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University of Warsaw, Hoża 69, 00-681 Warsaw, Poland

Abstract

We take a new look at the DeWitt equation, a defining equation for
the effective action functional in quantum field theory. We present a formal
solution to this equation, and discuss the equation in various contexts, and
in particular for models where it can be made completely well defined, such
as the Wess-Zumino model in two dimensions.

1 Introduction

In 1965, B. DeWitt wrote down a functional differential equation for the full
effective action in quantum field theory [1]. To the best of our knowledge,
this result has not received much attention in the existing literature (but
see [2] for a recent exception), nor in quantum field theory textbooks. The
equation in question, which in the remainder we will refer to as the ‘DeWitt
equation’ 1, relates the functional derivative of the full quantum effective
action Γ[ϕ] to the functional derivative of the classical action, and has several
remarkable features. First of all, while the usual approach to quantum field
theory is based on path integrals and perturbation theory, and thus involves
(functional) integration (see e.g. [3]), the essential information about the
quantum field theory is here encoded into a (functional) differential equation.
If the classical action is polynomial, this equation has only very few terms
and therefore assumes a relatively simple form. Second, this equation can
serve as the generating equation for an infinite hierarchy of Schwinger-Dyson
equations for the theory in question.

1Not to be confused with the more famous Wheeler-DeWitt equation!
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The main difficulty, and possibly the reason why this equation has not
been much exploited in the past, is that it is even hard to define properly. Of
course, this is also true of the path integral, but there one has a number of
established approximation methods at one’s disposal (such as renormalized
perturbation theory), whereas apparently no techniques exist as yet for deal-
ing with a functional differential equation that should contain the complete
information about the full renormalized action functional. Amongst other
difficulties, one has to deal with short distance singularities in the equation
related to the occurrence of functional derivatives at coincident points that
would have to be resolved ‘in one stroke’, rather than by perturbative meth-
ods of conventional type. Consequently the proper definition of the equation
already requires some knowledge of the properties of the solution. One pos-
sible approach here would be to to look for formal solutions in a perturbative
expansion of the unrenormalized equation, and then renormalize the result-
ing expression in a second step [2]. A second difficulty is that the equation
is not of any known type, even in a discrete approximation with only finitely
many degrees of freedom (which we consider in section 3).

In this paper we take a new look at the DeWitt equation, and will argue
that, in spite of the difficulties mentioned above, the equation may provide
valuable new insights into quantum field theory, beyond the established re-
sults and techniques used so far. Our main motivation here is to be able
eventually to develop new methods for future applications, in order to deal
with the effective (Coleman-Weinberg) potential [4] in classically conformal
versions of the Standard Model of the type considered in [5], possessing more
than one scalar degree of freedom. As argued there (see also [6, 7]), classically
unbroken conformal symmetry may offer an attractive alternative to low en-
ergy supersymmetry in explaining the stability of the electroweak scale. The
main technical problem with this proposal is that, so far, there appear to be
no efficient methods to compute the effective potential with more than one
physical scalar field beyond one loop. However, such methods are absolutely
required in order to reliably assess the existence and stability of non-trivial
stationary points of the effective potential because the extremal structure of
the potential may delicately depend on higher order corrections.

In fact, as we will show, there exists a formal solution to the DeWitt
equation, which represents the effective action functional Γ[ϕ] as an asymp-
totic series expansion over vacuum diagrams with field-dependent Green’s
functions; this result follows from much older results on the effective po-
tential obtained by R. Jackiw [8] (see also [9]). One interesting new aspect

2



here is that this analysis leads us to consider the question of convergence
of such expansions not only in terms of the coupling constants (or running
coupling constants), but rather as a question of convergence in field space :
the value of the classical field ϕ effectively replaces the renormalization scale
of the usual perturbation expansion. In this case, Landau poles and other
singularities would manifest themselves as singularities of the effective action
in field space, while the couplings are kept fixed and do not run. 2 As we
will show, also in terms of explicit numerical examples (see appendix), the
new expansion may have much better convergence properties even for large
coupling constants λ, if the value of the classical field ϕ is different from zero.

Another new direction opened by this work concerns the formulation of
the DeWitt equation in contexts where it can be made completely well de-
fined. Our prime example here is the Wess-Zumino model in two space-time
dimensions, where we can exploit the cancellation of UV singularities in a
supersymmetric model. As a further application, we derive the DeWitt equa-
tion for Liouville theory in two dimensions, as an example of a theory with
non-polynomial action. In this way we are led to a novel relation between
n-point correlators and (n+1)-point correlators of exponential Liouville op-
erators, a (formal) result that that does not rely on conformal symmetry,
and remains to be exploited in future work. A most interesting future ap-
plication of the present work would be the formulation and analysis of the
DeWitt equation for N = 4 super-Yang-Mills theory, the main example of
a UV finite interacting quantum field theory in four space-time dimensions
[11, 12].

2 Derivation of DeWitt Equation

For the reader’s convenience we here reproduce the formal derivation of the
equation found by B. DeWitt, following [1] (see also [2]), restricting attention

2A standard example for this phenomenon is the RG improved effective potential for
φ4 theory, which takes the form

Veff(ϕ) =
λϕ4

1− aλ log(ϕ2/v2)

where a is a positive constant and v a fixed scale [4]. This expression is thus valid only
in a compact region in ϕ-space. See also [10] for further examples and a discussion of this
issue in the case with one scalar field, but any number of non-scalar fields.
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to scalar field theory for simplicity, as the extension to more general theories
(with fermions and gauge fields) is straightforward, at least in principle.
Working with a Euclidean metric for simplicity, we define the generating
functional of connected Green’s functions W [J ] in the standard way via (see
e.g. [13, 14])

Z[J ] ≡ exp

[
−1

~
W [J ]

]
=

∫
Dφ exp

[
−1

~

(
S[φ] + J · φ

)]
(1)

where J · φ ≡
∫
dxJ(x)φ(x) and the measure Dφ is formally normalized to

unity, that is W [0] = 0. The connected Green’s functions in the presence of
a source J are then given by

Wn(x1, ..., xn; J) ≡ (−~)n−1 δnW [J ]

