLaMMKL)(MRSaNMRS), (C.1)

where Map is the generalised metric, (2.12), found from the non-realisation of the FEjg
motion group and MM?¥ is its inverse. The indices run from 1 to 248 and represent
the adjoint representation of Fg. In the decomposition of this representation by SL(8)
irreducible representations,

248 =80 28D 56063 D1 D56 D 28D 8,

we find the eight usual spatial directions along which the duality is acting along with
240 other directions that correspond to winding modes of branes. To produce a usual
supergravity description from the duality-invariant description, from now on we take all the
supergravity fields gup, Cupe, Cay ...ag5 Cay ...ag,p t0 be independent of the winding coordinates.
Lowercase Latin indices are spatial coordinates and run from 1 to 8.

The coefficients in equation (C.1) are fixed by requiring usual diffeomorphism invari-
ance. KEquivalently, they are fixed by requiring that when the gauge fields are zero the
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potential reduces to the Ricci scalar of metric g. We now find what the potential is in
terms of the supergravity fields.
Since MAP is the matrix inverse of the generalised metric,

MAB = GEPEALEP b, (C.2)
where E4p is the inverse of the generalised vielbein,
EARLBo =64 = LAREB¢
and

. 1.
AB _ 3: ab ...g3,h1...h k J2 sk T
G _dlag(g 7gd1d2,816279g1 g5 3agj1k1g]2 2_§6]’15k3,1,gm1..‘m3,n1...ngygqlq2 ! 2,913;)-
(C.3)
is the inverse of

Gap = diag(gan, 9", 9oy gy gy 9 Gk —%5%5,’2, 1, g S g i G-
(C.4)

Using the equation (2.12),
MAB = GEPEALEP b, (C.5)

and equation (C.2) it is easy to show that

MMNgy MBI Mycr, = 492 (0, EX o) GCF LY  (8,GEr) + 29" (0, EX o) (0L i)
— 29GP Gra LY Kk LC (0. EX o) (0 EL D)
+ 9" (0.G") (G ) (C.6)

and

MMN o MBEd, Myrre = —g™ G e, L NLE 0 (9 EN ) (04EM o) + 9% (959°) (Ddac)-

(C.7)
Furthermore,
M“P9,Mcp = ~248 9" ugea,
hence
M=EON MM ON My = —248(00g") (9 Obgea) (C.8)
and
MMN(MEF 00 Mycr ) (M 0n Mps) = (248)°9°(9°'0ugca) (9 Dhges).  (C.9)

A simple calculation using the components of G4 and G 45, equations (C.3) and (C.4),
and the components of LAz and E4 5 given in appendix B shows that

9" (0. EX 0)GOF LY 1 (0yG pr) = 69°(9°00gea) (95 Opger), (C.10)
9 (0 EX o) (O LE k) = —809°(9°*Dugea) (9% Dpges), (C.11)
9 (0.GEE) (G EF) = 609°(9ag°?) (Bpged) — 129°°(9°0uged) (9% Bpger). (C.12)
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In particular, note that these are independent of the form fields and only depend on the
metric g. This is because G4p and GAP only depend on gg. Moreover, Gap and GAB are
diagonal and L and FE are lower triangular so

(0. EX)GOYLE (0,Grr)  and  (0.EX ) (0L k)

only depend on the diagonal elements of L and F which are proportional to determinant

of Gab-
To calculate

9GP G LY K LC (0. EX o) (0, EX p) (C.13)
in equation (C.6) and
9 L5\ LE N (O, EM ) (04 EN o) (C.14)
in equation (C.7), we note that the building block of both these terms is
D, g = LAc(0.EB). (C.15)

The components of D, see figure 3, are given at the end of this appendix.
The evaluation of the components of D requires use of identities such as

Caagy V0t = 2X 10208 5o (C.16)

al a2] )

where X is defined in equation (B.38). This identity is proved by using equation (B.37) to
write C' as a Hodge dual of V' in the expression above and V in terms of C. Then the two
epsilon tensors are contracted to give a Kronecker delta. Finally using

yciceaiazas l cicaarazazbibabs

Ca1a2a3 = 3!6 C[a1a2a30blbzbs] =0,
we find the relation given above, equation (C.16). Other useful identities are
gil/QCawza'sau (91/2V01C2a1a2a3) = _VCIClebeSauChbzbga (C17)
g_l/QCabcl...a4au (91/2Uab) = Uabaucabcl...04a (018)

9_1/2Ca1a2b6u <gl/2vclc203a1a2) — Vc1c2c3u1uzaucu1u2b _ VU1u2U3[6102553]au0u1u2u3.
(C.19)

Note that g'/2e® % is the alternating symbol

1 for (aj ...ag) = positive permutations of (12345678)
N = ¢ —1  for (ay...ag) = negative permutations of (12345678) ,

0 otherwise

hence
3 (g¥2en) =0,
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Furthermore, our convention for the contraction of two epsilon tensors is

ai...a;biy1...bg o N\ SAT...Q;
€ i 661...Cibi+1...bs - 7"(8 - Z)!(Scl...cil'

As an example, consider the evaluation of D31,

(D31),919293, = (L31)919295 .9, (E11)% + (L32)9192931129, (E21) 4, 1,
+ (L33)919293ili2i3 8U(E31)7;1i2i3b.

