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Abstract This chapter reports on theoretical protocols for generating nonclassical
states of light and mechanics. Nonclassical states are understood as squeezed states,
entangled states or states with negative Wigner function, and the nonclassicality can
refer either to light, to mechanics, or to both, light and mechanics. In all protocols
nonclassicality arises from a strong optomechanical coupling. Some protocols rely
in addition on homodyne detection or photon counting of light.
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3.1 Introduction

An outstanding goal in the field of optomechanics is to go beyond the regime of
classical physics, and to generate nonclassical states, either in light, the mechani-
cal oscillator, or involving both systems, mechanics and light. The states in which
light and mechanical oscillators are found naturally are those with Gaussian statis-
tics with respect to measurements of position and momentum (or field quadratures
in the case of light). The class of Gaussian states include for example thermal states
of the mechanical mode, and on the side of light coherent states and vacuum. These
are the sort of classical states in which optomechanical systems can be prepared
easily. In this chapter we summarize and review means to go beyond this class of
states, and to prepare nonclassical states of optomechanical systems.

Within the family of Gaussian states those states are usually referred to as non-
classical in which the variance of at least one of the canonical variables is reduced
below the noise level of zero point fluctuations. In the case of a single mode, e.g.
light or mechanics, these are squeezed states. If we are concerned with a system
comprised of several modes, e.g. light and mechanics or two mechanical modes,
the noise reduction can also pertain to a variance of a generalized canonical vari-
able involving dynamical degrees of freedom of more than one mode. Squeezing of
such a collective variable can arise in a state bearing sufficiently strong correlations
among its constituent systems. For Gaussian states it is in fact true that this sort of
squeezing provides a necessary and sufficient condition for the two systems to be
in an inseparable, quantum mechanically entangled state. Nonclassicality within the
domain of Gaussian states thus means to prepare squeezed or entangled states.

For states exhibiting non Gaussian statistics the notion of nonclassicality is less
clear. One generally accepted criterium is based on the Wigner phase space distrib-
ution. A state is thereby classified as non classical when its Wigner function is non
positive. This notion of nonclassicality in fact implies for pure quantum states that
all non Gaussian states are also non classical since every pure non Gaussian quantum
state has a non positiveWigner function. For mixed states the same is not true. Under
realistic conditions the state of optomechanical systems will necessarily be a statis-
tical mixture such that the preparation and verification of states with a non positive
Wigner distribution poses a formidable challenge. Paradigmatic states of this kind
will be states which are close to eigenenergy (Fock) states of the mechanical system.

Optomechanical systems present a promising and versatile platform for creation
and verification of either sort of nonclassical states. Squeezed and entangledGaussian
states are in principle achievable with the strong, linearized form of the radiation
pressure interaction, or might be conditionally prepared and verified by means of
homodyne detection of light. These are all “Gaussian tools” which conserve the
Gaussian character of the overall state, but are sufficient to steer the system towards
Gaussian non classical states. In order to prepare non Gaussian states, possibly with
negative Wigner function, the toolbox has to be enlarged in order to encompass also
some non Gaussian instrument. This can be achieved either by driving the optome-
chanical system with a non Gaussian state of light, such as a single photon state, or
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by preparing states conditioned on a photon counting event. Ultimately the radiation
pressure interaction itself is a nonlinear interaction (cubic in annihilation/creation
operators) and therefore does in principle generate non Gausssian states for suffi-
ciently strong coupling g0 at the single photon level. Quite generally one can state that
some sort of strong coupling condition has to be fulfilled in any protocol for achiev-
ing a nonclassical state. Fulfilling the respective strong coupling condition is thus
the experimental challenge on the route towards nonclassicality in optomechanics.

In the following we will present a selection of strategies aiming at the preparation
of nonclassical states. In Sect. 3.2 we review ideas of using an optomechanical cavity
as a source of squeezed and entangled light. Central to this approach is the fact that the
radiation pressure provides an effective Kerr nonlinearity for the cavity, which is well
known to be able to generate squeezing of light. In Sect. 3.3 we discuss nonclassical
states of the mechanical mode. This involves e.g. the preparation of squeezed states
as well as non Gaussian states via state transfer form light, continuous measurement
in a nonlinearly coupled optomechanical system, or interaction with single photons
and photon counting. Section 3.4 is devoted to nonclassical states involving both
systems, light and mechanics, and summarizes ideas to prepare the optomechanical
system in an entangled states, either in steady state under continuous wave driving
fields, or via interaction with pulsed light.

3.2 Non-classical States of Light

3.2.1 Ponderomotive Squeezing

One of the first predictions of quantum effects in cavity optomechanical system
concernedponderomotive squeezing [1, 2], i.e., the possibility to generate quadrature-
squeezed light at the cavity output due to the radiation pressure interaction of the
cavity mode with a vibrating resonator. The mechanical element is shifted propor-
tionally to the intracavity intensity, and consequently the optical path inside the cavity
depends upon such intensity. Therefore the optomechanical system behaves similarly
to a cavity filled with a nonlinear Kerr medium. This can be seen also by inserting the
formal solution of the time evolution of the mechanical displacement x̂(t) into the
Quantum Langevin equation (QLE) for the cavity field annihilation operator â(t),

˙̂a = −
[κ

2
+ iωopt(0)

]
â +

t∫

−∞
dsχM (t − s)

[
i�G2â(t)â†(s)â(s) + iGâ(t)ξ̂ (s)

]

+ √
κ âin(t), (3.1)

where âin(t) is the driving field (including the vacuum field) and
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χM (t) =
∞∫

−∞

dω

2π

e−iωt

meff
(
Ω2

M − ω2 − iΓMω
) = e−ΓMt/2

meffΩ̃M
sin Ω̃M t (3.2)

is the mechanical susceptibility (here Ω̃M =
√

Ω2
M − Γ 2

M/4). Equation (3.1) shows
that the optomechanical coupling acts as a Kerr nonlinearity on the cavity field,
but with two important differences: (1) the effective nonlinearity is delayed by a
time depending upon the dynamics of the mechanical element; (2) the optomechan-
ical interaction transmits mechanical thermal noise ξ̂ (t) to the cavity field, causing
fluctuations of its frequency. When the mechanical oscillator is fast enough, i.e.,
we look at low frequencies ω � ΩM, the mechanical response is instantaneous,
χM (t) � δ(t)/meffΩ

2
M, and the nonlinear term becomes indistinguishable from a

Kerr term, with an effective nonlinear coefficient χ(3) = �G2/meffΩ
2
M.

It is known that when a cavity containing a Kerr medium is driven by an intense
laser, one gets appreciable squeezing in the spectrum of quadrature fluctuations at
the cavity output [3]. The above analogy therefore suggests that a strongly driven
optomechanical cavitywill also be able to produce quadrature squeezing at its output,
provided that optomechanical coupling predominates over the detrimental effect of
thermal noise [1, 2].

We show this fact by starting from the Fourier-transformed linearized QLE for
the fluctuations around the classical steady state

meff

(
Ω2

M − ω2 − iωΓM

)
x̂(ω) = �Gαsδ X̂(ω) + ξ̂ (ω), (3.3)

(κ

2
− iω

)
δ X̂(ω) = −ΔδŶ (ω) + √

κδ X̂ in(ω), (3.4)
(κ

2
− iω

)
δŶ (ω) = Δδ X̂(ω) + Gαs x(ω) + √

κδŶ in(ω), (3.5)

whereΔ = ωL −ωopt, and we have chosen the phase reference so that the stationary
amplitude of the intracavity field αs is real, δ X̂ = δâ + δâ† [δŶ = −i

(
δâ − δâ†

)
] is

the amplitude (phase) quadrature of the field fluctuations, and δ X̂ in and δŶ in are the
corresponding quadratures of the vacuum input field. The output quadrature noise
spectra are obtained solving Eqs. (3.3)–(3.5), and by using input-output relations [3],
the vacuum input noise spectra Sin

X (ω) = Sin
Y (ω) = 1, and the fluctuation-dissipation

theorem for the thermal spectrum S
ξ̂
(ω) = �ωΓMmeff coth (�ω/2kB T ). The noise

spectrum of a quantity X is defined through SX (ω)δ(ω − ω̄) = 〈X (ω)X (ω̄) +
X (ω̄)X (ω)〉.

