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We analyze dynamic optomechanical back-action effects in signal-recycled Michelson and
Michelson-Sagnac interferometers that are operated off dark port. Up to now, their optomechanics
has been studied under dark port condition only. For the dark port case and in the context of
gravitational wave detectors, the ‘scaling law’ assured that all back-action effects can be understood
on the basis of the much simpler topology of a Fabry-Perot interferometer. Off dark port, our the-
oretical and experimental analysis reveals certain ‘anomalous’ features as compared to the ones of
‘canonical’ back-action, obtained within the scope of scaling law. In particular, optical damping as a
function of detuning acquires a non-zero value on cavity resonance, and several stability/instability
regions on either side of the cavity resonance appear. We report on the experimental observation of
these instabilities on both sides of the cavity resonance in a Michelson-Sagnac interferometer with
a micromechanical membrane. For a certain region of parameters, a stable optical spring (that is
positive shifts of frequency and damping) in a free-mass interferometer with a single laser drive
are possible. Our results can find implementations in both cavity optomechanics, revealing new
regimes of cooling of micromechanical oscillators, and in gravitational-wave detectors, revealing the
possibility of stable single-carrier optical spring which can be utilized for the reduction of quantum
noise in future-generation detectors.

I. INTRODUCTION

It is a fundamental result of quantum measurement
theory that in any optomechanical system, where light
serves as the quantum readout agent interacting with a
mechanical probe (test mass) via radiation pressure, the
probe is subject to measurement back-action [1–3]. This
comprises on the one hand back-action noise, that is ra-
diation pressure noise on the test mass due to quantum
fluctuations of the electromagnetic field. Together with
measurement shot noise it gives rise to the celebrated
standard quantum limit (SQL) of measurement precision
[4–6]. The first observation of measurement back-action
noise has been reported only very recently in Ref. [7]. On
the other hand, modulation of the optical field by the
motion of the probe (caused by any external forces) pro-
duces a ponderomotive radiation pressure force, which
depends linearly on the displacement of the mechanical
probe, and in turn alters the dynamical properties of the
latter — this effect is referred to as dynamic back-action,
and was first recognized in [8, 9] in the context of mi-
crowave cavities.

If the mechanical probe represents an oscillator, the
dynamic back-action of light produces two effects: (i) op-
tical rigidity (or optical spring) — a shift of the resonance
frequency of the oscillator, and (ii) optical damping — a
shift of the intrinsic damping rate of the oscillator. The
experimental demonstration of the optical spring effect
in a suspended Fabry-Perot cavity was reported in [10],

∗Corresponding author: Sergey.Tarabrin@aei.mpg.de

while optical damping was utilized in a series of recent
experiments on back-action cooling [11, 12] of microme-
chanical oscillators [13–21], eventually to the quantum
ground state [22, 23].

If the mechanical probe realizes a (quasi) free mass, as
is the case of interferometric gravitational-wave detectors
(GWDs), the dynamic back-action effectively transforms
it into an oscillator whose rigidity and damping can have
a rather complicated frequency dependence. In the con-
text of GWDs this flexibility in tailoring the probe’s dy-
namical properties was considered as a tool to increase
the measurement sensitivity. In [24] the so-called intra-
cavity readout GWD topology was suggested which uti-
lized the optical rigidity. The sophisticated frequency
dependence of the optical spring in the long Fabry-Perot
cavities of GWDs was further analyzed in [25] and inde-
pendently in [26]. Later on, it was shown that exactly the
same frequency dependence arises in the dual-recycled
topology of modern GWDs [27]. Ref. [28] derived the
scaling law which provides a general framework for un-
derstanding dynamic back action in GWD topologies: it
states that the dynamical and noise properties of any
interferometer with high-finesse differential mode oper-
ated on a dark fringe (at dark port), are equivalent to
the ones of a single Fabry-Perot cavity with correspond-
ing effective linewidth, detuning and circulating optical
power. In particular, the scaling law covers signal- and
dual-recycled interferometers with or w/out arm cavities,
and non-signal-recycled ones with arm-cavities. Based
on this work, further studies of quantum-noise sensitiv-
ity of detuned-signal-recycling topology were performed
[29, 30].

At the early stages of designing of the second-
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FIG. 1: Schematic of a signal-recycled Michelson-Sagnac in-
terferometer as theoretically and experimentally investigated
in this work. Inset: in the limiting case of 100% reflecting
membrane Michelson-Sagnac interferometer is equivalent to a
pure Michelson interferometer.

generation GWDs, like Advanced LIGO [31], the opti-
cal spring had been considered as the viable technology
for suppression of quantum noises. Unfortunately, in the
’canonical’ case of dark-port-tuned interferometers con-
sidered in Refs. [27, 28], the positive optical spring is al-
ways accompanied by a dynamical instability (negative
damping). In Refs. [32, 33] it was shown theoretically and
demonstrated experimentally that a stable configuration
can be created by means of two optical carriers detuned
to opposite sides of the interferometer resonance curve.
Sensitivity issues of stable double-pumped optical spring
were considered in Refs. [34, 35]. This idea was further
developed into the concept of negative optical inertia [36],
which also requires two oppositely detuned carriers and
can be used for broadband suppression of quantum noise.

It became clear later on, however, that in the second-
generation GWDs, due to sensitivity limitations imposed
by the classical noise sources, in particular, coating Brow-
nian noise of the test masses, only modest gain can be
provided by the optical spring, which does not justify the
accompanying technical difficulties (instability or the ne-
cessity to use two carriers). As a result, optical spring
is currently not considered as an option for the second-
generation GWDs [37]. The situation is different for the
third-generation ones [38–40]. In these detectors classical
noises will be reduced significantly (by implementing un-
derground facilities, cryogenic cooling of the test masses,
using low-loss and low-noise coatings, etc.), creating vast
space for reduction of quantum noise. In this scenario,
viable schemes for stable single-carrier optical inertia, as
well as stable single-carrier optical spring are very desir-
able.

In this article we consider the dynamic back-action

in a signal-recycled (SR) Michelson or Michelson-Sagnac
(MS) interferometer, see Fig. 1, in a generic regime of
operation off dark port. This is – to the best of the au-
thors knowledge – the first analysis of back-action effects
in interferometers operated in this mode. We empha-
size that the generic way of performing a conventional,
single photo-diode homodyne readout (DC readout) ac-
tually requires to tune the interferometer off dark fringe.
Our analysis reveals certain ’anomalous’ features of dy-
namic back-action, as compared to the ones of ’canonical’
back-action, obtained within the scope of scaling law for
interferometers operated on dark port. In particular, in
the MS interferometer, given the finite reflectivity of the
membrane, optical damping as a function of detuning
acquires (i) non-zero value on resonance and (ii) several
stability/instability regions on either side of the cavity
resonance. We present experimental data on a signal-
recycled MS interferometer containing a SiN membrane
that, once operated off dark port, indeed exhibits two
distinct instabilities on either side of the SR cavity res-
onance. In the case of a perfectly reflecting membrane,
which corresponds to a simple Michelson interferometer,
the off-dark-port regime similarly results in several in-
tersecting regions of positive/negative values of optical
rigidity and damping. For a certain region of parame-
ters, stable sets of both effects in a free-mass interfer-
ometer with a single laser drive are possible. Our re-
sults can find applications in both cavity optomechanics,
revealing new regimes of cooling of micromechanical os-
cillators, and in the gravitational-wave detectors, reveal-
ing the possibility of stable single-carrier optical spring
which can be utilized for the reduction of quantum noise
in future-generation detectors.

