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Abstract
In light–matter interfaces based on the Faraday effect, quite a number of quantum information
protocols have been successfully demonstrated. In order to further increase the performance
and fidelities achieved in these protocols, a deeper understanding of the relevant noise and
decoherence processes needs to be gained. In this paper, we provide for the first time a
complete description of the decoherence from spontaneous emission. We derive from first
principles the effects of photons being spontaneously emitted into unobserved modes. Our
results relate the resulting decay and noise terms in effective equations of motion for collective
atomic spins and the forward-propagating light modes to the full atomic level structure. We
illustrate and apply our results to the case of a quantum memory protocol. Our results can
be applied to any alkali atoms, and the general approach taken in this paper can be applied to
light–matter interfaces and quantum memories based on different mechanisms.

1. Introduction

The strong and coherent interaction of light with matter
is a prerequisite for many approaches towards quantum
information technologies. In particular, long-distance quantum
communication relies on efficient light–matter interfaces
which allow for a coherent transfer of quantum information
from light to stationary carriers and back [1]. Also architectures
for quantum computations based on light will depend on
efficient light–matter interfaces for buffering and storing
quantum information carried by light.

Optically dense atomic ensembles have proven to be
a particularly promising technique for achieving strong
coherent light–matter interaction. Thereby, quantum states of
propagating pulses of light are mapped onto states of collective
atomic (pseudo) spins. This essentially requires a mechanism
to fiducially and reversibly convert photons into ground
state spin excitations with long coherence times. Several
mechanisms have been explored for realizing such an atomic
ensemble-based light–matter interface, e.g. Raman transitions,
electromagnetically induced transparency [2–4], spin echoes
[5] and Faraday rotation; see [6–8] for comprehensive reviews.
The Faraday effect—which will be the topic of this paper—
consists in the rotation of light polarization depending on

atomic spin polarization and vice versa. In the context of the
light–matter interface, it has been successfully used to create
squeezed states for spin [9, 10] and light [11, 12], entangled
states of collective atomic ensembles [13, 14], quantum
teleportation from states of light to atoms [15], and quantum
memory for light [16, 17]. Apart from the light–matter
interface, the Faraday interaction has important applications
also in continuous nondemolition measurement of atomic spin
ensembles [18, 19], quantum-state control/tomography [20]
and magnetometry [21–23].

These protocols can all be understood in terms of a rather
simple model of the Faraday interaction. In this model, atoms
are assumed to have a spin 1

2 ground state and a spin 1
2 excited

state [24]. Far off resonant light probing this dipole-allowed
transition will then experience a polarization rotation due to
the dipole selection rules for such a 1

2 → 1
2 transition. By the

same effect, the atomic polarization will be rotated by light.
For far off resonant light, atoms will be only very weakly
excited such that this birefringence of the atomic medium
can be understood as being due to the polarizability of the
atomic ground states alone [25, 26]. The coherent interaction
of light with atoms arises from the real part of the atomic
polarizability. By the Kramers–Kronig relation, it is clear that
the corresponding imaginary part will necessarily be non-zero
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Figure 1. Level structure of caesium. We assume that our laser light
is blue detuned by an amount −� from the transition
F = 4 → F ′ = 5.

and add some incoherent effects to the dynamics. Sure enough,
these effects can be understood as resulting from spontaneous
emission events. They will cause both decoherence of light
(absorption) and decoherence of atoms (spin decay). While
both effects can be kept small as compared to the coherent
dynamics, they are ultimately unavoidable on a fundamental
level.

Both decoherence effects—light losses and spin decay—
can be included on the level of the simple spin 1

2 model giving
a qualitative understanding of the tradeoff between coherent
and incoherent contributions to the light–matter interaction
[27–29]. However, in view of the experimental achievements,
it will become increasingly important to further gain a detailed
and more quantitative understanding of these effects and the
resulting tradeoff. A theoretical description based on a realistic
atomic level scheme, such as the one shown in figure 1, and
starting from first principles has not been given so far. In this
paper we will provide such a description.

From the standard dipole interaction of a single multi-
level atom with the three-dimensional electromagnetic field,
we consistently derive effective equations of motion for the
collective ground state spin and the forward-propagating light
modes relevant to the description of the light–matter interface.
In the derivation, we will keep track of the effects of events
where photons are emitted to any other than the forward
direction. This eventually adds decay and noise terms to the
equations of motions whose origin and dependence on the
details of the atomic level structure are fully understood and
explained for the first time in this paper. Important steps
towards a deeper understanding have been taken before in
[[30]. The insight gained by the detailed knowledge of losses
and decoherence will enable an optimized operation of the
light–matter interface based on the Faraday interaction, and
therefore contribute to boost its performance and fidelity.

The paper is organized as follows. In section 2, we will
briefly summarize the Faraday rotation effect and connect it to
the atomic polarizability. In section 3, we give a description of
the coherent part of the dynamics, deriving effective equations

of motion for collective atomic spins and forward-propagating
modes. We will write down and solve these equations of
motion also for canonical operators for light and atoms,
and illustrate the working principle of a quantum memory
protocol. In section 4, we arrive at the main results of this
paper and include in our derivation spontaneous emission
and decoherence starting from first principles. The resulting
equations of motion can again be expressed and integrated
in terms of canonical operators. As an illustration we apply
the result to the quantum memory protocol. In section 5, we
provide a self-contained executive summary of our results.
Readers just interested in applying the correct model for
decoherence in the Faraday based light–matter interface can
directly consult this section.

2. Effective interaction

We consider alkali atoms, which have a single electron outside
a closed shell. This electron will be in an S1/2-state, giving two
stable ground levels: a higher and a lower hyperfine manifold,
describing respectively a state where the electronic spin J = 1

2
3

is parallel to the nuclear spin I giving a total of F = I + 1
2 and

a state where the spins are pointing opposite giving F = I − 1
2 ;

see figure 1 where we show the level structure of the specific
case of Cs where I = 7

2 so that F = 3, 4. There will be two
dipole-allowed transitions to the excited states P1/2 and P3/2,
each of which consists of several hyperfine states with spin F ′

(primed variables always refer to electronically excited states).
In this paper, we will mainly consider the case where atoms
are initially prepared in the S1/2(F = I + 1

2 )-state and are
driven on the D2-transition to P3/2 as indicated in figure 1 for
the example of 133Cs.

In the standard dipole and rotating wave approximation,
the coupling of light to atoms is given by

Hint = −(d(+)E(−) + d(−)E(+)),

where E(±) and d(±) are the positive/negative frequency
component of, respectively, the electric field E = E+ + E−

and the dipole moment operator d = d+ + d−. We will be
interested here in the interaction with far off-resonant light
only. In this case, the excited states will be only very weakly
populated. In the limit of low saturation, excited states can
be adiabatically eliminated (appendix A), and the light–atom
interaction is described by the effective Hamiltonian

Heff
int = E(−)α E(+). (1)

We have here introduced the polarizability tensor operator

α = −
∑

F ′

PgdPF ′dPg

�F ′
, (2)

where the projection operators are defined as

PF =
∑

m

|F, m〉〈F, m|, Pg =
∑

F

PF , (3)

PF ′ =
∑

m′
|F ′, m′〉〈F ′, m′|, Pe =

∑
F ′

PF ′ , (4)

3 In this paper, we put � = c = 1.
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such that Pg + Pe = 1. Here �F ′ is the detuning of the
light from the S1/2F → P3/2F ′ transition; see figure 1.
The polarizability operator α in (2) has to be understood as
a 3 × 3 matrix whose Cartesian components are given by
αi j = − ∑

F ′ PgdiPF ′d jPg/�F ′ . Each of these components is
an operator acting exclusively within the subspace of ground
states S1/2

(
F = I ± 1

2

)
.

The effective interaction in (1) describes second order
processes where a photon is absorbed and re-emitted, while
the atom makes a transition from a ground to an excited
state and back again to a ground state. In such a process,
the initial and final ground states can either have the same or
different total spin F = I ± 1

2 . In order to describe processes
involving transitions within the F-subspace, we introduce
HFF = PF Heff

int PF . Transitions between F ↔ F − 1 are
described by HFF−1 = PF−1Heff

int PF + PF Heff
int PF−1. In general

such second order processes could also give rise to changes of
F by 2, but since we are considering S1/2 ground levels there
are only two ground levels, e.g. as shown in figure 1 for Cs
F = 3, 4.

Consider first transitions within one F-subspace as
described by the Hamiltonian HFF . Due to the fact that we
have conservation of angular momentum in the interaction,
we can decompose the polarizability operator αFF = PFαPF

into its tensor parts [26, 20], namely

αFF = −d2
0

�
(a0 + ia1j ×+ a2Q). (5)

Here the dipole matrix element is defined as d2
0 = (2J′ +

1)|〈J′‖d‖J〉|2 with J and J′ being the electronic angular
momenta of the ground and excited states, respectively (see
appendix B), and � is the detuning from resonance as shown
in figure 1. The three terms are the scalar, vector and second
rank tensor part, respectively. j is the spin operator for the total
ground state spin, that is, j2|F, m〉 = F(F + 1)|F, m〉. In the
vector component, we use here the short-hand notation

j× =
⎛
⎝ 0 jz jy

jz 0 − jx
− jy jx 0

⎞
⎠ ,

which is equivalent to taking the cross product of j with the
vector to the right and then the scalar product with the vector
to the left. One can use vector product properties in order
to transform the expression as follows: i E(−) · [j × E(+)] =
−i j · [E(−) × E(+)]. The latter form could be more convenient
since it is just a scalar product of the spin and a vector for
light which resembles the Stokes operator characterizing the
polarization of light, as will be discussed in more detail below.
The second rank tensor part Q is defined componentwise as

Qi j = −( ji j j + j j ji) + δi j
2
3 j2.

The tensor decomposition of α is given in detail in appendix B
where we also give the explicit expressions for the real
coefficients a0, a1 and a2 and their dependence on the detuning.
In figure 2, we show these coefficients for the case of Cs. Note
in particular that the second rank tensor polarizability vanishes
for large detunings.

Figure 2. a and b coefficients as functions of detuning −� in MHz
for caesium with F = 4; a0 (thick), a1 (medium), a2 (thin), b1 (thick
dashed), b2 (thin dashed). In the limit of high detuning, we obtain
a0 → 1

6 , a1 → 1
48 , b1 → 1

16
√

5
and {a2, b2} → 0.