The output light is squeezed at phase φ when the corresponding noise spectrum
is below the shot-noise limit, Sout

φ (ω) < 1, where Sout
φ (ω) = Sout

X (ω) cos2 φ +
Sout

Y (ω) sin2 φ + Sout
XY (ω) sin 2φ, and the amplitude and phase noise spectra Sout

X (ω)

and Sout
y (ω) satisfy the Heisenberg uncertainty theorem Sout

X (ω)Sout
Y (ω) > 1 +[

Sout
XY (ω)

]2 [4]. However, rather than looking at the noise spectrum at a fixed phase
of the field, one usually performs an optimization and considers, for every frequency
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ω, the field phase φopt (ω) possessing the minimum noise spectrum, defining in this
way the optimal squeezing spectrum,

Sopt (ω) = min
φ

Sout
φ (ω)

= 2Sout
X (ω)Sout

Y (ω) − 2
[
Sout

XY (ω)
]2

Sout
X (ω) + Sout

Y (ω) +
√[

Sout
X (ω) − Sout

Y (ω)
]2 + 4

[
Sout

XY (ω)
]2 . (3.6)

The frequency-dependent optimal phase is correspondingly given by

φopt (ω) = 1

2
arctan

[
2Sout

XY (ω)

Sout
X (ω) − Sout

Y (ω)

]
. (3.7)

We restrict to the resonant caseΔ = 0, which is always stable and where expressions
are simpler. One gets

Sout
X (ω) = 1, Sout

XY (ω) = κ�G2α2
s Re {χM (ω)}

κ2/4 + ω2 , (3.8)

Sout
Y (ω) = 1 + Sout

XY (ω)2 + Sr (ω), (3.9)

where

Sr (ω) =
[
κ�G2α2

s Im {χM (ω)}
κ2/4 + ω2

]2
+ κ�G2α2

s Im {χM (ω)}
κ2/4 + ω2 coth

(
�ω

2kB T

)
. (3.10)

Inserting Eqs. (3.8)–(3.9) into Eq. (3.6) one sees that the strongest squeezing is
obtained when the two limits Sr (ω) � 1 and

[
Sout

XY (ω)
]2 � 1 are simultaneously

satisfied. These conditions are already suggested by Eq. (3.1): Sr (ω) � 1means that
thermal noise is negligible, which occurs at low temperatures and small mechani-
cal damping Im {χM (ω)}, i.e., large mechanical quality factor Q;

[
Sout

XY (ω)
]2 � 1

means large radiation pressure, achieved at large intracavity field and small mass.
Ponderomotive squeezing is therefore attained when

[Sout
XY (ω)]2
Sr (ω)

∼ PinωL

meffc2Ω2
M

F 2Q

n̄th
� 1, (3.11)

and in this ideal limit Sopt (ω) � [
Sout

XY (ω)
]−2 → 0, and φopt (ω) � − 1

2 arctan[
2

Sout
XY (ω)

]
→ 0. Since the field quadrature δXout atφ = 0 is just at the shot-noise limit

(see Eq. (3.8)), one has that squeezing is achieved only within a narrow interval for
the homodyne phase around φopt (ω), of width ∼ 2

∣∣φopt (ω)
∣∣ ∼ arctan

∣∣2/Sout
XY (ω)

∣∣.
This extreme phase dependence is a general and well-known property of quantum
squeezing, which is due to the Heisenberg principle: the width of the interval of



30 K. Hammerer et al.

(a) (b)

Fig. 3.1 Optimal spectrum of squeezing in dB Sopt (a), and the corresponding optimal quadrature
phase φopt (b), versus frequency in the case of a cavity with bandwidth κ = 1 MHz, length L =
1 cm, driven by a laser at 1,064 nm and with input powerPin = 10 mW. The mechanical resonator
has ΩM/2π = 1 MHz, mass meff = 100 ng, quality factor Q = 104, and temperature T = 4 K

quadrature phases with noise below the shot-noise limit is inversely proportional to
the amount of achievable squeezing.

Sopt (ω) and the corresponding optimal phase φopt (ω) at which best squeezing
is attained for each ω, are plotted in Fig. 3.1 for a realistic set of parameter values
(see figure caption). Sopt (ω) is below the shot-noise limit whenever Sout

XY (ω) �= 0
(see Eqs. (3.6)–(3.9)), and one gets significant squeezing at low frequencies, well
below the mechanical resonance, where the optomechanical cavity becomes fully
equivalent to a Kerr medium, as witnessed also by the fact that φopt (ω) is constant
in this frequency band. This equivalence is lost close to and above the mechanical
resonance, where squeezing vanishes because Re {χM (ω)} ∼ Sout

XY (ω) ∼ 0, and the
optimal phase shows a large variation.

The present treatment neglects technical limitations: in particular it assumes the
ideal situation of a one-sided cavity, where there is no cavity loss because all photons
transmitted by the input–outputmirror are collected by the outputmode.Wehave also
ignored laser phase noise which is typically non-negligible at low frequencies where
ponderomotive squeezing is significant. In current experimental schemes both cavity
losses and laser phase noise play a relevant role and in fact. Recent experiments in cold
atom optomechanics [5], photonic crystals [6] and membrane in the middle setups
[7] demonstrated squeezed light along the lines outlined here. These results show
that cavity optomechanical systems may become a valid alternative to traditional
sources of squeezing such as parametric amplifiers and Kerr media.

3.2.2 Einstein-Podolsky-Rosen Correlated Beams of Light

Optomechanical cavities provide a source not only of squeezed light but also of
entangled light, as we will explain in the following. By means of spectral filters, the
continuous wave field emerging from the cavity can be split in many traveling modes
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thus offering the option of producing and manipulating a multipartite system [8].
In particular we focus on detecting the first two motional sidebands at frequencies
ωopt±ΩM and show that they posses quantum correlations of the Einstein-Podolsky-
Rosen type [9].

Using the well-known input-output fields connection âout (t) = √
κ â(t)− âin(t),

the output mode can be split in N independent optical modes by frequency selection
with a proper choice of a causal filter function:

âout
k (t) =

t∫

−∞
dsgk(t − s)âout (s), k = 1, . . . N , (3.12)

where gk(s) is the causal filter function defining the k-th output mode. The annihila-

tionoperators describe N independent opticalmodeswhen
[
âout

j (t), âout
k (t)†

]
= δ jk ,

which is fulfilled when
∫ ∞
0 dsg j (s)∗gk(s) = δ jk , i.e., the N filter functions gk(t)

form an orthonormal set of square-integrable functions in [0,∞). As an example of
a set of functions that qualify as causal filters we take

gk(t) = θ(t) − θ(t − τ)√
τ

e−iΩk t , (3.13)

(θ denotes the Heavyside step function) provided that Ωk and τ satisfy the condition
Ω j −Ωk = 2π

τ
p for integer p. Such filtering is seen as a simple frequency integration

around Ωk of bandwidth ∼ 1/τ (the inverse of the time integration window).
For characterization of entanglement one can compute the stationary (2N + 2)×

(2N + 2) correlation matrix of the output modes defined as

V out
i j (t) = 1

2

〈
uout

i (t)uout
j (t) + uout

j (t)uout
i (t)

〉
, (3.14)

where

uout (t) =
(

q̂(t), p̂(t), X̂out
1 (t), Ŷ out

1 (t), . . . , X̂out
N (t), Ŷ out

N (t)
)T

is the vector formed by the mechanical position and momentum fluctuations and by
the amplitude (X̂out

k (t) = [âout
k (t)+ âout

k (t)†]/√2), and phase (Ŷ out
k (t) = [âout

k (t)−
âout

k (t)†]/ i
√
2) quadratures of the N output modes.

We are now in position to analyze the quantum correlations between two output
modes with the same bandwidth τ−1 and central frequencies Ω1 and Ω2. As a
measure for entanglement we apply the logarithmic negativity EN to the covariance
matrix of the two optical modes. It is defined as EN = max[0,− ln 2η−], where
η− ≡ 2−1/2

[
Σ(V ) − [

Σ(V )2 − 4 det V
]1/2]1/2

, with Σ(V ) ≡ det Vm + det Vc −
2 det Vmc, and we have used the 2 × 2 block form of the covariance matrix
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(a) (b) (c)

Fig. 3.2 a Logarithmic negativity of Stoke–Antistokes output modes when Ω1 = −ΩM while Ω2
is varied aroundΩM. The inverse bandwidth is kept constant at ε = 10π . b Temperature robustness
of bipartite entanglement of output modes at ±ΩM computed for short (ε = 10π , dashed line) and
long (ε = 100π , solid line) detection times. c The bipartite Stokes–Antistokes entanglement shows
improvement and eventually saturates with increasing integration time. Parameters are ΩM/2π =
10 MHz, Q = 105, mass meff = 50 ng, cavity of length L = 1 mm with finesse F = 2 × 104,
detuning Δ = ΩM, input power Pin = 30 mW at 810 nm, and temperature T = 0.4 K, yielding
g0 = 0.43 kHz, g = 0.41ΩM, a cavity bandwidth 2κ = 0.75ΩM, and a thermal occupation of
n̄th � 833

V ≡
(

Vm Vmc

V T
mc Vc

)
. (3.15)

Therefore, a Gaussian state is entangled if and only if η− < 1/2, which is equiva-
lent to Simon’s necessary and sufficient entanglement non-positive partial transpose
criterion for Gaussian states, which can be written as 4 det V < Σ − 1/4.