Our results for generic signal-recycled Michelson and
MS interferometers are related to and consistent with
corresponding findings for high-finesse optomechanical
cavities exhibiting a so-called dissipative (or reactive)
optomechanical coupling. In this case, mechanical dis-
placement shifts the line width of the cavity, and not
its resonance frequency, which gives rise to Fano reso-
nances in the back-action noise spectrum, as was shown
in [41]. Traces of such a coupling have been observed in
[42]. Several theoretical studies explored the rich impli-
cations of this coupling on position sensing and mechan-
ical squeezing [41, 43], normal mode splitting and mul-
tiple regions of instability [44, 45]. Some of the authors
showed recently that a pure dissipative optomechanics
can in fact be achieved in a MS interferometer with a
semitransparent micromechanical membrane [46]. As we
show here, the feature of Fano resonances in back-action
noise, and associated anomalous effects in damping and
rigidity, have to be expected as a generic property of
Michelson and MS interferometers operated off dark port.

This paper in organized as follows. In the first part
(Sec. II) we compare ’canonical’ dynamic back-action, de-
rived within the scope of scaling law, to the ’anomalous’
one which is rigorously derived in the second part. We
apply the transfer matrix approach to the propagation of
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fields inside the interferometer (Sec. III), in the spirit of
Ref. [3]. We compute optical fields on the membrane sur-
faces and corresponding radiation pressure force, which is
the sum of a stochastic part (back-action noise, Sec. IV)
and a dynamical part (dynamic back-action, Sec. V). In
Sec. VI we report on the experimental observation of in-
stabilities on both sides of the cavity resonance in a
Michelson-Sagnac interferometer with a micromechani-
cal membrane. Finally, we analyze certain properties of
the obtained quantities and draw conclusions.

II. CANONICAL AND ANOMALOUS

DYNAMIC BACK-ACTION

The dynamic back-action K(Ω) is defined as the coef-
ficient of proportionality between the ponderomotive ra-
diation pressure force Fx(Ω) and displacement of the me-
chanical probe x(Ω), Fx(Ω) = −K(Ω)x(Ω). It comprises
the optical spring K(Ω) = ℜ[K(Ω)] and optical damp-
ing Γ(Ω) = − 1

2ℑ[K(Ω)]/Ω, such that the corresponding
shifts of the (square of) mechanical frequency and me-
chanical damping rate are K/m and Γ/m, with m being
the oscillator’s mass. So far, the dynamic back-action
has been studied in the literature only for interferometers
perfectly tuned to dark port. According to the scaling
law [28], any interferometer with high-finesse differential
mode and operated at dark port, can be equivalently de-
scribed by a single Fabry-Perot cavity with effective half-
linewidth γ, detuning ∆ and circulating optical power
Pcav. Thus, the optical spring and damping in an inter-
ferometer reduce in this case to the well-known ones of a
FP cavity [25],

K(Ω) =
2ω0E

L2

∆(∆2 + γ2 − Ω2)

|∆2 + (γ − iΩ)2|2
, (1a)

Γ(Ω) = −
2ω0E

L2

∆γ

|∆2 + (γ − iΩ)2|2
, (1b)

where ω0 is laser carrier frequency, E = 2LPcav/c is the
optical energy stored inside the cavity and L is cavity
length. These ’canonical’ rigidity and damping posses
the following characteristic features: (i) both are anti-
symmetric with respect to ∆ and vanish at ∆ = 0, (ii)
Γ as a function of ∆ crosses zero only once, thus being
positive for ∆ < 0 and negative for ∆ > 0 — these re-
gions are usually labeled as stable (cooling) and unstable
(heating), (iii) K as a function of ∆ crosses zero once if
γ ≥ Ω (case of free-mass interferometers) and (iv) three
times otherwise (case of micromechanical oscillators in
the resolved sideband limit). These properties are illus-
trated in Fig. 2a. In a Hamiltonian formulation of cavity
optomechanics Eqs. (1a, 1b) follow from Hint = gωxa

†a,
with gω being the coupling constant between intracav-
ity field a and position of the mechanical oscillator x [2].
This is usually addressed as dispersive coupling, since
the mechanical oscillations modulate the cavity eigenfre-
quencies.
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FIG. 2: Optical spring K and optical damping Γ as functions
of detuning (in units of cavity half-linewidth γ). Curves are
plotted for the following parameters: membrane power re-
flectivity R2

m = 0.17 (except b), SRM transmittance T 2

SR =
3× 10−4, beamsplitter asymmetry δBS = 0. a. Normalized to
maximum values ’canonical’ K and Γ defined in Eqs. (1a, 1b).
b. Normalized to maximum values K and Γ for the MS in-
terferometer with 100%-reflective membrane (equivalently, a
pure Michelson interferometer), detuned from dark port at
δlDP = λ0/4 by δl − δlDP ≈ 0.01λ0. Ratio of the mechanical
frequency to cavity linewidth is Ω/γ ≈ 10−2. Optical damp-
ing (c) and spring (d) for a MS interferometer detuned from
dark port at δlDP = 3λ0/4 by δl− δlDP ≈ 0.01λ0, input opti-
cal power Pin = 200 mW, laser carrier wavelength λ0 = 1064
nm, effective cavity length L = 8.7 cm and Ω/γ ≈ 1.

Our analysis in Sec. V shows that in a signal-recycled
MS interferometer these features expectedly hold in dark
port, but if detuned from it, features (i) — (iii) break. In
this sense we refer to the dynamic back-action in a MS
interferometer operated off dark fringe as ’anomalous’.
In particular, both K and Γ become highly asymmetric
and acquire non-zero values at ∆ = 0 (see Fig. 2c,d), so
that for certain region of parameters Γ|∆=0 > 0 — this
is cooling on resonance (see upper inset in Fig. 2c). Also
optical damping can cross zero several times, acquiring
additional regions of stability/instability (see lower in-
set in Fig. 2c), thus allowing another regime of cooling.
In Sec. VI we report on the experimental observation of
these instabilities on both sides of the cavity resonance
in a Michelson-Sagnac interferometer with a microme-
chanical membrane. Non-zero K at ∆ = 0 implies a shift
of the mechanical frequency on resonance, though for mi-
cromechanical oscillators it is mostly negligible compared
to intrinsic mechanical frequencies.

An extreme case of a 100% reflective membrane cor-
responds to a pure Michelson interferometer, i.e. repro-
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duces basic topology of the GW detectors. The coordi-
nate x of the mechanical degree of freedom refers then
to the differential motion of the end-mirrors in the arms
of the Michelson interferometer, cf. Fig. 1. For a GW
detector being a free-mass interferometer the effect of
optical spring is not negligible, since it transforms (al-
most) free test masses into mechanical oscillators with
resonance frequencies lying in the GW observation band,
where typically Ω < γ. Thus, if a detuned interferome-
ter is operated at dark fringe, Eqs. (1a, 1b) imply either
K > 0, Γ < 0 for ∆ > 0, orK < 0, Γ > 0 for ∆ < 0. This
means that for a single laser drive a set of ’canonical’ K
and Γ is unstable in both cases.