δJ(x1) · · · δJ(xn)
(2)

with the full connected n-point functions

Wn(x1, ..., xn) ≡ Wn(x1, ..., xn; J)
∣∣∣
J=0

(3)

Defining the classical field ϕ(x) by

ϕ(x) ≡ ϕ(x; J) =
δW [J ]

δJ(x)
(4)

the effective action is the Legendre transform

Γ[ϕ] =W [J ]−
∫
d4x J(x)ϕ(x) (5)

such that
δΓ[ϕ]

δϕ(x)
= −J(x;ϕ) (6)

We will assume in the following that the relation between J = J(x;ϕ) and
ϕ(x; J) can be freely inverted (although we are aware that this may not be
true in many cases of physical interest!). As is well known, Γ[ϕ] is the gen-
erating functional for the one-particle irreducible (≡ 1PI) Green’s functions,
with

Γn(x1, ..., xn;ϕ) ≡
(−1)n

~

δnΓ[ϕ]

δϕ(x1) · · · δϕ(xn)
(7)
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where the normalization is chosen such that we have the standard relations
∫

d4yW2(x, y;ϕ)Γ2(y, z;ϕ) = δ(4)(x− z) (8)

and

W3(x, y, z;ϕ) = (9)

=

∫
d4u d4v d4wW2(x, u;ϕ)W2(y, v;ϕ)W2(z, w;ϕ)Γ3(u, v, w;ϕ)

and so on. Note that here all the Green’s functions depend on the classical
field ϕ(x). We also recall the expansion of the effective action in powers of ~
(‘loop expansion’)

Γ[ϕ] = Γ(0)[ϕ] + ~Γ(1)[ϕ] + . . . (10)

where Γ(0)[ϕ] = S[ϕ] is the classical action S.
For any functional Q[φ] we define the expectation value with given source

J(x) as

〈Q[φ]〉J := exp

(
1

~
W [J ]

)∫
DφQ[φ] exp

[
−1

~

(
S[φ] + J · φ

)]
(11)

This can be rewritten as 3

〈Q[φ]〉J = exp

(
1

~
W [J ]

)
exp

(
−1

~
W

[
J − ~

δ

δφ

])
Q[φ]

∣∣∣
φ=0

(12)

Next we expand

W

[
J − ~

δ

δφ

]
= W [J ]− ~

∫
d4x

δW [J ]

δJ(x)

δ

δφ(x)
+ (13)

− ~

∞∑

n=2

1

n!

∫
d4x1 · · ·d4xnWn(x1, ..., xn; J)

δ

δφ(x1)
· · · δ

δφ(xn)

Expressing J as a functional of ϕ, using (4) and once again the elementary
identity from footnote 2 to replace φ by ϕ in (12) we arrive at

〈Q[φ]〉J [ϕ] = (14)

∗
∗ exp

[
∞∑

n=2

1

n!

∫
d4x1 · · ·d4xnWn

(
x1, ..., xn; J [ϕ]

) δ

δϕ(x1)
· · · δ

δϕ(xn)

]
∗
∗ Q[ϕ]

3By use of the elementary identity f(x) = exp(x∂/∂y)f(y)|y=0.
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where the symbol ∗
∗ indicates that the functional differential operators act

only on the external factor Q[ϕ], but not on J [ϕ] in Gn. It is important here
that the sum in the exponent starts only at n = 2. Next recall DeWitt’s
identity

δΓ[ϕ]

δϕ(x)
=

〈
δS[φ]

δφ(x)

〉

J=J [ϕ]

(15)

which holds since both sides are equal to −J(x) (a consequence of the formal
identity

∫
Dφ δ/δφ(x)(· · · ) = 0). DeWitt’s equation is now obtained by

applying (14) with Q[φ] = δS/δφ. This gives

δΓ[ϕ]

δϕ(x)
= (16)

∗
∗ exp

[
∞∑

n=2

1

n!

∫
d4x1 · · ·d4xnWn

(
x1, ..., xn; J [ϕ]

) δ

δϕ(x1)
· · · δ

δϕ(xn)

]
∗
∗

δS

δϕ(x)

Observe that for polynomial actions S[φ] the functional differential operator
reduces to a finite number of terms upon expansion of the exponential.

To have a concrete example, consider the classically conformal φ4 theory
with the action

S[φ] =

∫
d4x

(
1

2
∂µφ∂

µφ+
λ

4
φ4

)
(17)

This gives
δΓ[ϕ]

δϕ(x)
=
〈
−�φ(x) + λφ3(x)

〉
J=J [ϕ]

(18)

and thus

δΓ[ϕ]

δϕ(x)
= −�ϕ(x) + λϕ3(x) + 3λW2(x, x;ϕ)ϕ(x) + λW3(x, x, x;ϕ) (19)

Expressing W2 and W3 by means of (8) and (9) we see that all quantities in
this equation can be expressed in terms of Γ[ϕ] and its functional derivatives,
so that (19) indeed becomes a functional differential equation for Γ[ϕ].

As they stand these equations, and in particular the basic functional
equation (16), are formal. Nevertheless, there is already one useful applica-
tion: the equation (19) can be used as a generating equation to derive the
Schwinger-Dyson equations. With the standard formula for the one-particle
irreducible n-point functions

Γn(x1, . . . , xn) ≡ Γn(x1, . . . , xn;ϕ)
∣∣∣
ϕ=0

(20)
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we obtain, for instance,

~Γ2(x, y) =
(
−�+ 3λW2(x, x)

)
δ(4)(x− y)

−λ

∫
d4u d4v d4wW2(x, u)W2(x, v)W2(x, w)Γ4(u, v, w, y) (21)

which can be represented diagrammatically in the usual way. Similar formu-
lae for higher n-point can be deduced by repeated differentiation.