Note that since L is lower triangular there are only three terms contributing to D31. The
components of L and E can be read from appendix B and inserted into the expression
above®

1 V3
D31), 919293, — vaaeshify o +
(S0 =576 T e

! 3
= %Vglg293flf28uc‘flf2b + 2\\//759—1/Qau (91/251[)91 Ug293]>
1
B mg_l/QC’flbbau (gl/2V91~~93f1f2) .

where we have used the definition of X given in equation (B.38). Now, upon using iden-
tity (C.19), this reduces to

1
(D31)u 919293 b= 2\\//5591/28u <gl/25£91 U9293]> + mvtltzts l9192 523]au0t1t2t3'

1
g~ 129, <91/25t[;gl 179298 _ 691/2Xgl...ggb>

1

4\/6Vg1.4.g3f1f28u0f1f2b’

With the exception of D61, D71, D81 and D72, the other components can be simply derived
using identities (C.16)—(C.19).

Showing that D61, D71, D81 and D72, vanish is not straightforward and involves the
repeated use of identities (C.16)—(C.19). Expanding the D61 component we find thirteen
terms of the form

C(G)Va(j(?v), 0(6)0(3)31/’ UC(3)8C(3), cB®c®voc® and 0(3)0(3)0(3)3‘/’

where C®) and C(©) denote the 3 and 6-form, respectively. Expressing COVHC®) and
COCBIV as terms of the form UCPEHCH), it is easy to see that terms involving the
6-form cancel among each other. Further, writing terms of the form C®)CGVaC®)
and CBICGICB)IV as the epsilon tensor multiplied by terms of the form CGVVoC®)
we find that

7
didad
(D61)u mimaoms b — 1 601...C5m1m2m30a1a2bv[01 N e 3a1]a28ucd1d2d3-

6(5!)v/6

This vanishes because an antisymmetrisation over nine indices in eight dimensions is zero.
Similarly, D71, D81 and D72, also vanish upon repeated use of identities (C.16)—(C.19).

This can either be done by hand or using the computer algebra software Cadabra [66].
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Given the components of D it is now straightforward to evaluate expressions (C.13)
and (C.14). In terms of the supergravity fields these terms are

9GP G LY K LC (8. EX ) (0, E D) (C.20)
= 9"GPGraD." Dy p
= 809°"(¢™0agea) (97 Obges) + 10g°0 g1 N5 (9,C, . 03)(0pClay...d5)

1
+ 7gabgcl C,d1..dg (aaccl...% - 2OCC10203 aa0040506 ) (abcdl dg — 200d1d2d3 abC’d4d5d6)

48
15
+ ggabgaigel"’es’fl"'fgFa,e1.‘.eg,ch,fL..fg,da (0‘21)
where
560
Fayel---@‘va = 8CLCel---e&b - 28C[61---66\8a0|e768]b - ?Cb[elezCe3e465|aac|eee7eg]' (0-22)
Similarly,
gabgchKLLKMLLN(abEMC)(8dENa)
= ¢"¢“'Gr Dy Dd"s
1 2 7
_ ggad1gc1cgc3,bd2d3 (aaccl...63)(8b0d1...d3) _ ggal---117,171---b7}72517.)”&7}7})(1.)”b7
1
+ 4(6|)gabgcl...ce,d1...d6 (&1001,”66 — 2000102038a0646566)(8b0d1,__d6 — 200d1d2d3abcd4d5d6)
1 1
+ 4(8') gabgalgel"'ESJI"'sta,el...eg,ch,fl...fg,d+ 4(8') gadgbcgel“.687f1”.fsF(l,el...68,CFb7f1...f3,d7
(C.23)
where Fy, ¢, cop is as in equation (C.22) and
chp..(w =7 (8[alca2...a7] + 200[0,1(12(138(140(150,60,7]) . (C24)
Therefore, using equations (C.6), (C.10)-(C.12) and (C.21),
MMNG  MEEN Mycr,
— 60 aba cda — 308 ab cda efa —920 ab cicacs,didads 9.C C
= 609""009“" OpGed 9" (9°“0agea) (97 Obgey) — 209" g (0aCey...c5)(OCl..a5)
1
- ﬂgabgqmc&dl‘“d6 (aaccl...cg - 2006162638(10640506)(adel...dG - 200d1d2d38bcd4d5d6)
30
_ ggabnggel"'eg’fl"'fsFa,el...eg,ch:fl~--f8,d7 (C.25)
and from equations (C.7) and (C.23)
MMN o MELO, My i
1 ) ) 2
= 9°*(959°") (Dagac) — §gad19016203’bd2d3(5aCcl‘..C3)(3de1..,d3)+ggal'"a77bl"'b7Fg.)..a7Fb(17.),,b7
1
_ 4(6'>gabgcl...ce,d1...d6 (0aCey..cs — 20C ¢, c50500Cse5e6)(O0Cl;...ds — 20C 4, dods ObClydsds )
1 1
_ @gabQCdgelme&flmeFa,el...eg,ch,fl...fg,d_ mgadgbcge1...eg,fl...fgFa7el.A'es’chJlme’d.