It is rather intriguing, however, that the well-studied
Michelson interferometer also exhibits ’anomalous’ dy-
namic back-action if operated off dark port, violating
features (ii) and (iii) of the ’canonical’ one: according to
Eq. (13), two regions of positive/negative values can arise
in both K and Γ, as illustrated in Fig. 2b. For a GW de-
tector this opens up a region of parameters where sets of
K and Γ result in a stable configuration for a single laser

drive. Indeed, one can notice in Fig. 2b a ceratin range of
negative detunings where both optical spring and damp-
ing are positive, indicating a possible stable state, which
is confirmed by the accurate analysis of stability in terms
of Routh-Hurwitz criteria. Moreover, an ’anomalous’ op-
tical spring (not necessary stable) can naturally occur in
any detuned interferometer with a DC-readout (like Ad-
vLIGO or GEO-HF [47]) when an offset from dark fringe
is created on purpose to get a small fraction of mean
power for the homodyne detection.

Ref. [46] considered a MS interferometer with 100% re-
flective recycling mirror in a general regime of opera-
tion. In an effective-cavity approach (valid for a high-
finesse signal recycling cavity) it was shown there that
the system can be described by a Hamiltonian Hint =
gω(x)a

†a+gγ(x)
∫

dω(a†ωa−h.c.). The last term describes
coupling of the cavity field a to the continuum of modes
aω of the in/out-going external field, which will cause
an amplitude decay (linewidth) ∝ g2γ . In this system,
the mechanical oscillator modulates both, the cavity res-
onance (via gω) and the cavity linewidth (via gγ). These
two aspects are referred to as dispersive and dissipative
coupling [41, 45], respectively. Therefore, in a regime
where an effective cavity description is adequate, devi-
ations from Eqs. (1a, 1b) can be explained by the emer-
gence of dissipative coupling in addition to the dispersive
one and interplay between them. However, in interfer-
ometers where such a description is not valid these la-
bels cannot be unambiguously attributed. We therefore
shall further talk of the interferometers operated at or off
dark fringe as demonstrating ’canonical’ or ’anomalous’
dynamical back-action. ’Anomalous’ back-action in this
sense is the generalization of the ’canonical’ one, which
corresponds to the particular case of dark-port-tuned in-
terferometers, and thus violates the scaling law.

III. PROPAGATION OF FIELDS

Consider a Michelson-Sagnac interferometer as shown
in Fig. 1 with a central beamsplitter BS having ampli-
tude reflectivity RBS =

√

(1− δBS)/2 and transmissivity

TBS =
√

(1 + δBS)/2, two steering mirrors M1 and M2

both having 100% reflectivity, a semitransparent mem-
brane m with amplitude reflectivity Rm and transmissiv-
ity Tm, and a signal-recycling mirror SR with amplitude
reflectivity RSR and transmissivity TSR. The interfer-
ometer is driven by a laser L through laser port which
is usually labeled as ’bright port’. Photons emanating
through the other, detector (or ’dark’) port impinge on
a detector D (homodyne or heterodyne). Note that if
the offset from dark fringe is large enough, traditional la-
bels ’bright’ and ’dark’ port become ambiguous. Unless
mentioned explicitly, we neglect losses. We denote the
distance between SR mirror and BS as lSR, arm length
as L and the distances between folding mirrors M1 and
M2 and membrane as l1 = l − δl/2 and l2 = l + δl/2,
respectively. This means that l1 + l2 = 2l, l2 − l1 = δl
and the mean position of the membrane on the x-axis
is 〈x〉 = δl/2. The total length of the SR-m path is
L = L+ l + lSR.
In any spatial location inside the interferometer we de-

compose the electric field of the coherent, plane and lin-
early polarized electromagnetic wave into the sum of a
steady-state (mean) field with amplitude A0 and carrier
frequency ω0 (wavenumber k0 = ω0/c and wavelength
λ0 = 2π/k0), and slowly-varying (on the scale of 1/ω0)
perturbation field with amplitude a(t) describing vacuum
noises and the contribution from the motion of the mem-
brane,

A(t) =

√

2π~ω0

Ac

[

A0e
−iω0t + a(t)e−iω0t

]

+ h.c.,

a(t) =

∫ +∞

−∞

a(ω0 +Ω)e−iΩt dΩ

2π
.

Here A is the area of laser beam’s cross-section and c is
the speed of light. Unless mentioned explicitly, we will
deal with fields in the frequency domain only. We will
therefore omit frequency arguments for briefness.
The laser L emits a drive-wave AL with mean ampli-

tude AL0 and optical fluctuations aL. For simplicity we
assume that there are no technical fluctuations so that
the laser is shot-noise limited, [aL(ω0+Ω), a†L(ω0+Ω′)] =
2πδ(Ω−Ω′). The vacuum field AD entering through the
SR mirror (SRM) from detector port has zero mean am-
plitude but non-zero vacuum noise aD, uncorrelated with
vacuum noise from the laser port and obeying the sim-

ilar commutation relation [aD(ω0 + Ω), a†D(ω0 + Ω′)] =
2πδ(Ω−Ω′). We unite these into vector-column of input
fields Ain = (AL, AD), so that the vector of mean input
fields is Ain0 = (AL0, 0) and the vector of perturbation
fields is ain = (aL, aD). Due to linearity of the system
input fields can be propagated throughout the interfer-
ometer as independent Fourier components.
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Consider first the case without SRM and with a fixed
membrane. The latter condition allows us to treat mean
and perturbation fields on equal footing. Input fields
(in this case coinciding with the fields incident on the
beamsplitter) linearly transform into the output fields:
first they split/combine on the beamsplitter, travel along
distances L in both arms, reflect from the steering mir-
rors, travel distances l1,2 towards the membrane, re-
flect/transmit on it, then travel backwards distances l1,2
and L and finally recombine at the beamsplitter. Each
transformation is defined by the corresponding transfer
matrix and the round-trip of light is defined by their
product, Aout = M

T
BSPLPlMmPlPLMBSAin ≡ MMSAin.

Here

MBS =

(

TBS −RBS

RBS TBS

)

, Mm =

(

−Rm Tm

Tm Rm

)

, (2)

are the transformation matrices of beamsplitter and
membrane, both chosen in real form (this is always pos-
sible due to Stokes relations), and

PL =

(

eikL 0
0 eikL

)

, Pl =

(

eikl1 0
0 eikl2

)

,

are the propagation matrices comprised of the phase
shifts along the horizontal/vertical arms (of length L)
and diagonal half-arms (of lengths l1,2). For mean fields
one should apply the substitution k = k0 and for per-
turbation fields k = k0 + K = k0 + Ω/c. The matrix
MMS thus represents the transformation matrix of a non-
recycled Michelson-Sagnac interferometer

MMS = e2ik(L+l)

(

ρ1 τ
τ ρ2

)

,

with

ρ1 = Rm

(

R2
BSe

ikδl − T 2
BSe

−ikδl
)

+ 2TmRBSTBS,

ρ2 = Rm

(

T 2
BSe

ikδl −R2
BSe

−ikδl
)

− 2TmRBSTBS,

τ = RmRBSTBS

(

eikδl + e−ikδl
)

+ Tm(T
2
BS −R2

BS).