The resulting quantum correlations among the upper and the lower sideband in
the continuous wave output field are illustrated in Fig. 3.2. We plot the interest-
ing and not unexpected behavior of EN as a function of central detection fre-
quency Ω in Fig. 3.2a, with the mirror reservoir temperature in Fig. 3.2b and
with the scaled time integration window ε = ΩMτ in Fig. 3.2c. The conclusion of
Fig. 3.2a is that indeed scattering off the mirror can produce good Stokes-Antistokes
entanglement which can be optimized at the cavity output by properly adjusting the
detection window. Moreover, further optimization is possible via an integration time
increase as suggested by Fig. 3.2c. The temperature behavior plotted in Fig. 3.2b
shows very good robustness of the mirror-scattered entangled beams that suggests
this mechanism of producing Einstein-Podolsky-Rosen (EPR) entangled photons as
a possible alternative to parametric oscillators.

3.3 Non-classical States of Mechanics

3.3.1 State Transfer

For a massive macroscopic mechanical resonator, just as in the case of a light field,
the signature of quantum can be indicated in a first step by the ability of engineering a



3 Nonclassical States of Light and Mechanics 33

(a) (c)

(b) (d)

Fig. 3.3 a An optomechanical system is driven by a classical (coherent) field at frequency ωL and
by squeezed light of central frequency ωS . b ωs coincides with the cavity frequency, ωL is detuned
to the red by the mechanical frequency. c The initial thermal state of the oscillator is cooled to the
ground state by passive sideband cooling. Squeezing of light will cool the oscillator to a squeezed
mechanical state, cf. subfigure (d)

squeezed state. Such a statewould also be useful in ultrahigh precisionmeasurements
or detection of gravitational waves and has been experimentally proven in only one
instance for a nonlinear Duffing resonator [10] (though not in the quantum regime).
Numerous proposals exist and can be categorized as (1) direct: modulated drive
in optomechanical settings with or without feedback loop [11–15], and (2) indirect:
mapping a squeezed state of light or atomsonto the resonator, coupling to a cavitywith
atomic mediumwithin [16], coupling to a Cooper pair box [17] or a superconducting
quantum interference loop [18, 19]. Mechanical squeezing can also be generated
through QND measurements of the mechanical position by means of short light
pulses [20], which was also experimentally explored (though not in the quantum
regime) [21].

In the following we take the example of state transfer in a pure optomechanical
setup where laser cooling of a mirror/membrane via a strong laser is accompanied
by squeezing transfer from a squeezed vacuum second input light field [22]. While
the concept is straightforward it is of interest to answer a few practical questions
such as: (1) what is the resonance condition for optimal squeezing transfer and how
does a frequency mismatch affect the squeezing transfer efficiency, (2) what is the
optimal transfer, (3) how large should the cavity finesse be for optimal transfer etc.

To this purposewe assume an optomechanical system in cooling configuration, i.e.
the driving laser is red detuned from the cavity resonance such that the Anti-stokes
sideband is resonant to the cavity frequency ωopt. In addition the optomechanical
system is driven by squeezed light at this same frequency, that is resonant with the
cavity, as shown in Fig. 3.3. The input squeezed light operators have the following
correlations



34 K. Hammerer et al.

〈ĉin(t + τ)ĉin(t)〉 = M

2

bx by

b2x + b2y

(
bye−bx |τ | + bx e−by |τ |) (3.16)

〈ĉ†in(t + τ)ĉin(t)〉 = N

2

bx by

b2y − b2x

(
bye−bx |τ | − bx e−by |τ |) . (3.17)

The noise operators are written in a frame rotating at ωs and satisfy the canoni-
cal commutation relation [ĉin(t), ĉ†in(t

′)] = δ(t − t ′). Parameters N and M deter-
mine the degree of squeezing, while bx and by define the squeezing bandwidth.
For pure squeezing there are only two independent parameters, as in this case
|M |2 = N (N + 1) and by = bx

√
2 (N + |M |) + 1.

Following the standard linearized quantumLangevin equations approach for opto-
mechanics, we first identify two conditions for optimal squeezing: (1) Δ = ΩM,
meaning that we require continuous laser cooling in the resolved sideband regime
and (2) Δs = −ΩM so that the squeezing spectrum is centered around the cavity
frequency. Then we look at the variances of the generalized quadrature operator

δ X̂ϕ(t) = 1√
2

(
eiϕ b̂(t) + e−iϕ b̂†(t)

)
, (3.18)

which for ϕ = 0 is the usual position operator q̂(t) and for ϕ = −π/2 is the
momentum operator p̂(t), both taking in a rotating frame at frequency ΩM. In the
limit of squeezed white noise the quadrature correlations take a simple form

〈δ X̂ϕ(t)δ X̂ϕ(t)〉 =
(

N + 1

2
− Re

{
Me2iϕ

})
+ ΓM

Γeff

(
n̄th + 1

2

)
. (3.19)

The first term in the right hand side comes from the squeezing properties of the
squeezed input vacuum while the second term is the residual occupancy after laser
cooling. In view of this equation a successful squeezed mechanical state prepara-
tion automatically requires close to ground state cooling. One can follow this in
Fig. 3.3c where cooling close to ground state of an initially thermal mechanical state
is performed by the cooling laser, and subsequently squeezing of a quadrature is
achieved via the squeezed vacuum.

To answer a practical question, when the squeezing is not white, fulfilling the
resonance condition Δs = −ΩM is important. The deviations allowed for the
frequency mismatch are smaller than the width of the cooling sideband, i.e. Γeff .
A second question is the effect of the finite width of squeezing. In general there is an
optimal squeezing bandwidth for which the transfer from light to membrane is max-
imized, but in the resolved sideband limit whereΩM � κ the finite bandwidth result
does not differ much from the infinite bandwidth limit result. For a large bandwidth
which fully covers themotional sidebands, bx � ΩM, themembrane sees only white
squeezed input noise, whereas for smaller bandwidth, the crucial question is whether
the squeezed input will touch the heating sideband or not. For a high-finesse cavity,
the width is not a big issue, since the heating sideband is anyway weak, whereas for a
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bad cavity the squeezing transfer is much improved for an optimal, finite bandwidth
where the strong heating sideband is avoided.

3.3.2 Continuous Measurements of Mechanical Oscillators

Another method for creating nonclassical states exploits the possibility to condition-
ally prepare states of the mechanical oscillator via measuring the output field of the
optomechanical system. The coupling of a mechanical resonator to an optical cavity
field enables an indirect continuous monitoring of the mechanical motion by a direct
phase dependent measurement of the field leaving the cavity. The standard radia-
tion pressure coupling is linear in the displacement of the mechanical resonator and
thus enables a continuous measurement of displacement. If we wish to monitor the
energy (or phonon number) of the mechanical resonator, however, we need to find
an interaction Hamiltonian that is quadratic in the displacement. Such interactions
can occur in a number of ways [23, 24]. We begin with the case of displacement
measurements.

The standard linearised opto-mechanical coupling Hamiltonian

H = −�Δâ†â + �ΩMb̂†b̂ − �g(â + â†)(b̂ + b̂†) (3.20)

As the interaction part of this Hamiltonian commutes with the (dimensionless)
mechanical displacement operator, q̂ = 1√

2
(b̂ + b̂†), in principle this model can

be configured as a measurement of the displacement. However as q̂ does not com-
mute with the free mechanical Hamiltonian, this is not a strict QND measurement
[25]. Nonetheless, for a rapidly damped cavity, we can effect approximate QND
readout of the mechanical displacement provided the coupling constant g can be
turned on and off sufficiently fast. This can be achieved by using a pulsed coherent
driving field on the cavity [20].

If we include the damping of both the cavity and the mechanics, we obtain the
quantum stochastic differential equations,

dâ

dt
= iΔâ − κ

2
â + ig X̂ + √

κ âin (3.21)

db̂

dt
= −iΩMb̂ − ΓM

2
b̂ + ig(â + â†) + √

ΓMb̂in (3.22)

wherewe assume that the input noise to the cavity is vacuum, so that the only non zero
correlation function for the cavity noise is 〈âin(t)â†

in(t ′)〉 = δ(t −t ′) but that the input
noise to the mechanical resonator is thermal, 〈b̂in(t)b̂†in(t ′)〉 = (n̄th +1)δ(t − t ′). We
expect that a good measurement will occur when the cavity field is rapidly damped
so that it is slaved to the mechanical degree of freedom. We can then adiabatically
eliminate the cavity degree of freedom by setting to zero the right hand side of
Eq. (3.21) and formally solving for the operator â,
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â = ige−iφ

√
Δ2 + κ2/4

q̂ +
√

κ

κ/2 − iΔ
âin (3.23)

where tan φ = −2Δ/κ . The actual output field from the cavity is related to the field
inside by the input/output relation, âout = √

κ â − âin , so that

âout (t) = ig
√

κe−iφ

√
Δ2 + κ2/4

q̂(t) + e−2iφ âin(t) (3.24)

Clearly this indicates that we need to measure a particular quadrature of the output
field (for example by homodyne or heterodyne detection) and that the added noise
is vacuum noise. The optimal transfer is obtained on resonance. A fast, impulsive
readout of the mechanical resonator’s displacement may be made by injecting a
coherent pulse into the cavity and subjecting the output pulse to a homodyne mea-
surement [20].

