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ABSTRACT

Measurements of gravitational waves from the inspiral of a stellar-mass compact object into a massive black hole
are unique probes to test general relativity (GR) and massive black hole (MBH) properties, as well as the stellar
distribution about these holes in galactic nuclei. Current data analysis techniques can provide us with parameter
estimation with very narrow errors. However, an extreme-mass ratio inspiral (EMRI) is not a two-body problem,
since other stellar bodies orbiting nearby will influence the capture orbit. Any deviation from the isolated inspiral
will induce a small, though observable, deviation from the idealized waveform which could be misinterpreted as a
failure of GR. Based on conservative analysis of mass segregation in a Milky-Way-like nucleus, we estimate that
the possibility that another star has a semimajor axis comparable to that of the EMRI is non-negligible, although
probably very small. This star introduces an observable perturbation in the orbit in the case in which we consider
only loss of energy via gravitational radiation. When considering the two first-order non-dissipative post-Newtonian
contributions (the periapsis shift of the orbit), the evolution of the orbital elements of the EMRI turns out to be
chaotic in nature. The implications of this study are twofold. From the one side, the application to testing GR and
measuring MBH parameters with the detection of EMRIs in galactic nuclei with a millihertz mission will be even
more challenging than believed. From the other side, this behavior could in principle be used as a signature of mass
segregation in galactic nuclei.
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1. MOTIVATION

A stellar mass black hole or neutron star executes ∼105–106

orbits during the final year of inspiral toward a ∼106 M�
supermassive black hole (MBH). The large number of cycles
implies that a phase-coherent measurement of the inspiral,
achievable through detection of low frequency gravitational
waves, would be a tremendously powerful probe of the space-
time near a black hole (Amaro-Seoane et al. 2007; Hughes
2009). Among other things, it would enable a precise determi-
nation of the spin of the supermassive black hole and a test of
general relativity (GR) that is independent of current constraints
derived from pulsar timing data.

There is no foreseeable instrument sensitive enough to detect
gravitational waves from extreme-mass ratio inspirals (EMRIs)
over timescales comparable to the orbital period. As a con-
sequence, realizing the astrophysical and gravitational physics
promise of EMRIs requires an assurance that the inspiral can be
accurately modeled over many orbits using templates calculated
by solving the two-body problem in GR (for a review, see, e.g.,
Barack 2009). It is therefore necessary to assess whether gas,
stars, or other compact objects in the vicinity could significantly
perturb EMRI trajectories. In the case of gas, perturbations to
stellar mass black holes or neutron stars6 are securely negli-
gible provided that accretion onto the black hole occurs in a
low density, radiatively inefficient flow (Narayan 2000). Such
flows are much more common than dense accretion disks, which
would yield observable phase shifts during inspiral (Kocsis et al.

6 White dwarf EMRIs are excluded here because mass loss from the compact
object itself could form a dynamically significant disk even if the background
accretion flow is of low density (Zalamea et al. 2010).

2011), at least at the relatively low redshifts where EMRIs may
be observed.

In this Letter, we quantify the nature and strength of possible
perturbations from point mass perturbers: low-mass stars or
compact objects in tight orbits around the supermassive black
hole. Any perturbers are unlikely to orbit close enough to the
EMRI to undergo strong interactions, so the regime of interest is
one where the third body is relatively distant and the interaction
is weak. The Newtonian analog of this problem has been studied
extensively in the context of both solar system satellite evolution
and for transit timing variations of extrasolar planets (Dermott
et al. 1988; Agol et al. 2005; Holman & Murray 2005; Veras
et al. 2011). In Newtonian gravity, perturbations are strong
only at the location of mean motion resonances, and these
have the effect of inducing small jumps in eccentricity upon
divergent resonance crossing. This would already be interesting
for the EMRI problem, since the jumps in eccentricity would
result in a perturbation to the gravitational wave decay rate
and an eventual dephasing of the waveform. However, as we
will see, the inclusion of post-Newtonian corrections changes
the evolution qualitatively. Computing trajectories that include
the two first-order non-dissipative post-Newtonian corrections,
we find evidence of dependence on initial conditions in the
evolution of the perturbed inner binary, such that arbitrarily
small variations in the initial orbit lead to significantly different
future behavior.