Physically ρ1 is the reflectivity of the input laser field
back into the laser port, ρ2 = −ρ∗1 is the reflectivity of
input vacuum field back into detector port, and τ is the
transmissivity of the laser field into detector port and
vacuum field into laser port. One can check that the ma-
trix MMS is unitary, thus non-recycled MS interferome-

ter can be described as an effective mirror with reflectiv-

ity and transmissivity depending on membrane position

via δl. The dark port (dark fringe) condition for the
interferometer is achieved when the cross-transmittance
between input-output ports vanishes (in particular, no
mean power leaks into the detector port), corresponding
to τ = 0, or explicitly

cos k0δl = −
Tm

Rm

δBS
√

1− δ2BS

. (3)

In the case of a symmetric beamsplitter (δBS = 0) this is
satisfied for δl = nλ0/4 and odd n [56].

If the SRM is inserted then the out-going field in the
SR port is reflected back, such that the in-going fields
incident on the beamsplititer are defined by the equation

ABS = PRTRAin + PRRRPRMMSABS. (4)

Here ABS = (ABS1, ABS2) is the vector-column of in-
going beamsplitter fields (see Fig. 1), RR = diag(0, RSR)
with zero standing for the absence of power-recycling mir-
ror in laser port, PR = diag(1, eiklSR) is the propagation
matrix in BS-SR path, and TR = diag(1, TSR). Thus
the first summand on the RHS of Eq. (4) stands for the
input fields directly incident on the beamsplitter, while
the second summand corresponds to a single round trip
along the interferometer with reflection from the SRM.
Solution of this equation yields

ABS = (I− PRRRPRMMS)
−1

PRTRAin, (5)

where I is the 2× 2 unity matrix. Denote inverse matrix
in this solution as KMSR,

KMSR =
1

D

(

D 0
RSRτe

2ikL 1

)

, D = 1−RSRρ2e
2ikL.

This tells us that the MS interferometer with SR mir-

ror makes an effective Fabry-Perot cavity with associ-

ated resonance factor 1/D. The matrix element K
(2,2)
MSR

describes a resonant amplification of input vacuum field

inside the cavity, while K
(2,1)
MSR corresponds to the laser

field being partially transmitted into the SR port (hence
the proportionality to τ) and also enhanced inside the
cavity. In the ideal dark-port regime cross-transmittance
is suppressed, all laser field is reflected back into laser
port, and only the vacuum field from the detector port
resonates inside the cavity.
Note that the effective detuning of the laser carrier

from cavity resonance(s) is not solely defined by the
corresponding shift in frequnecy (or cavity length) in
contrast to the ordinary Fabry-Perot cavity. Assume
that kL = πN + δkL, N is integer, δkL ≪ 1, and
arg ρ2 = φDP + δφ, where φDP = arg ρ2|dark port and δφ
is the deviation from it due to offset from dark fringe via
membrane positioning. Then one can rewrite the inverse
resonance factor as

D = 1−RSR|ρ2|e
2iδkL+i arg ρ2 = 1−RSR|ρ2|e

2i∆kL,

such that the full detuning

∆k =

(

δk +
φDP

2L

)

+
δφ

2L
= δ′k +

δφ

2L
, (6)

is the sum of the ’conventional’ detuning δ = cδ′k of car-
rier frequency from cavity resonance at dark port, and an
additional detuning δφ/(2L) corresponding to the offset
from the latter.
The narrow-band limit is achieved when both SR mir-

ror and compound ’interferometer’ mirror possess high
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reflectivity, 1−RSR ≈ T 2
SR/2 ≪ 1 and 1− |ρ2| ≈ τ2/2 ≪

1. The half-linewidth of the cavity is then

γ =
1−RSR|ρ2|

2L/c
≈

cT 2
SR

4L
+

cτ2

4L
. (7)

Therefore, the total cavity linewidth accounts for finite
SRM transmittance and finite transmittance of the in-
terferometer operated off dark port; since τ = τ(δl), the
latter contribution describes modulation of the linewidth
by the motion of the membrane, thus implementing dis-
sipative coupling, as discussed already in [46]. If the op-
tical losses in the system are symmetric with respect to
interferometer arms, then one can add the corresponding
loss factor to T 2

SR, since it is the SRM that couples vac-
uum noise into the interferometer. Otherwise, one can
take asymmetric losses into account, for example, by as-
signing finite transmittances to the steering mirrors M1,2

and taking into account vacuum noises entering through
them.

IV. STOCHASTIC BACK-ACTION

In order to determine the radiation pressure force act-
ing on the membrane we need to determine the fields on
the membrane surfaces. In-going fields on the beamsplit-
ter (5) propagate along the arms and transform into the
fields incident on the membrane (Am1, Am2) = Am =
PlPLMBSABS and reflected from it (Bm1, Bm2) = Bm =
MmAm, see Fig. 1. In terms of input fields

Am = MAAin; MA = PlPLMBSKMSRPRTR, (8a)

Bm = MBAin; MB = MmPlPLMBSKMSRPRTR. (8b)

The components of matricesMA andMB are presented in
the Appendix. Denote these transfer matrices separately
for mean fields as MA0

= MA|k=k0
, MB0

= MB|k=k0
and

perturbation fields as Ma(Ω) = MA|k=k0+K , Mb(Ω) =
MB |k=k0+K .
The radiation pressure force exerted on the membrane

is then given by

F (t) = −
A

4π

〈

A2
m1(t) +B2

m1(t)−A2
m2(t)−B2

m2(t)
〉

,

(9)
where averaging is performed over the period of electro-
magnetic oscillations. Ignoring the D.C. contribution and
linearizing with respect to perturbation terms, the spec-
trum of the force reads

FBA(Ω) = 2~k0RmA
∗T
in0M

∗T
A0

Mb(Ω)ain(ω0 +Ω)

+ 2~k0RmA
T
in0M

T
A0

M
∗
b(−Ω)a†

in(ω0 − Ω).

This is the radiation pressure noise, also addressed
as back-action noise or stochastic back-action, i.e. the
time-varying radiation pressure that is solely caused
by the fluctuations of optical fields. The unsym-
metrized spectral density of stationary back-action noise

is computed from the equation 2πδ(Ω − Ω′)SF (Ω
′) =

〈0|FBA(Ω)F
†
BA(Ω

′)|0〉, yielding

SF (Ω) =
4~k0
c

R2
mPin

|D0D(Ω)|2

{

|L(Ω)|
2
+ T 2

SR |D(Ω)|
2
}

,

(10)

L(Ω) = α1

(

1 +R2
SRe

2iKL
)

+ α2RSRe
2i(k0+K)L

+ α∗
2RSRe

−2ik0L,

D(Ω) = β1 + β2RSRe
−2ik0L,

α1 = TmRBSTBS

(

eikδl + e−ikδl
)

−Rm(T
2
BS −R2

BS),

α2 = T 2
BSe

ikδl +R2
BSe

−ikδl,

β1 = Tm

(

T 2
BSe

ikδl − R2
BSe

−ikδl
)

+ 2RmRBSTBS,

β2 = RBSTBS

(

eikδl − e−ikδl
)

.