If we wish to measure the energy of a mechanical resonator we must find
an interaction Hamiltonian that is at least quadratic in the mechanical amplitude.
A number of schemes have been proposed, including trapped atoms in a standing
wave [26] and a nanomechanical resonator coupled to a Cooper pair box qubit in
the dispersive regime [27]. In opto-mechanics a dielectric membrane placed at the
antinode of a cavity standing wave shifts the cavity frequency proportional to the
square of the mechanical displacement of the membrane from equilibrium [23]. A
similar interaction arises for an optically levitated particle in a standing wave [24].

The interaction Hamiltonian in this case takes the form

H = �ωopt â
†â + �ΩMb̂†b̂ + �(ε∗

c âeiωL t + εcâ†e−iωl t ) + �

2
G2â†â(b̂ + b̂†)2,

(3.25)
where

G2 = �

2νm

∂2ωc(x)

∂x2

∣∣∣∣
x=x0

. (3.26)

and where we have included a coherent driving field with amplitude ε. As usual
we expand the interaction around the steady state cavity field. After the rotating
wave approximation, the effective Hamiltonian in the interaction picture may then
be written as

HI = �

2
χ( ¯̂a + ¯̂a†)b̂†b̂, (3.27)

where χ = 2G2α0.
The interaction in Eq. (3.27) describes a displacement of the cavity field propor-

tional to the number of vibrational quanta in the mechanical resonator. The average
steady-state displacement is given by χ n̄/κ , where n̄ is the mean phonon number
operator for the mechanical oscillator, κ is the cavity line-width. If we continuously
monitor the output field amplitude from the cavity via homodyne detection this
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Fig. 3.4 The evolution of the conditional average phonon number with parameters κ = 104γ n̄th
and: a χ2/κ = γ n̄th , b χ2/κ = 10γ N̄ , c χ2/κ = 102γ n̄th . Jump-like behaviour occurs only when
χ2/κ � γ [n̄th(n + 1) + (n̄th + 1)n], where n is the phonon number

scheme can in principle enable a continuous monitoring of the mechanical vibra-
tional energy, and phonon number jumps [28].

Under continuous homodyne measurement of this quadrature, the system is gov-
erned by the following stochastic master equation (SME):

dρ = − i

�
[HI , ρ]dt + γ (n̄th + 1)D[b̂]ρdt + γ n̄thD[b̂†]ρdt + κD[â]ρdt

+ √
κdWH [ae−i π

2 ]ρ, (3.28)

whereD[c]ρ = cρc† − c†cρ/2− ρc†c/2 andH [c]ρ = cρ + ρc†− Tr(cρ + ρc†)ρ
is the measurement super-operator, γ and κ are the respective mechanical and cavity
damping rates.

In Fig. 3.4 we show a numerical integration of the stochastic master equation with
κ = 104γ N̄ for three cases: χ2/κ = γ N̄ , χ2/κ = 10γ n̄th , and χ2/κ = 102γ n̄th .
We start with the mechanics in the ground state, and the bath temperature is set at
n̄th = 0.5. The first case, Fig. 3.4a, does not satisfy the fast-measurement condition
and therefore does not resolve quantum jumps in the phonon number. The second
case, Fig. 3.4b, is on the border of the fast-measurement regime for n ∼ 1 and shows
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some jump-like behaviour in the phonon number. The third case, Fig. 3.4c, strongly
satisfies the fast-measurement condition for low phonon numbers and shows well-
resolved quantum jumps in spite of being deeply within the weak coupling regime
with χ/κ = 10−1.

For jump-like behaviour to arise in the weak coupling limit, the adiabatic con-
dition is not sufficient. In this regime, analysis shows that the rate of information
acquisition about the phonon number is proportional to χ2/κ . As in the strong cou-
pling case, this measurement rate must dominate the thermalisation rate in order
for quantum jumps to arise. Thus, in addition to being in the adiabatic limit, the
weak coupling regime requires χ2/κ � γ N̄ . Note that single-phonon detection of
this kind remains extremely challenging, as it requires a single-photon optomechan-
ical coupling strength that is large compared to any absorptive photon losses in the
structure [29].

The state of the mechanical system conditioned on the measurement of light
will be in a non-Gaussian state. This is due to the non-linear interaction introduced
in (3.25). Another way of achieving a non-Gaussian state exploits the nonlinearity
provided in photon counting, as will be detailed in the next section.

3.3.3 Non-Gaussian State via Interaction with Single Photons
and Photon Counting

In 1935 Schrödinger pointed out that according to quantum mechanics even macro-
scopic systems can be in superposition states [30]. The interference effects, charac-
teristic of quantum mechanics, are expected to be hard to detect due to environment
induced decoherence [31]. Nevertheless there have been several proposals on how
to create and observe macroscopic superpositions in various physical systems. See
references [32–34] for some of the first proposals. There have also been experiments
on superposition states in superconducting and piezoelectric devices [35, 36] and on
interference with fullerene [37] and other large molecules. One long-termmotivation
for this kind of experiment is the question of whether unconventional decoherence
processes such as gravitationally induced decoherence or spontaneouswave-function
collapse [38–42] take place.

In this section a scheme is analyzed that is close in spirit to Schrödinger’s orig-
inal discussion. A small quantum system (a photon) is coupled to a large system
(a mirror) such that they become entangled [43]. The system consists of a Michelson
interferometer in which one arm has a tiny moveable mirror. The radiation pressure
of a single photon is used to displace the tiny mirror. The initial superposition of
the photon being in either arm causes the system to evolve into a superposition of
states corresponding to two distinct spatial locations of the mirror. A high-finesse
cavity is used to enhance the interaction between the single photon and the mirror.
The interference of the photon upon exiting the interferometer allows one to study
the creation of coherent superposition states periodic with the motion of the mirror.
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Fig. 3.5 Scheme: a Michelson interferometer for a single photon with a high-finesse cavity in each
arm. The cavity in arm A has a very small end mirror mounted on a micro-mechanical oscillator.
The single photon enters the interferometer via a polarizing beam splitter (PBS) followed by a λ/4
wave plate. This is an optical trick to allow detection of the photon leaking out of the interferometer
at a later time on detector D1 or D2. If the input photon is considered to be in arm A, the motion of
the small mirror is affected by its radiation pressure. If the input photon is considered to be in arm
B, the motion of the mirror is undisturbed. The interferometer, based on the 50%/50% beamsplitter
(BS), leads to the entanglement between the photon being in arm A or in arm B and the state of the
mirror

Consider the setup shown in Fig. 3.5, consisting of a Michelson interferometer
that has a cavity in each arm. In the cavity in arm A one of the mirrors is very small
and attached to a micromechanical oscillator. While the photon is inside the cavity,
it exerts a radiation pressure force on the small mirror. We will be interested in the
regime where the period of the mirror’s motion is much longer than the roundtrip
time of the photon inside the cavity, and where the amplitude of the mirror’s motion
is very small compared to the cavity length. Under these conditions, the system can
be described by the standard optomechanical Hamiltonian [44, 45]

H = ωoptâ
†â + ΩMb̂†b̂ − g0â†â(b̂ + b̂†). (3.29)

To start with, let us suppose that initially the photon is in a superposition of being in
either arm A or B, and the mirror is in a coherent state |β〉 = e−|β|2/2 ∑∞

n=0
βn√

n! |n〉,
where |n〉 are the eigenstates of the harmonic oscillator. Then the initial state is

|ψ(0)〉 = 1√
2
(|0〉A|1〉B + |1〉A|0〉B)|β〉. (3.30)

After a time t the state of the system will be given by [46, 47]

|ψ(t)〉 = 1√
2

e−iωopt t {|0〉A|1〉B |βe−iΩMt 〉

+ eiη2(ΩMt−sinΩMt)|1〉A|0〉B |βe−iΩMt + η(1 − e−iΩMt )〉}, (3.31)
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where η = g0/ΩM. In the second term on the right hand side the motion of the
mirror is altered by the radiation pressure of the photon in cavity A. The parame-
ter η quantifies the displacement of the mirror in units of the size of the coherent
state wavepacket. In the presence of the photon the mirror oscillates around a new
equilibrium position determined by the driving force.