In principle, eq. (19) is an exact non-linear functional differential equation
for the action functional Γ[ϕ]. In the full renormalized theory, this functional
should be well-defined on a set of sufficiently well-behaved functions ϕ(x)
(say, C∞ functions which fall of sufficiently rapidly at infinity). In addition,
its functional derivatives should be well-defined as distributions. However,
this cannot be the case for (19) as it stands. First of all, the equation is
written in terms of bare couplings and correlators, and needs to be renor-
malized. Secondly, even if one assumes that the necessary renormalizations
have been performed, and the couplings are replaced by the renormalized
(physical) ones, (19) would still not be well defined as it stands because the
r.h.s. of (19) contains singular contributions in the terms of order ~: recall
thatG2(x, y) and higher n-point functions are generally singular at coincident
points, even in free field theory. It is for this reason that one conventionally
must resort to perturbative methods by considering the n-point functions
separately, and by rendering them finite order by order in perturbation the-
ory by means of suitable subtractions in momentum space. For instance, this
can be easily seen from (21) where the infinity of G2(x, x) can be absorbed
by an appropriate wave function renormalization ϕ→ Z1/2ϕ at lowest order.

As already emphasized in the Introduction, we here adopt a different
strategy by trying to deal with equation (19) directly. This requires to look
for theories for which the DeWitt equation can be made well defined, that is,
free of singularities. Examples of such theories are certain supersymmetric
models of the type discussed below in section 5. We note again that the
DeWitt equation (16) is not of any known type. This is so even if one
restricts this equation to an ‘ordinary’ partial differential equation for finitely
many variables as in the following section. This is one of the reasons for the
difficulties in dealing with it, and motivates the present effort to gain a better
understanding of this equation.
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3 A ‘zero-dimensional field theory’ example

To bring out the main new features we now discuss an example from ‘zero-
dimensional’ field theory, that is, a system with finitely many degrees of free-
dom, in terms of which the results described in the foregoing section can be
explicitly illustrated, and where we do not have to worry about UV infinities.
This example will also allow us to exhibit the vastly improved convergence
properties of a new summation scheme over conventional perturbation theory.
To this aim let us consider the ‘action’ of a zero-dimensional φ4 theory

S(x) =
1

2

n∑

i,j=1

xiAijxj +
λ

4

n∑

j=1

x4j (22)

where Aij is a non-degenerate positive definite matrix. The generating func-
tion W (J) ≡ W (J1, . . . , Jn) for the ‘connected Green’s functions’ is then
defined in analogy with (1) as

e−W (J) :=

∫

Rn

dx exp
[
− S(x)−

∑

j

xjJj
]

(23)

where the integration measure dx is normalized in such a way thatW (0) = 0.
The generating function is easily seen to satisfy the differential equation

∑

j

Aij
∂Z

∂Jj
+ λ

∂3Z

∂J3
i

= JiZ(J) (24)

or, in terms of W (J),

∑

j

Aij
∂W

∂Jj
+ λ

[
∂3W

∂J3
i

− 3
∂2W

∂J2
i

∂W

∂Ji
+

(
∂W

∂Ji

)3
]
= −Ji (25)

When expressed in terms of the effective action, this is the finite-dimensional
analog of the DeWitt equation (16), see below. So in analogy with (4) let us
define the ‘classical field’ by

ϕi(J) :=
∂W (J)

∂Ji
(26)

and introduce the ‘effective action’ Γ(ϕ) in the usual way by Legendre trans-
formation as in (5). The DeWitt equation now reduces to a set of partial
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differential equations

∂Γ(ϕ)

∂ϕi
= exp

[
∑

k≥2

1

k!

∑

j1,...,jk

Wj1··· jk(J)
∂

∂ϕj1
· · · ∂

∂ϕjk

]
∂S(ϕ)

∂ϕi
(27)

where Wj1···jk ≡ (−1)k−1∂j1 · · ·∂jkW , and we have relations analogous to (8)
and (9), that is,

∑
jWij(J)Γjk(ϕ(J)) = δik, and so on.

We can now produce a formal solution of (27), re-deriving a result that
was essentially obtained already long ago [8]. From the general definition we
directly obtain the following differential equation for Γ(ϕ)

exp

[
−Γ(ϕ) +

∑

j

ϕj
∂Γ(ϕ)

∂ϕj

]
=

=

∫

Rn

dx exp

[
−S(x) +

∑

j

xj
∂Γ(ϕ)

∂ϕj

]
(28)

To evaluate the integral we split the ‘effective action’ into a ‘classical’ part
S(ϕ) and a ‘quantum’ part Γ̃(ϕ) according to

Γ(ϕ) =
1

2

N∑

i,j=1

ϕiAijϕj +
1

4
λ

N∑

j=1

ϕ4
j + Γ̃(ϕ) (29)

Shifting integration variables as xj → xj + ϕj in (28), a little algebra gives

exp
[
−Γ̃(ϕ)

]
=

∫

Rn

dx exp

[
−1

2

∑

ij

xiG
−1
ij (ϕ)xj − λ

∑

j

x3jϕj −
λ

4

∑

j

x4j +
∑

xj
∂Γ̃(ϕ)

∂ϕj

]

(30)

with the classical ‘field-dependent’ Green’s function Gij(ϕ)

∑

j

(
Aij + 3λδijϕ

2
j

)
Gjk(ϕ) = δik (31)

9



Performing the Gaussian integral, and using Wick’s theorem in the form

(2π)−n/2
∫

Rn

dnxf(x) exp

(
−1

2

n∑

i,j=1

Cijxixj

)
=

= (detC)−1/2 exp

(
1

2

n∑

i,j=1

C−1
ij

∂

∂yi

∂

∂yj

)
f(y)

∣∣∣∣
y=0

(32)

the expression (30) can be re-written in the form

exp
[
−Γ̃(ϕ)

]
=

(
detGij(ϕ)

)1/2
exp

(
1

2

∑

i,j

Gij(ϕ)
∂

∂ηi

∂

∂ηj

)

exp

[
−λ
∑

j

ϕjη
3
j −

λ

4

∑

j

η4j +
∑

j

ηj
∂Γ̃(ϕ)

∂ϕj

]

η=0

(33)

Let us pause to explain this formula. The determinant prefactor just pro-
duces the well known semi-classical (one-loop) correction ∝ log

(
detGij(ϕ)

)

to the classical action. As for the remaining terms, and ignoring the last term
∝ η∂Γ̃/∂ϕ, we would get the sum over all connected vacuum diagrams with
the field-dependent propagator Gij(ϕ) (as the result of taking the logarithm
on both sides). Although this last term would seem to make the equation
completely untractable, a little bit of thought shows that this is not so. Be-
cause Γ̃(ϕ) contains only one-particle irreducible contributions, the effect of
this last term is precisely to remove the one-particle reducible diagrams from
the expansion: because this term is linear in η, it can couple to the rest of
any diagram only via a single line. In other words, the quantum effective
action is nothing but the sum of the one-loop correction and the sum over
one-particle irreducible vacuum diagrams with at least two loops and with the
field-dependent Green’s function (31). This is the result derived in [8] for the
effective potential in quantum field theory.