Here Pin = ~ω0|AL0|
2 is the input laser power, D0 =

D|k=k0
is the resonant multiplier for mean fields and

D(Ω) = D|k=k0+K is the resonant multiplier for per-
turbation fields. Remember though that the measur-
able spectral density of stationary noise is the sym-
metrized one. For back-action noise it is evaluated
from the symmetrized relation 2πδ(Ω − Ω′)SF (Ω

′) =
1
2 〈0|FBA(Ω)F

†
BA(Ω

′) + F †
BA(Ω)FBA(Ω

′)|0〉, or explicitly

SF (Ω) = 1
2 SF (Ω) +

1
2 SF (−Ω). However, the unsym-

metrized spectral density makes a useful calculational
tool, since in addition to its symmetric part being the
measurable spectral density of back-action noise, its anti-
symmetric part is proportional to the introduced optical
damping (see Sec. V). It also possesses certain heuris-
tic value, in particular, giving an insight into the phe-
nomenon of quantum noise interference. In this regard we
refer also to the considerations presented in Ref. [48] on
the interpretation of noise measurements of the ground-
state cooling experiment [23].
The factors L and D in Eq. (10) describe contributions

of vacuum noises from laser (aL) and detector ports (aD)
respectively. Note that the contribution of aD vanishes
in the case of 100% reflective SR mirror, which is the
case considered in Ref. [46]: aL enters the interferome-
ter and, if the latter is slightly offset from dark fringe, a
small portion of aL is transmitted into the SR port and
gets enhanced in the effective cavity. Therefore, the field
on the membrane surface is the sum of two fields, one
that directly entered the interferometer from the input
port and a second one which is given by the intracavity
field. The former contribution is white shot noise while
the latter one is the white noise Lorentz-filtered by the
cavity, such that their interference leads to an asymmet-
ric Fano-like profile in the shape of SF (Ω), as described in
Ref. [41]. Indeed, the frequency-dependent factor L(Ω) in
Eq. (10) distorts the Lorentz-type denominator D(Ω) cre-
ating an asymmetric profile with a characteristic dip at a
particular frequency ΩFano where SF (ΩFano) = 0, being
the result of negative interference between input and in-
tracavity fields, see Fig. 3a. In cavity optomechanics this
is identified with the emergence of dissipative coupling
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FIG. 3: Normalized (non-symmetrized) spectral densities
of back-action noise for different membrane positions, ξ =
δl − δlDP and δlDP is defined by Eq. (3). For better visu-
alization we choose membrane power reflectivity R2

m = 0.3,
beamsplitter asymmetry δBS = −0.3 and detuning ∆ = 0. a:
R2

SR = 1. b: R2

SR = 0.7.

[41, 45, 46]

The expression for ΩFano is derived from the equation
for |L(Ω)|2 = 0. In a narrow-band and low-frequency ap-
proximation one finds L(Ω) ≈ 2(α1 +ℜα̃2) + 2iΩL

c (α1 +

ℜα̃2 + iℑα̃2) + 2i∆L
c 2iℑα̃2, where α̃2 = α2e

−i arg ρ2 and
∆ = c∆k is the detuning in frequency. In the par-
ticular regime of pure dissipative coupling the constant
term (corresponding to dispersive coupling) vanishes,
α1 + ℜα̃2 = 0, such that L(ΩFano) = 0 if ΩFano = −2∆,
in agreement with Ref. [41].

Note also that if the interferometer with perfectly sym-
metric beamsplitter is tuned to dark port, the contribu-
tion of vacuum noise from the laser port in the back-
action spectral density vanishes. This happens because
counter-propagating beams in two arms are perfectly cor-
related so that the radiation pressure fluctuations caused
by them cancel each other.

In a realistic interferometer, the SR mirror is not
100% reflective, therefore aD enters the interferometer
and gets resonantly enhanced. One would expect that
its contribution to back-action noise has the form of a
Lorentz factor, since there is no white vacuum noise from
detector port to interfere with. Indeed, the factor D

is frequency-independent, such that the frequency de-
pendence of the aD contribution is solely defined by a
Lorentz-type denominator D(Ω), corresponding to pure
dispersive coupling in an effective cavity. Therefore, in
the back-action spectral density, the Lorentz-like sum-
mand adds to the Fano-like summand, leading to the
blurring of characteristic features of Fano curve as illus-
trated in Fig. 3b. Vacuum noise from detector port no
longer allows SF (Ω) reaching zero, although the dip near
ΩFano is still present. In an interferometer with symmet-
ric beamsplitter and tuned to dark port, the contribution
of vacuum noise from laser port cancels out, leaving only
a pure Lorentzian back-action of vacuum noise from de-
tector port.

V. DYNAMIC BACK-ACTION

Consider now a movable membrane with position op-
erator xm(t) with a corresponding Fourier-transformed
operator xm(Ω). According to perturbation the-
ory the fields on the membrane surfaces will have
contributions of zeroth and first order in the me-
chanical displacement. One finds Bm0 = MmAm0

and bm = Mmam + 2ik0xmRmAm0. Thus the per-
turbation fields now contain both optical noises
and the displacement of the membrane. Since
the treatment of mean fields remains unchanged,
we consider only the perturbation terms. The in-
going fields on the beamsplitter are defined by the
equation aBS = PRTRain + PRRRPRMMSaBS +
PRRRPRM

T
BSPLPl 2ik0xm(Ω)RmAm0, with

solution aBS = KMSRPRTRain +
2ik0xmKMSRPRRRPRM

T
BSPLPlRmAm0. Thus the

incident and reflected fields on the membrane surfaces
are

am = Maain + 2ik0xmMaxAm0, (11a)

bm = Mbain + 2ik0xm(RmI+MmMax)Am0. (11b)

The components of the relevant matrix

Max = PlPLMBSKMSRPRRRPRM
T
BSPLPlRm.

are presented in the Appendix.
Substituting mean fields from Eqs. (8a, 8b) and pertur-

bations fields (11a, 11b) into Eq. (9), ignoring the D.C.
part and linearizing with respect to perturbation terms,
one ends up with F (Ω) = FBA(Ω) + Fx(Ω). Here FBA

is the radiation pressure noise considered in Sec. IV, and
Fx(Ω) = −K(Ω)xm(Ω) is the ponderomotive force, i.e.
dynamical part of the radiation pressure force caused
by the motion of the membrane. The coefficient K(Ω)
modifies the dynamics of the membrane, and therefore
represents the dynamic back-action,

K(Ω) =
2ik0
c

RmPin

[

K(1,1)(Ω)−K
∗
(1,1)(−Ω)

]

, (12)

K(Ω) = M
∗T
B0

[σ3 − 2Max(Ω)]MA0
,

with σ3 = diag(1,−1). If one denotes K(Ω) ≡ ℜ[K(Ω)]
and Γ(Ω) ≡ − 1

2ℑ[K(Ω)]/Ω, then the corresponding shifts
of the square of intrinsic mechanical frequency and damp-
ing rate are equal to K/m and Γ/m [57].
The explicit formula for K(Ω) is rather involved in

the general case. We therefore present it using the fol-
lowing simplifying assumptions: (i) balanced beamsplit-
ter, δBS = 0, (ii) small displacements 〈δx〉 of the mem-
brane from the position corresponding to dark fringe,
〈δx〉 = ξ/2, ξ = δl − δlDP, δlDP = nλ0/4, n is odd,
k0ξ ≪ 1, and (iii) single optical mode with narrow
linewidth, γL/c ≪ 1. We also introduce the notations
(cf. Eqs. (6, 7)),

γ = γSR + γm, γSR =
cT 2

SR

4L
, γm =

cR2
m(k0ξ)

2

4L
,
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∆ = δSR + δm, δSR = ω0 − ωc, δm = ±
cRmTm(k0ξ)

2

4L
.