The maximum possible interference visibility for the photon is given by twice
the modulus of the off-diagonal element of the photon’s reduced density matrix. By
tracing over the mirror one finds from Eq. (3.31) that the off-diagonal element has
the form

1

2
e−η2(1−cosΩMt)eiη2(ΩMt−sinΩMt)+iηIm [β(1−eiΩM t )] (3.32)

where Im denotes the imaginary part. The first factor is the modulus, obtaining its
minimum value after half a period at t = π/ΩM, when the mirror is at its maximum
displacement. The second factor gives the phase, which is identical to that obtained
classically due to the varying length of the cavity.

For general t the phase in Eq. (3.32) depends on β, i.e. the initial condition of
the mirror. However, the effect of the initial condition averages out after every full
period.

In the absence of decoherence, after a full period, t = 2π/ΩM, the system is in
the state 1√

2
(|0〉A|1〉B +eiη22π |1〉A|0〉B)|β〉, such that the mirror is again completely

disentangled from the photon. Full interference can be observed if the photon is
detected at that moment. If the environment of the mirror “remembers” that the
mirror hasmoved, then, even after a full period, the photonwill still be entangledwith
the mirror’s environment, and thus the interference for the photon will be reduced.
Therefore the setup can be used to measure the decoherence of the mirror.

In practice themirror attached to amechanical-resonator will be in a thermal state,
which can be written as a mixture of coherent states |β〉 with a Gaussian probability
distribution (1/π n̄th)e−|β|2/n̄th , where n̄th is the mean thermal number of excitations,
n̄th = 1/(e�ΩM/kT −1). If onewants to determine the expected interference visibility
of the photon at a time t for an initial mirror state which is thermal, one therefore
has to average the off-diagonal element Eq. (3.32) over β with this distribution. The
result is

1

2
e−η2(2n̄th+1)(1−cosΩMt)eiη2(ΩMt−sinΩMt). (3.33)

As a consequence of the averaging of the β-dependent phase in Eq. (3.32), the off-
diagonal element now decays on a timescale 1/(ηΩM

√
n̄th) after t = 0, i.e. very

fast for the realistic case of large n̄th. However, remarkably it still exhibits a revival
[33] at t = 2π/ΩM, when photon and mirror become disentangled and the phase
is independent of β, such that the phase averaging does not reduce the visibility.
Figure 3.6 shows the time evolution of the visibility of the photon over one period
of the mirror’s motion for η = 1 and temperatures T of 1 mK, 100 µK and 10 µK.
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Fig. 3.6 Time evolution of the interference visibility of the photon over one period of the mirror’s
motion for η = 1 and temperatures T of 1 mK, 100 µK and 10 µK. The visibility decays very fast
after t = 0, but in the absence of decoherence there is a sharp revival of the visibility after a full
period (2π ). The width of each peak scales like 1/

√
T

The magnitude of the revival is reduced by any decoherence of the mirror.
Furthermore the revival will also be reduced due to nonlinear terms in the mechan-
ical oscillator. However since we will only consider extremely small displacements
around the equilibrium position we assume that nonlinear effects can be ignored.

The revival demonstrates the coherence of the superposition state that exists at
intermediate times. For η2 � 1 the state of the system is a superposition of two
distinct positions of the mirror. More precisely, for a thermal mirror state, the state
of the system is a mixture of such superpositions. However, this affects neither the
fundamentally non-classical character of the state nor, as we have seen, the existence
of the revival after a full period. We now discuss the experimental requirements for
achieving such a superposition state and observing its recoherence at t = 2π/ΩM.

Firstly, it is required that η2 � 1, which physically means that the momentum
kick imparted by the photon to the mirror has to be larger than the initial quantum
momentum uncertainty of the mirror. Let N denote the number of roundtrips of the
photon in the cavity during one period of the mirror’s motion, such that 2N L/c =
2π/ΩM. This allows us to rewrite the condition η2 � 1 as

2�N 3L

πcmeffλ2
� 1, (3.34)

where λ is the wavelength of the light. The factors entering Eq. (3.34) are not all
independent. The achievable N , which is determined by the quality of the mirrors,
and the minimum possible mirror size depend strongly on λ. The mirror’s lateral
dimensions should be an order of magnitude larger than λ to limit diffraction and
avoid geometrical losses. The minimum possible thickness of the mirror generally
depends on the wavelength as well in order to achieve sufficiently low transmission.

Equation (3.34) allowsone to compare the viability of differentwavelength ranges.
While the highest values for N are achievable for microwaves (up to 1010), this is
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counteracted by their long wavelengths (of order cm). On the other hand there are
no good mirrors for highly energetic photons. The optical regime seems optimal. In
the following estimates we will consider a λ around 630 nm.

The cavity mode needs to have a very narrow focus on the tiny mirror, which
requires the other cavity endmirror to be large due to beamdivergence. Themaximum
cavity length is therefore limited by the difficulty of making large high quality curved
mirrors. In fact from simulations it follows that indeed the surface quality of the large
curved mirror is likely to be the most challenging component of the setup [48, 49].
Here we consider a cavity length of 5 cm, and a small mirror size of 10 × 10 × 10
microns, leading to a mass of order 5 × 10−12 kg.

One possible path for the fabrication of such a small mirror on a good mechanical
oscillator is to coat a silicon cantilever with alternating layers of SiO2 and a metal
oxide such as Ta2O5 by sputtering deposition. The best current mirrors are made
in this way. Recently such mirrors have also been produce on Silicon Nitride cross
resonators which have excellent mechanical properties [50].

For the above dimensions the condition (3.34) is satisfied for N = 5.6 × 106.
Therefore a photon loss per reflection not larger than 3 × 10−7 is needed, which is
about a factor of 4 below the best reported values for such mirrors [51], and for a
transmission of 10−7, which is consistent with the quoted mirror thickness [52]. For
these values, about 1% of the photons are still left in the cavity after a full period of
themirror. Coupling into a high-finesse cavitywith a tight focuswill require carefully
designed incoupling optics. For the above values of N and L one obtains a frequency
ΩM = 2π × 500 Hz. This leads to a quantum uncertainty of order 10−13 m, which
for η2 ∼ 1 corresponds to the displacement in the superposition.

Secondly, the requirement of observing the revival after a full period of themirror’s
motion puts a bound on the acceptable environmental decoherence. To estimate the
expected decoherence we model the mirror’s environment by an (Ohmic) bath of
harmonic oscillators. Applying the analysis of [53] one then finds that off-diagonal
elements between different mirror positions decay with a factor

exp

[
−ΓMkT meff(Δx)2

�2

(
t + sinΩMt cosΩMt

ΩM

)]
, (3.35)

where ΓM is the rate of energy dissipation for the mechanical oscillator, T is the
temperature (which is constituted mainly by the internal degrees of freedom of the
mirror cantilever) and Δx is the separation of two coherent states that are originally
in a superposition. Note that our experiment is not in the long-time regime where
decoherence is characterized simply by a rate. However, the oscillatory term in the
exponent of Eq. (3.35) does not affect the order of magnitude and happens to be zero
after a full period. Assuming that the experiment achieves η2 � 1, i.e. a separation

by the size of a coherent state wavepacket, Δx =
√

�

meffΩM
, the condition that the

exponent in Eq. (3.35) should be at most of order 1 after a full period can be cast in
the form
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Q � kT

�ΩM
= n̄th, (3.36)

where Q = ΩM/ΓM is the quality factor of the mechanical oscillator. Bearing in
mind that quality factors of the order of 105−106 have been achieved for silicon
cantilevers of approximately the right dimensions and frequency, this implies that
the temperature has to be approximately 3–30 mK. It will be beneficial to perform
experiments at even lower temperatures to reduce the measurement time, as we will
explain below.

Thirdly, the stability requirements for the experiment are very strict. The phase
of the interferometer has to be stable over the whole measurement time. This means
that in particular the distance between the large cavity endmirror and the equilibrium
position of the small mirror has to be stable to order λ/20N = 0.6 × 10−14 m.

The required measurement time can be determined in the following way. A single
run of the experiment starts by sending a weak pulse into the interferometer, such that
on average 0.1 photons go into either cavity. This probabilistically prepares a single-
photon state as required to a good approximation. The two-photon contribution has to
be kept low because it causes noise in the interferometer. From Eq. (3.33) the width
of the revival peak is 2/ηΩM

√
n̄th. This implies that only a fraction ∼ 1/π

√
n̄th of

the remaining photons will leak out in the time interval of the revival. It is therefore
important to work at the lowest possible temperature. Temperatures below 100 µK
can be achieved with a nuclear demagnetization cryostat.

