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We take a new look at the DeWitt equation, a defining equation for the effective action functional

in quantum field theory. We present a formal solution to this equation and discuss the equation in

various contexts, and in particular for models where it can be made completely well defined, such as the

Wess-Zumino model in two dimensions.
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I. INTRODUCTION

In 1965, B. DeWitt wrote down a functional differential
equation for the full effective action in quantum field
theory [1]. To the best of our knowledge, this result has
not received much attention in the existing literature (but
see Ref. [2] for a recent exception) nor in quantum field
theory textbooks. The equation in question, which in the
remainder of this paper we will refer to as the ‘‘DeWitt
equation’’,1 relates the functional derivative of the full
quantum effective action �½’� to the functional derivative
of the classical action and has several remarkable features.
First of all, while the usual approach to quantum field
theory is based on path integrals and perturbation theory,
and thus involves (functional) integration (see, e.g.,
Ref. [3]), the essential information about the quantum field
theory is here encoded into a (functional) differential
equation. If the classical action is polynomial, this equa-
tion has only very few terms and therefore assumes a
relatively simple form. Second, this equation can serve as
the generating equation for an infinite hierarchy of
Schwinger-Dyson equations for the theory in question.

The main difficulty, and possibly the reason why this
equation has not been much exploited in the past, is that it
is even hard to define properly. Of course, this is also true
of the path integral, but there one has a number of estab-
lished approximation methods at one’s disposal (such as
renormalized perturbation theory), whereas apparently no
techniques exist as yet for dealing with a functional differ-
ential equation that should contain the complete informa-
tion about the full renormalized action functional. Among
other difficulties, one has to deal with short distance sin-
gularities in the equation related to the occurrence of func-
tional derivatives at coincident points that would have to be
resolved ‘‘in one stroke,’’ rather than by perturbative meth-
ods of the conventional type. Consequently, the proper
definition of the equation already requires some knowledge
of the properties of the solution. One possible approach
here would be to look for formal solutions in a perturbative

expansion of the unrenormalized equation and then renor-
malize the resulting expression in a second step [2].
A second difficulty is that the equation is not of any known
type, even in a discrete approximation with only finitely
many degrees of freedom (which we consider in Sec. III).
In this paper we take a new look at the DeWitt equation

and will argue that, in spite of the difficulties mentioned
above, the equation may provide valuable new insights
into quantum field theory, beyond the established results
and techniques used so far. Our main motivation here
is to be able eventually to develop new methods for
future applications, in order to deal with the effective
(Coleman-Weinberg) potential [4] in classically conformal
versions of the Standard Model of the type considered in
Ref. [5], possessing more than 1 scalar degree of freedom.
As argued there (see also Refs. [6,7]), classically unbroken
conformal symmetry may offer an attractive alternative to
low-energy supersymmetry in explaining the stability of
the electroweak scale. The main technical problem with
this proposal is that, so far, there appear to be no efficient
methods to compute the effective potential with more than
one physical scalar field beyond one loop. However, such
methods are absolutely required in order to reliably assess
the existence and stability of nontrivial stationary points
of the effective potential because the extremal structure
of the potential may delicately depend on higher-order
corrections.
In fact, as we will show, there exists a formal solution to

the DeWitt equation, which represents the effective action
functional �½’� as an asymptotic series expansion over
vacuum diagrams with field-dependent Green’s functions;
this result follows from much older results on the effective
potential obtained by R. Jackiw [8] (see also Ref. [9]). One
interesting new aspect here is that this analysis leads us to
consider the question of convergence of such expansions
not only in terms of the coupling constants (or running
coupling constants), but rather as a question of conver-
gence in field space: the value of the classical field ’
effectively replaces the renormalization scale of the usual
perturbation expansion. In this case, Landau poles and
other singularities would manifest themselves as singular-
ities of the effective action in field space, while the

1This is not to be confused with the more famous Wheeler-
DeWitt equation.
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couplings are kept fixed and do not run.2 As we will show,
also in terms of explicit numerical examples (see the
appendix), the new expansion may have much better con-
vergence properties even for large coupling constants �, if
the value of the classical field ’ is different from zero.

Another new direction opened by this work concerns the
formulation of the DeWitt equation in contexts where it
can be made completely well defined. Our prime example
here is the Wess-Zumino model in two space-time
dimensions, where we can exploit the cancellation of UV
singularities in a supersymmetric model. As a further
application, we derive the DeWitt equation for Liouville
theory in two dimensions, as an example of a theory with
nonpolynomial action. In this way, we are led to a novel
relation between n-point correlators and (nþ 1)-point
correlators of exponential Liouville operators, a (formal)
result that does not rely on conformal symmetry and re-
mains to be exploited in future work. A most interesting
future application of the present work would be the
formulation and analysis of the DeWitt equation for
N ¼ 4 super—Yang-Mills theory, the main example of a
UV finite interacting quantum field theory in four space-
time dimensions [11,12].

II. DERIVATION OF DEWITT EQUATION

For the reader’s convenience, we here reproduce the
formal derivation of the equation found by B. DeWitt,
following Ref. [1] (see also Ref. [2]), restricting attention
to the scalar field theory for simplicity, as the extension to
more general theories (with fermions and gauge fields) is
straightforward, at least in principle. Working with a
Euclidean metric for simplicity, we define the generating
functional of connected Green’s functions W½J� in the
standard way via (see, e.g., Refs. [13,14])

Z½J� � exp

�
� 1

ℏ
W½J�

�

¼
Z

D� exp

�
� 1

ℏ
ðS½�� þ J ��Þ

�
; (1)

where J �� � R
dxJðxÞ�ðxÞ and the measure D� is

formally normalized to unity, that is W½0� ¼ 0. The
connected Green’s functions in the presence of a source
J are then given by