Here ωc is the cavity resonance of interest in dark port
regime, and the sign of δm alternates in the sequence of
dark ports, starting with ’+’ for n = 1 (we assume that
amplitude reflectivity and transmissivity are always posi-
tive). Note that both shifts in linewidth (γm) and detun-
ing (δm) due to offset from dark fringe are quadratic in

displacement. Under these assumptions Eq. (12) greatly
simplifies to

K(Ω) =
4ω0R

2
mPin

cL

1

∆2 + (γ − iΩ)2

×

{

δSR[γ
2 +∆2 − 4(γγm +∆δm)]

γ2 +∆2

+
2i(γSRδm + γmδSR)Ω + δmΩ

2

γ2 +∆2

}

. (13)

This dynamic back-action possesses rich properties due
to the complicated dependence on ∆ and Ω. For ξ = 0
(on dark port) Eq. (13) reduces to Eqs. (1a, 1b). Off
dark port for ξ 6= 0 typical plots of the ’anomalous’
optical rigidity K = K(∆) and damping Γ = Γ(∆)
are illustrated in Fig. 2c,d. One immediately notices
that K(Ω)|∆=0 6= 0 in general case. For optical damp-
ing this means that cooling of the membrane on reso-
nance is possible. Several crossings of zero imply the
appearance of additional regions of stability/instability
on either side of the resonance. Note that using the
fluctuation-dissipation theorem, one can reproduce the
curves for Γ = Γ(∆;ωm) at fixed mechanical frequency
ωm, from unsymmetrized back-action spectral density
(10): since the emission/absorbtion rates of field quanta
by the mechanical oscillator are defined by SF (±ωm),
optical damping is proportional to their difference, Γ ∼
SF (ωm) − SF (−ωm), i.e. to the antisymmetric part of
spectral density [2].
Remember that in the effective-cavity approach, the

transformation of the ’canonical’ Lorentzian profile of SF

into the mixture of Lorentz- and Fano-like ones is gov-
erned by the interplay between dispersive and dissipative
couplings in the cavity. Therefore, one can argue that the
same mechanism leads to the transformation of ’canoni-
cal’ dynamic back-action into the ’anomalous’ one. Dy-
namic back-action corresponding to the pure dissipative
coupling was considered in Ref. [45] in the context of cav-
ity optomechanics. It was shown that although both op-
tical spring and damping still remain antisymmetric with
respect to ∆ (and vanish at ∆ = 0), damping acquires
additional regions of stability/instability.
Consider now a 100% reflective membrane in the MS

interferometer. This is equivalent to a pure Michelson in-
terferometer and, specifically, reproduces basic topology
of the GW detectors where the differential motion of the
end mirrors correspond to the motion of the membrane
in the MS interferometer. Therefore the case of a quasi
free mass, Ω → 0, is of particular interest. In this limit

Eq. (13) reduces to

K =
4ω0Pin

cL

∆

γ2 +∆2

[

1−
4γγm

γ2 +∆2

]

, (14a)

Γ = −
4ω0Pin

cL

γ∆

(γ2 +∆2)2

[

1−
γm
γ

3γ2 −∆2

γ2 +∆2

]

. (14b)

Both K and Γ vanish on resonance, and one can check
using Eq. (13) that this feature holds for any Ω. Terms
in square brackets in Eqs. (14a, 14b) represent the de-
viations from ’canonical’ formulas. According to them,
optical spring can have three zeroes at ∆ = 0 and
∆ = ±

√

γ(4γm − γ), if γm > γ/4. Remember that
the ’canonical’ spring (1a) only has one zero for small
Ω. Similarly, the optical damping can also cross zero
three times at ∆ = 0 and ∆ = ±γ

√

(3γm − γ)/(γ + γm),
if γm > γ/3. Thus, for a large enough offset from
dark fringe, one gets several intersecting regions of posi-
tive/negativeK and Γ, as illustrated in Fig. 2b. This may
have an impact on the operation of advanced GW detec-
tors, since they will utilize the DC-readout scheme, when
a small offset from dark fringe is created artificially to
get some mean power for homodyning, thus resulting in
’anomalous’ spring/damping, if ∆ 6= 0 and the offset from
dark fringe ξ is large enough. This can raise certain con-
trol issues, in turn. For the ’anomalous’ spring/damping
to be manifest (at least at low frequencies), one can use
the following rough estimation of the corresponding value
of ξ: γm > γSR/2, or explicitly, ξ/λ0 >

√

T 2
SR/(8π

2).
Note, however, that the MS interferometer under consid-
eration includes neither power-recycling technique, nor
arm-cavities, therefore this estimation should be applied
to realistic interferometers with certain reserve.
Accurate analysis of stability reveals that there exists

a certain region of parameters where the set of K and
Γ makes a stable configuration. This can be utilized
for the reduction of quantum noise in the interferometric
topologies, designed to overcome the standard quantum
limit, that rely on the effect of optical spring (such as de-
tuned SR-topologies, optical bars [49] and optical levers
[49, 50]), since it becomes possible to sustain stable op-
tical spring with only a single laser carrier, that is not
possible with conventional optical spring.

VI. OBSERVATION OF ANOMALOUS,

TWO-SIDED DYNAMICAL INSTABILITY

Our experimental setup was in direct analogy to
Fig. 1. The Michelson-Sagnac interferometer [51] had
an arm length of about 7.5 cm and contained a non-
stoichiometric silicon nitride (SiN) membrane arranged
such that its two transmitted and its two reflected
beams overlapped with an interference contrast of greater
99.9%. The MS interferometer acted as a compound
retro-reflector for light that entered either of its two
ports. Its reflectivity was a function of the microscopic
position of the membrane along the direction of the laser
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beam. We controlled the membrane position via a piezo-
electric element (piezo). A highly reflective cavity mir-
ror (R2

SR = 99.97%) located in the signal output port,
with a macroscopic distance of 1.2 cm to the beamsplit-
ter, established a standing-wave signal-recycling cavity
[52], whose second end mirror was defined by the MS
interferometer. Similar to current gravitational wave de-
tector arrangements, the light leaving this port was de-
tected by a PIN photo diode. The experiment was car-
ried out with laser light at a wavelength of 1064nm. The
membrane’s normal incidence power reflectivity at this
wavelength was R2

m = 17%. The membrane had a thick-
ness of 40 nm, a side length of 1.5mm and a resonance
frequency of 133 kHz [53]. The interferometer was oper-
ated inside a vacuum chamber to avoid gas damping or
acoustic excitation of the membrane motion. We deter-
mined the mechanical quality factor Q of the fundamen-
tal oscillation mode for different pressures. As result, we
found Q = 6 · 105 for gas pressures below 4 · 10−6mbar.
A detailed description of the interferometer is given in
Refs. [54, 55].

For all membrane positions our interferometric cav-
ity arrangement operated outside the resolved sideband
regime due to the membrane’s low resonance frequency,
the short cavity round trip length of 2 ·8.7 cm, and intra-
cavity losses mainly caused by the imperfect beam split-
ter. The cavity thus resonantly enhanced the upper and
lower signal sidebands produced by the membrane mo-
tion as well as the remaining dim carrier light in a broad-
band fashion.