(C.26)
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Finally, putting together equations (C.8), (C.9), (C.25), (C.26), in terms of the super-
gravity fields the potential, (C.1), is

1 1 1 1
V=ZW%JWMM—;ﬂ%f%ww+?%fo@wm+Zf%ﬁ%%wwﬁwq)
1 7
_ 12gabgc1czcs,d1d2d38 Ceieocs (ade1d2d3 — 304, de2d3) _ S'gm .az,by.. b7F(§1) a7Fb(1.)..b7
1
+ 8(8')gadgbcge1 €8, f1.. f8Fa,el...eg,ch,fl‘..fs,d' (0.27)

The first term is the Ricci scalar of metric g, up to integration by parts. This expected
because the coefficients of the terms in V, equation (C.1), were fixed so that the Ricci scalar
would be recovered when all other fields are zero. However, the potential also gives the
dynamics of the other fields as well. Defining

FY o =404,C,

ai...aq 2a3a4]a
by...b 4 1 by...b 7
V= R(g) 489a1 s 4Ft§1) .aq b(1) Y 8!ga1 e 7F(§1) a7Fb(1.)..b7
1
+ mgadgbcgel 1S e P fr fe -
(C.28)
C.1 Components of D, 4 g
The components of
D, p=L"0,Eg
are given below:
(D11), %4 =0, (C.29)
1
(D21)u dida b = Taucdldgbv (C?)O)
919293 | _ \/> —1/2 1/2 5[91 779293] 1 t1tatslg1 g2 593
(D31),, )= 27 5y ( sy ) + 15V 599,Ch sty (C.31)
; 1 1
(D)5, = = 50 (972006 2%,) = JU0Crs + X" 05,0,C0 )
1 1
166§f ( _1/28u(gl/2}/17) - 5Ut1t28ucbt1t2 + %Xt1t2t3b8uct1t2t3) )
(C.32)
3 1 1
(D51)u b= _fﬁ (g_l/Qau(gl/ZYE)) - §Ut1t2aucbt1t2 + 36Xt1t2t3b8uct1t2t3> 9
(C.33)
(D61)u mimomsz b — O» (C 34)
(D7), 7% =0, (C.35)
(D81)u zb =0, (C 36)
(D22)y d,a, “** =0, (C.37)
(D32),, 919293 c1¢2 — _2\1[ 129, ( 1/2V91g293€1€2> 7 (C.38)

— 31 —



(8 ,q70)°T = 4, jo sywouodwoy) g o[qey,

(D11), @, 0 0 0 0 0

(D21)w dydy b (D22)u dydy 12 0 0 0 0
(D31)y 91293 4 (D32)y 9193 €162 (D33)y 9193 p, | p, 0 0 0
(DA1)y 4,72 (D42)y, j,72 e1¢2 (D43)u 172 by g (D44)y j,72 F1y, 0 0
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(D71)u 4142 (D72)u q192 e1€e2 —(D62)u hi..hs q142 (D42)u k2k1 q192 (D52)u q142 _(Dgg)u ni-.-n3 q142
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e _ . 1 .
(D42) ]2 eres _\/553[12 ( 1/28u(gl/2U61]]2> + 6ve1]]2t1t2tsauctlt2t3)

B 75” ( _1/28u(gl/2Uele2) _ évt1t2t361ezauct1t2t3> ,

8\/§ J1
1
(D52)u elex _ 24V61€2t1t2t3a Ct1t2t3 Zg—l/Qau (91/2U6162) ’
V3 ere _ 1
(D62)s, 1y mgms 2 = _75[1711127”2| (g 1/28u(91/2y\m3]) _ §Ut1t28uc|m3]tlt2

1
+36Xt1t2t3|m3]auctlt2tg> ,
(D72)u q192 €e1€2 0,

1 _
(D33)u 799 piang = 5000k, (97 0ug),

(D43)U J1 72 hihohs = \/> (8u0j1[h1h2§22 86J1a Ch1h2h3) ,

(D53>u hihghs — 4\/~8 Ch1h2h37
1
(D63>“ mimaoms hihohs = 128 Crmymamshyhahs + C[mnnzm'sla Clh1h2h3]a

(i), 5.7 0, = 5 (S0t — Loats) (4 0na)
(D54),, "y, =0,
1
D55 = (g 10,9).

1
(DGG)U mimams nins2n3 _ 6n1n2n3 ( 71871‘9),

2 mi1mams
(D77)u q192 o _5qlqz( _18ug),

172

(D88)u » ¥ = 64(9™ ' 0ug).
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