Wnðx1; . . . ; xn; JÞ � ð�ℏÞn�1 �nW½J�
�Jðx1Þ . . .�JðxnÞ ; (2)

with the full connected n-point functions

Wnðx1; . . . ; xnÞ � Wnðx1; . . . ; xn; JÞjJ¼0: (3)

Defining the classical field ’ðxÞ by

’ðxÞ � ’ðx; JÞ ¼ �W½J�
�JðxÞ ; (4)

the effective action is the Legendre transform

�½’� ¼ W½J� �
Z

d4xJðxÞ’ðxÞ (5)

such that

��½’�
�’ðxÞ ¼ �Jðx;’Þ: (6)

We will assume in the following that the relation between
J ¼ Jðx;’Þ and ’ðx; JÞ can be freely inverted (although
we are aware that this may not be true in many cases of
physical interest). As is well known, �½’� is the generating
functional for the one-particle irreducible (�1PI) Green’s
functions, with

�nðx1; . . . ; xn;’Þ � ð�1Þn
ℏ

�n�½’�
�’ðx1Þ . . .�’ðxnÞ ; (7)

where the normalization is chosen such that we have the
standard relations

Z
d4yW2ðx; y;’Þ�2ðy; z;’Þ ¼ �ð4Þðx� zÞ (8)

and

W3ðx; y; z;’Þ ¼
Z

d4ud4vd4wW2ðx; u;’ÞW2ðy; v;’Þ
�W2ðz; w;’Þ�3ðu; v; w;’Þ (9)

and so on. Note that here all the Green’s functions depend
on the classical field ’ðxÞ. We also recall the expansion of
the effective action in powers of ℏ (‘‘loop expansion’’),

�½’� ¼ �ð0Þ½’� þ ℏ�ð1Þ½’� þ � � � ; (10)

where �ð0Þ½’� ¼ S½’� is the classical action S.
For any functional Q½��, we define the expectation

value with given source JðxÞ as

hQ½��iJ :¼ exp

�
1

ℏ
W½J�

�Z
D�Q½��

� exp

�
� 1

ℏ
ðS½�� þ J ��Þ

�
: (11)

This can be rewritten as3

2A standard example for this phenomenon is the
renormalization-group improved effective potential for �4 the-
ory, which takes the form

Veffð’Þ ¼ �’4

1� a� log ð’2=v2Þ ;
where a is a positive constant and v a fixed scale [4]. This
expression is thus valid only in a compact region in ’ space. See
also Ref. [10] for further examples and a discussion of this issue
in the case with one scalar field but any number of nonscalar
fields. 3By use of the elementary identity fðxÞ ¼ exp ðx@=@yÞfðyÞjy¼0.
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hQ½��iJ¼exp

�
1

ℏ
W½J�

�
exp

�
�1

ℏ
W

�
J�ℏ

�

��

��
Q½��j�¼0:

(12)

Next we expand

W

�
J � ℏ

�

��

�
¼ W½J� � ℏ

Z
d4x

�W½J�
�JðxÞ

�

��ðxÞ
� ℏ

X1
n¼2

1

n!

Z
d4x1 . . . d

4xn

�Wnðx1; . . . ; xn; JÞ �

��ðx1Þ � � �
�

��ðxnÞ :
(13)

Expressing J as a functional of ’, using Eq. (4) and once
again the elementary identity from footnote 2 to replace �
by ’ in Eq. (12), we arrive at

hQ½��iJ½’� ¼
�
� exp

�X1
n¼2

1

n!

Z
d4x1 . . . d

4xn

�Wnðx1; . . . ; xn;J½’�Þ �

�’ðx1Þ � � �
�

�’ðxnÞ
��
�

�Q½’�; (14)

where the symbol
�
� indicates that the functional differen-

tial operators act only on the external factor Q½’� but not
on J½’� in Gn. It is important here that the sum in the
exponent starts only at n ¼ 2. Next recall DeWitt’s identity

��½’�
�’ðxÞ ¼

�
�S½��
��ðxÞ

�
J¼J½’�

; (15)

which holds since both sides are equal to �JðxÞ [a con-
sequence of the formal identity

R
D��=��ðxÞð� � �Þ ¼ 0].

DeWitt’s equation is now obtained by applying Eq. (14)
with Q½�� ¼ �S=��. This gives

��½’�
�’ðxÞ ¼

�
� exp

�X1
n¼2

1

n!

Z
d4x1 . . . d

4xnWnðx1; . . . ; xn;J½’�Þ

� �

�’ðx1Þ � � �
�

�’ðxnÞ
��
�

�S

�’ðxÞ : (16)

Observe that for polynomial actions S½�� the functional
differential operator reduces to a finite number of terms
upon expansion of the exponential.

To have a concrete example, consider the classically
conformal �4 theory with the action

S½�� ¼
Z

d4x

�
1

2
@��@��þ �

4
�4

�
: (17)

This gives

��½’�
�’ðxÞ ¼ h�h�ðxÞ þ ��3ðxÞiJ¼J½’� (18)

and thus

��½’�
�’ðxÞ ¼ �h’ðxÞ þ �’3ðxÞ þ 3�W2ðx; x;’Þ’ðxÞ

þ �W3ðx; x; x;’Þ: (19)

ExpressingW2 andW3 by means of Eqs. (8) and (9), we see
that all quantities in this equation can be expressed in terms
of �½’� and its functional derivatives, so that Eq. (19)
indeed becomes a functional differential equation for �½’�.
As they stand these equations, and in particular the

basic functional equation (16), are formal. Nevertheless,
there is already one useful application: Eq. (19) can be used
as a generating equation to derive the Schwinger-Dyson
equations. With the standard formula for the one-particle
irreducible n-point functions,