In a first series of measurements we positioned the
membrane such that the carrier light of all four beams
reflected off and transmitted through the membrane
showed a strong destructive interference in the interfer-
ometer’s signal output port, i.e. established an almost
dark port. We observed parametric cooling as well as
heating as it is well-known for dispersive optomechanics.
When the pump light was blue detuned with respect to
the cavity resonance we observed strong heating of the
mechanical motion. For a red detuned cavity we observed
optical cooling as expected. In a second series of measure-
ments we positioned the membrane such that about 1%
of the input laser light was transmitted through the SR
cavity, which corresponded to the maximal light trans-
mission through the cavity arrangement possible. Fig. 4
shows the light power transmitted through the SR cavity
when the position of the SR mirror was slowly scanned
over cavity resonance. At the start of the scan the SR
cavity was too long to resonate. When the optical res-
onance was approached, first, the dynamical instability
occurred that is also present for operations close to the
interferometer dark port. On cavity resonance the oscil-
lations were rapidly damped indicating a region of stabil-
ity. When the cavity was further shortened, not optical
cooling but a second distinct instability occurred, as pre-
dicted for the anomalous dynamic back-action off dark
port. As shown in the right part of Fig. 4 the amplitude
of this instability was significantly smaller than that on
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FIG. 4: Black: Time series of the Michelson Sagnac inter-
ferometer’s output power Pout while linearly decreasing the
signal recycling cavity length. The dashed blue line is a lin-
ear fit to the piezo voltage. For fast cavity length scans an
undisturbed cavity resonance peak was found (solid orange
line) since there was not sufficient time for the instabilities
to build up. For slow scanning speeds, as given by the x-axis
labeling, instabilities on both sides of the resonance were ob-
served. Both resonances were dynamical, i.e. one or more fre-
quencies were attributed to them. When the detuning crosses
zero (resonant case), the oscillations were damped indicating
a regime of stability.

the left branch.

VII. SUMMARY AND CONCLUSION

In this paper we theoretically and experimentally ana-
lyzed the optomechanics of a signal-recycled Michelson-
Sagnac interferometer containing a semitransparent
membrane. In contrast to previous works we did not
restrict our consideration to the dark port regime of op-
eration but rather considered a general situation cor-
responding to the arbitrary position of the membrane.
Such an interferometer can be equivalently described as
an effective Fabry-Perot cavity with one of the mirrors
having a reflectivity that depends on the position of the
membrane. Mechanical motion of the latter modulates
resonance frequencies and linewidth of the effective cav-
ity, featuring the so-called dispersive and dissipative cou-
plings. In particular, unsymmetrized spectral density of
back-action noise exhibits the mixture of Lorentz- and
Fano-like resonances, the latter owned to the interference
of input and intracavity laser fields on the membrane.

We then proceeded with the study of dynamic back-
action effects, optical spring and optical damping. We
found that in the interferometer operated off dark port,
these effects behave differently from the conventional
ones: both spring and damping become highly asymmet-
ric with respect to detuning and acquire non-zero values
at zero detuning. This, in principle, allows cooling of the
membrane on resonance. Additionally, optical damping
acquires several regions of stability and instability.

We presented experimental data that indeed proves the
existence of two regions of instability for a membrane
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Michelson-Sagnac interferometer operated off dark port.
The instabilities were observed for red as well as for blue
detuned laser light. Both instabilities were dynamical
and showed quantitative differences in their oscillation
amplitudes. A detailed quantitative characterization of
both instability regions is in progress.
In the extreme case of a 100% reflecting membrane,

corresponding to the well-studied pure Michelson inter-
ferometer, dynamic back-action vanishes on resonance
independently of the dark-port offset, but demonstrates
’anomalous’ features when operated off-resonance and off
dark-port: both optical spring and damping exhibit sev-
eral intersecting regions of positive/negative values (for a
large enough offset). For a certain region of parameters
this allows, in particular, maintaining the stable set of
optical spring and damping with only a single laser car-
rier in a free-mass interferometer. Moreover, advanced
gravitational-wave detectors with DC-readout that are
currently under construction, can also encounter anoma-
lous optical spring off-resonance (given large enough off-
set from the dark fringe), raising certain control issues.
Our analysis thus demonstrates that the interferom-

eters operated off dark port violate the scaling law in
the sense that the latter one only covers the equivalence
between a Fabry-Perot cavity and the interferometers op-
erated at dark port. This opens new possibilities for de-
signing the interferometer topologies aimed at reduction
of quantum noise and overcoming the standard quantum
limit in gravitational-wave detectors. On the other hand,
in cavity optomechanics these effects may turn helpful for
finding new regimes of cavity-assisted cooling.
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Appendix A: Useful matrices

Matrix MA:

M
(1,1)
A = D−1

[

TBS

(

1−RmRSRe
2ik(L+δl/2)

)

+RBSTmRSRe
2ikL

]

eik(L+l−δl/2),

M
(1,2)
A = −D−1TSRRBSe

ik(L−δl/2),

M
(2,1)
A = D−1

[

RBS

(

1 +RmRSRe
2ik(L−δl/2)

)

+ TBSTmRSRe
2ikL

]

eik(L+l+δl/2),

M
(2,2)
A = D−1TSRTBSe

ik(L+δl/2).
Matrix MB:

M
(1,1)
B = D−1

[

−TBS

(

Rm −RSRe
2ik(L+δl/2)

)

+ TmRBSe
ikδl

]

eik(L+l−δl/2),

M
(1,2)
B = D−1TSR

(

RBSRm + TmTBSe
ikδl

)

eik(L−δl/2),

M
(2,1)
B = D−1

[

RBS

(

Rm +RSRe
2ik(L−δl/2)

)

+ TmTBSe
−ikδl

]

eik(L+l+δl/2),

M
(2,2)
B = D−1TSR

(

TBSRm − TmRBSe
−ikδl

)

eik(L+δl/2).

Matrix Max:

M
(1,1)
ax = D−1RmR

2
BSRSRe

2ik(L−δl/2),

M
(2,2)
ax = D−1RmT

2
BSRSRe

2ik(L+δl/2),

M
(1,2)
ax = M

(2,1)
ax = −D−1RmRBSTBSRSRe

2ikL.

[1] V. B. Braginsky and F. Ya. Khalili, Quantum Measure-
ment (Cambridge University Press, Cambridge, 1992).

[2] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt,
R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010),
arXiv:0810.4729v2 [cond-mat.mes-hall].

[3] S. L. Danilishin, F. Ya. Khalili, Liv. Rev. Rel.
15, 5 (2012), URL http://http://relativity.

livingreviews.org/Articles/lrr-2012-5.
[4] V. B. Braginsky, Sov. Phys. JETP 26, 831 (1968).
[5] V. B. Braginsky and Yu. I. Vorontsov, Sov. Phys. Usp.

17, 644 (1975).
[6] V. B. Braginsky, Yu. I. Vorontsov and F. Ya. Khalili, Sov.

Phys. JETP 46, 705 (1977).
[7] T. P. Purdy, R. W. Peterson, C. A. Regal, to be pub-

lished (2012), arXiv:1209.6334 [quant-ph].
[8] V. B. Braginsky, A. B. Manukin, Sov. Phys. JETP 25,

653 (1967).
[9] V. B. Braginsky, A. B. Manukin, M. Yu. Tikhonov, Sov.

Phys. JETP 31, 829 (1970).
[10] T. Corbitt, D. Ottaway, E. Innerhofer, J. Pelc, N. Maval-

vala, Phys. Rev. A 74, 021802(R) (2006), arXiv:gr-
qc/0511022.