By construction, this series solution must satisfy the discrete DeWitt
equation (27), and this claim can in principle be checked order by order.
Equally important is the fact that the expansion, while being asymptotic,
can have vastly better convergence properties for non-vanishing ϕ than the
usual perturbation expansion in terms of the coupling constant λ. This is
most easily seen by simplifying our zero-dimensional field theory even further
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to an integral over one variable. In this case the ‘Green’s function’ (31) is
simply G(ϕ) ≡ (1 + 3λϕ2)−1. For a given vacuum diagram with I internal
lines we have

I =
3

2
V3 + 2V4 (34)

where V3 and V4, respectively, denote the number of three- and four-point
vertices in (33) ; note that in any vacuum diagram, the number of three-point
vertices is even. The number of loops is equal to

L =
1

2
V3 + V4 + 1 (35)

Therefore an arbitrary vacuum diagram with L loops will be proportional to

λV4(λϕ)V3

(1 + 3λϕ2)I
≈ (λϕ4)1−L (36)

(for L = 1, the relevant parameter is log(1 + 3λϕ2)). In other words, the
loop expansion now coincides with an expansion in (λϕ4)−1: of course, this
expansion should only be used in the appropriate region in field space and
the space of couplings, where λϕ4 is sufficiently large. So we see that the
series can converge well even for large λ provided the value of the classical
field ϕ is not too small (and different from zero)! We have checked this
claim by numerical integration of a non-trivial example, which we give in the
Appendix. The important lesson, then, is that it is not simply the coupling
constant λ (or its running analog λ(µ), where µ is some renormalization scale)
that governs the convergence properties of the effective action functional, but
that one should also consider the question of convergence w.r.t. to the value
of the field variables ϕj or ϕ(x) as well.

4 Formal solution

The considerations of the foregoing section can be straightforwardly extended
to field theory, enabling us to construct a formal expression for the (un-
renormalized) effective action in terms of a sum over vacuum diagrams with
field dependent classical Green’s functions. For constant field configurations
ϕ(x) = ϕ0 this solution reduces to the one found already long ago in [8],
where it was exploited for an efficient determination of higher order correc-
tions to the Coleman-Weinberg effective potential for various theories. We
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here present the general solution that allows for arbitrary x-dependence of
the classical field ϕ, and that follows directly from the above construction
by taking a formal limit n → ∞, or alternatively by a minor modification
of the argument given in [8]. It is remarkable that in this way an explicit,
albeit formal, solution of the (unrenormalized) DeWitt equation can be ob-
tained that would seem difficult to guess otherwise. Of course, even in the
full theory all relevant expressions can be made well defined by regulating
the quantum field theory, either by discretization as in the previous section,
or by suitable continuum regularizations such as smearing.

From (33) we deduce immediately that the formal solution for the un-
renormalized effective action functional can be presented in the form

Γ[ϕ] = S[ϕ] +
~

2

∫
d4x log

[
δ2S[ϕ]

δϕ(x)δϕ(x)

]
(37)

−~ log

[
exp

(
~

2

∫
d4ud4v Gcl(u, v;ϕ)

δ2

δη(u)δη(v)

)
exp

(
−~

−1Sint[ϕ, η]
) ∣∣∣∣

η=0

]

1PI

where the subscript 1PI means that one-particle reducible diagrams are to
be omitted in the expansion, and where the logarithm removes disconnected
diagrams from inside the brackets. The interacting part of the action is
defined by subtracting the linear and quadratic fluctuations,

Sint[ϕ, η] := S[ϕ+ η]− S[ϕ]−
∫
d4u η(u)

δS[ϕ+ η]

δϕ(u)

∣∣∣∣∣
η=0

−1

2

∫
d4ud4v η(u)η(v)

δ2S[ϕ+ η]

δϕ(u)δϕ(v)

∣∣∣∣∣
η=0

=
1

3!

δ3S

δϕ3
η3 +

1

4!

δ4S

δϕ4
η4 + · · · (38)

Observe that a residual dependence on ϕ arises from four-point vertices on-
wards, whereas there is no ϕ-dependence if there are only cubic vertices.
The expectation values in (37) are to be computed with the classical field
dependent Green’s function Gcl(x, y;ϕ), which is defined as

∫
d4y Gcl(x, y;ϕ)

δ2S[ϕ]

δϕ(y)δϕ(z)
= δ(4)(x− z) (39)
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Hence Gcl(x, y;ϕ) is the classical analog of (8), in the sense that

W2(x, y;ϕ) = ~Gcl(x, y;ϕ) +O(~2) (40)

According to the formula (37) the unrenormalized effective action Γ[ϕ]
is the sum over all one-particle-irreducible (1PI) vacuum diagrams with the
field-dependent Green’s function (39). The dependence of Γ on the field ϕ(x)
thus derives from two sources, namely the field dependence of Gcl(x, y;ϕ),
and secondly the residual dependence of Sint on ϕ (which only exists if there
are 4-point or higher point vertices). The former can be made more explicit
by expanding

Gcl(x, y;ϕ) = G0(x, y)−
∫
d4uG0(x, u)p(ϕ(u))G0(u, y) ± · · · (41)

where p(ϕ) is obtained from δ2S/δϕ2 by removing the free part not depending
on ϕ(x), and G0 is the free propagator. The terms in this expansion thus
generate the ‘antenna-like’ diagrams known from textbook formulas of the
effective potential.