For the other case where the final spin state has a different
total spin than the initial state, we have

αFF±1 = −d2
0

�
(b1T(1) + b2T(2)). (6)

The coefficients b1 and b2 and the irreducible tensor operators
T(1) and T(2) are given in appendix B. We do not have a
scalar tensor component here because in these processes the
spin state is changed such that the corresponding Hamiltonian
cannot have a component proportional to the identity operator,
i.e. a scalar component. In figure 2, we show b1 and b2 as a
function of the detuning. Note that b1 and b2 have the same
scale as a1 and a2, respectively.

The effective interaction Hamiltonian (1) describes elastic
Rayleigh and inelastic Raman scattering of light on atoms.
It is a Hermitian operator and as such gives rise to a fully
coherent evolution for the overall system comprised of the
atom and the quantized electromagnetic field. The quantum
coherent effects resulting from this effective interaction have
been widely used in the field of quantum information, both
theoretical and experimental [16]. Note, however, that within
the regime of its validity—that is far below saturation of
excited states—the interaction Hamiltonian (1) still contains
and correctly describes the effects of spontaneous emission
on both atom and light. If light is treated as a reservoir and
we trace over the random position of the atoms we will show
that we can describe spontaneous emission which leads to
decoherence effects within the ground state levels. Vice versa,
the atom (or an ensemble of atoms) can provide an effective
absorptive medium for light. In the following sections,
we will first treat the coherent interaction and then include
the decoherence effects resulting from the effective interaction
Hamiltonian (1).

3. Coherent interaction

3.1. Interaction with a single atom

We consider now a situation as shown in figure 3. A cloud of
atoms interacts with an incoming pulse of light described by
the forward-propagating electric field EF and we are interested
in the coherent evolution of the spin of atoms and the forward-
propagating field modes [31, 32]. The total electric field

3



J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 124007 D V Vasilyev et al

Figure 3. The spin-polarized atomic sample interacts with the
off-resonant light field EF and non-forward modes ES in vacuum
states.

E = EF + ES will be the sum of forward-propagating modes
and the remaining, non-forward-propagating modes ES, cf
figure 3. These modes will be treated as a reservoir in the
later sections and give rise to the decoherence effects to be
discussed there.

For the moment, we will thus restrict ourselves to light
propagating along the z-direction. In principle, the forward
modes will also experience some spreading [33, 34], but here
we take the opening angle to be roughly zero, and use a
one-dimensional description of EF(z). The separation into a
forward-propagating mode EF described by a one-dimensional
equation of motion and a set of non-forward modes ES is
further justified in [30, 6] and is valid if the Fresnel number
of the ensemble is much larger than unity. In this model the
field is described in terms of position-dependent annihilation
(creation) operators, defined by

aσ (z, t) =
∫

dk

2π
akσ (t) eikz, (7)

where σ = x, y labels the transverse polarizations. These
operators obey [aσ (z, t), a†

σ ′ (z′, t)] = δσσ ′δ(z − z′). In terms
of ax(z, t) and ay(z, t), the Stokes operators Si(z, t) can be
introduced:

Sx = 1
2

(
a†

xax − a†
yay

)
, (8)

Sy = 1
2

(
a†

xay + a†
yax

)
, (9)

Sz = 1

2i

(
a†

xay − a†
yax

)
, (10)

S0 = 1
2

(
a†

xax + a†
yay

)
, (11)

which are a convenient tool to describe the polarization
state of light propagating along the z-direction. They obey
the commutation relations for an angular momentum density
[Si(z), S j(z′)] = iδ(z − z′)εi jkSk(z).

Each part in the decomposition (5) of the atomic
polarizability operator will give rise to a term in the effective
interaction Hamiltonian, such that HFF = H (0) + H (1) +
H (2) corresponding to the scalar, vector and tensor parts,
respectively. These terms can be conveniently expressed
and interpreted in terms of Stokes operators. The scalar
Hamiltonian—the tensor-0 term—is

H (0) = ga0S0. (12)

Here we have defined g = − d2
0

�

ω0
ε0A where � is the detuning

from resonance as shown in figure 1, ω0 the atomic transition
frequency and A the beam cross section. It can be interpreted
as a Stark shift, which equally shifts all atomic energy levels
proportional to the light intensity. Conversely it can also be
interpreted as an equal shift of the frequency for all light
modes (off-resonant with a detuning �), that is, as a new
index of refraction seen by light.

The vector Hamiltonian, which for our purpose is the most
interesting part, is

H (1) = ga1Sz jz. (13)

Sz describes the circularity of light and jz the z-component of
the atomic spin. In the interaction, the atomic spin is rotated
around the z-axis by an amount proportional to Sz. Likewise,
the Stokes vector is rotated about the z-axis by an amount
proportional to jz. This is a circular birefringence effect and
this interaction gives us the desired Faraday interaction.

Finally we also have a complicated tensor Hamiltonian

H (2) = −ga2
(
Sx

(
j2
x − j2

y

) + Sy{ jx, jy} + 2S0
(
3 j2

z − j2
)
/3

)
.

(14)

This amounts to a dynamical Stark shift. The effect vanishes
for large detunings since the coefficient a2 goes to zero
as shown in figure 2. It can be interesting for coherent dynamics
in some experiments for tomography and collective squeezing
purposes [35, 21, 14, 32, 33]. We keep it for the calculation
of spontaneous emission, and neglect it for simplicity in the
coherent dynamics.

3.2. Interaction with an atomic ensemble

So far we have considered a single atom. We will now assume
that light is interacting with a cloud of Na atoms of length L
and constant atomic density ρ as shown in figure 3. For the
atomic spin, we therefore introduce the continuous spin density
operators, which are a sum of the single atom ( ja) angular
momentum operators evaluated at their respective positions:

jk(z) =
Na∑

a=1

δ(z − za) ja
k , k = x, y, z. (15)

Then, the commutator is

[ jm(z), jn(z
′)] =

Na∑
a,b

δ(z − za)δ(z
′ − zb)

[
ja
m, jb

n

]
= i εmnk jk(z)δ(z − z′), (16)

in perfect analogy to the commutation relation for the
Stokes operators. For details regarding the definition of
these continuous spin operators, in particular concerning
transverse effects, we refer to [6, 30].

We are now in a position to describe the coherent
interaction of the forward-propagating light modes with the
atomic ensemble. We ignore here the contributions from H (0)

since it merely accounts for the overall refractive index. The
effective interaction can then be written as

Heff
coh = g

∫ L

0
(γ · S)(z, t) dz, (17)

4
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where γ = (−a2( j2
x − j2

y ),−a2{ jx, jy}, a1 jz) is a vector
describing atomic polarization. In appendix C, we show how
the time derivative of the light operators can be transformed
to a derivative in position (z), such that when we form the
Heisenberg equation of motion we get from the relation
[Si(z), S j(z′)] = iδ(z − z′)εi jkSk(z) that

∂

∂z
S(z, t) = g(γ × S)(z, t). (18)

If we replace the operators in γ with their expectation values,
we can see that in the interaction, the Stokes operator S gets
rotated about the vector γ . Written out in full detail the equation
reads

∂

∂z

⎛
⎝Sx

Sy

Sz

⎞
⎠(z, t)

= g

⎛
⎜⎝

0 −a1 jz −a2{ jx, jy}
a1 jz 0 a2

(
j2
x − j2

y

)
a2{ jx, jy} −a2( j2

x − j2
y ) 0

⎞
⎟⎠

⎛
⎝Sx

Sy

Sz

⎞
⎠ (z, t).

(19)

These equations have first been derived by Julsgaard [31]. The
rotation of S can be seen to be composed of a big rotation
(proportional to a1) around the z-axis and proportional to the
atomic spin along z and a small rotation (proportional to a2)
in the (x, y) plane by an angle which depends on the relative
angle between the mean atomic spin and the Stokes vector.
If we only consider the a1-terms above, and assume the x
component of the Stokes vector to be much larger than the
other two projections (as is the case for x polarized light),
and assuming the rotation angle to be small we arrive at the
effective equation of motion

∂

∂z

(
Sy

Sz

)
(z, t) = ga1Sx

(
jz
0

)
. (20)

These simpler equations show us that Sz is conserved in the
interaction, while Sy receives some contribution from the spin
component jz.

A similar analysis can be performed for the coherent
dynamics of the atoms. We will write the coherent Hamiltonian
as

Hcoh = g[γ·S + γ0S0], (21)

where γ is given as above and γ0 = −a2 j2
z . From this we can

determine the coherent evolution of the spin vector j:

∂

∂t

⎛
⎝ jx

jy
jz

⎞
⎠ = g

[⎛
⎝ a2{ jy, jz} −a2{ jx, jz} −a1 jy

a2{ jx, jz} a2{ jy, jz} a1 jx
−2a2{ jx, jy} 2a2( j2

x − j2
y ) 0

⎞
⎠

⎛
⎝Sx

Sy

Sz

⎞
⎠

+a2

⎛
⎝−{ jy, jz}

{ jx, jz}
0

⎞
⎠ S0

]
. (22)

While the overall form of these equations is rather complicated,
we can get valuable insight by treating the different terms
separately [31]. For instance if we only consider a1-terms as it
was done with light and also assume small Faraday rotations
of atomic spins with strong polarization along x then we get
the equation

∂

∂t

(
jy
jz

)
(z, t) = ga1 jx

(
Sz

0

)
, (23)

in perfect analogy to the effective equations of motion for light
found above, cf (19) and (20). jz is unaltered in the interaction,
whilst jy gets a contribution from Sz.

3.3. Canonical operators

In order to further emphasize the similarity in the atom and
light evolution, we will consider them on a more equal footing
by introducing canonical variables. From the definition of the
Stokes operators for light (8)–(11), one can see that for a
large classical field polarized in the x-direction and sufficiently
small angles of Faraday rotations the Sy and Sz components are
proportional to the X and P quadratures of the weak quantum
field in the orthogonal polarization (y):

Sy(z, t) =
√

〈Sx〉XL(z, t), (24)

Sz(z, t) =
√

〈Sx〉PL(z, t). (25)

The quadratures introduced here obey the standard
commutation relation [XL(z, t), PL(z′, t)] = iδ(z − z′).