2. ASTROPHYSICAL LIMITS ON PERTURBERS

Is it likely that a star or compact object will be present close
enough to perturb the orbit of an EMRI? Excluding low-mass
MBHs (M• < 106 M�), where the stellar tidal disruption limit
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Figure 1. Estimates for the semimajor axis of the innermost perturbing
body around a massive black hole, scaled to the hole’s gravitational radius
Rg = GM•/c2. The red lines show the location of the innermost star, estimated
assuming that stars of mass 0.3 M� follow a single power-law cusp of index
γ in a galaxy on the M•–σ relation. The green line shows the tidal disruption
limit for such stars. The blue lines show the average (upper) and 1% probability
(lower) location of the next nearest EMRI, assuming uncorrelated inspirals at a
rate of 10−6 yr−1.

comes into play, the existence of perturbers is not excluded by
elementary arguments. Neither, however, is it easy to calculate
the probability distribution of perturbers, whose proximity will
depend upon the details of discreteness and relativistic effects
very close to the MBH and mass segregation and EMRI injection
mechanisms in galactic nuclei (Preto et al. 2004; Freitag
et al. 2006; Amaro-Seoane et al. 2004; Alexander & Hopman
2009; Preto & Amaro-Seoane 2010; Amaro-Seoane & Preto
2011).

Rather than facing these difficulties, we limit ourselves here
to order of magnitude estimates for the likely location of the
nearest star and compact object. For stars, assumed to be of
a single mass M∗, we assume a cusp-like distribution with a
density profile ρ ∝ R−γ , extending from the MBH to its radius
of influence RBH = GM•/σ 2. Here σ is the velocity dispersion
of the galaxy. Using the fact that the enclosed mass, M(R) � M•
at R = RBH, we find that the expected radius of the innermost
star, R1, is

R1

Rg

=
(

M∗
M•

)1/(3−γ ) ( c

σ

)2
, (1)

where Rg = GM•/c2. This formula yields an explicit estimate
for R1 once we adopt a relation between M• and σ (Gültekin
et al. 2009). For the location of the next nearest compact object
(or EMRI), we use an even simpler approach. We calculate
the expected semimajor axis for uncorrelated inspirals due to
gravitational radiation (Peters 1964), assuming near-circular
orbits and rate ṄEMRI. Finally, we plot the tidal limit (e.g., Rees
1988) for 0.3 M� main-sequence stars.

Figure 1 shows these estimates as a function of M•. For a
standard cusp slope γ = 1.75, there is likely to be a low-mass
stellar perturber within a few hundred Rg for M• > 106 M�.
Similarly, if the EMRI rate is as high as 10−6 yr−1, there

Figure 2. Upper panel: results for the fiducial case using the direct-summation
N -body integrator. The mass of the MBH is M• = 106 M�, the mass of the
stellar black hole is m• = 10 M�. See the text for more details. Lower panel:
same configuration but with an initial inclination of the star of i� = 45◦ instead
of 30◦, i.e., the inclination triggers the Kozai mechanism, since i� > 39.◦2
and the orbit is prograde. As mentioned in the previous case, even if the
changes in eccentricity cannot be directly seen in the curve, they are of the
order Δ e• ∼ 10−3.

is a significant chance (at least a few percent) that a second
compact object will be present between 10 and 102 Rg for
106 M� < M• < 107 M�. Clearly, these crude estimates do not
demonstrate that most EMRIs will be perturbed by third bodies,
but they do suggest that perturbers may be close enough in some
galaxies to motivate detailed consideration of their dynamical
effects.

3. METHODS

We are interested in the secular effect of a star acting on an
EMRI which will describe thousands of orbits in the detector
bandwidth and slowly decay. The kind of effects on the wave
that we are looking at are tiny, though detectable, and the mass
difference between the two binaries (the MBH–EMRI and the
MBH–star systems) is huge. We therefore need a numerical tool
capable of integrating the plunging orbit of the EMRI while
inducing a minimal error in the integration, since data analysis
techniques can detect, e.g., eccentricity differences of the order
Δe ∼ 10−3 (Amaro-Seoane et al. 2010; Porter & Sesana 2010;
Key & Cornish 2011). Hence, we have chosen to use a direct
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Figure 3. Fiducial case with energy dissipation and periapsis shift correcting
terms for different initial inclinations of the perturber. The solid (red) curve
corresponds to i� = 30◦, the long-dashed curve (green) to i� = 30.◦001, the
short-dashed curve (blue) corresponds to the fiducial case plus a billionth of a
degree, i� = 30.◦0000000001, and the dotted curve (magenta) to the reference
plus a 10−13 of a degree, i� = 30.◦0000000000001.