�nðx1; . . . ; xnÞ � �nðx1; . . . ; xn;’Þj’¼0; (20)

we obtain, for instance,

ℏ�2ðx; yÞ ¼ ð�hþ 3�W2ðx; xÞÞ�ð4Þðx� yÞ
� �

Z
d4ud4vd4wW2ðx; uÞW2ðx; vÞW2ðx; wÞ

� �4ðu; v; w; yÞ; (21)

which can be represented diagrammatically in the usual
way. Similar formulas for higher n point functions can be
deduced by repeated differentiation.
In principle, Eq. (19) is an exact nonlinear functional

differential equation for the action functional �½’�. In the
full renormalized theory, this functional should be well
defined on a set of sufficiently well-behaved functions
’ðxÞ (say, C1 functions, which fall off sufficiently rapidly
at infinity). In addition, its functional derivatives should be
well defined as distributions. However, this cannot be the
case for Eq. (19) as it stands. First of all, the equation is
written in terms of bare couplings and correlators and
needs to be renormalized. Secondly, even if one assumes
that the necessary renormalizations have been performed,
and the couplings are replaced by the renormalized
(physical) ones, Eq. (19) would still not be well defined
as it stands because the rhs of Eq. (19) contains singular
contributions in the terms of order ℏ; recall that G2ðx; yÞ
and higher n-point functions are generally singular at
coincident points, even in free field theory. It is for this
reason that one conventionally must resort to perturbative
methods by considering the n-point functions separately
and by rendering them finite order by order in perturbation
theory by means of suitable subtractions in momentum
space. For instance, this can be easily seen from Eq. (21),
where the infinity of W2ðx; xÞ can be absorbed by an

appropriate wave function renormalization ’ ! Z1=2’ at
lowest order.
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As already emphasized in the introduction, we here
adopt a different strategy by trying to deal with Eq. (19)
directly. This requires us to look for theories for which the
DeWitt equation can be made well defined, that is, free of
singularities. Examples of such theories are certain super-
symmetric models of the type discussed below in Sec. V.
We note again that the DeWitt equation (16) is not of any
known type. This is so even if one restricts this equation
to an ‘‘ordinary’’ partial differential equation for finitely
many variables as in the following section. This is one of
the reasons for the difficulties in dealing with it and moti-
vates the present effort to gain a better understanding of
this equation.

III. ‘‘ZERO-DIMENSIONAL FIELD
THEORY’’ EXAMPLE

To bring out the main new features, we now discuss an
example from zero-dimensional field theory, that is, a
system with finitely many degrees of freedom, in terms
of which the results described in the foregoing section can
be explicitly illustrated and where we do not have to worry
about UV infinities. This example will also allow us to
exhibit the vastly improved convergence properties of a
new summation scheme over conventional perturbation
theory. To this aim, let us consider the ‘‘action’’ of a
zero-dimensional �4 theory,

SðxÞ ¼ 1

2

Xn
i;j¼1

xiAijxj þ �

4

Xn
j¼1

x4j ; (22)

where Aij is a nondegenerate positive definite matrix.

The generating function WðJÞ � WðJ1; . . . ; JnÞ for the
‘‘connected Green’s functions’’ is then defined in analogy
with Eq. (1) as

e�WðJÞ :¼
Z
Rn

dx exp

�
�SðxÞ �X

j

xjJj

�
; (23)

where the integration measure dx is normalized in such a
way that Wð0Þ ¼ 0. The generating function is easily seen
to satisfy the differential equation

X
j

Aij

@Z

@Jj
þ �

@3Z

@J3i
¼ JiZðJÞ (24)

or, in terms of WðJÞ,
X
j

Aij

@W

@Jj
þ �

�
@3W

@J3i
� 3

@2W

@J2i

@W

@Ji
þ

�
@W

@Ji

�
3
�
¼ �Ji:

(25)

When expressed in terms of the effective action, this is
the finite-dimensional analog of the DeWitt equation (16);
see below. So in analogy with Eq. (4), let us define the
‘‘classical field’’ by

’iðJÞ :¼ @WðJÞ
@Ji

(26)

and introduce the ‘‘effective action’’ �ð’Þ in the usual way
by Legendre transformation as in Eq. (5). The DeWitt
equation now reduces to a set of partial differential
equations:

@�ð’Þ
@’i

¼ exp

�X
k�2

1

k!

X
j1;...;jk

Wj1...jkðJÞ
@

@’j1

� � � @

@’jk

�
@Sð’Þ
@’i

;

(27)

where Wj1...jk � ð�1Þk�1@j1 . . . @jkW, and we have

relations analogous to Eqs. (8) and (9), that is,P
jWijðJÞ�jkð’ðJÞÞ ¼ �ik, and so on.

We can now produce a formal solution of Eq. (27),
rederiving a result that was essentially obtained already
long ago [8]. From the general definition, we directly
obtain the following differential equation for �ð’Þ:

exp

�
��ð’Þ þX

j

’j

@�ð’Þ
@’j

�

¼
Z
Rn

dx exp

�
�SðxÞ þX

j

xj
@�ð’Þ
@’j

�
: (28)

To evaluate the integral, we split the effective action into a

‘‘classical’’ part Sð’Þ and a ‘‘quantum’’ part ~�ð’Þ accord-
ing to

�ð’Þ ¼ 1

2

XN
i;j¼1

’iAij’j þ 1

4
�
XN
j¼1

’4
j þ ~�ð’Þ: (29)

Shifting integration variables as xj ! xj þ ’j in Eq. (28),

a little algebra gives

exp ½�~�ð’Þ� ¼
Z
Rn

dx exp

�
�1

2

X
ij

xiG
�1
ij ð’Þxj ��

X
j

x3j’j

��

4

X
j

x4j þ
X

xj
@~�ð’Þ
@’j

�
; (30)

with the classical ‘‘field-dependent’’ Green’s function
Gijð’Þ X

j

ðAij þ 3��ij’
2
j ÞGjkð’Þ ¼ �ik: (31)