By virtue of its definition and the above derivation, the expression (37)
must satisfy the DeWitt equation (16) at least formally. This claim is
straightforward to check for the semi-classical O(~) correction by use of the
formula

δ

δϕ(x)
Tr logM = Tr

(
M−1 δM

δϕ(x)

)
(42)

valid for any functional matrix M(y, z), and by approximating the full two-
point function G(x, y; J(ϕ)) from (39) by Gcl(x, y;ϕ). However, a direct
verification of (37) to all orders is cumbersome. We will therefore postpone
a discussion of this issue to the following section in terms of an example
where the DeWitt equation is well defined. Let us just note that in con-
junction with the explicit expression as a sum over ϕ(x)-dependent vacuum
diagrams we can see directly from the DeWitt equation (16) that Γ[ϕ] can
only contain one-particle irreducible (1PI) diagrams: the action of the first
functional derivative δΓ[ϕ]/δϕ(x) in particular leads to the cutting any one
of the propagators in a diagram arising in the expansion (37). If we had a
diagram which is not 1PI then there would be at least one propagator which
joins two 1PI subdiagrams. The action of the functional derivative on this
diagram would thus split the diagram in two parts at this propagator, leav-
ing two disconnected diagrams. But on the r.h.s. of the DeWitt equation we
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have only connected Green’s functions, δnW [J ]/δJ(x1) · · · δJ(xn) . So there
can be no disconnected diagrams on the r.h.s. of [8] and thus we can only
have 1PI diagrams contributing to Γ[ϕ], as expected.

The effective (Coleman-Weinberg) potential is obtained by specializing
all formulas to x-independent fields ϕ(x) = ϕ0 [4] and removing a formally
infinite volume factor ∝

∫
dx. The main advantage of writing the effective

potential as a sum over vacuum type diagrams is the following: rather than
having to do all the combinatorics with ‘antenna diagrams’, one obtains the
answer at each loop order ‘in one stroke’. In particular the RG improved
one-loop potential obtained by summing ladder bubble diagrams is directly
obtained. This was, in fact, the first application of this formula in [8] where
the effective potential as also determined to two loops for ϕ4 theory. As shown
there the formalism implies considerable simplifications in comparison with
the textbook derivations of the Coleman-Weinberg potential.

At the end of this section we write the solution (37) for the finite di-
mensional integral with the action defined by (22), that is, the solutions to
(28). In accordance with the explanation after (37) we include only 1PI and
connected diagrams in the expansion

Γ(ϕi) = S(ϕi) + Γ(1)(ϕi) + Γ(2)(ϕi) + Γ(3)(ϕi) + . . . (43)

where the indices denote the loop order. In this way we obtain

Γ(1)(ϕ) = − 1

2
ln det(Gij)

Γ(2)(ϕ) = −
[
−3λ

4

∑

i

G2
ii + 3λ2

∑

i,j

ϕiϕjG
3
ij

]

Γ(3)(ϕ) = −
[
3λ2

4

∑

i,j

G4
ij +

9λ2

4

∑

ij

GiiG
2
ijGjj

−27λ3
∑

i,j,k

ϕiϕjGijG
2
ikG

2
jk − 27λ3

∑

i,j,k

ϕiϕjG
2
ijGikGjkGkk

+54λ4
∑

i,j,k,l

ϕiϕjϕkϕlGijGjkGklGliGikGjl

+81λ4
∑

i,j,k,l

ϕiϕjϕkϕlG
2
ijG

2
klGikGjl

]
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As already pointed out, this is a ‘nonperturbative expansion’ that is re-
stricted to the region of couplings and field space where the ‘parameter’
G(ϕ) ∼ (λϕ2)−1 is small. In the formula above we included terms up to
three loops, i.e. up to sixth order in Gij(ϕ) (one easily checks that all terms
are of the appropriate order in (λϕ4)−1, in agreement with formula (36)).
A numerical comparison of the exact result and this expansion for a one-
dimensional integral for several values of λ and ϕ is given in the appendix. It
shows that this expansion can give excellent agreement with the exact result
even in regions where λ is very large.

5 The Wess-Zumino model in D = 2

We next turn to an example where the DeWitt equation (16) can be made
completely well-defined, that is, free of all short distance singularities. This
is the N = 1 Wess-Zumino model in two space-time dimensions which is UV
finite order by order in perturbation theory (the generic non-supersymmetric
theories having only logarithmic divergences in two dimensions, which are
removed by imposing supersymmetry). 4

The Euclidean version of the model can be written in terms of a single
superfield Φ(z) with superspace coordinate z ≡ (x, θ), where θ is a two-
component (anti-commuting) Majorana spinor with θ = θ∗. The superfield
contains a real scalar A and a Majorana spinor ψ, as well as the auxiliary
field F :

Φ(x, θ) = A(x) + θ̄ψ(x) +
1

2
θ̄θF (x) (44)

For simplicity we restrict attention to the following Lagrangian

L = −1

4
ΦD̄DΦ +

1

2
mΦ2 +

1

3
gΦ3 (45)

We could replace the last two terms by an arbitrary polynomial P (Φ) here,
but this would only make the formulas more cumbersome and not give any
new insights. The supercovariant derivative is defined by

Dα =
∂

∂θ̄α
+ (γµθ)α∂µ (46)

D̄α = −CαβDβ (47)

4See [15] for a recent treatment of the Wess-Zumino model in 2+1 dimensions.
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where C is the charge conjugation matrix. The lagrangian in component
form is as follows:

L =
1

2
A�A− 1

2
ψ̄γµ∂µψ +

1

2
F 2 +

1

2
m(2AF − ψ̄ψ) + g(A2F − Aψ̄ψ) (48)

Writing out the DeWitt equation for the three fields A,ψ and F we get

δΓ[A, F, ψ]

δA(x)
= �A(x) +mF (x) + g

[
2A(x)F (x)− ¯ψ(x)ψ(x)

]

− g~

[
2

δ2W [J ]

δJA(x)δJF (x)
+ Tr

δ2W [J ]

δJψ(x)δJψ̄(x)

]

δΓ[A, F, ψ]

δψ̄(x)
= −/∂ψ(x)−mψ(x)− 2gA(x)ψ(x)− ~g

δ2W [J ]