(A color version of this figure is available in the online journal.)

N -body approach (Aarseth 1999, 2003), the planet code,
written by Aarseth.7 This is the most expensive method because
it involves integrating all gravitational forces for all three bodies
at every time step, without making any a priori assumptions
about the system. Our approach employs the improved Hermite
integration scheme, which requires computation of not only the
accelerations but also their time derivatives. Since we are simply
integrating Newton’s equations directly, all gravitational effects
are included. For the purpose of our study, nonetheless, we have
included relativistic corrections to the Newtonian forces (the
forces can be found in the same page in the toy code8). This
was first implemented in a direct-summation N -body code by
Kupi et al. (2006). For this, one has to add perturbations in the
integration, so that the forces are modified by

F =
Newt.︷︸︸︷
F0 +

periapsis shift︷ ︸︸ ︷
c−2F2︸ ︷︷ ︸

1PN

+ c−4F4︸ ︷︷ ︸
2PN

+

energy loss︷ ︸︸ ︷
c−5F5︸ ︷︷ ︸
2.5PN

+

neglected︷ ︸︸ ︷
O(c−6) . (2)

In the last equation “PN” stands for post-Newtonian. We note
that the perturbations do not need to be small compared to

7 Who, as is his admirable custom, has made the code publicly available
http://www.ast.cam.ac.uk/∼sverre/web/pages/nbody.htm.
8 ftp://ftp.ast.cam.ac.uk/pub/sverre/toy/README
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Figure 4. Same as in Figure 3 but we set initially the perturber at a larger and larger initial semimajor axis. From the top to bottom and from the left to the right, the
semimajor axis of the perturber is a� = 4 × 10−6 pc, 6 × 10−6 pc, 9 × 10−6 pc, and 4.07243 × 10−5 pc. Solid lines correspond to i� = 30◦ and dashed lines to
i� = 30.◦0000000001.
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the two-body force (Mikkola 1997). The expressions for F2,
F4, and F5 can be found in Blanchet & Faye (2001), their
Equation (7.16).

4. DISSIPATION OF ENERGY AND RESONANCES

We first analyze the system by contemplating only the rela-
tivistic effect of dissipation of energy, i.e., our simulations only
incorporate the 2.5PN correction term. We stop the integration
when the separation between the stellar BH and the MBH is
a• = 5 RSchw, which approximately corresponds to the limit
where the PN approximation is not valid anymore. The inspiral
down to this distance typically takes some 440,000 orbits in our
simulations.

In Figure 2 the test stellar black hole of mass m• = 10 M�
has been initially set in such an orbit that it is totally embedded
in a LISA-like detector band (i.e., with an orbital period <105 s,
namely, P• = 6 × 103 s) and is hence an EMRI; its initial
semimajor axis is a•, i � 1.45 × 10−6 pc and its eccentricity
is e•, i = 0.05. The perturber, a star of mass m� = 10 M�,
is initially on an orbit in which the semimajor axis has the
value a�, i � 4.1 × 10−6 pc and the eccentricity at T = 0 is
e�, i = 0.5. The inclination of the system EMRI–star was set to
30◦ initially in the upper panel. This constitutes our reference
system.

In the figure, the straight lines mark the condition P�/P• = A,
with A an integer, P� the period of the star around the MBH,
and P• the period of the EMRI around the MBH, i.e., where the
resonances occur. The first three resonances have an impact on
e• which can be seen on the plot; later resonances also affect e•,
with Δ e• ∼ 10−3. We also note that in the upper panel one can
see in between smaller jumps; they correspond to higher-order
resonances, P�/P• = 5.5, 6.5, and 7.5.

We made the choice for an initial inclination of 30◦ to avoid
another effect that introduces a change in the eccentricity. In the
lower panel we have exactly the same system but for i� = 45◦.
With this value, and the fact that the orbit is prograde, the Kozai
oscillation of eccentricity is present (Kozai 1962). Even if the
eccentricity of the EMRI e• suffers the characteristic Kozai
oscillations, the loci for the resonances still fulfill the condition
P�/P• = integer.