Next we consider canonical spin densities. Experimentally
two different configurations are typically employed. Either
the light polarization is oriented along the same axis as the
spins of the atoms (x) or the light is orthogonal to the atomic
polarization (y). For simplicity, we will restrict our discussion
of the general method to the case where the light is polarized
along the polarization of the spins. The argument we give can
however easily be generalized also to the other orientations
and for completeness we give the results for both orientations
below. Let us assume that the atomic spin is polarized along
the x-axis. Then, the commutation relation (16) averaged over
the random positions of the atoms reads

[ jy(z, t), jz(z′, t)] = i〈 jx〉δ(z − z′), (26)

where 〈 jx〉 = n〈 ja
x 〉 with n being the average linear density

of atoms. The field-like canonical variables for the spin
subsystem,

XA(z, t) = jy(z, t)√〈 jx〉
, PA(z, t) = jz(z, t)√〈 jx〉

, (27)

obey the canonical commutation relation

[XA(z, t), PA(z′, t)] = iδ(z − z′). (28)

Now we can write the equations of motion for light and atoms
given by (20) and (23) in terms of the canonical operators.

Upon introducing the coupling constant κ = ga1

√
F
2 NaNp

where Np is a number of photons in the driving field, one
obtains

∂

∂z

(
XL

PL

)
(z, t) = κ√

LT

(
PA

0

)
,

∂

∂t

(
XA

PA

)
(z, t) = κ√

LT

(
PL

0

)
. (29)

As opposed to the initial set of equations (19) and (22) these
simplified equations are not coupled to each other, since we
have dropped the term H (2) of the interaction Hamiltonian (14)
due to the second rank tensor polarizability. This is justified

5
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in the limit of large detuning. Their solution can be expressed
in the form of input–output relations for collective variables
which are introduced by

X in(out)
L = 1√

T

∫
T

dt XL(0(L), t), (30)

X in(out)
A = 1√

L

∫
L

dz XA(z, 0(T )). (31)

Here T is the duration of the light pulse and L is the length
of the atomic sample. The same definitions are applied to the
conjugated canonical variables of light and atoms. Finally, the
input–output relations obtained from the equations of motion
(29) read (

Xout
L

Pout
L

)
=

(
X in

L

Pin
L

)
+ κ

(
Pin

A

0

)
, (32)

(
Xout

A

Pout
A

)
=

(
X in

A

Pin
A

)
+ κ

(
Pin

L

0

)
. (33)

These relations constitute the foundation for the light–matter
interface based on the Faraday rotation; see [6].

A specific example for the application of the Faraday
interaction is the possibility of creating a memory for light. The
quantum state of a propagating pulse of light is thereby mapped
onto the collective spin of a cloud of atoms. The mapping
protocol applied in [16] works as follows. The light pulse
first interacts with the atomic cloud such that the evolution
is described by (32) and (33). One then measures Xout

L via
homodyne detection and uses the result for a feedback on the
atomic spin. The feedback should subtract the measurement
outcome for Xout

L from Pout
A with a gain ν. One can show

that the evolution of the atoms is then described by the
relations [16]

Xout
A = X in

A + κPin
L , (34)

P′out
A = Pout

A − νXout
L = Pin

A (1 − κν) − νX in
L . (35)

Assuming κ = ν = 1 we have

Xout
A = X in

A + Pin
L , (36)

Pout
A = − X in

L , (37)

meaning that we have stored the light quadratures in atoms〈
Xout

A

〉 = 〈
Pin

L

〉
, (38)

〈
Pout

A

〉 = −〈
X in

L

〉
. (39)

The quality of the mapping can be characterized by the fidelity
F . Assuming a random set of coherent states as the input state,
the fidelity is found to be [38]

F = (
1
2 + �X2,out

A

)− 1
2 × (

1
2 + �P2,out

A

)− 1
2 . (40)

Assuming light and atoms to be initially shot noise limited we
get a fidelity of F = √

2/3 ≈ 82%. The fidelity is limited
by the initial noise of the X in

A spin component which was not
cancelled during the mapping process. If this quadrature would
be squeezed before the pass of the light pulse, the fidelity can
approach unity.

It is known from earlier works [6, 27] that the coupling
constant is related to the optical depth by κ2 = d η, where
the optical depth is d = Naσ/A, the scattering cross section is
σ = 3λ2/2π and the transversal area of the atomic sample is
A. The coefficient η ∼ Np/�

2 was called atomic depumping
as it is closely related to a spin decay rate. The fact that the
coupling constant depends on the decoherence rate is a very
important observation. It means that for the great variety of
quantum protocols based on such light–matter interaction a
good performance is a compromise between the interaction
strength and the decoherence. For example, in order to reach
a value of κ = 1 in the memory protocol for a given optical
depth d, a nonzero atomic depumping η ∼ 1/d is required. By
working with an ensemble with sufficiently large optical depth
d � 1, the atomic depumping can be made small and this is
the basis of the protocols for quantum interfaces based on the
Faraday interaction which have been implemented in practice.
In reality, however, there is a limit to how large an optical depth
that can be obtained in practice. Hence, there will always be
some atomic depumping for any implementation of a quantum
information protocol. A proper optimization of such protocols
requires knowledge of how exactly the depumping η is related
to the spin decay rates. In the next section, we give the answer
to this question.

4. Decoherence

4.1. Example of decoherence

Before presenting the rigorous treatment of the general case
of spontaneous emission for multilevel atoms, let us include
decay in a phenomenological basis and examine how an
arbitrary decay would affect the atom–light interaction. We
expect that the spins and light would decay according to the
Heisenberg–Langevin equations

∂

∂z
aμ = −γμ

2L
aμ + FL,μ, μ = {x, y}, (41)

∂

∂t
ji = −�i

T
ji + Fi, , i = {x, y, z}. (42)

Since the decay process for light is due to scattering of the
photons out of the mode of interest, we will see below that
the added Langevin noise is simpler for light than the one for
atoms. For light, the noise is just the minimal noise required
to preserve the commutation relation for the field. The noise
is delta correlated in time and space and has a vanishing mean
value 〈

FL,μ(z, t)F†
L,ν (z

′, t ′)
〉 = γμ

L
δμνδ(t − t ′)δ(z − z′), (43)

〈FL,μ(z, t)〉 = 0. (44)

6
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(a) (b)

Figure 4. Scheme of two possible decay processes.

The atomic spin decays in a number of ways. First, it can
decay to another hyperfine level (F − 1) and disappear from
the interaction as it is shown in figure 4(a). This is the same
process which happens to photons. Another way for an atom
to decay is to decay to the same hyperfine level as shown in
figure 4(b). This results in essentially a random rotation of
the original spin and it creates extra noise. We will derive the
correlators of the spin noise operators in the following section,
as well as the corresponding decay rates.

Using the definition of canonical variables for atoms (27),
we obtain the following expressions for the decay in canonical
variables

∂

∂t
XA = 1√〈 jx〉

∂

∂t
jy − 1

2

jy√〈 jx〉
· 1

〈 jx〉
∂

∂t
〈 jx〉

= −�X

T
XA + FX (z, t), (45)

∂

∂t
PA = −�P

T
PA + FP(z, t). (46)

Here, �X (P) = �y(z) − 1
2�x and FX (P) = Fy(z)/

√〈 jx〉. Now
we can consider equations of motion for the light–matter
interaction in the presence of the decoherence in terms of
the canonical variables
∂

∂z

(
XL

PL

)
(z, t) = κ(z, t)√

LT

(
PA

0

)
− γy

2L

(
XL

PL

)
+

(
FL,X

FL,P

)
(z, t),

(47)

∂

∂t

(
XA

PA

)
(z, t) = κ(z, t)√

LT

(
PL

0

)
− 1

T

(
�X XA

�PPA

)
+

(
FX

FP

)
(z, t).

(48)

Here, the coupling constant κ(z, t) is a function of position
and time due to the decay of the classical spin component and
of the driving wave amplitude according to (41), (42)

κ(z, t) = 1
2 ga1

√
〈 jx(z, t)〉〈ax(z, t)〉

√
LT

= κ e− 1
2 (γxz/L+�xt/T ). (49)

Integration of the equations of motion over space and time
gives us the input–output relations(

Xout
L

Pout
L

)
=

(
X in

L
Pin

L

)
e− γy

2 + κL

(
Pin

A
0

)
+

(
FXL

FPL

)
, (50)

(
Xout

A
Pout

A

)
=

(
X in

A e−�X

Pin
A e−�P

)
+ κA

(
Pin

L
0

)
+

(
FXA

FPA

)
. (51)

Due to the space and time dependence of the function
κ(z, t), the integration of the equations of motion can be
done by expanding light and atomic variables over Legendre

polynomials in space and time domain [39, 34]. However,
we consider the decay rates to be small and therefore take
into account only the zeroth order Legendre modes for atoms
and light which are just integrals over length of the ensemble
and over time of the interaction. The obtained relations are
a generalization of (32) and (33) for an arbitrary decay.
The following notations were used:

κL = κ h

(
�x + 2�P

2

)
h

(
γx − γy

2

)
e− γy

2 , (52)

κA = κ h

(
�x − 2�X

2

)
h

(
γx + γy

2

)
e−�X , (53)

h(x) = 1

x
(1 − e−x).

The protocol of quantum memory based on the direct mapping
requires κA = 1, as described above. It is different from the
constraint κ = 1 without decoherence. For a given detuning,
an increase of the number of atoms leads to higher scattering
for the signal field and an increase of the driving field strength
gives rise to decay of atomic spins. Overall, it means that if
the number of atoms for a given detuning is too low there is no
way to meet the constraint by increasing the field power and
vice versa.

The noise terms in the input–output relations (50) and
(51) are a bit lengthy to express exactly. One can show that the
noise terms have the following approximate values:

〈
F2

XL

〉 ≈ 1

2
γy + κ2

3

〈
F2

P

〉
, (54)

〈
F2

PL

〉 ≈ 1

2
γy, (55)

〈
F2

XA

〉 ≈ 〈
F2

X

〉 + κ2

6
γy, (56)

〈
F2

PA

〉 ≈ 〈
F2

P

〉
, (57)

where the collective noise correlators for atoms are defined as
follows:〈

F2
X (P)

〉 = 1

LT

∫
L

dz dz′
∫

T
dt dt ′〈FX (P)(z, t)FX (P)(z

′, t ′)〉.