Performing the Gaussian integral and using Wick’s
theorem in the form

ð2�Þ�n=2
Z
Rn

dnxfðxÞ exp
�
� 1

2

Xn
i;j¼1

Cijxixj

�

¼ ðdetCÞ�1=2 exp

�
1

2

Xn
i;j¼1

C�1
ij

@

@yi

@

@yj

�
fðyÞjy¼0; (32)

the expression (30) can be rewritten in the form
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exp ½�~�ð’Þ� ¼ ðdetGijð’ÞÞ1=2 exp
�
1

2

X
i;j

Gijð’Þ @

@�i

@

@�j

�

� exp

�
��

X
j

’j�
3
j �

�

4

X
j

�4
j

þX
j

�j

@~�ð’Þ
@’j

�
�¼0

: (33)

Let us pause to explain this formula. The determinant
prefactor just produces the well-known semiclassical
(one-loop) correction / log ðdetGijð’ÞÞ to the classical

action. As for the remaining terms, and ignoring the last

term / �@~�=@’, we would get the sum over all connected
vacuum diagrams with the field-dependent propagator
Gijð’Þ (as the result of taking the logarithm on both sides).

Although this last term would seem to make the equation
completely untractable, a little bit of thought shows that

this is not so. Because ~�ð’Þ contains only one-particle
irreducible contributions, the effect of this last term is
precisely to remove the one-particle reducible diagrams
from the expansion; because this term is linear in �, it can
couple to the rest of any diagram only via a single line.
In other words, the quantum effective action is nothing
but the sum of the one-loop correction and the sum over
one-particle irreducible vacuum diagrams with at least two
loops and with the field-dependent Green’s function (31).
This is the result derived in Ref. [8] for the effective
potential in quantum field theory.

By construction, this series solution must satisfy
the discrete DeWitt equation (27), and this claim can in
principle be checked order by order. Equally important is
the fact that the expansion, while being asymptotic, can
have vastly better convergence properties for nonvanishing
’ than the usual perturbation expansion in terms of the
coupling constant �. This is most easily seen by simplify-
ing our zero-dimensional field theory even further to an
integral over one variable. In this case the Green’s function
(31) is simply Gð’Þ � ð1þ 3�’2Þ�1. For a given vacuum
diagram with I internal lines, we have

I ¼ 3

2
V3 þ 2V4; (34)

where V3 and V4, respectively, denote the number of
three- and four-point vertices in Eq. (33); note that in any
vacuum diagram, the number of three-point vertices is
even. The number of loops is equal to

L ¼ 1

2
V3 þ V4 þ 1: (35)

Therefore, an arbitrary vacuum diagram with L loops will
be proportional to

�V4ð�’ÞV3

ð1þ 3�’2ÞI � ð�’4Þ1�L (36)

[for L ¼ 1, the relevant parameter is log ð1þ 3�’2Þ].
In other words, the loop expansion now coincides with
an expansion in ð�’4Þ�1; of course, this expansion should
only be used in the appropriate region in field space and the
space of couplings, where �’4 is sufficiently large. So we
see that the series can converge well even for large �,
provided the value of the classical field ’ is not too small
(and different from zero). We have checked this claim by
numerical integration of a nontrivial example, which we
give in the appendix. The important lesson, then, is that it is
not simply the coupling constant � [or its running analog
�ð�Þ, where� is some renormalization scale] that governs
the convergence properties of the effective action func-
tional, but that one should also consider the question of
convergence with respect to the value of the field variables
’j or ’ðxÞ as well.

IV. FORMAL SOLUTION

The considerations of the foregoing section can be
straightforwardly extended to field theory, enabling us to
construct a formal expression for the (unrenormalized)
effective action in terms of a sum over vacuum diagrams
with field-dependent classical Green’s functions. For con-
stant field configurations ’ðxÞ ¼ ’0, this solution reduces
to the one found already long ago in Ref. [8], where it was
exploited for an efficient determination of higher-order
corrections to the Coleman-Weinberg effective potential
for various theories. We here present the general solution
that allows for arbitrary x dependence of the classical field
’, and that follows directly from the above construction by
taking a formal limit n ! 1, or alternatively by a minor
modification of the argument given in Ref. [8]. It is re-
markable that in this way an explicit, albeit formal, solu-
tion of the (unrenormalized) DeWitt equation that would
seem difficult to guess otherwise can be obtained. Of
course, even in the full theory, all relevant expressions
can be made well defined by regulating the quantum field
theory, either by discretization as in the previous section or
by suitable continuum regularizations such as smearing.
From Eq. (33), we deduce immediately that the formal

solution for the unrenormalized effective action functional
can be presented in the form

�½’�¼S½’�þℏ
2

Z
d4xlog

�
�2S½’�

�’ðxÞ�’ðxÞ
�

�ℏlog
�
exp

�
ℏ
2

Z
d4ud4vGclðu;v;’Þ �2

��ðuÞ��ðvÞ
�

�expð�ℏ�1Sint½’;��Þ
���������¼0

�
1PI

; (37)

where the subscript 1PI means that one-particle reducible
diagrams are to be omitted in the expansion, and where the
logarithm removes disconnected diagrams from inside the
brackets. The interacting part of the action is defined by
subtracting the linear and quadratic fluctuations,
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Sint½’;�� :¼ S½’þ �� � S½’�

�
Z

d4u�ðuÞ�S½’þ ��
�’ðuÞ

���������¼0

� 1

2

Z
d4ud4v�ðuÞ�ðvÞ �

2S½’þ ��
�’ðuÞ�’ðvÞ

���������¼0

¼ 1

3!

�3S

�’3
�3 þ 1

4!