5. DOES THE FLAP OF THE STAR AT APOAPSIS SET
OFF A TORNADO AT PERIAPSIS?

In this subsection we address numerically the effect of in-
cluding the relativistic periapsis shift along with the dissipation
of energy, i.e., the set of corrections as specified in Equation (2).
As we show below, the effect of the periapsis shift completely
changes the evolution of the system. In Figure 3, we show four
cases. One corresponds to the reference system but taking into
account the periapsis shift. We only display these examples but
note that the behavior is also chaotic9 for other nearby choices
of i�. When using an initial inclination of i� = 45◦, which cor-
responds to the same situation as in the lower panel of Figure 2
but taking into account the periapsis shift, along with another
case which is identical except that i� = 45.◦0000000001, we
also find a chaotic result which moreover eliminates the secular
Kozai oscillation of e.

We have systematically studied this chaotic behavior by run-
ning hundreds of simulations in which we methodically increase

9 When we use the word, we do not follow the rigorous mathematical
definition of chaos. We mean a strong dependence on the initial conditions.

in minimal differences an initial dynamical orbital parameter
such as the inclination, semimajor axis, or eccentricity. In all
cases and parameters the evolution corroborates the chaotic be-
havior of the system. We have also tested a mass for the per-
turbing star of 5 and 1.44 M�, as well as different values of
e� (0.1, 0.3, 0.7, and 0.9), with similar results.

In order to fence in the region within which the system
is chaotic, we systematically increase the semimajor axis of
the star and run the same experiment. We start with the same
difference in inclination at a slightly larger semimajor axis, and
then regularly increase it until we reach one order of magnitude
over the fiducial case, as we depict in Figure 4. The chaotic
behavior ceases at about one order of magnitude of the initial
value of a� in the reference case.

6. QUANTIFYING THE DEPENDENCE ON INITIAL
CONDITIONS OF THE SYSTEM

In this section, we present a way of systematically character-
izing the rate of separation of infinitesimally close trajectories.
To achieve this we compare our fiducial model with another
case in which we set up the EMRI in an (almost) impercepti-
bly different initial orbit (the initial difference is 2 × 10−10 pc,
while the objects are moving on the same ellipse) and keep the
same initial conditions of the MBH and the perturber. Hence,
the EMRI in the second case differs only from the reference
case slightly and has an initial distance separation of r0. We say
that the two models are in phase provided that

r ≈ r0. (3)

If the two different realizations reach a separation

r ≈ 2 a•, (4)

the EMRI bodies are moving out of phase on entirely unrelated
orbits. We thence are able to estimate a characteristic timescale
τdeph for the system to become out of phase. In Figure 5 we
display the separation of the two systems for different distances
to the perturber. From these figures we can measure the value
of a characteristic timescale τdeph for a given a�.

From the data points obtained in the upper panels of
Figure 5 we can then derive the relation displayed in the
lower panel. For large enough distances, of the order of
∼10−5 pc, the two timescales converge and the system becomes
deterministic.

7. CONCLUSIONS

In this paper, we have addressed the role of a perturbation
on an EMRI by a nearby star. The system depends extremely
on minimal changes in the initial conditions (as small as a 10−9

part in the inclination) leading to a very different dynamical
evolution. In all cases, however, the Kozai mechanism is washed
out by the periapsis shift, as one can expect (see, e.g., Holman
et al. 1997; Blaes et al. 2002). For distances of the order
of a� ∼ 10−5 pc the system enters the chaotic regime, for
perturbing masses as small as 1.44 M�. While we cannot state
clearly whether this will be a common feature for EMRIs, since
the different dynamical and relativistic phenomena involved in
the problem are many and not straightforward (for a review,
see Amaro-Seoane et al. 2007 and P. Amaro-Seoane 2012, in
preparation for a dedicated review of the dynamics), it seems
plausible that for a Milky-Way-like galaxy a star can be at such
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Figure 5. Upper panels: from the left to the right and from the top to the bottom we show the separation r for an increasing separation of the perturbing star of
3.5 × 10−6, 3.9 × 10−6, 4.375 × 10−6, and 4.5 × 10−6 pc. The dashed line shows the critical distance 2 a•. Note the different timescales in the lower panels. Lower
panel: τdeph against distance to the perturber normalized to the gravitational radiation timescale of the isolated system τinsp; i.e., the merger timescale without the
perturber acting onto the binary MBH-EMRI.
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a radius from the EMRI system that it will significantly perturb
it. From the standpoint of detection and data analysis, this is yet
another complication of the problem and could even lead to the
misinterpretation that nature’s GR is not what we believe it to be.
On the other hand, from the point of view of stellar dynamics,
the detection of one of these systems would shed light on our
current understanding of galactic dynamics in general and mass
segregation in particular.
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