In order to preserve mean values of the canonical variables
during the mapping of the field state to the atoms, one has to
choose the feedback gain parameter to be ν = e

γy
2 . Assuming

input states of light and atoms to be coherent, we find the
fidelity according to (40) which for low decay rates reads

F ≈
√

2

3

(
1 − 11

36
γy − 1

3

[〈
F2

X

〉 + 2
〈
F2

P

〉 − �X
])

. (58)

In order to evaluate the fidelity, we need to know all these decay
rates and Langevin noises for a particular atomic ensemble.
Here we come to the central part of the paper—the proper
treatment of spontaneous emission in multilevel atoms.

7
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4.2. General method

In this section, we find the full equations of motion from
the single atom theory and assume that the formalism can be
extended for a large collection of atoms that couple to their own
reservoir and do not interact with each other. For a justification
of this approach, we refer to [[30], where it is shown that
the approximation is suitable for dilute elongated samples for
which ρλ3 � 1 and the Fresnel number of the ensemble is
much larger than unity. The interaction Hamiltonian including
both forward and non-forward modes E = EF + ES is

Hj = E(−)α jE(+)

 E(−)
F α jE

(+)
F + E(−)

S α jE
(+)
F + E(−)

F α jE
(+)

S

= H j
coh + Vj, (59)

where j labels the jth atom. We have neglected the much
weaker contribution E(−)

S α jE
(+)

S which has no enhancement
by the strong field in EF. The coupling of forward modes to
forward modes is identified as the coherent interaction

Hcoh = E(−)
F α E(+)

F ≡ d2
0

�
E(−)

F αE(+)
F . (60)

Here we have introduced dimensionless α which will be more
convenient to use in what follows. The interaction with the
environment ES will be treated in the Wigner–Weisskopf
approximation. To do this, we write the perturbation Vj in
the form

Vj = d2
0

�

∑
σ

∫
d3k

(2π)3

√
ωk

2ε0
εkσ

(
b†

kσ α jE
(+)
F + E(−)

F α jbkσ
)
.

(61)

The summation here is performed over all directions and
polarizations of the non-forward electromagnetic modes. The
resulting interaction will depend on the relative orientation of
the atomic dipole moments hidden in the polarizability tensor
α and the light field polarization vector. The net effect of this
directional dependence appears as a difference in the decay
rates and added noises for parallel and orthogonal light and
atomic spin orientations. The modes in ES have a Hamiltonian

HR =
∑

σ

∫
d3k

(2π)3
ωkb†

kσ bkσ . (62)

We assume the system to start out in vacuum and proceed in a
Wigner–Weisskopf approach by first finding the time evolution
of the b-operators

∂

∂t
bkσ (t) = i[HR + Vj, bkσ ]

= −iωkbkσ (t) − i
d2

0

�

√
ωk

2ε0
εkσα j(t)E

(+)
F (t), (63)

which has the formal solution

bkσ (t) = bkσ (0) e−iωkt

−i
d2

0

�

√
ωk

2ε0
εkσ

∫ t

0
dt ′α j(t

′)E(+)
F (t ′) e−iωk(t−t ′). (64)

We are interested in the equation of motion of some operator
A (which can belong to either atoms or light). We insert the
found expression for ES into Vj

d

dt
A(t) = [

H j
coh, A

] + i
d2

0

�

∑
σ

∫
d3k

(2π)3

√
ωk

2ε0
εkσ

× (
b†

kσ (0)eiωkt
[
α jE

(+)
F , A

]
(t)

+ [
E(−)

F α j, A
]
(t)bkσ (0) e−iωkt

)
−

(
d0

�

)2 ∑
σ

∫
d3k

(2π)3

ωk

2ε0
ε2

kσ

∫ t

0
dt ′

× (
E(−)

F (t ′)α j(t
′) eiωk(t−t ′)[α jE

(+)
F , A

]
(t)

− [
E(−)

F α j, A
]
(t)α j(t

′)E(+)
F (t ′) e−iωk(t−t ′)). (65)

Going into the rotating frame of the forward field, which
has the carrier frequency ω0 and performing the Markov
approximation, we may take the polarizability outside the
integral and find that the general equation of motion for an
observable A is given by the quantum Langevin equation

d

dt
A = i

[
H j

coh, A
] + (d0

�

)2L j(A)

+ i
√

γ
d0

�

([
E(−)

F α j, A
]
f j + f†

j

[
α jE

(+)
F , A

])
. (66)

Here, γ is the decay rate γ = d2
0ω

3
0/3πε0 which is related

to the radiative decay rate of an atom with excited state
electronic angular momentum J′ as γrad = γ /(2J′ + 1).
We have neglected the Lambshift, which is assumed to be
incorporated in the transition frequency ω0; also we ignore
collective effects in the limit of a dilute ensemble (see [[30]
for details) as discussed in the beginning of section 4.2. The
decay is described by the Lindblad form

L j(A) = γ

2

(
2E(−)

F α jAα jE
(+)
F − E(−)

F α2
j E

(+)
F A

− AE(−)
F α2

j E
(+)
F

)
. (67)

The decay gives two different contributions, one where
the atom decays to the same state and will involve the
a-coefficients belonging to αFF and one to different states
through αFF±1 and be described by b-coefficients. But we are
not going to have any cross terms of the form ab since they
will oscillate at much higher frequencies corresponding to the
hyperfine splitting ∼ GHz and average out to zero in (65).
Above we have introduced the noise operators

f j(t) = d0√
γ

∑
σ

∫
d3k

(2π)3

√
ωk

2ε0
εkσ bj

kσ (0)e−i(ωk−ω0)t, (68)

which in the Markov approximation are delta-correlated in
time 〈[

fi,μ(t), f †
j,ν (t

′)
]〉 = δi jδμνδ(t − t ′). (69)

Below we will apply these equations of motion to observables
for both light and atoms. There is an essential difference
between the decoherence of light and of atoms. The reason
is that each time the atoms undergo spontaneous emission
they remain in the ensemble. For light on the other hand, a lost
photon simply attenuates the beam but there is no change in
its coherence. It means that we can model the resulting noise
for light as vacuum operators when considering the field a, a†.

8
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4.3. Light

In the last section, we showed how to treat the spontaneous
emission and how to calculate the decay for the operators of
interest. We will now apply this to the light field operators
ax(z, t) and ay(z, t). First, one has to generalize the dynamics
of a single atom studied above to a spatially extended
ensemble. The continuous equations of motion are obtained
from the single atom version (66) by replacing operators with
the space-dependent ones defined in (15) and then integrating
the right-hand side over the ensemble volume.

In order to obtain the required equations for the field
propagation, one has to consider the field evolution including
the interaction Hamiltonian and the free field Hamiltonian. The
resulting equation is obtained from the Heisenberg–Langevin
equation (66) by replacing ∂

∂t → ∂
∂z + ∂

∂t as showed in
appendix C and [40]. Since the light pulse is usually much
longer than the size of the atomic ensemble, we can omit the
time derivative as it only describes the retardation effect. Using
the commutation relation for light field operators, one obtains
the following equations of motion:
∂

∂z
aμ(z, t) = i

∫
L

dz[Hcoh, aμ(z, t)]

− |g|γ
4�

Na

L
(〈α2〉μμaμ(z, t) + 〈α2〉μνaν (z, t)) + FL,μ(z, t),

(70)

FL,μ(z, t) = i

√
|g|γ
2�

Na

L
(αμμ fμ(z, t) + αμν fν (z, t)), (71)

where μ = {x, y} and μ �= ν. Here we have assumed that the
atoms are evenly distributed so that 〈α2〉μμ(z) = Na

L 〈α2〉μμ and
the element 〈α2〉i j is to be understood as the i j’th element of
the matrix α2. Using (69), we obtain the following properties
of the averaged commutators of the noise operators FL,μ:〈[

FL,μ(z, t), F†
L,ν (z

′, t ′)
]〉

= |g|γ
2�

Na

L
〈α2〉μνδ(t − t ′)δ(z − z′). (72)

Since the matrix α2 depends on the atomic operators,
the expressions derived here incorporate that the decoherence
of the light field depends on the state of the atoms. To evaluate
the formulae, we therefore need to specify the atomic state.
Here we assume that the atoms are initially polarized along
the x-axis and evaluate the expressions in a coherent spin state.
In principle, there is also a possibility for cross-scattering
between the x and y polarization, which is contained in the
matrix element 〈α2〉xy. In appendix D, we show, however,
that this matrix element vanishes for this particular spin
configuration. As noted above, experiments sometimes use a
different configuration with the atoms polarized perpendicular
to the light polarization. Also in this case, the cross polarization
scattering vanishes, but this is not the case for a general
orientation. Experimentally it is advantageous to avoid the
cross polarization scattering since this avoids a rotation of the
mean polarization of the light. Such rotation may be difficult
to control precisely and this classical noise could therefore
overwhelm the quantum noise around the mean which we are
trying to control. Therefore, the geometry with spin polarized
parallel or orthogonal to the direction of light polarization

Figure 5. Light attenuation and noise are described by the matrix
Aμ. Solid line shows the matrix element Ax as a function of detuning
−� in MHz and the dashed line corresponds to Ay. We assume
atoms to be polarized along x. Cs in F = 4.

is preferable. In both these cases, we obtain the equation of
motion for light in the form (41) with the decay rates

γμ = |g|γ
2�

Na〈α2〉μμ = 2
Na

Np

κ2

d
Aμ, (73)

Aμ = 〈α2〉μμ

Fa2
1

.

Here the difference in the orientation of the atoms is again
contained in the matrices 〈α2〉μμ. For caesium with F = 4,

the Aμ coefficients are shown in figure 5. In the limit of large
detuning, the coefficients read

Ax(y) → 24. (74)

Taking into account the coherent part of the interaction
Hamiltonian, we arrive at the full equations for the light field

∂

∂z
ay(z, t) = g

2
√

T
ax(z, t)[a1 jz(z, t) + ia2{ jx, jy}(z, t)]

−
[γy

2
− 2 ia2 j2

y (z, t)
]

ay(z, t) + √
γy fy(z, t), (75)

∂

∂z
ax(z, t) = −g

2
√

T
ay(z, t)[a1 jz(z, t) − ia2{ jx, jy}(z, t)]

−
[γx

2
− 2 ia2 j2

x (z, t)
]

ax(z, t). (76)

Since the x-polarized field is supposed to be strong and
classical, we neglect its quantum noise.