�4S

�’4
�4 þ � � � (38)

Observe that a residual dependence on ’ arises from four-
point vertices onward, whereas there is no ’ dependence if
there are only cubic vertices. The expectation values in
Eq. (37) are to be computed with the classical field-
dependentGreen’s functionGclðx; y;’Þ, which is defined as

Z
d4yGclðx; y;’Þ �2S½’�

�’ðyÞ�’ðzÞ ¼ �ð4Þðx� zÞ: (39)

Hence, Gclðx; y;’Þ is the classical analog of Eq. (8) in the
sense that

W2ðx; y;’Þ ¼ ℏGclðx; y;’Þ þOðℏ2Þ: (40)

According to the formula (37), the unrenormalized
effective action �½’� is the sum over all one-particle-
irreducible (1PI) vacuum diagrams with the field-
dependent Green’s function (39). The dependence of �
on the field ’ðxÞ thus derives from two sources, namely,
the field dependence of Gclðx; y;’Þ and, second. the resid-
ual dependence of Sint on ’ (which only exists if there are
four-point or higher-point vertices). The former can be
made more explicit by expanding

Gclðx;y;’Þ
¼G0ðx;yÞ�

Z
d4uG0ðx;uÞpð’ðuÞÞG0ðu;yÞ	���; (41)

where pð’Þ is obtained from �2S=�’2 by removing
the free part not depending on ’ðxÞ and G0 is the free
propagator. The terms in this expansion thus generate the
‘‘antennalike’’ diagrams known from textbook formulas of
the effective potential.

By virtue of its definition and the above derivation, the
expression (37) must satisfy the DeWitt equation (16) at
least formally. This claim is straightforward to check for
the semiclassical OðℏÞ correction by use of the formula

�

�’ðxÞ Tr logM ¼ Tr

�
M�1 �M

�’ðxÞ
�
; (42)

valid for any functional matrixMðy; zÞ, and by approximat-
ing the full two-point function Gðx; y; Jð’ÞÞ from Eq. (39)
byGclðx; y;’Þ. However, a direct verification of Eq. (37) to
all orders is cumbersome. We will therefore postpone a
discussion of this issue to the following section in terms
of an example where the DeWitt equation is well defined.
Let us just note that in conjunction with the explicit ex-
pression as a sum over ’ðxÞ-dependent vacuum diagrams,
we can see directly from the DeWitt equation (16) that

�½’� can only contain one-particle irreducible diagrams;
the action of the first functional derivative ��½’�=�’ðxÞ,
in particular, leads to cutting any one of the propagators in
a diagram arising in the expansion (37). If we had a
diagram which is not 1PI, then there would be at least
one propagator which joins two 1PI subdiagrams. The
action of the functional derivative on this diagram would
thus split the diagram into two parts at this propagator,
leaving two disconnected diagrams. But on the rhs of the
DeWitt equation, we have only connected Green’s func-
tions, �nW½J�=�Jðx1Þ . . .�JðxnÞ. So there can be no dis-
connected diagrams on the rhs of Ref. [8], and thus we can
only have 1PI diagrams contributing to �½’�, as expected.
The effective (Coleman-Weinberg) potential is obtained

by specializing all formulas to x-independent fields’ðxÞ ¼
’0 [4] and removing a formally infinite volume factor /R
dx. The main advantage of writing the effective potential

as a sum over vacuum type diagrams is the following:
rather than having to do all the combinatorics with
‘‘antenna diagrams,’’ one obtains the answer at each loop
order in one stroke. In particular, the renormalization-
group improved one-loop potential obtained by summing
ladder bubble diagrams is directly obtained. This was, in
fact, the first application of this formula in Ref. [8], where
the effective potential was also determined to two loops for
’4 theory. As shown there, the formalism implies consid-
erable simplifications in comparison with the textbook
derivations of the Coleman-Weinberg potential.
At the end of this section, we write the solution (37) for

the finite-dimensional integral with the action defined by
Eq. (22), that is, the solutions to Eq. (28). In accordance
with the explanation after Eq. (37), we include only 1PI
and connected diagrams in the expansion

�ð’iÞ¼Sð’iÞþ�ð1Þð’iÞþ�ð2Þð’iÞþ�ð3Þð’iÞþ��� ; (43)

where the indices denote the loop order. In this way, we
obtain

�ð1Þð’Þ ¼ � 1

2
ln det ðGijÞ

�ð2Þð’Þ ¼ �
�
� 3�

4

X
i

G2
ii þ 3�2

X
i;j

’i’jG
3
ij

�

�ð3Þð’Þ ¼ �
�
3�2

4

X
i;j

G4
ij þ

9�2

4

X
ij

GiiG
2
ijGjj

� 27�3
X
i;j;k

’i’jGijG
2
ikG

2
jk

� 27�3
X
i;j;k

’i’jG
2
ijGikGjkGkk

þ 54�4
X
i;j;k;l

’i’j’k’lGijGjkGklGliGikGjl

þ 81�4
X
i;j;k;l

’i’j’k’lG
2
ijG

2
klGikGjl

�
:
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As already pointed out, this is a ‘‘nonperturbative expan-
sion’’ that is restricted to the region of couplings and field
space where the ‘‘parameter’’ Gð’Þ 
 ð�’2Þ�1 is small.
In the formula above, we included terms up to three loops,
i.e., up to sixth order in Gijð’Þ [one easily checks that all

terms are of the appropriate order in ð�’4Þ�1, in agreement
with formula (36)]. A numerical comparison of the exact
result and this expansion for a one-dimensional integral for
several values of � and ’ is given in the appendix. It shows
that this expansion can give excellent agreement with the
exact result even in regions where � is very large.