δJA(x)δJψ(x)

δΓ[A, F, ψ]

δF (x)
= F (x) +mA(x) + gA2(x)− ~g

δ2W [J ]

δJA(x)δJA(x)
(49)

with self-explanatory notation. Now we see that the equation for the scalar
field A is well defined as it stands because the logarithmic singularities cancel
between the two terms in parentheses. More precisely, the latter expression
is understood to be

lim
y→x

[
2

δ2W [J ]

δJA(x)δJF (y)
+ Tr

δ2W [J ]

δJψ(x)δJψ̄(y)

]
= finite (50)

Likewise the equation for ψ is well defined because δ2W/δAδψ is free of short
distance singularities. So the only singularity occurs in the last equation, and
this can be removed by replacing the product A2(x) by the normal ordered
product

:A(x)A(y) : ≡ A(x)A(y)−A(x)A(y) (51)

and taking x → y afterwards. This singularity simply follows from the fact
that if one expresses the auxiliary field F in terms of the physical field A,
the non-linear terms in A must be rendered non-singular to make F itself
well-defined as a quantum operator. 5 Consequently, the last component of
the DeWitt equation must be replaced by

δΓ[A, F, ψ]

δF (x)
= F (x) +mA(x) + g :A2(x) : −~g

δ2W [J ]

δJA(x)δJA(x)
(52)

5But note that, while :A2 : is well-defined as an operator, it is singular as a c-number,
while the converse is true for A2!
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and then all components of the DeWitt equation are free of singularities. In
practice, the above replacement simply means that in the formal solution
as a sum over vacuum diagrams there are no tadpole diagrams (these are
anyway absent for a theory with only cubic vertices as they would lead to
non-1PI diagrams in Γ which cannot be).

All these equations can be conveniently recast into superspace equations.
A similar normal ordering can be done in the superspace version of the la-
grangian and as it is much more convenient to work in it we would stick to
the superspace description. So we have the functional derivative of the action
as:

δS

δΦ
= −1

2
D̄DΦ+mΦ + gΦ2 (53)

The arguments of the foregoing sections generalize directly to superspace.
For the cubic Lagrangian above the DeWitt equation (16) takes an especially
simple form, namely

δΓ[Φ]

δΦ(z)
= :

δS[Φ]

δΦ(z)
: − ~g

δ2W [J ]

δJ(z)δJ(z)

∣∣∣∣
J=J [Φ]

(54)

or, more specifically

δΓ[Φ]

δΦ(z)
= −1

2
D̄DΦ(z) +mΦ(z) + g :Φ2(z) : −~g

δ2W [J ]

δJ(z)δJ(z)

∣∣∣∣
J=J [Φ]

(55)

where z ≡ (xµ, θ) and J(z) is the ‘supersource field’ J(z) ≡ JF + θ̄Jψ+ θ̄θJA.
The normal ordering is understood to be in the sense of the component
expressions given above. In the formal solution below this simply means
that all tadpole diagrams are suppressed.

For the free superfield the superspace propagator is

G
(0)
2 (z − z′) =

=
〈
0
∣∣T [(A(x) + θ̄ψ(x) +

1

2
θ̄θF (x))(A(x′) + θ̄′ψ(x′) +

1

2
θ̄′θ′F (x′))]

∣∣0
〉

= exp
[
− 1

2
(θ̄ − θ̄′)(γµ∂

µ +m)(θ − θ′)
]
△F (x− y) (56)

In analogy with (39) we define the Green’s function in superspace

∫
dz′Gcl(z, z

′; Φ)
δ2S[Φ]

δΦ(z′)δΦ(z′′)
= δ(z − z′′) (57)
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(where the fermionic part of the δ-function is defined in the usual way as

δ(θ) = θ) so that Gcl(z, z
′; Φ) = G

(0)
2 (z − z′) + · · · .

By construction the supersymmetric DeWitt equation (54) is well defined,
and we can therefore take over the formal solution given in the previous
section,

Γ[Φ] = S[Φ] +
~

2

∫
d4z ln

[
δ2S

δΦ(z)δΦ(z)

]

− ~ ln

[
exp

(
~

2
Gi,j

δ2

δΦ̃iδΦ̃j

)
exp

(
− S̃int

~

) ∣∣∣∣
Φ̃=0

]
(58)

Where Gij is shorthand for Gcl(zi, zj ; Φ) and S̃int =
g
3
Φ̃3, and all the integrals

are understood to be in superspace. Now if we expand the series we have the
following:

[
1 +

∞∑

n=1

1

n!

(
~

2
Gi,j

δ2

δΦ̃iδΦ̃j

)n][
1 +

∞∑

m=1

1

m!

(−S̃int
~

)m]∣∣∣∣
Φ̃=0

(59)

Because the dummy variable Φ̃ is put to 0, and the interaction is cubic, only
terms with 2n = 3m survive. Thus the first of this will be at two loops for
m = 2, n = 3. Evaluating the corresponding term we get

[
1

3!

(
~

2
Gi,j

δ2

δΦ̃iδΦ̃j

)3][
1

2!

(−S̃int
~

)2]
=

~g2

3

∫

z,w

G3
cl(z, w; Φ)

At the next order (three loops) we have n = 6, m = 4, and

[
1

6!

(
~

2
Gi,j

δ2

δΦ̃iδΦ̃j

)6][
1

4!