Together with the required low value of ΩM, the fact that approximately 1% of
the photons remain after a full period for our assumed loss, and an assumed detection
efficiency of 70 %, this implies a detection rate of approximately 100 photons per
hour in the revival interval. This means that a measurement time of order 30 minutes
should give convincing statistics.

After every single run of the experiment the mirror has to be damped to reset it
to its initial (thermal) state. This could be done by electric or magnetic fields, e.g.
following Ref. [54], where a Nickel sphere was attached to the cantilever, whose Q
could then be changed by 3 orders of magnitude by applying a magnetic field.

Since the width of the revival peak scales like 1/
√

T , the required measurement
time can also be decreased by decreasing the temperature below 60 µK. Passive
cooling techniques may be improved. In addition, active and passive optical cooling
of mirror oscillators has been proposed [55], and implemented experimentally for a
large mirror [56] and for small mirrors [57–60]. Ground state cooling of the center
of mass motion is achievable and reduces the required measurement time, and thus
the stability requirements, by a factor of approximately 50.

Since publication of the pioneering protocol [43] presented in this paragraph a
number of other theoretical works considered the generation of non-Gaussian states
of mechanical oscillators via interaction with single photons, see [61–64]. Another
wayof achieving non-Gaussian states is tomake use of the intrinsic nonlinearity of the
radiation pressure force. The single-photon strong coupling regime, where g0 > ΩM,
has been studied first in [65, 66].When the cavity is drivenwith blue detuned light the
classical nonlinear dynamics gives rise to limit cycles of the mechanical oscillator.
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It was shown in [67] that the stationary quantum state associated with such a limit
cycle can exhibit strongly sub-Poissonian phonon statistics and even a negative
Wigner function. This regime was further studied in [68, 69].

3.4 Entangled States of Mechanics and Light

In this last section we turn our attention to non-classical states involving both, light
and mechanics. In our discussion these will be primarily entangled states, which
are generated either in steady state under a continuous drive field, or in a regime
involving short pulses of light.

3.4.1 Light Mirror Entanglement in Steady State

Entanglement of a mechanical oscillator with light has been predicted in a number of
theoretical studies [8, 70–78] and would be an intriguing demonstration of optome-
chanics in the quantum regime. These studies, as well as similar ones investigating
entanglement among several mechanical oscillators [79–87], explore entanglement
in the steady-state regime. In this regime the optomechanical system is driven by
one or more continuous-wave light fields and settles into a stationary state, for which
the interplay of optomechanical coupling, cavity decay, damping of the mechanical
oscillator, and thermal noise forces may remarkably give rise to persistent entangle-
ment between the intracavity field and the mechanical oscillator.

The simplest example of such a scheme involves an optomechanical system driven
by one continuous wave laser field. To identify conditions for good optomechanical
generation of entanglement we answer a first question that concerns the optimal
detuning of the driving laser with respect to the cavity field. Given the form of
the linearized radiation pressure Hamiltonian �g(â + â†)(b̂ + b̂†), and the time
evolution of operators with frequencies Δ and ΩM, we focus on resonant processes
where Δ = ±ΩM. The first case we analyze is blue-detuning Δ = ΩM and in which
we split the interaction in two kind of interactions well known in quantum optics:
(1) beam splitter interaction �g(â†b̂ + h.c.) and (2) down-conversion interaction,
�g(âb̂ + h.c.). Since the beam splitter term is off-resonant by 2ΩM and also cannot
produce entanglement starting from classical states we drop it and focus on the down-
conversion term, known to produce bipartite entanglement. Following a standard
treatment to obtain the covariance matrix in steady state (even analytically for this
particular case), it can be shown that the logarithmic negativity scales up with g as

EN ≤ ln

[
1 + g/

√
2κΓM

1 + n̄th

]
. (3.37)
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Fig. 3.7 a Logarithmic negativity EN versus the normalized detuning Δ/ΩM and normalized
input power Pin/P0

in, (P
0
in = 50 mW) at a fixed value of the cavity finesse F = F0 = 1.67 × 104;

b EN versus the normalized finesseF/F0 and normalized input power Pin/P0
in at a fixed detuning

Δ = ΩM. Parameter values are ΩM/2π = 10 MHz, Q = 105, mass meff = 10 ng, a cavity of
length L = 1 mm driven by a laser with wavelength 810 nm, yielding g = 0.95 kHz and a cavity
bandwidth κ = 0.9ΩM when F = F0. We have assumed a reservoir temperature for the mirror
T = 0.4 K, corresponding to n̄th � 833. The sudden drop to zero of EN corresponds to entering
the instability region

However, the system is unstable in the “blue-detuned” regime owing to the fast
transfer of energy from the cavity field to the mirror and an unavoidable bound is
found g <

√
2κΓM which in consequence limits EN ≤ ln 2. Moreover, thermal

quanta n̄th > 0 will eventually destroy the entanglement. One therefore concludes
that the choice of the practical operation regime is dictated by the stability of the
system. Thus, we move into the “red detuned” regime which allows for larger g by
paying the price that, for example at Δ = −ΩM the down-conversion process is
2ΩM off-resonant. In this regime analytical results are possible but cumbersome and
we settled for numerically showing the behavior of EN in Fig. 3.7a as it scales with
increasing input power and varying detunings, and in Fig. 3.7b with input power and
cavity finesse.

Having concluded that intracavity optomechanical entanglement is attainable, the
question of detection is to be answered next. As detailed in [72] a simple scheme
can be conceived that consists of a second cavity adjacent to the main one; the
second cavity output, when weakly driven, does not modify much the first cavity
dynamics and its output light gives a directmeasurement of themirror dynamics.With
homodyne detection of both cavities and manipulation of the two local oscillators
phases one can determine all of the entries of the covariance matrix and numerically
extract the logarithmic negativity.

As previously mentioned, in the “red-detuning” regime, the down-conversion
process is off-resonant and its effect much washed out by the presence of the
stronger beam-splitter interaction. However, proper detection around the Stokes side-
band (which carries the photons entangled with the mirror) in the sense described
in Sect. 3.2.2 can extract optimal light-mirror entanglement [8]. We show this by



46 K. Hammerer et al.

(a) (b)

Fig. 3.8 a Logarithmic negativity EN versus Ω/ΩM for different values of ε. Optimal entangle-
ment of the Stokes sideband with the mirror can be deduced. b EN of output stokes mode with
mirror versus T for two different values of its inverse bandwidth ε = 2, 10

choosing a central frequency of the detected mode Ω and its bandwidth τ−1 and
computing the bipartite system negativity. The results are shown in Fig. 3.8a, where
EN is plotted versus Ω/ΩM at five different values of ε = τΩM and the other
parameters similar to the ones used for Fig. 3.7. If ε < 1, i.e., the bandwidth of the
detected mode is larger than ΩM, the detector does not resolve the motional side-
bands, and EN has a value (roughly equal to that of the intracavity case) which does
not essentially depend upon the central frequency. For smaller bandwidths (larger
ε), the sidebands are resolved by the detection and the role of the central frequency
becomes important. In particular EN becomes highly peaked around the Stokes side-
band Ω = −ΩM, showing that the optomechanical entanglement generated within
the cavity is mostly carried by this lower frequency sideband. What is relevant is that
the optomechanical entanglement of the output mode is significantly larger than its
intracavity counterpart and achieves its maximum value at the optimal value ε � 10,
i.e., a detection bandwidth τ−1 � ΩM/10. This means that in practice, by appro-
priately filtering the output light, one realizes an effective entanglement distillation
because the selected output mode is more entangled with the mechanical resonator
than the intracavity field.

It is finally important to see what the robustness of the entanglement is with
increasing temperature of the thermal reservoir. This is shown by Fig. 3.8b, where
the entanglement EN of the output mode centered at the Stokes sideband is plotted
versus the temperature of the reservoir at two different values of the bandwidth, the
optimal one ε = 10, and at a larger bandwidth ε = 2. We see the expected decay of
EN for increasing temperature, but above all that also this output optomechanical
entanglement is robust against temperature because it persists even above liquid He
temperatures, at least in the case of the optimal detection bandwidth ε = 10.