V. WESS-ZUMINO MODEL IN D ¼ 2

We next turn to an example where the DeWitt
equation (16) can be made completely well defined, that
is, free of all short-distance singularities. This is the
N ¼ 1Wess-Zumino model in two space-time dimensions,
which is UV finite order by order in perturbation theory
(the generic nonsupersymmetric theories having only loga-
rithmic divergences in two dimensions, which are removed
by imposing supersymmetry).4

The Euclidean version of the model can be written in
terms of a single superfield�ðzÞwith superspace coordinate
z � ðx; �Þ, where � is a two-component (anticommuting)
Majorana spinor with � ¼ ��. The superfield contains a real
scalar A and a Majorana spinor c , as well as the auxiliary
field F:

�ðx; �Þ ¼ AðxÞ þ ��c ðxÞ þ 1

2
���FðxÞ: (44)

For simplicity, we restrict attention to the following
Lagrangian:

L ¼ � 1

4
� �DD�þ 1

2
m�2 þ 1

3
g�3: (45)

We could replace the last two terms by an arbitrary
polynomial Pð�Þ here, but this would only make the
formulas more cumbersome and not give any new insights.
The supercovariant derivative is defined by

D� ¼ @

@ ���
þ ð	��Þ�@� (46)

�D� ¼ �C�
D
; (47)

where C is the charge conjugation matrix. The Lagrangian
in component form is as follows:

L ¼ 1

2
AhA� 1

2
�c	�@�c þ 1

2
F2 þ 1

2
mð2AF� �c c Þ

þ gðA2F� A �c c Þ: (48)

Writing out the DeWitt equation for the three fields A, c ,
and F, we get

��½A;F;c �
�AðxÞ ¼hAðxÞþmFðxÞþg½2AðxÞFðxÞ� �c ðxÞc ðxÞ�

�gℏ
�
2

�2W½J�
�JAðxÞ�JFðxÞþTr

�2W½J�
�Jc ðxÞ�J �c ðxÞ

�

��½A;F;c �
� �c ðxÞ ¼�6@c ðxÞ�mc ðxÞ�2gAðxÞc ðxÞ

�ℏg
�2W½J�

�JAðxÞ�Jc ðxÞ
��½A;F;c �

�FðxÞ ¼FðxÞþmAðxÞþgA2ðxÞ�ℏg
�2W½J�

�JAðxÞ�JAðxÞ ;
(49)

with self-explanatory notation. Now we see that the equa-
tion for the scalar field A is well defined as it stands because
the logarithmic singularities cancel between the two terms
in parentheses. More precisely, the latter expression is
understood to be

lim
y!x

�
2

�2W½J�
�JAðxÞ�JFðyÞ þ Tr

�2W½J�
�Jc ðxÞ�J �c ðyÞ

�
¼ finite: (50)

Likewise, the equation for c is well defined because
�2W=�A�c is free of short-distance singularities. So the
only singularity occurs in the last equation, and this can be
removed by replacing the product A2ðxÞ by the normal
ordered product

and taking x ! y afterward. This singularity simply follows
from the fact that if one expresses the auxiliary field F in
terms of the physical field A, the nonlinear terms in A must
be rendered nonsingular to make F itself well defined as a
quantum operator.5 Consequently, the last component of the
DeWitt equation must be replaced by

��½A;F;c �
�FðxÞ ¼FðxÞþmAðxÞþg:A2ðxÞ:�ℏg

�2W½J�
�JAðxÞ�JAðxÞ;

(52)

and then all components of the DeWitt equation are free of
singularities. In practice, the above replacement simply
means that in the formal solution as a sum over vacuum
diagrams, there are no tadpole diagrams (these are anyway
absent for a theory with only cubic vertices as they would
lead to non-1PI diagrams in � which cannot be).

4See Ref. [15] for a recent treatment of the Wess-Zumino
model in 2þ 1 dimensions.

5But note that, while :A2: is well defined as an operator, it is
singular as a c number, while the converse is true for A2.
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All these equations can be conveniently recast into
superspace equations. A similar normal ordering can be
done in the superspace version of the Lagrangian, and, as it
is much more convenient to work in it, we would stick to
the superspace description. So we have the functional
derivative of the action as

�S

��
¼ � 1

2
�DD�þm�þ g�2: (53)

The arguments of the foregoing sections generalize di-
rectly to superspace. For the cubic Lagrangian above the
DeWitt equation, Eq. (16) takes an especially simple form,
namely,

��½��
��ðzÞ ¼ :

�S½��
��ðzÞ :� ℏg

�2W½J�
�JðzÞ�JðzÞ

��������J¼J½��
(54)

or, more specifically,

��½��
��ðzÞ ¼ � 1

2
�DD�ðzÞ þm�ðzÞ þ g:�2ðzÞ:

� ℏg
�2W½J�

�JðzÞ�JðzÞ
��������J¼J½��

; (55)

where z � ðx�; �Þ and JðzÞ is the ‘‘supersource field’’
JðzÞ � JF þ ��Jc þ 1

2
���JA. The normal ordering is under-

stood to be in the sense of the component expressions given
above. In the formal solution below, this simply means that
all tadpole diagrams are suppressed.

For the free superfield, the superspace propagator is

Gð0Þ
2 ðz� z0Þ ¼ h0jT

��
AðxÞ þ ��c ðxÞ þ 1

2
���FðxÞ

�

�
�
Aðx0Þ þ ��0c ðx0Þ þ 1

2
��0�0Fðx0Þ

��
j0i

¼ exp

�
� 1

2
ð ��� ��0Þð	�@

� þmÞð�� �0Þ
�

�4Fðx� yÞ: (56)

In analogy with Eq. (39), we define the Green’s function in
superspace,

Z
dz0Gclðz; z0; �Þ �2S½��

��ðz0Þ��ðz00Þ ¼ �ðz� z00Þ (57)

(where the fermionic part of the � function is defined
in the usual way as �ð�Þ ¼ �) so that Gclðz; z0;�Þ ¼
Gð0Þ

2 ðz� z0Þ þ � � � .
By construction, the supersymmetric DeWitt equa-

tion (54) is well defined, and we can therefore take over
the formal solution given in the previous section,

�½�� ¼ S½�� þ ℏ
2

Z
d4z ln

�
�2S

��ðzÞ��ðzÞ
�

� ℏ ln
�
exp

�
ℏ
2
Gi;j

�2

� ~�i� ~�j

�
exp

�
�

~Sint
ℏ

��������� ~�¼0

�
;

(58)

where Gij is shorthand for Gclðzi; zj;�Þ and ~Sint ¼ g
3
~�3,

and all the integrals are understood to be in superspace.
Now if we expand the series, we have the following:

�
1þX1

n¼1

1

n!