[11] I. Wilson-Rae, N. Nooshi, W. Zwerger, T. J. Kippen-
berg, Phys. Rev. Lett. 99, 093901 (2007), arXiv:cond-
mat/0702113 [cond-mat.mes-hall].

[12] F. Marquardt, J. P. Chen, A. A. Clerk, S. M. Girvin,
Phys. Rev. Lett. 99, 093902 (2007), arXiv:cond-
mat/0701416 [cond-mat.mes-hall].

[13] O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard and
A. Heidmann, Nature 444, 71 (2006).

[14] P. F. Cohadon, A. Heidmann and M. Pinard, Phys. Rev.
Lett. 83, 3174 (1999).



11

[15] S. Gigan, H. R. Bhm, M. Paternostro, F. Blaser,
G. Langer, J. B. Hertzberg, K. C. Schwab, D. Buerle,
M. Aspelmeyer and A. Zeilinger, Nature 444, 67 (2006).

[16] S. Grblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole,
S. Gigan, K. C. Schwab and M. Aspelmeyer, Nature
Physics 5, 485 (2009).

[17] C. H. Metzger, K. Karrai, Nature 432, 1002 (2004).
[18] C. A. Regal, J. D. Teufel and K. W. Lehnert, Nature

Physics 4, 555 (2008).
[19] R. Rivire, S. Delglise, S. Weis, E. Gavartin, O. Arcizet,

A. Schliesser and T. J. Kippenberg, Phys. Rev. A 83,
063835 (2011).

[20] T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg,
A. A. Clerk and K. C. Schwab, Nature 463, 72 (2010).

[21] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Mar-
quardt, S. M. Girvin, J. G. E. Harris, Nature 452, 72
(2008).

[22] J. D. Teufel et al., Nature 475, 359 (2011).
[23] J. Chan et al., Nature 478, 89 (2011).
[24] V. B. Braginsky, M. L. Gorodetsky, F. Ya. Khalili, Phys.

Lett. A 232, 340 (1997).
[25] F. Ya. Khalili, Phys. Lett. A 288, 251 (2001), arXiv:gr-

qc/0107084.
[26] M. Rakhmanov, Ph.D. thesis, California Institute of

Technology (2000), URL http://www.ligo.caltech.

edu/docs/P/P000002-00.pdf.
[27] A. Buonanno, Y. Chen, Phys. Rev. D 65, 042001 (2002),

arXiv:gr-qc/0107021.
[28] A. Buonanno, Y. Chen, Phys. Rev. D 67, 062002 (2003),

arXiv:gr-qc/0208048.
[29] V. I. Lazebny, S. P. Vyatchanin, Phys. Lett. A 344, 7

(2005).
[30] F. Ya. Khalili, V. I. Lazebny, S. P. Vyatchanin, Phys.

Rev. D 73, 062002 (2006), arXiv:gr-qc/0511008.
[31] www.advancedligo.mit.edu.
[32] H. Rehbein, H. Mueller-Ebhardt, K. Somiya, S. L. Danil-

ishin, R. Schnabel, K. Danzmann, Y. Chen, Phys. Rev.
D 78, 062003 (2008), arXiv:0805.3096 [gr-qc].

[33] T. Corbitt, Y. Chen, H. Mueller-Ebhardt, E. Inner-
hofer, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb,
C. Wipf, N. Mavalvala, Phys. Rev. Lett. 98, 150802
(2007), arXiv:quant-ph/0612188v2.

[34] A. Rakhubovsky, S. Hild, S. Vyatchanin, Phys. Rev. D
84, 062002 (2011), arXiv:1102.4266 [gr-qc].

[35] A. Rakhubovsky, S. Vyatchanin, Phys. Lett. A 376, 1405
(2012), arXiv:1201.6196 [gr-qc].

[36] F. Khalili, S. Danilishin, H. Mueller-Ebhardt, H. Miao,
Y. Chen, C. Zhao, Phys. Rev. D 83, 062003 (2011),
arXiv:1010.1124 [gr-qc].

[37] G. M. Harry (for the LIGO Scientic Collaboration),
Class. Quantum Grav. 27, 084006 (2010).

[38] LIGO Scientific Collaboration, LIGO document
T1200199 (2012), URL https://dcc.ligo.org/public/

0091/T1200199/002/wp2012.pdf.
[39] R. Adhikari, K. Arai, S. Ballmer, E. Gustafson, S. Hild,

LIGO document T1200031 (2012).
[40] ET Science Team, ET-0106C-10 (2011), URL

https://tds.ego-gw.it/itf/tds/file.php?callFile=

ET-0106C-10.pdf.
[41] F. Elste, S. M. Girvin, A. A. Clerk, Phys. Rev. Lett. 102,

207209 (2009), arXiv:0903.2242v2 [cond-mat.mes-hall].
[42] M. Li, W. H. P. Pernice and H. X. Tang, Phys. Rev. Lett.

103, 223901 (2009).
[43] S. Huang and G. S. Agarwal, Phys. Rev. A 82, 033811

(2010).
[44] S. Huang and G. S. Agarwal, Phys. Rev. A 81, 053810

(2010).
[45] T. Weiss, C. Bruder, A. Nunnenkamp, to be published

(2012), arXiv:1211.7029 [quant-ph].
[46] A. Xuereb, R. Schnabel, K. Hammerer, Phys. Rev. Lett.

107, 213604 (2011), arXiv:1107.4908 [physics.optics].
[47] B. Willke et al., Class. Quantum Grav. 23, S207 (2006).
[48] F. Ya. Khalili, H. Miao, H. Yang, A. H. Safavi-

Naeini, O. Painter, Y. Chen, to be published (2012),
arXiv:1206.0793 [quant-ph].

[49] F. Ya. Khalili, Phys. Lett. A 317, 169 (2003), arXiv:gr-
qc/0304060v1.

[50] S. L. Danilishin, F. Ya. Khalili, Phys. Rev. D 73, 022002
(2006), arXiv:gr-qc/0508022v1.

[51] K. Yamamoto, D. Friedrich, T. Westphal, S. Goßler,
K. Danzmann, K. Somiya, S. L. Danilishin, R. Schna-
bel, Rev. Rev. A 81, 33849 (2010), arXiv:0912.2603v2
[quant-ph].

[52] B. J. Meers, Phys. Rev. D 38, 2317 (1988).
[53] H. Kaufer, A. Sawadsky, T. Westphal, D. Friedrich,

R. Schnabel, New J. Phys. 14, 095018 (2012),
arXiv:1205.2241 [quant-ph].

[54] D. Friedrich, H. Kaufer, T. Westphal, K. Yamamoto,
A. Sawadsky, F. Y. Khalili, S. Danilishin, S. Goßler,
K. Danzmann, R. Schnabel, New J. Phys. 13, 93017
(2011), arXiv:1104.3251 [physics.optics].

[55] T. Westphal, D. Friedrich, H. Kaufer, K. Yamamoto,
S. Goßler, H. Müller-Ebhardt, S. L. Danilishin, F. Ya.
Khalili, K. Danzmann, and R. Schnabel, LSC review
(2011).

[56] For other choices of transfer matrices (2) the dark port
condition will correspond to a different δl but this is in-
significant, since the absolute phase does not matter

[57] Assuming that the equation of motion of the membrane
is of the following form: ẍ+ 2γmẋ+ ω2
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