4.4. Atoms

In this section, we consider atomic evolution in a similar way
as was done for light. To describe the decay of the single
atomic spin, we use expressions (66) and (67) from above to
obtain

∂

∂t
ji(z, t) =

(
d0

�

)2

L( ji)(z, t), (77)

L( ji)(z, t) = −γ

2
E(−)

F (z)[α2 ji + jiα
2 − 2α jiα](z)E(+)

F (z).

(78)
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We expect this decay to be proportional to the total flux
of photons and we can as a good approximation ignore the
position dependence of the light field, allowing us to write for
the collective spin

L( ji)(t) = −γ

2
E(−)

F

∫
dz[α2 ji + jiα

2 − 2α jiα](z)E(+)
F .

The most notable contribution comes from the x polarized part
of light. Since we already expect the effect of spontaneous
emission to be small in the regime where the quantum interface
is operating (remember that it scales as 1/�2) we can safely
only consider the xx element of the matrix

ξi = α2 ji + jiα
2 − 2α jiα.

With this assumption, we find that we can make the
linearization

L( ji)(t) = −γ

2
|E|2 Np

T
�i ji(t), (79)

where the field amplitude is given by |E|2 = ω0/2ε0A and the
decay rate coefficient �i is defined through the expression

�i ji(t) =
∫ L

0
dz ξi(z, t). (80)

This element gives the magnitude of the decay of the respective
component of the spin. For the decay to a different hyperfine
level F (the b terms), we will neglect the term 2α jiα, which
describes the increase in the population of the final state. The
reason is that once an atom decays to another hyperfine level
F it will no longer be interesting for us, since we restrict our
analysis to the collective behaviour of many atoms in the same
F state. This is reasonable since the energy spacing between
the two ground F = I ± 1

2 hyperfine levels is big. For the same
reasons, we obviously need to keep 2α jiα for the a-terms.
Written in short form, the decay reads

∂

∂t
ji(t) = − |g|γ

4�

Np

T
�i ji(t) + Noise. (81)

This expression gives us the decay rates of the spin components
defined in (42). The noise terms will be treated in detail below.
The decay rates depend on the relative orientation of spin and
light polarizations as it is the case with the light decay. The
expression for the decay rates now reads

�i‖(⊥)
= |g|γ

4�
Np �i‖(⊥)

= κ2

d
Bi‖(⊥)

, (82)

Bi‖(⊥)
= �i‖(⊥)

Fa2
1

.

Similar to the discussion of spontaneous emission in
section 3.3, we have expressed here the atomic scattering in
terms of the coupling constant κ and the optical depth d. The
details of the interaction and the difference between different
atoms, which is our main interest here, is thus contained in
the coefficient B. The required coefficients � are calculated
in appendix D.3 for an arbitrary atom. The Bi coefficients for
caesium atoms are shown in figure 6, and explicit expressions

Figure 6. Spin decay coefficients Bi as functions of detuning −� in
MHz for parallel configuration (spin and light are x polarized) are
shown by a thick solid line for the x spin component and by a thin
solid curve for y and z spin projections. The orthogonal configuration
(spin is x polarized and the light is y polarized) is presented by the
dashed curves, thick line is x and z, thin is the y spin component.
The plot is calculated for caesium atoms with ground state F = 4.

can be found in appendix E. In the limit of high detuning, the
coefficients for caesium atoms with F = 4 read

Bx‖ → 29
2 , By‖ , Bz‖ → 25

2 ,

By⊥ → 37
4 , Bx⊥ , Bz⊥ → 1

2 Bx‖ .

The remaining term in the Heisenberg–Langevin equation (66)
gives us the spin noise components

∂

∂t
ji(z, t) = i

√
γ

d0

�

(
E(−)

F [α, ji]f + f†[α, ji]E
(+)
F

)
.

From here, the noise operators for canonical spin density
variables defined above as FX (z, t) and FP(z, t) are given by

FX (P)(z, t) = i
√

γ d0

�
√

n〈 ja
x 〉

(
E(−)

F [α, jy(z)]f + f†[α, jy(z)]E
(+)
F

)
.

(83)

These are the noise operators introduced in (48). The collective
noise operators are obtained by averaging it over the light pulse
duration and the length of the atomic ensemble

FX (P) = 1√
LT

∫
L

dz
∫

T
dt FX (P)(z, t). (84)

When forming the combinations such as 〈FX FX 〉, since we
have assumed that there are no photons in the reservoir with
frequency at ω0, the only combination which survives is
〈f f†〉. Moreover, we have made the assumption that the x
(or y in the case of orthogonal configuration of light and spin
polarizations) component of the light field is dominating, so
we will only have to consider the xx(yy) element of the matrix
ζ 2

i = (i[α, ji])2. So ultimately what we will have is

〈
F2

X (P)

〉
‖(⊥)

= |g|γ
2�

Np

F

〈
ζ 2

y(z)

〉
‖(⊥)

= 2

F

κ2

d
Cy(z)‖(⊥)

, (85)

Ci‖(⊥)
=

〈
ζ 2

i

〉
‖(⊥)

(Fa1)2
.

The different 〈ζ 2〉 are calculated in appendix D.2 and are
generally quite complicated. Since any orientation besides
the parallel and orthogonal will give too much noise on the
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Figure 7. Spin noise coefficients Ci as functions of detuning −� in
MHz for caesium with the ground state F = 4. The solid line
represents y and z noise coefficients for x polarized atoms and light.
The dashed curves correspond to the orthogonal configuration of
atomic spin and light. The thick dashed curve shows Cy⊥ and the
thin dashed line is Cz⊥ .

light as discussed above, we only consider these two settings.
The spin noise coefficients Ci required for the calculation of
canonical spin variable noises are shown in figure 7, and the
explicit expressions are given in appendix E. In the limit of
high detuning, the coefficients for caesium atoms with F = 4
read

Cy‖ ,Cz‖ → 29

2
, Cy⊥ → 53

4
, Cz⊥ → 37

4
.

The cross correlations of the Langevin noise are closely
related to the spin decay rates as shown in appendix D.4.
The commutator for noise reads

〈[FX , FP]〉‖(⊥) = i

F
(�y + �z − �x)‖(⊥). (86)

Moreover, one can show that the anticommutator of the noise
terms is equal to zero.

5. Summary

In this section, we summarize the obtained results and as an
example we apply the results to determine the decay rates and
Langevin noises for the specific case of caesium atoms. First
of all, the decay of the spins and light is described by the
Heisenberg–Langevin equations

∂

∂z
aμ = −γμ

2L
aμ + FL,μ, μ = {x, y},

∂

∂t
ji = −�i

T
ji + Fi, i = {x, y, z}.

As was mentioned earlier, there are two preferable
configurations available. Either the light polarization is
oriented along the same axis as the spins of the atoms (x)
or the light is orthogonal to the atomic polarization (y). In
these cases, the decay rates for light are given by (73) and the
atomic decay rates can be found in (82). They read

γμ = 2
Na

Np

κ2

d
Aμ, �i‖(⊥)

= κ2

d
Bi‖(⊥)

,

Aμ = 〈α2〉μμ

Fa2
1

, Bi‖(⊥)
= �i‖(⊥)

Fa2
1

.

From these expressions we see that one can obtain a strong
interaction κ ∼1 with negligible decoherence provided that
the atomic ensemble has a sufficiently high optical depth
d � 1. Furthermore, the decoherence of the light modes
can be suppressed relative to the atomic decay provided a
larger number of photons than atoms is used NP � NA. Most
of these expressions are well known from the previous work
in the field [6]. The main new result in this work are the
exact expressions for the coefficients A, B and C, which are
numbers of order unity, which contain the information specific
to the particular atom one is considering. We will evaluate the
required coefficients for 133Cs optically pumped to the ground
state F = 4. In this case, we have I = 7/2, J = 1/2, J′ = 3/2,
F = 4, F̃ = 3. The coefficient a1 is given by (B.9), which is
evaluated for F = F̃ = 4 and k = 1 :

a1 = 7

5760

(
176

7
− 3

1 − �45
�

− 5

1 − �35
�

)
. (87)

The matrix 〈α2〉 whose diagonal components enter in Aμ can
be found in appendix D. The Cartesian components of the
matrix for the spin oriented along the x-axis are expressed
via its spherical components by (D.4) and (D.5). The required
spherical components of the matrix are given by (D.3). One
needs to know the coefficients aFF̃

k mentioned above and the
coefficients ck given by (B.11). The result for Cs atoms is

〈α2〉xx = 1

80

(
1 + 7

3
(
1 − �45

�

)2

)
→ 1

24
,

〈α2〉yy = 1

720

(
23 + 21

8
(
1 − �45

�

)2
+ 35

8
(
1 − �35

�

)2

)
→ 1

24
.

Since the spin is considered to be oriented along x, the
xx-element of the scattering matrix represents decay of the
field polarized along the spin, and the yy-component is
correspondingly the decay rate coefficient for the orthogonally
polarized field configuration.

The calculation of the spin decay coefficients �

entering the B coefficients is similar but a bit more
lengthy since it involves three spin projections and two
possible configurations. The basic expressions for parallel
and orthogonal configurations of spin and light are given by
(D.25)–(D.30). The required spherical components of 〈ξμ jν〉
are defined in (D.22)–(D.24). The definitions involve the same
coefficients aFF̃

k and ck used above for the evaluation of the
light decay rates. For reference, we provide the result of
the calculation for the expression 〈�y〉‖ for caesium atoms
F = 4.

〈�y〉‖ = 7

1152

(
−152

175
− 7

12
(
1 − �35

�

)(
1 − �45

�

)
+ 1

2
(
1 − �35

�

)2 + 76

75
(
1 − �45

�

) + 351

100
(
1 − �45

�

)2

)
.

The Langevin noise operators for the light modes (72) are
simply the minimal noise required to preserve the commutation
relation for the free field:〈

FL,μ(z, t)F†
L,ν (z

′, t ′)
〉 = γμ

L
δμνδ(t − t ′)δ(z − z′).

11
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In the context of quantum information protocols, it is more
convenient to study the evolution of the canonical variables for
the spin. In this case, the decay process is described according
to (45) by

∂

∂t
XA = −�X

T
XA + FX (z, t),

∂

∂t
PA = −�P

T
PA + FP(z, t).

Here, �X (P) = �y(z) − 1
2�x and FX (P) = Fy(z)/

√〈 jx〉. The
Langevin noise correlator for the collective canonical variables
is found in (84) and (85) and it reads

〈
F2

X (P)

〉
‖(⊥)

= 2

F

κ2

d
Cy(z)‖(⊥)

, Ci‖(⊥)
=

〈
ζ 2

i

〉
‖(⊥)

Fa2
1

.