�
ℏ
2
Gi;j

�2

� ~�i� ~�j

�
n
��

1þ X1
m¼1

1

m!

��~Sint
ℏ

�
m
��������� ~�¼0

:

(59)

Because the dummy variable ~� is put to 0, and the inter-
action is cubic, only terms with 2n ¼ 3m survive. Thus,
the first of this will be at two loops for m ¼ 2, n ¼ 3.
Evaluating the corresponding term, we get

�
1

3!

�
ℏ
2
Gi;j

�2

� ~�i� ~�j

�
3
��

1

2!

��~Sint
ℏ

�
2
�

¼ ℏg2

3

Z
z;w

G3
clðz; w; �Þ:

At the next order (three loops). we have n ¼ 6,m ¼ 4, and

�
1

6!

�
ℏ
2
Gi;j

�2

� ~�i� ~�j

�
6
��

1

4!

��~Sint
ℏ

�
4
�

¼ ℏ2

�
2

3
g4

Z
u;v;w;z

Gclðu; v; �ÞGclðu;w;�ÞGclðu; z; �Þ
�Gclðv;w; �ÞGclðv; z; �ÞGclðw; z;�Þ
þ g4

Z
u;v;w;z

G2
clðu; v;�ÞG2

clðw; z; �ÞGclðu; w; �Þ

�Gclðv; z; �Þ þ 1

2

�
g2

3

Z
z;w

G3
clðz; w;�Þ

�
2
�
: (60)

We recognize the last term as a square of the term, which
we got for n ¼ 3,m ¼ 2 (two loops) and which is removed
by taking the log of the entire expression as these diagrams
are not connected. Hence, summing up, we get the follow-
ing contribution to the effective action:

�¼ Sþ ℏ
2

Z
d4z ln

�
�2S

��ðzÞ��ðzÞ
�

� ℏ2g2

3

Z
z;w

G3
clðz;w;�Þ � 2

3
ℏ3g4

Z
u;v;w;z

Gclðu;v;�Þ
�Gclðu;w;�ÞGclðu; z;�ÞGclðv;w;�ÞGclðv; z;�Þ
�Gclðw;z;�Þ � ℏ3g4

Z
u;v;w;z

G2
clðu;v;�ÞG2

clðw;z;�Þ
�Gclðu;w;�ÞGclðv; z;�Þ þOðℏ4Þ: (61)
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To check this, we first calculate the second functional derivative of �, which is, up to order ℏ2,

�2�

��ðz1Þ��ðz2Þ ¼
�2S

��ðz1Þ��ðz2Þ� 2ℏg2Gclðz1; z2;�ÞGclðz1; z2;�Þ

� 8ℏ2g4
Z
z;w

Gclðz;z2;�ÞGclðz2; z1;�ÞGclðz1;w;�ÞG2
clðz;w;�Þ

� 8ℏ2g4
Z
z;w

Gclðz;z1;�ÞGclðz1;w;�ÞGclðz;z2;�ÞGclðz2;w;�ÞGclðz;w;�Þ: (62)

Inverting the above, we obtain the two-point function up to order ℏ2,

� �2W

�Jðz1Þ�Jðz2Þ ¼ Gclðz1; z2;�Þ þ 2ℏg2
Z
u;v

Gclðz1; u;�ÞG2
clðu; v;�ÞGclðv; z2;�Þ

þ 8h2g4
Z
u;v;z;w

½Gclðz1; u; �ÞGclðz; v;�ÞGclðv; u;�ÞGclðu; w; �ÞG2
clðz; w; �ÞGclðv; z2;�Þ

þGclðz1; u; �ÞGclðz; u;�ÞGclðu; w; �ÞGclðz; v; �ÞGclðv;w; �ÞGclðz; w;�ÞGclðv; z2;�Þ�
þ 4ℏ2g4

Z
u;v;w;z

Gclðz1; u;�ÞG2
clðu; v;�ÞGclðv;w;�ÞG2

clðw; z; �ÞGclðz; z2;�Þ: (63)

Now putting this in the DeWitt equation from the rhs, we obtain

�S

��ðzÞ � ℏg
�2W

�JðzÞ�JðzÞ ¼
�S

��ðzÞ þ ℏgGclðz; z;�Þ þ 2ℏ2g3
Z
u;v

Gclðz; u; �ÞG2
clðu; v;�ÞGclðv; z;�Þ

þ 8h3g5
Z
u;v;z0;w

½Gclðz; u;�ÞGclðz0; v; �ÞGclðv; u;�ÞGclðu;w; �ÞG2
clðz0; w;�ÞGclðv; z;�Þ

þGclðz; u; �ÞGclðz0; u; �ÞGclðu; w; �ÞGclðz0; v;�ÞGclðv;w;�ÞGclðz0; w; �ÞGclðv; z;�Þ�
þ 4ℏ3g5

Z
u;v;w;z0

Gclðz; u;�ÞG2
clðu; v; �ÞGclðv;w; �ÞG2

clðw; z0;�ÞGclðz0; z;�Þ: (64)

This is exactly what we get from the lhs by taking the first
functional derivative of �.

VI. LIOUVILLE FIELD THEORY

As an example where the DeWitt equation can be
worked out explicitly for a theory with a nonpolynomial
action, we briefly consider Liouville theory in two dimen-
sions. As is well known, the actual construction of this
special conformal theory is subtle and has a long history
(see, e.g., Refs. [16,17] and references therein), so we here
content ourselves with formal arguments and derivations,
postponing a more detailed discussion to future work. We
note that the derivations given below do not make any use
of the conformal symmetry of the theory.