(−S̃int
~

)4]

= ~
2

[
2

3
g4
∫

u,v,w,z

Gcl(u, v; Φ)Gcl(u, w; Φ)Gcl(u, z; Φ)Gcl(v, w; Φ)Gcl(v, z; Φ)Gcl(w, z; Φ)

+g4
∫

u,v,w,z

G2
cl(u, v; Φ)G

2
cl(w, z; Φ)Gcl(u, w; Φ)Gcl(v, z; Φ) +

1

2

(
g2

3

∫

z,w

G3
cl(z, w; Φ)

)2]

(60)

We recognize the last term as square of the term which we got for n =
3, m = 2 (two loops), which is removed by taking log of the entire expression
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as these diagrams are not connected. Hence summing up we get the following
contribution to the effective action:

Γ = S +
~

2

∫
d4z ln

[
δ2S

δΦ(z)δΦ(z)

]
− ~

2g2

3

∫

z,w

G3
cl(z, w; Φ)

−2

3
~
3g4
∫

u,v,w,z

Gcl(u, v; Φ)Gcl(u, w; Φ)Gcl(u, z; Φ)Gcl(v, w; Φ)Gcl(v, z; Φ)Gcl(w, z; Φ)

−~
3g4
∫

u,v,w,z

G2
cl(u, v; Φ)G

2
cl(w, z; Φ)Gcl(u, w; Φ)Gcl(v, z; Φ) + O(~4) (61)

To check this we first calculate the second functional derivative of Γ, which
is, up to order ~2,

δ2Γ

δΦ(z1)δΦ(z2)
=

δ2S

δΦ(z1)δΦ(z2)
− 2~g2Gcl(z1, z2; Φ)Gcl(z1, z2; Φ)

−8~2g4
∫

z,w

Gcl(z, z2; Φ)Gcl(z2, z1; Φ)Gcl(z1, w; Φ)G
2
cl(z, w; Φ)

−8~2g4
∫

z,w

Gcl(z, z1; Φ)Gcl(z1, w; Φ)Gcl(z, z2; Φ)Gcl(z2, w; Φ)Gcl(z, w; Φ)

(62)

Inverting the above we obtain the 2-point function up to order ~2,

− δ2W

δJ(z1)δJ(z2)
= Gcl(z1, z2; Φ) + 2~g2

∫

u,v

Gcl(z1, u; Φ)G
2
cl(u, v; Φ)Gcl(v, z2; Φ)

+8h2g4
∫

u,v,z,w

[
Gcl(z1, u; Φ)Gcl(z, v; Φ)Gcl(v, u; Φ)Gcl(u, w; Φ)G

2
cl(z, w; Φ)Gcl(v, z2; Φ)

+Gcl(z1, u; Φ)Gcl(z, u; Φ)Gcl(u, w; Φ)Gcl(z, v; Φ)Gcl(v, w; Φ)Gcl(z, w; Φ)Gcl(v, z2; Φ)

]

+4~2g4
∫

u,v,w,z

Gcl(z1, u; Φ)G
2
cl(u, v; Φ)Gcl(v, w; Φ)G

2
cl(w, z; Φ)Gcl(z, z2; Φ) (63)
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Now putting this in the DeWitt equation from the R.H.S, we obtain:

δS

δΦ(z)
− ~g

δ2W

δJ(z)δJ(z)

=
δS

δΦ(z)
+ ~gGcl(z, z; Φ) + 2~2g3

∫

u,v

Gcl(z, u; Φ)G
2
cl(u, v; Φ)Gcl(v, z; Φ)

+8h3g5
∫

u,v,z′,w

[
Gcl(z, u; Φ)Gcl(z

′, v; Φ)Gcl(v, u; Φ)Gcl(u, w; Φ)G
2
cl(z

′, w; Φ)Gcl(v, z; Φ)

+Gcl(z, u; Φ)Gcl(z
′, u; Φ)Gcl(u, w; Φ)Gcl(z

′, v; Φ)Gcl(v, w; Φ)Gcl(z
′, w; Φ)Gcl(v, z; Φ)

]

+4~3g5
∫

u,v,w,z′
Gcl(z, u; Φ)G

2
cl(u, v; Φ)Gcl(v, w; Φ)G

2
cl(w, z

′; Φ)Gcl(z
′, z; Φ) (64)

This is exactly what we get from the l.h.s. by taking the first functional
derivative of Γ.

6 Liouville Field Theory

As an example where the DeWitt equation can be worked out explicitly for
a theory with a non-polynomial action, we briefly consider Liouville theory
in two dimensions. As is well known, the actual construction of this spe-
cial conformal theory is subtle and has a long history (see e.g. [16, 17] and
references therein), so we here content ourselves with formal arguments and
derivations, postponing a more detailed discussion to future work. We note
that the derivations given below do not make any use of the conformal sym-
metry of the theory.

The generating functional W [J ] is defined as in (1) with the action

S =

∫
d2x

[
1

2
(∂µφ)

2 + µebφ(x)
]

(65)

where we set ~ = 1 for simplicity. The proper definition of the theory is
tricky, not least because the run-away nature of the exponential potential
does not allow for proper classical vacuum. As a consequence, the one-point
function, and thus the classical field ϕ(J) may not be well defined in all
circumstances for this reason: in fact, we would expect it to exist only for
sources obeying J(x) < 0, for which the potential valley is avoided.
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For Liouville theory the main interest is not with expectation values of
products of field operators φ(x), but rather with the expectation values of
proper primary fields, which are exponential operators of the form

Vα(x) ≡ exp
(
αφ(x)

)
(66)

The correlation functions are then given by

〈0|Vα1
(x1) · · ·Vαn

(xn)|0〉 =
∫

Dφ eα1φ(x1) · · · eαnφ(xn)e−S[φ] (67)

with the action (65) (where again we assume proper normalization of the
path integral). Introducing a source J(x) as before, the correlation functions
can be represented by means of a J-dependent partition function, with a
distributional source

J(x) = −
n∑

j=1

αjδ(x− xj) (68)

The DeWitt equation can be worked out as before, with the result

δΓ[ϕ]

δϕ(x)
= (69)

∗
∗ exp

[ ∞∑

n=2

1

n!