The averaged commutator for the noise is given by (86):

〈[FX , FP]〉‖(⊥) = i

F
(�X + �P)‖(⊥).

To evaluate this expression one needs to calculate the matrix〈
ζ 2

i

〉
. The calculation of this is essentially the same as for

the spin decay coefficient. The expressions for the Cartesian
components via the spherical one are given by (D.13)–(D.18).
Spherical components for different F and F̃ are found in
(D.10)–(D.12). For reference we provide the result of the
calculation for the expression 〈ζ 2

y 〉‖ for caesium atoms with
F = 4.〈
ζ 2

y

〉
‖ = 7

2400

(
176

21
− 175

72
(
1 − �35

�

)(
1 − �45

�

)
+ 25

12
(
1 − �35

�

)2 − 88

9
(
1 − �45

�

) + 83

8
(
1 − �45

�

)2

)
.

Expressions for all of the coefficients A, B, C for 133Cs are
explicitly given in appendix E.

5.1. Example of application

Now we can use the derived expressions for the light and
and atomic decay rates to evaluate the fidelity obtained in
section 4.1. First, let us consider the coupling constant κA

given by (53) for the case of 133Cs. In figure 8 we show the
solution of the equation κA = 1 which gives us the required
parameter regime for the quantum memory based on direct
mapping protocol. One can see that within a wide range of
values for the optical depth d = Naσ/A the requirement κA = 1
coincides with the condition κ = 1. However, when it reaches
extreme values the decay processes significantly affect the
system evolution and one is required to provide κ > 1 in order
to fulfill the quantum memory condition for transfer of the
mean amplitude.

For a given optical depth d one can express the fidelity (58)
by the approximation of small decay probability. Consequently
for the parameter regime where κA = 1 coincides with the
constriction κ = 1 we have

F ≈
√

2

3

(
1 − cL

( γ

�

)2
d − cA

1

d

)
(88)

Figure 8. Solution of the equation κA = 1 as a function of the
optical depth d = Naσ/A. The thin solid line corresponds to the
constraint without decoherence κ = 1. Thick solid and dashed
curves represent respectively the solutions for the parallel and
orthogonal atomic spin and light polarization configurations. The
plot is calculated for caesium atoms with the ground state F = 4 and
detuning � = −500 MHz.

cL = 11

12

1

Fa2
1

〈α2〉 (89)

cA = 2

3(Fa1)2

[〈
ζ 2

y

〉 + 2
〈
ζ 2

z

〉 − F

2

(
�y− 1

2
�x

)]
. (90)

In the limit of � → −∞, we can neglect the noise on the light
the coefficients and the fidelity read

F →
√

2

3

(
1 − cA

1

d

)
, (91)

cA‖(⊥)
→ 11

2

(
41

12

)
. (92)

In agreement with [6], the deviation of the fidelity from the
ideal one is inversely proportional to the optical depth for
large detunings. The results of the paper allow us to identify
the coefficient of this proportionality. It shows an advantage of
the orthogonal configuration of light and spin polarizations
over the parallel one in the particular quantum memory
protocol discussed here for illustration.

For a finite detuning, the fidelity can be optimized by
varying the ratio of photon number to the number of atoms and
by changing the detuning from the resonance. The resulting
optimal fidelity as a function of optical depth is shown in
figure 9. The corresponding optimal detuning and optimal ratio
of photons to atoms as functions of the optical depth are shown
in figures 10 and 11, respectively. One has to take into account
that these are very flat maxima, and hence the precise value
of the detuning is not that important. This is illustrated in
figure 12 where fidelities for several optical depths are shown
as a function of detuning. Furthermore, one should also bear
in mind that experimentally other considerations such as
Doppler broadening may be important. Furthermore, to
illustrate our method we have for simplicity neglected the
tensor part of the coherent interaction, and this may alter the
conclusion reached here.

12
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10 20 50 100 200 500 1000
d0.6
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Figure 9. Optimal fidelity as a function of optical depth for caesium
with F = 4. Solid and dashed lines correspond respectively to the
parallel and orthogonal configurations of atomic spin and light
polarization. Thin solid line on top shows the limiting value

√
2/3.

Figure 10. Optimal detuning as a function of optical depth for
caesium with F = 4. Solid and dashed lines correspond respectively
to the parallel and orthogonal configurations of atomic spin and light
polarization.

Figure 11. Optimal ratio of photons to atoms as a function of optical
depth for caesium with F = 4. Solid and dashed lines correspond
respectively to the parallel and orthogonal configurations of atomic
spin and light polarization.

Figure 12. Fidelity for different optical depths as a function of
detuning for caesium with F = 4. Solid, dashed and thin curves
correspond to optical depths d = 30, 100, 1000, respectively. The
calculation is done for the parallel configuration of atomic spin and
light polarization.

6. Conclusion

In this paper, we have found in accordance with earlier
work that spontaneous emission occurs faster for parallel
polarizations than perpendicular—a consequence of selection
rules and Clebsch–Gordan coefficients. We have also found the
precise decay rates and noise correlations that take into account
the full level structure of the atom and our procedure can easily
be applied to similar systems. In this paper, we have given a
comprehensive discussion of quantum noise from spontaneous
emission for light matter quantum interfaces based on the
Faraday effect. Taking into account the full level structure
of the atoms, we derive for the first time the full expressions
for the decay and quantum noise arising from spontaneous
emission. In agreement with previous treatments based on
simplified models, our theory shows that the decay and noise
can be made to vanish for a sufficiently large optical depth
of the ensemble. Given that experiments will always work
with a finite optical depth, it is, however, important to have a
detailed understanding of the noise. In particular, in view of
the rapid experimental advances, a thorough understanding of
fundamental noise sources will be crucial for further increasing
the efficiency of quantum memories and for assessing the
feasibility of new advances for light matter quantum interfaces.
The tradeoff between the coherent dynamics and unavoidable
fundamental losses, investigated in full detail here, will set the
ultimate limits to the performance of future quantum networks.
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Appendix A. Adiabatic elimination

The projections defined in section 2 will be used for our
treatment of the operators and if we specifically apply it to
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the dipole operator d we get (note that we do not get any
contributions from the terms PgdPg, PedPe since d is a parity
odd operator)

d = (Pg + Pe)d(Pg + Pe) = PedPg + PgdPe

= d(+) + d(−). (A.1)

Here d(+) is the raising operator raising the atoms from
the ground state |F, m〉 to the excited state |F ′, m′〉. In the
following, we will go into the rotating frame with respect to
the laser frequency ω0, so the energy of the atom is described
by the Hamiltonian

HA =
∑

F ′
�F ′PF ′ , (A.2)

where �F ′ is the detuning of the excited state from the laser
frequency. To ease notation, we treat by both using a symbol g
or e to represent respectively ground states |F, m〉 and excited
states |F ′, m′〉:

Hint = −
∑

ge

E(−)d(−)
ge |g〉〈e| + h.c. (A.3)

Taking the commutator with HA + Hint, we get the following
equation:
d

dt
|g〉〈e| = −i�e|g〉〈e|

+ iE(+)

⎛
⎝∑

g′
d(+)

eg′ |g〉〈g′| −
∑

e′
d(−)

ge′ |e′〉〈e|
⎞
⎠ . (A.4)

So in the adiabatic regime, we neglect the time derivative and
obtain

|g〉〈e| =
∑

g′

E(+) · d(+)
eg′

�e
|g〉〈g′|. (A.5)

Inserting this into the Hamiltonian, we get the expression

Heff
int = Hint + HA = E(−) · α · E(+)

≡ Hint, (A.6)

α = −
∑
g′ge

d(−)
g′e d(+)

eg

�e
|g′〉〈g|. (A.7)

Here d(+)
g′e d(−)

eg ∼ d(+)
g′e ∧ d(−)

eg is the dyadic vector product of
the dipole operator with itself.

Appendix B. Construction of the Hamiltonian

The dipole moment d can be expanded in spherical
components by

d =
∑

q

dqe∗
q =

∑
q

(−1)qd−qeq. (B.1)

The component of d for the F → F ′ transition can thus be
expressed as

d(+)
F ′F =

∑
q,m,m′

〈F ′m′|d(+)
q |Fm〉|F ′m′〉〈Fm|e∗

q. (B.2)

The Wigner–Eckart theorem states that the matrix elements4

can be expressed as〈
F ′m′∣∣d(+)

q

∣∣Fm
〉 = CF ′m′

Fm 1q〈F ′‖d‖F〉
= (−1)F−1+m′√

2F ′ + 1

(
F 1 F ′

m q −m′

)
〈F ′‖d‖F〉. (B.3)

We have here used the following notation for Clebsch–
Gordan coefficients CJM

jm j′m′ = 〈 jm j′m′|JM〉. It is convenient
to define new operators σ+

F ′F = d(+)
F ′F/〈F ′‖d‖F〉. The

adjoint is defined as σ−
FF ′ = (σ+

F ′F )†. Then, the
polarizability tensor operator can be expressed as α =
− ∑

F ′F̃F (〈F̃‖d‖F ′〉〈F ′‖d‖F〉/�F ′F )σ−̃
FF ′ ⊗ σ+

F ′F . Using the
above definition, one obtains

σ−̃
FF ′ ⊗ σ+

F ′F = (2F ′ + 1)
∑
p,q

∑
n,m,m′

(−1)F+F̃−2+2m′

×
(

F̃ 1 F ′

n p −m′

) (
F 1 F ′

m q −m′

)
|F̃n〉〈Fm|ep⊗ e∗

q.