We note that optomechanical entanglement can be enhanced by modulating the
driving field as was shown in theoretical studies [15, 88, 89].
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(a)

(b)

(c)

Fig. 3.9 Schematic of the system and the proposed teleportation protocol: a A blue detuned light
pulse (A) is entangled with the mirror (B). b A second light pulse (V) is prepared in the input
state and interferes with A on a beam-splitter. Two homodyne detectors measure P̂out

l + X̂v and

X̂out
l + P̂v, yielding outcomesm X andm P respectively. Feedback is applied by displacing themirror

state in phase space by a unitary transformation DXm(m X ) DPm(m P ). c To verify the success of the
protocol, the mirror state is coherently transferred to a red detuned laser pulse and a generalised
quadrature X̂ l(θ) = X̂out

l cos θ + P̂out
l sin θ is measured. Repeating steps (a)–(c) for the same input

state but for different phases θ yields a reconstruction of the mirror’s quantum state

3.4.2 Entanglement with Pulsed Light

An alternative approach to achieving optomechanical entanglementworks in a pulsed
regime, as was theoretically explored in [90–93]. Here we will present a summary of
the protocol of [93] which was realized experimentally in a microwave optomechan-
ical system [94]. A pulsed scheme does not rely on the existence of a stable steady
state, such that entanglement is not limited by stability requirements. In fact it is pos-
sible to operate in a parameter regimewhere a stationary state does not exist. This sort
of optomechanical entanglement can be verified by using a pump–probe sequence of
light pulses. The quantum state created in this protocol exhibits Einstein–Podolsky–
Rosen (EPR) type entanglement [9] between the mechanical oscillator and the light
pulse. It thus provides the canonical resource for quantum information protocols
involving continuous variable (CV) systems [95]. Optomechanical EPR entangle-
ment can therefore be used for the teleportation of the state of a propagating light
pulse onto a mechanical oscillator as suggested in [90, 91].

Let us consider an optomechanical cavity in a Fabry–Perot type setup, cf. Fig. 3.9).
A light pulse of duration τ and carrier frequency ωl impinges on the cavity and
interacts with the oscillatory mirror mode via radiation pressure. In a frame rotating
with the laser frequency, the system is described by the (effective) Hamiltonian [1]
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H = ΩMb̂†b̂ − Δâ†â + g
(

b̂ + b̂†
) (

â + â†
)

(3.38)

where Δ = ωl − ωopt is the detuning of the laser drive with respect to the cavity
resonance. We assume the pulse to approximately be a flat-top pulse, which has a
constant amplitude for the largest part, but possesses a smooth head and tail. The
coupling constant g is then given by

g = g0

√
κ Nph/τ

(Δ2 + κ2)
, (3.39)

with Nph the number of photons in the pulse. It is possible to make either the beam-
splitter like interaction (âb̂† + b̂â†) or the two-mode-squeezing interaction (âb̂ +
â†b̂†) resonant by tuning the laser to one of themotional sidebandsωopt±ΩM, where
the blue (anti-Stokes) sideband (ωl = ωopt +ΩM) enhances down-conversion, while
the red (Stokes) sideband (ωl = ωopt − ΩM) enhances the beam-splitter interaction
[96]. In the proposed protocol we make use of both dynamics separately: Pulses
tuned to the blue sideband are applied to create entanglement, while pulses on the
red sideband are later used to read out the final mirror state. A similar separation
of Stokes and anti-Stokes sideband was suggested in [90, 91] by selecting different
angles of reflection of a light pulse scattered from a vibrating mirror in free space.

The full system dynamics, including the dissipative coupling of the mirror and the
cavity decay, are described by quantum Langevin equations [97], which determine
the time evolution of the corresponding operators x̂m = (b̂ + b̂†)/

√
2, p̂m = −i(b̂ −

b̂†)/
√
2 and â, â†. They read

˙̂xm = ΩM p̂m, (3.40)

˙̂pm = −ΩM x̂m − ΓM p̂m − √
2 g

(
â + â†

)
− √

2ΓM f̂ , (3.41)

˙̂a = −
(

iΔ + κ

2

)
â − i

√
2 g xm − √

κ âin, (3.42)

where we introduced the (self-adjoint) Brownian stochastic force f , and quantum
noise âin entering the cavity from the electromagnetic environment. Both âin and—
in the high-temperature limit— f are assumed to be Markovian. Their correlation
functions are thus given by 〈âin(t)â†

in(t ′)〉 = δ(t − t ′) (in the optical vacuum state)

and 〈 f̂ (t) f̂ (t ′)+ f̂ (t ′) f̂ (t)〉 = (2n̄th +1)δ(t − t ′) (in a thermal state of the mechan-
ics) [97].

We impose the following conditions on the system’s parameters. Firstly, we drive
the cavity on the blue sideband (Δ = ΩM) and assume to work in the resolved-
sideband regime (κ � ΩM) to enhance the down-conversion dynamics . Note that in
this regime a stable steady state only exists for very weak optomechanical coupling
[98], which poses a fundamental limit to the amount of entanglement that can be
created in a continuous-wave scheme [8], as explained also in the previous section. In
contrast, a pulsed schemedoes not suffer from these instability issues. In fact, it is easy
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to check by integrating the full dynamics up to time τ , that working in this particular
regime yields maximal entanglement, which increases with increasing sideband-
resolution ΩM/κ . Secondly we assume a weak optomechanical coupling g � κ ,
such that only first-order interactions of photons with the mechanics contribute. This
minimises pulse distortion and simplifies the experimental realization of the protocol.
Taken together, the conditions g � κ � ΩM allow us to invoke the rotating-wave-
approximation (RWA), which amounts to neglecting the beam-splitter term in 3.38.
Also, we neglect mechanical decoherence effects in this section. We emphasise that
this approximation is justified as long as the total duration of the protocol is short
compared to the effective mechanical decoherence time 1/ΓMn̄th, where ΓM is the
mechanical damping rate and n̄th the thermal occupation of the corresponding bath.
Corrections to this simplified model will be addressed below.

Based on the assumptions above we can now simplify Eq. 3.40. For convenience
we go into a frame rotating with ΩM by substituting â → âeiΩMt , âin → âineiΩMt

and b̂ → b̂e−iΩMt . Note that in this picture the central frequency of âin is located at
ωl − ΩM = ωopt. In the RWA the Langevin equations then simplify to

˙̂a = −κ

2
â − ig b̂† − √

κ âin,
˙̂b = −ig â†. (3.43)

In the limit g � κ we can use an adiabatic solution for the cavity mode and we
therefore find

â(t) ≈ −i
2g

κ
b̂†(t) − 1√

κ
âin(t), (3.44)

b̂(t) ≈ eGt b̂(0) + i
√
2GeGt

s∫

t

dse−Gsâ†
in(s), (3.45)

where we defined G = 2g2/κ . Equation 3.45 shows that the mirror motion gets
correlated to a light mode of central frequency ωl − ΩM (which coincides with the
cavity resonance frequency ωopt) with an exponentially shaped envelope αin(t) ∝
e−Gt . Using the standard cavity input-output relations âout = âin + √

κ â allows us
to define a set of normalised temporal light-modes

Âin =
√

2G

1 − e−2Gτ

t∫

τ

dte−Gt âin(t), Âout =
√

2G

e2Gτ − 1

t∫

τ

dteGt âout (t),

(3.46)

which obey the canonical commutation relations [ Âi , Â†
i ] = 1. Together with the

definitions B̂in = b̂(0) and B̂out = b̂(τ )we arrive at the following expressions, which
relate the mechanical and optical mode at the end of the pulse t = τ
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Âout = −eGτ Âin − i
√

e2Gτ − 1B̂†
in, B̂out = eGτ B̂in + i

√
e2Gτ − 1 Â†

in. (3.47)

By expressing Eq. 3.47 in terms of quadratures X̂ i
m = (B̂i + B̂†

i )/
√
2 and X̂ i

l =
( Âi + Â†

i )/
√
2, where i ∈ {in, out}, and their corresponding conjugate variables, we

can calculate the so-called EPR-variance ΔEPR of the state after the interaction. For
light initially in vacuum (ΔX̂ in

l )2 = (ΔP̂ in
l )2 = 1

2 and the mirror in a thermal state

(ΔX̂ in
m)2 = (ΔP̂ in

m )2 = n0 + 1
2 , the state is entangled iff [99]

ΔEPR =
[
Δ(X̂out

m + P̂out
l )

]2 +
[
Δ(P̂out

m + X̂out
l )

]2
(3.48)

= 2(n0 + 1)
(

er −
√

e2r − 1
)2

< 2, (3.49)

where r = Gτ is the squeezing parameter and n0 the initial occupation number of
the mechanical oscillator. Note that in the limit of large squeezing r � 1 we find that
the variance ΔEPR ≈ (n0 + 1)e−2r/2 is suppressed exponentially, which shows that
the created state asymptotically approximates an EPR-state. Therefore, this state can
be readily used to conduct optomechanical teleportation. Rearranging 3.48, we find
that the state is entangled as long as

r > r0 = 1

2
ln

(
(n0 + 2)2

4(n0 + 1)

)
∼ 1

2
ln n0, (3.50)

where the last step holds for n0 → ∞. This illustrates that in our scheme the
requirement on the strength of the effective optomechanical interaction, as quantified

by the parameter r = g2τ
κ
, scales logarithmically with the initial occupation number

n0 of the mechanical oscillator. This tremendously eases the protocol’s experimental
realization, as neither g nor τ can be arbitrarily increased. Note that n0 need not be
equal to the mean bath occupation n̄th, but may be decreased by laser pre-cooling to
improve the protocol’s performance.