∫
d4x1....d

4xnWn(x1, ..., xn; J [ϕ])
δ

δϕ(x1)
· · · δ

δϕ(xn)

]
∗
∗

[
−�ϕ(x) + µbebϕ(x)

]

and thus

δΓ[ϕ]

δϕ(x)
= −J(x) = −�φ(x) + exp

[ ∞∑

n=2

bn

n!
Wn(x, ..., x; J [ϕ])

]
µbebϕ(x)

⇒ log
(
− J(x) +�ϕ(x)

)
=

[ ∞∑

n=2

bn

n!
Wn(x, ..., x; J [ϕ])

]
+ ln(µb) + bϕ(x)

(70)

From (2) we know that,

Wn(x1, . . . , xn) = (−1)n−1 δnW [J ]

δJ(x1) · · · δJ(xn)
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After some algebra, we obtain:

log
(
− J(x) +�φ(x)

)
= − exp

(
−b δ

δJ(x)

)
W [J ] + ln(µb) +W [J ]

= −W [J − bδx] +W [J ] + ln(µb) (71)

with δx(y) ≡ δ(x− y). Equivalently, we can write

− J(x) +�φ(x) = µbe−W [J−bδx]e+W [J ] ≡ bµ
Z[J − bδx]

Z[J ]

Thus, for J of the form (68), Z[J − bδx] has one more insertion than J , so
the ratio appearing on the right-hand side in the previous equation is just

〈0|Vα1
(x1) · · ·Vαn

(xn)Vb(x)|0〉
〈0|Vα1

(x1) · · ·Vαn
(xn)|0〉

(72)

The usefulness of the equation (71) is still under study, and we intend to
return to it in future work. At this point we only remark that, if we define
ϕ(x) as

∂α
∫
[Dφ]eαφ(x)e−S[φ]−J ·φ|α=0∫

[Dφ] e−S[φ]−J ·φ
(73)

the equation can be rewritten as follows:

(−J(x))〈0|
n∏

i=1

Vαi
(xi)|0〉+�

(
∂α〈0|Vα(x)

n∏

i=1

Vαi
(xi)|0〉|

)

α=0

= bµ〈0|Vb(x)
n∏

i=1

Vαi
(xi)|0〉 (74)

A similar equation, minus the first term was used by [16], to check the pro-
posal for the three point function in Liouville theory. If we plug in the DOZZ
proposal in this equation then we find that, neglecting contact terms,

4(∆1 −∆2)
2∂αC(α, α1, α2)|α=0 = bµC(b, α1, α2) (75)

where the △i are the conformal dimensions of the primary operators. The
other term which arises from the contact term, i.e. the δ-functions obtained
by the action of the Laplacian, cancels with term proportional to J , gener-
ating the on-shell constraint, α = 1

2
Q.
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7 Outlook

In the Introduction we already mentioned possible further directions. In par-
ticular, we would like to apply the DeWitt equation to N = 4 Yang Mills
theory, the prime example of a UV finite quantum field theory in four space-
time dimensions. However, this is not as straightforward as one might have
wished. One main obstacle is the lack of a fully off-shell supersymmetric
realization of the theory. If we simply use the on-shell supersymmetric for-
mulation (in Wess-Zumino gauge), there will appear all kinds of spurious
divergences, since only gauge invariant observables are supposed to be UV
finite. The same trouble would arise with formulations where only part of
the supersymmetry is realized off-shell (for instance, in a formulation of the
theory in terms of N = 1 superfields), or with harmonic superspace. One
could also try the opposite approach, where only the true on-shell degrees of
freedom are used, namely the light-cone superspace formalism proposed in
[18]. There, the lagrangian is written in terms of a single chiral superfield
using only physical degrees of freedom of the theory; using Grassmann pa-
rameters θm and their complex conjugates θ̄m. The lagrangian for N = 4
Yang Mills theory then takes the following form [12, 18]

L = 72
[
− φ̄a( �

∂+2 )φ
a + 4

3
gfabc[ 1

∂+
φ̄aφb∂̄φc + 1

∂+
φaφ̄b∂φ̄c]

−g2fabcfade[ 1
∂+

(φb∂+φc) 1
∂+

(φ̄d∂+φ̄e) + 1
2
φbφ̄cφdφ̄e]

]

(76)

Using this Lagrangian we can formally write down a well defined DeWitt
equation for this model. However, we have found that the resulting expres-
sions are rather messy, mainly because one has to keep track of all the non-
local ∂−1

+ operator insertions. A more promising avenue seems to be that one
should try to link up with very recent advances in the computation of gauge
theory and supersymmetric Yang-Mills amplitudes [19, 20]. Although this
formalism is on-shell, whereas the effective action functional is by definition
off-shell, very recent work [21] indicates that it might be possible to arrive
at a formulation which is not off-shell in the momenta pαβ̇ ≡ pµσ

µ

αβ̇
, but

would be off-shell in the twistor-like variables χα and χ̃β̇ used to represent
on-shell momenta via pαβ̇ = χαχ̃β̇ . Clearly, this would lead to an entirely
new formulation of quantum field theory and the effective action.
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8 Appendix: Numerical results.

To illustrate the efficiency of the expansion (37) we present some numerical
results for the simple one-dimensional integral

exp(−W (J)) =

∫
dx√
2π

exp

[
−1

2
x2 − λ

4
x4 − xJ

]
(77)

in this appendix. To this aim, we go through the same steps as before, with
the expansion (43) and n = 1 in (23). The loop expansion (10) here becomes

Σ(0)(ϕ) ≡ Scl(ϕ) =
ϕ2

2
+
λϕ4

4

Σ(1)(ϕ) = Scl −
1

2
ln(G)

Σ(2)(ϕ) = Σ(1) −
(
−3λ

4
G2 + 3λ2ϕ2G3

)

Σ(3)(ϕ) = Σ(2) −
(
3λ2

4
G4 +

9λ2

4
G4 − 27λ3ϕ2G5 − 27λ3ϕ2G5

+54λ4ϕ4G6 + 81λ4ϕ4G6
)

(78)

where G ≡ 1/(1+3λϕ2), and where we have defined Σ(i) ≡∑0≤j≤i Γ
(j). The

results for Γexact and Σ(i) for three exemplary values of λ and ϕ are given in
the following table:

λ 1.0 1.0 100.0 200.0
ϕ 1.0 4.0 1.0 1.0

Γexact 1.4532 73.9458145683 28.353282939 53.6991599696
Scl 0.75 72.0 25.5 50.5

Σ(1) 1.4431 73.9459101483 28.353555132 53.6992974659

Σ(2) 1.4431 73.9458145253 28.353282864 53.6915996015

Σ(3) 1.4512 73.9458145667 28.353282912 53.6991599663

Evidently the approximation converges rapidly even for large values of λ !
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