(B.4)

This expression can now be split into its operator and tensor
part by inserting the identity [32]

2∑
k=0

k∑
l=−k

(2k + 1)

(
1 1 k

−q p l

) (
1 1 k

−q̃ p̃ l

)
= δpp̃δqq̃,

(B.5)

such that

σ−̃
FF ′ ⊗ σ+

F ′F = (2F ′ + 1)(−1)F+F ′ ∑
k,l

(2k + 1)

×
⎡
⎣∑

p̃,q̃

(−1)q̃

(
1 1 k

−q̃ p̃ l

)
ep̃ ⊗ e∗

q̃

⎤
⎦

×
[∑

n,m

(−1)2F̃+F−n
∑

p,q,m′
(−1)F ′+2−p−m′−q

(
F ′ 1 F

−m′ q m

)

×
(

1 1 k
−q p l

)(
1 F ′ F̃

−p m′ −n

)
|F̃n〉〈Fm|

]
. (B.6)

The expression for the operator part can be further simplified
by evaluating the sum over p, q and m′ using the identity∑
μ1,μ2,μ3

(−1)l1+l2+l3−μ1−μ2−μ3

(
l2 l3 j1

−μ2 μ3 m1

)

×
(

l3 l1 j2
−μ3 μ1 m2

)(
l1 l2 j3

−μ1 μ2 m3

)

=
(

j1 j2 j3
m1 m2 m3

){
j1 j2 j3
l1 l2 l3

}
. (B.7)

Changing 3 j-symbols to Clebsh–Gordan coefficients, we get

σ−̃
FF ′ ⊗ σ+

F ′F = (2F ′ + 1)
(−1)F+F ′+1√

3(2F̃ + 1)

2∑
k=1

(2k + 1)

×
{

F k F̃
1 F ′ 1

}
×

k∑
l=−k

[∑
n,m

CF̃n
Fm kl |F̃n〉〈Fm|

]

×
[∑

p,q

C1q
1p kl ep ⊗ e∗

q

]
. (B.8)

4 Some people use a different convention for the reduced matrix
element which is related to the convention used here by (F‖d‖F ′) =√

2F + 1〈F‖d‖F ′〉.
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Finally, the overall polarizability can be written as α =
−(2J′ + 1)|〈J′‖d‖J〉|2 1

�

∑
k,F̃

aFF̃
k (�) Tk

FF̃
, where

aFF̃
k (�) = −(−1)F (2k + 1)ck

√
2F + 1

3

∑
F ′

(−1)F ′
(2F ′ + 1)

1 − δF ′
�

×
{

J′ F ′ I
F J 1

}{
J′ F ′ I
F̃ J 1

}{
F k F̃
1 F ′ 1

}
. (B.9)

The hyperfine splitting is δF ′ = � − �F ′ . Here we have used
that

〈F̃‖d(+)‖F ′〉〈F ′‖d(−)‖F〉
= (−1)2(J′+I+F )+F̃−F ′

{
J′ F ′ I
F J 1

}{
J′ F ′ I
F̃ J 1

}

×
√

(2F + 1)(2F̃ + 1) (2J′ + 1)|〈J′‖d‖J〉|2. (B.10)

The coefficients ck read

c0 = 1, c1 = 1√
2F(F+1)

,

c2 = 3√
10F(F+1)(2F−1)(2F+3)

.
(B.11)

These coefficients are chosen in such a way that the resulting
Hamiltonian contains spin component as irreducible tensors.
The irreducible tensors are defined as follows:

Tk
FF̃

= 1

ck

k∑
l=−k

Mk
l;FF̃

∑
p,q

C1q
1p kl ep⊗ e∗

q. (B.12)

For F̃ = F , we have

Mk
l;FF =

∑
n,m

CFn
Fm kl |Fn〉〈Fm|

if F̃ �= F

Mk
l;FF̃

=
∑
n,m

(
CF̃n

Fm kl |F̃n〉〈Fm| + (−1)lCF̃n
Fm;k,−l |Fm〉〈F̃n|).

(B.13)

Appendix C. Transformation of the light equation of
motion

We will work in the paraxial approximation assuming a flat
transverse profile and write the forward electric field as

EF(z, t) =
√

ω0

2ε0A

∑
σ

∫
d3k d2ρ

(2π)3
εσ (akσ (t) ei(kzz+k⊥ρ) + h.c.),

= |E|
∑

σ

εσ (aσ (z, t) + a†
σ (z, t)). (C.1)

Here, |E| =
√

ω0
2ε0A and we have defined the space-dependent

operators aσ (z, t) = ∫ dkz

2π
akzσ (t) eikzz, where it is assumed that

the different k are close to k0, so that the operators oscillate at
the common frequency ω0 = |k0|. For the radiation field, we
have that

HL =
∑

σ

∫
dk

2π
ωka†

kσ akσ . (C.2)

Now we are to ready to form the EOM

∂

∂t
aσ (z, t) = i[Hint + HL, aσ (z, t)], (C.3)

[HL, aσ (z, t)] =
∫

dk

2π
[HL, akσ (t)] eikz

= −
∫

dk

2π
ωkakσ (t) eikz. (C.4)

But we also have from the explicit z-dependence that

∂

∂z
aσ (z, t) =

∫
dk

2π
ikakσ (t) eikz, (C.5)

which we recognize as −i[HL, aσ (z, t)]. So we replace the
time evolution from the radiation field by minus the derivative
with respect to z and end up with(

∂

∂t
+ ∂

∂z

)
aσ (z, t) = i[Hint, aσ (z, t)]. (C.6)

This procedure is directly applicable for the Stokes operators
too. In the end, we throw away the time derivative, which is
the same as ignoring retardation effects, but this approximation
can even be made exact by introducing a suitable rescaled time.
By doing this, we have thus an equation in position and not
time for light observables.

Appendix D. Calculations of atomic spin noise and
decay rate coefficients for light and atoms

D.1. Light matrix α2

The dimensionless tensor polarizability can be written as

α =
∑
k,F̃

aFF̃
k (�) Tk

FF̃
. (D.1)

We assume that the atomic spin is polarized along the x-axis
and during interaction the collective spin experiences merely
small rotations. Having the quantization axis to be the x-axis,
we have to linearize the spin-dependent operators around the
initial state |FF〉. Using the expression for the irreducible
tensors (B.12) and averaging over the initial spin state, we
obtain

〈α2〉 =
∑

k,k′,F̃

aFF̃
k aFF̃

k′

ckck′

∑
p,q

∑
r,s,l,l′

CFF
F̃r kl

CF̃r
FF k′l′

×C1s
1p klC

1q
1s k′l′ep⊗ e∗

q. (D.2)

We have changed the notation for Clebsch–Gordan coefficients
to the shorter form 〈 jm j′m′|JM〉 = CJM

jm j′m′ . Taking into
account restrictions on momentum projections given by
Clebsch–Gordan coefficients, the sum over four indices is
reduced to a sum over a single index. We have p = q, l = s−q,
l′ = −l, r = F + q − s, and hence

〈α2〉 =
∑

k,k′,F̃

aFF̃
k aFF̃

k′

ckck′

∑
q,s

CFF
F̃,F+q−s;k,s−q

CF̃,F+q−s

FF;k′,q−s

×C1s
1q;k,s−qC

1q
1s;k′,q−seq⊗ e∗

q. (D.3)

The required elements of the matrix α2 for the atomic spin
aligned in the x-direction in Cartesian coordinates read

〈α2〉xx = 〈α2〉00 (D.4)

〈α2〉yy = 1
2 (〈α2〉−− + 〈α2〉++) (D.5)

〈α2〉xy = 0. (D.6)
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D.2. Atomic Langevin noise (i[α, ji])2

Let us consider the matrix ζi = i[α, ji]. The commutator of an
irreducible tensor and spherical spin components reads[

Mk
l;FF , jμ

] = −
√

k(k + 1)Ck,l+μ

kl;1μ
Mk

l+μ;FF . (D.7)

This is true for an irreducible tensor defined for a single spin
state; therefore, we consider the case of F̃ = F :

ζFF
μ = −i

∑
k

aFF
k

ck

√
k(k + 1)

∑
l,p,q

×Ck,l+μ

kl;1μ
Mk

l+μ;FFC1q
1p;klep⊗ e∗

q. (D.8)

Using the same method as in the previous subsection, one
obtains

〈ζμζν〉FF = −
∑
k,k′

aFF
k aFF

k′

ckck′

√
k(k + 1)k′(k′ + 1)

∑
p,q

∑
r,s,l,l′

×Ck,l+μ

kl;1μ
Ck′,l′+ν

k′l′;1ν
CFF

Fr;k,l+μCFr
FF;k′l′+ν

×C1s
1p;klC

1q
1s;k′l′ep⊗ e∗

q. (D.9)

After some transformations, one comes to the following
expression:

〈ζμζν〉FF
pq = −

∑
k,k′

aFF
k aFF

k′

ckck′

√
k(k + 1)k′(k′ + 1)

∑
s

× δp,q+μ+νCk,s−q−ν

k,s−p;1μ
Ck′,q−s+ν

k′,q−s;1ν

×CFF
F,F+q−s+ν;k,s−q−νCF,F+q−s+ν

FF;k′,q−s+ν

×C1s
1,p;k,s−pC

1q
1s;k′,q−s. (D.10)

The case of F̃ �= F has to be considered specifically. The
commutator with spin components no longer have a nice
form:

[Mk
l;FF̃ , jμ] =

√
F(F + 1)

∑
m,n,r

[
CF̃n

Fr;klC
Fr
Fm;1μ|F̃n〉〈Fm|

−(−1)lCF̃n
Fr;k−lC

Fm
Fr;1μ|Fm〉〈F̃n|].