To verify the successful creation of entanglement a red detuned laser pulse (Δ =
−ΩM) is sent to the cavity where it resonantly drives the beam-splitter interaction,
and hence generates a state-swap between the mechanical and the optical mode. It is
straightforward to show that choosingΔ = −ΩM leads to a different set of Langevin
equationswhich can be obtained from3.43 bydropping theHermitian conjugation (†)
on the right-hand-side. By defining modified mode functions α′

in(out) = αout(in) and

corresponding light modes Â′
in(out) one obtains input/output expressions in analogy

to (3.47)

Â′
out = −e−Gτ Â′

in + i
√
1 − e−2Gτ B̂in, B̂out = e−Gτ B̂in − i

√
1 − e−2Gτ Â′

in.

(3.51)

The pulsed state-swapping operation therefore also features an exponential scal-
ing with Gτ . For Gτ → ∞ the expressions above reduce to Â′

out = −i B̂in and
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B̂out = i Â′
in, which shows that in this case the mechanical state—apart from a phase

shift—is perfectly transferred to the optical mode. In the Schrödinger-picture this
amounts to the transformation |ϕ〉m|ψ〉l → |ψ〉m|ϕ〉l, where ϕ and ψ constitute
the initial state of the mechanics and the light pulse respectively. The state-swap
operation thus allows us to access mechanical quadratures by measuring quadratures
of the light and therefore to reconstruct the state of the bipartite system via optical
homodyne tomography. Such a quantum state transfer was experimentally realized
in a microwave optomechanical system as reported in [100].

As we have shown above, pulsed operation allows us to create EPR-type entangle-
ment, which forms the central entanglement resource of many quantum information
processing protocols [95]. An immediate extension of the proposed scheme is an
optomechanical continuous variables quantum teleportation protocol. The main idea
of quantum state teleportation in this context is to transfer an arbitrary quantum state
|ψin〉 of a travelling wave light pulse onto the mechanical resonator, without any
direct interaction between the two systems, but by making use of optomechanical
entanglement. The scheme works in full analogy to the CV teleportation protocol
for photons [101, 102] and, due to its pulsed nature, closely resembles the scheme
used in atomic ensembles [103, 104]: A light pulse (A) is sent to the optomechanical
cavity and is entangled with its mechanical mode (B) via the dynamics described
above. Meanwhile a second pulse (V) is prepared in the state |ψin〉, which is to be
teleported. This pulse then interferes with A on a beam-splitter. In the output ports of
the beam-splitter, two homodyne detectors measure two joint quadratures P̂out

l + X̂v

and X̂out
l + P̂v, yielding outcomes m X and m P respectively. This constitutes the

analogue to the Bell-measurement in the case of qubit teleportation and effectively
projects previously unrelated systems A and V onto an EPR-state [105]. Note that
both the second pulse and the local oscillator for the homodyne measurements must
be mode-matched to A after the interaction, i.e., they must possess the identical car-
rier frequency as well as the same exponential envelope. The protocol is concluded
by displacing the mirror in position and momentum by mX and mP according to the
outcome of the Bell-measurement. This can be achieved by means of short light-
pulses, applying the methods described in [20, 106]. After the feedback the mirror
is then described by [95]

X̂fin
m = X̂out

m + P̂out
l + X̂v = X̂v +

(
er − √

e2r − 1
)

(X̂ in
m − P̂ in

l ), (3.52)

P̂fin
m = P̂out

m + X̂out
l + P̂v = P̂v +

(
er − √

e2r − 1
)

(P̂ in
m − X̂ in

l ), (3.53)

which shows that its final state corresponds to the input state plus quantum noise
contributions. It is obvious from these expressions that the total noise added to both
quadratures (second term in 3.52 and 3.53 respectively) is equal to the EPR-variance.
Again, for large squeezing r � 1 the noise terms are exponentially suppressed and
in the limit r → ∞, where the resource state approaches the EPR-state, we obtain
perfect teleportation fidelity, i.e., X̂fin

m = X̂v and P̂fin
m = P̂v. In particular this operator

identity means, that all moments of X̂v, P̂v with respect to the input state |ψin〉 will
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be transferred to the mechanical oscillator, and hence its final state will be identically
given by |ψin〉. We notice that the present optomechanical entanglement in the pulsed
regime may be seen as a complementary approach to that of paragraph Sect. 3.4.1,
where we have discussed entanglement in a stationary regime.

We found that in the ideal scenario the amount of entanglement essentially depends
only on the coupling strength (or equivalently on the input laser power) and the dura-
tion of the laser pulse and that it shows an encouraging scaling, growing exponentially
with Gτ . This in turn means that the minimal amount of squeezing needed to gener-
ate entanglement only grows logarithmically with the initial mechanical occupation
n0. In a more realistic scenario one has to include thermal noise effects and effects
of counter-rotating terms. Including the above-mentioned perturbations results in a
final state which deviates from an EPR-entangled state. To minimise the extent of
these deviations, the system parameters must obey the following conditions:

1. κ � ΩM results in a sharply peaked cavity response and implies that the down-
conversion dynamics is heavily enhanced with respect to the suppressed beam-
splitter interaction.

2. g < κ inhibits multiple interactions of a single photon with the mechanical mode
before it leaves the cavity. This suppresses spurious correlations to the intracavity
field. It also minimises pulse distortion and simplifies the protocol with regard to
mode matching and detection.

3. gτ � 1 is needed in order to create sufficiently strong entanglement. This is due
to the fact that the squeezing parameter r = (g/κ)gτ should be large, while g/κ

needs to be small.
4. n̄thΓMτ � 1, where n̄th is the thermal occupation of the mechanical bath, assures

coherent dynamics over the full duration of the protocol, which is an essential
requirement for observing quantum effects. As the thermal occupation of the
mechanical bath may be considerably large even at cryogenic temperatures, this
poses (for fixed ΓM and n̄th) a very strict upper limit to the pulse duration τ .

Note however that not all of these inequalities have to be fulfilled equally strictly,
but there rather exists an optimum which arises from balancing all contributions. It
turns out that fulfilling (4) is critical for successful teleportation, whereas (1)–(3)
only need to be weakly satisfied. Taking the above considerations into account, we
find a sequence of parameter inequalities

n̄thΓM � 1

τ
� g � κ � ΩM, (3.54)

which defines the optimal parameter regime. Dividing this equation byΓM and taking
a look at the outermost condition n̄th � Q, where Q = ΩM/ΓM is the mechanical
quality factor, we see that the ratio Q/n̄th defines the range which all the other
parameters have to fit into. It is intuitively clear, that a high quality factor and a low
bathoccupationnumber, and consequently loweffectivemechanical decoherence, are
favourable for the success of the protocol. Equivalently,we can rewrite the occupation
number as n̄th = kBTbath/�ΩM and therefore find kBTbath/� � Q · ΩM, where now
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the Q · f -product ( f = ΩM/2π ) has to be compared to the thermal frequency of
the bath. Let us consider a numerical example: For a temperature Tbath ≈ 100mK
the left-hand-side gives kBTbath/� ≈ 2π · 109 Hz. The Q · f -product consequently
has to be several orders of magnitude larger to successfully create entanglement. As
current optomechanical systems feature a Q · f -product of 2π · 1011 Hz and above
[107–110], this requirement seems feasible to meet.

Duringwriting of this book chapter the protocol discussed above has been realized
in the group of K. Lehnert (JILA) in a microwave optomechanical system [94].
Further theoretical studies based on stochastic master equations showed that the
pulsed scheme can actually be extended to the continuous-time domain requiring
feedback stabilization of the dynamics [111].

3.5 Conclusion and Outlook

The selection of protocols presented in the present chapter clearly demonstrate the
feasibility—and the stringent requirements—for quantum state engineering in meso-
scopic mechanical systems. During writing this book chapter some of the quantum
effects discussed in this bookwere observed in experiments. This includes in particu-
lar cooling to the quantum ground state [112, 113], ponderomotive squeezing of light
[5–7], back action noise limited position sensing [114, 115], coherent state transfer
[100], and entanglement [94]. Other quantum effects such as quantum jumps, and
squeezed or non-Gaussian states of mechanical oscillators have yet to be demon-
strated.

From the discussion given above it should be clear that a necessary condition
for observing quantum effects is a sufficiently large product of mechanical quality
factor and frequency, QΩM > kB T/�. What exactly “large” means in this context
depends crucially on the protocol to be implemented. The goal of making the quan-
tum regime accessible for mechanical systems thus has to be approached from both
sides: Experimentally, by developing optomechanical systems with a sufficiently
large QΩM-product; and theoretically, by developing schemes which are not too
demanding regarding the magnitude of this number. Once those two ends meet this
will mark the birth of a new field of research, quantum optomechanics.
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