Using this expression for the commutator and doing some
algebra, we obtain

〈ζμζν〉FF̃
pq = (−1)s−pδp,q+μ+νF(F + 1)

×CFF
F,F−μ;1μCF,F−ν

FF;1ν

∑
k,k′

aFF̃
k aFF̃

k′

ckck′

×
∑

s

CF̃,F+q−s+ν

F,F−μ;k,p−sC
F̃,F+q−s+ν

F,F+ν;k′,q−s

×C1s
1,p;k,s−pC

1q
1s;k′,q−s. (D.11)

The full matrix 〈ζ 2〉 is just a sum of all of these contributions
for different F̃ :

〈ζμζν〉pq =
∑

F̃

〈ζμζν〉FF̃
pq . (D.12)

Since the spin is prepared in a polarized state along the x
direction, the spin noise coefficient for the ith spin component
in the presence of the driving field polarized parallel to the spin
is given by the xx components of the matrix 〈ζ 2

i 〉. The case of

the orthogonal configuration of the spin and light is described
by the yy element of the matrix〈
ζ 2

x

〉
‖ = 〈ζ0ζ0〉00, (D.13)〈

ζ 2
y

〉
‖ = − 1

2 {〈ζ−ζ+〉00 + 〈ζ+ζ−〉00} , (D.14)〈
ζ 2

z

〉
‖ = 〈

ζ 2
y

〉
‖, (D.15)〈

ζ 2
x

〉
⊥ = 1

2 {〈ζ0ζ0〉−− + 〈ζ0ζ0〉++} , (D.16)〈
ζ 2

y

〉
⊥ = − 1

4 {〈ζ−ζ−〉−+ + 〈ζ+ζ+〉+− + 〈ζ−ζ+〉−−

+ 〈ζ−ζ+〉++ + 〈ζ+ζ−〉−− + 〈ζ+ζ−〉++} , (D.17)〈
ζ 2

z

〉
⊥ = 1

4 {〈ζ−ζ−〉−+ + 〈ζ+ζ+〉+− − 〈ζ−ζ+〉−−

− 〈ζ−ζ+〉++ − 〈ζ+ζ−〉−− − 〈ζ+ζ−〉++} . (D.18)

D.3. Spin decay rates and ξi

In this subsection, we derive expressions for the spin decay
rates. The coefficients for the spin component decays are
defined via linearization of the operator ξi = α2 ji + jiα2 −
2α jiα = −i[α, ζμ] for the given polarized spin state. We want
to have ξi ∼ �i ji which implies

〈ξi〉 = �i〈 ji〉, 〈ξi ji〉 = �i
〈
j2
i

〉
. (D.19)

The last equality is always nontrivial, so we can use it for
defining �i = 〈ξi ji〉/〈 j2

i 〉. Using expressions (D.1) and (D.8),
we proceed

ξFF
μ = −

∑
k,k′

aFF
k aFF

k′

ckck′

√
k(k + 1)

∑
p,q

∑
r,s,l,l′

Ck,l+μ

kl;1μ

× [
CFn

Fr;k′l′C
Fr
Fm;k,l+μC1s

1p;k′l′C
1q
1s;kl

−CFn
Fr;k,l+μCFr

Fm;k′l′C
1s
1p;klC

1q
1s;k′l′

]
× |Fm〉〈Fn| ep⊗ e∗

q. (D.20)

After averaging over the initial spin polarized state |FF〉, we
obtain the required matrix elements in the spherical basis

〈ξμ jν〉FF
pq = −

∑
k,k′

aFF
k aFF

k′

ckck′

√
k(k + 1)F(F + 1)

×
∑

s

Ck,l+μ

kl;1μ
CF,F+ν

FF;1ν

× [
CFF

Fr;k′l′C
Fr
F,F+ν;k,l+μC1s

1p;k′l′C
1q
1s;kl

−CFF
Fr;k,l+μCFr

F,F+ν;k′l′C
1s
1p;klC

1q
1s;k′l′

]
. (D.21)

The Clebsch–Gordan coefficients require the following
constraints on the indices to be fulfilled for the first term
r = F + p − s, l = q − s, l′ = s − p and for the second
term r = F + q − s + ν, l = s − p, l′ = q − s plus the usual
condition p = q + μ + ν. Finally, we obtain

〈ξμ jν〉FF
pq = −δp,q+μ+ν

∑
k,k′

aFF
k aFF

k′

ckck′
CF,F+ν

FF;1ν

×
√

k(k + 1)F(F + 1)
∑

s

× [
CFF

F,F+p−s;k′,s−pC
F,F+p−s
F,F+ν;k,q−s+μ

×Ck,q−s+μ

k,q−s;1μ
C1s

1p;k′,s−pC
1q
1s;k,q−s

−CFF
F,F+q−s+ν;k,s−p+μCF,F+q−s+ν

F,F+ν;k′,q−s

×Ck,s−p+μ

k,s−p;1μ
C1s

1p;k,s−pC
1q
1s;k′,q−s

]
. (D.22)
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In the case of F̃ �= F , essentially the same calculations provide
us with the necessary expression

〈ξμ jν〉FF̃
pq = δp,q+μ+ν

∑
k,k′

aFF̃
k aFF̃

k′

ckck′
F(F + 1)CF,F+ν

FF;1ν

×
∑

s

(−1)s−pC1s
1p;k,s−pC

1q
1s;k′,q−s

× [
CF̃,F−s+p

FF;k,p−sC
F̃,F−s+p
F,F+μ+ν;k′,q−sC

F,F+μ+ν

F,F+ν;1μ

+CFF
F,F−μ;1μCF̃,F+q−s+ν

F,F−μ;k,p−sC
F̃,F+q−s+ν

F,F+ν;k′,q−s

]
. (D.23)

The full matrix 〈ξμ jν〉 can be found by summation over all F̃ :

〈ξμ jν〉pq =
∑

F̃

〈ξμ jν〉FF̃
pq . (D.24)

We recall that the spin is prepared in a polarized state along
the x direction. Then, the decay rate coefficient for ji in the
presence of the driving field polarized parallel to the spin is
given by the xx-component of the matrix 〈ξi ji〉. The case of
the orthogonal configuration of the spin and light is described
by the yy-element of the matrix:

�x‖ = 1

F2
〈ξ0 j0〉00, (D.25)

�y‖ = − 1

F
{〈ξ− j+〉00 + 〈ξ+ j−〉00} , (D.26)

�z‖ = �y‖, (D.27)

�x⊥ = 1

2F2
{〈ξ0 j0〉−− + 〈ξ0 j0〉++} , (D.28)

�y⊥ = − 1

2F
{〈ξ− j−〉−+ + 〈ξ+ j+〉+− + 〈ξ− j+〉−−

+ 〈ξ− j+〉++ + 〈ξ+ j−〉−− + 〈ξ+ j−〉++} , (D.29)

�z⊥ = 1

2F
{〈ξ− j−〉−+ + 〈ξ+ j+〉+− − 〈ξ− j+〉−−

− 〈ξ− j+〉++ − 〈ξ+ j−〉−− − 〈ξ+ j−〉++} . (D.30)

D.4. Relation between the spin decay and the spin noise

Let us consider the commutator of the Langevin noises for
spin-polarized atoms 〈[Fi, Fj]〉. The noise is defined by the
matrix ζi = i[α, ji] calculated in appendix D.2. Therefore, one
can consider the mean value of the commutator 〈[ζy, ζz]〉 =
−〈[[α, jy], [α, jz]]〉. On the other hand, the spin decay rate
is given by the operator ξi = α2 ji + jiα2 − 2α jiα. In the
previous subsection of the appendix, we have shown that for
spin-polarized atoms, the operator is proportional to the spin
projection 〈ξi〉 ∼ �i〈 ji〉. Using this fact one can show that

〈[ζy, ζz]〉 = i

2
(�y + �z − �x)〈 jx〉. (D.31)

This holds true for any cyclic permutation of x, y, z.

Appendix E. Expressions for 133Cs

In this section, we evaluate the A, B, C coefficients for 133Cs
optically pumped to the ground state F = 4. In this case, we
have I = 7/2, J = 1/2, J′ = 3/2, F = 4, F̃ = 3. In order
to simplify the expressions, we use the following notations: ak

for aFF
k and bk for aFF̃

k :

a0 = 7

144

(
44

21
+ 1

1 − �45
�

+ 1

3
(
1 − �35

�

)
)

, (E.1)

a1 = 7

5760

(
176

7
− 3

1 − �45
�

− 5

1 − �35
�

)
, (E.2)

a2 = 1

5760

(
16 − 21

1 − �45
�

+ 5

1 − �35
�

)
, (E.3)

b1 = 1

128
√

5

(
5

1 − �45
�

+ 3

1 − �35
�

)
, (E.4)

b2 = 3

128
√

77

(
1

1 − �45
�

− 1

1 − �35
�

)
. (E.5)

Light coefficients Aμ:

Ax = 1

4a2
1

[
a2

0 + 4a2
1 + 56a1a2 − 112

3
a0a2 + 4900

9
a2

2

+ 140

9

(
b2

1 + 77

5
b2

2 + 2

√
77

5
b1b2

)]
, (E.6)

Ay = 1

4a2
1

[
a2

0 + 18a2
1 − 28a1a2 + 56

3
a0a2 + 2170

9
a2

2

+ 70

9

(
b2

1 + 539

15
b2

2 − 2

√
77

5
b1b2

)]
. (E.7)

Spin decay coefficients Bi:

Bx‖ = 1

2a2
1

[
a2

1 + 14a2a1 + 49a2
2

+ 140

9

(
b2

1 + 77

5
b2

2 + 2

√
77

5
b1b2

)]
, (E.8)

By‖ = 1

4a2
1

[
a2

1 − 98a2a1 + 273a2
2

+ 245

9

(
b2

1 + 55

3
b2

2 + 2

√
55

7
b1b2

)]
, (E.9)

Bz‖ = By‖ , (E.10)

Bx⊥ = 1

4a2
1

[
a2

1 − 14a2a1 + 105a2
2

+ 140

9

(
b2

1 + 539

15
b2

2 − 2

√
77

5
b1b2

)]
, (E.11)
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By⊥ = 1

2a2
1

[
a2

1 + 56a2a1 − 35a2
2

+ 175

18

(
b2

1 + 693

25
b2

2 − 2

5

√
77

5
b1b2

)]
, (E.12)

Bz⊥ = Bx⊥ . (E.13)

Spin noise coefficients Ci:

Cx‖ = 1

a2
1

[
a2

1 + 14a2a1 + 49a2
2

+ 560

9

(
b2

1 + 77

5
b2

2 + 2

√
77

5
b1b2

)]
, (E.14)

Cy‖ = 1

a2
1

[
4a2

1 + 308a2
2

+ 35

6

(
b2

1 + 1001

45
b2

2 + 2

3

√
77

5
b1b2

)]
, (E.15)

Cz‖ = Cy‖ , (E.16)

Cx⊥ = 1

2a2
1

[
a2

1 − 14a2a1 + 161a2
2

+ 560

9

(
b2

1 + 539

15
b2

2 − 2

√
77

5
b1b2

)]
, (E.17)

Cy⊥ = 1

2a2
1

[
9a2

1 − 14a2a1 + 63a2
2

+ 175

18

(
b2

1 + 693

25
b2

2 − 2

5

√
77

5
b1b2

)]
, (E.18)

Cz⊥ = 1

2a2
1

[a2
1 + 14a2a1 + 651a2

2

+ 175

18
(b2

1 + 693

25
b2

2 − 2

5

√
77

5
b1b2)]. (E.19)
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[3] Gorshkov A, André A, Lukin M and Sørensen A 2007 Photon
storage in-type optically dense atomic media: ii. Free-space
model Phys. Rev. A 76 033805
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