The generating functional W½J� is defined as in Eq. (1)
with the action

S ¼
Z

d2x

�
1

2
ð@��Þ2 þ�eb�ðxÞ

�
; (65)

where we set ℏ ¼ 1 for simplicity. The proper definition of
the theory is tricky, not least because the runaway nature of
the exponential potential does not allow for a proper clas-
sical vacuum. As a consequence, the one-point function,
and thus the classical field ’ðJÞ, may not be well defined in

all circumstances for this reason; in fact, we would expect
it to exist only for sources obeying JðxÞ< 0, for which the
potential valley is avoided.
For Liouville theory, the main interest is not with

expectation values of products of field operators �ðxÞ,
but rather with the expectation values of proper primary
fields, which are exponential operators of the form

V�ðxÞ � exp ð��ðxÞÞ: (66)

The correlation functions are then given by

h0jV�1
ðx1Þ . . .V�n

ðxnÞj0i ¼
Z
D�e�1�ðx1Þ . . .e�n�ðxnÞe�S½��;

(67)

with the action (65) (where again we assume proper
normalization of the path integral). Introducing a source
JðxÞ as before, the correlation functions can be represented
by means of a J-dependent partition function, with a dis-
tributional source

JðxÞ ¼ �Xn
j¼1

�j�ðx� xjÞ: (68)

The DeWitt equation can be worked out as before, with the
result
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��½’�
�’ðxÞ ¼

�
� exp

�X1
n¼2

1

n!

Z
d4x1 . . .d

4xnWnðx1; . . . ; xn;J½’�Þ

� �

�’ðx1Þ � � �
�

�’ðxnÞ
��
� ½�h’ðxÞ þ�beb’ðxÞ�;

(69)

and thus

��½’�
�’ðxÞ ¼ �JðxÞ

¼ �h�ðxÞ þ exp

�X1
n¼2

bn

n!
Wnðx; . . . ; x; J½’�Þ

�

��beb’ðxÞ

) log ð�JðxÞ þh’ðxÞÞ ¼
�X1
n¼2

bn

n!
Wnðx; . . . ; x; J½’�Þ

�

þ ln ð�bÞ þ b’ðxÞ: (70)

From Eq. (2), we know that

Wnðx1; . . . ; xnÞ ¼ ð�1Þn�1 �nW½J�
�Jðx1Þ . . .�JðxnÞ :

After some algebra, we obtain

log ð�JðxÞ þh�ðxÞÞ ¼ � exp

�
�b

�

�JðxÞ
�
W½J� þ ln ð�bÞ

þW½J�
¼ �W½J� b�x� þW½J� þ ln ð�bÞ;

(71)

with �xðyÞ � �ðx� yÞ. Equivalently, we can write

�JðxÞ þh�ðxÞ ¼�be�W½J�b�x�eþW½J� � b�
Z½J� b�x�

Z½J� :

Thus, for J of the form (68), Z½J � b�x� has one more
insertion than J, so the ratio appearing on the right-hand
side in the previous equation is just

h0jV�1
ðx1Þ . . .V�n

ðxnÞVbðxÞj0i
h0jV�1

ðx1Þ . . .V�n
ðxnÞj0i : (72)

The usefulness of the equation (71) is still under study, and
we intend to return to it in future work. At this point, we
only remark that, if we define ’ðxÞ as

@�
R½D��e��ðxÞe�S½���J��j�¼0R½D��e�S½���J�� ; (73)

the equation can be rewritten as follows:

ð�JðxÞÞh0jY
n

i¼1

V�i
ðxiÞj0iþh

�
@�h0jV�ðxÞ

Yn
i¼1

V�i
ðxiÞj0i

�
�¼0

¼b�h0jVbðxÞ
Yn
i¼1

V�i
ðxiÞj0i: (74)

A similar equation, minus the first term, was used by
Ref. [16] to check the proposal for the three-point function

in Liouville theory. If we plug in the Dorn-Otto-
Zamolodchikov-Zamolodochikov proposal in this equa-
tion, then we find that, neglecting contact terms,

4ð�1 � �2Þ2@�Cð�;�1; �2Þj�¼0 ¼ b�Cðb;�1; �2Þ; (75)

where the 4i are the conformal dimensions of the primary
operators. The other term which arises from the contact
term, i.e., the � functions obtained by the action of the
Laplacian, cancels with the term proportional to J, gener-
ating the on-shell constraint, � ¼ 1

2Q.

VII. OUTLOOK

In the introduction, we already mentioned possible fur-
ther directions. In particular, we would like to apply the
DeWitt equation to N ¼ 4 Yang-Mills theory, the prime
example of a UV finite quantum field theory in four space-
time dimensions. However, this is not as straightforward as
one might have wished. One main obstacle is the lack of a
fully off-shell supersymmetric realization of the theory. If
we simply use the on-shell supersymmetric formulation
(in the Wess-Zumino gauge), there will appear all kinds of
spurious divergences, since only gauge-invariant observ-
ables are supposed to be UV finite. The same trouble would
arise with formulations where only part of the supersym-
metry is realized of shell (for instance, in a formulation of
the theory in terms of N ¼ 1 superfields) or with harmonic
superspace. One could also try the opposite approach,
where only the true on-shell degrees of freedom are used,
namely, the light-cone superspace formalism proposed in
Ref. [18]. There, the Lagrangian is written in terms of a
single chiral superfield using only physical degrees of free-
dom of the theory, using Grassmann parameters �m and
their complex conjugates ��m. The Lagrangian for N ¼ 4
Yang-Mills theory then takes the following form [12,18]:

L ¼ 72

�
� ��a

�
h

@þ2

�
�a þ 4

3
gfabc

�
1

@þ
��a�b �@�c

þ 1

@þ
�a ��b@ ��c

�
� g2fabcfade

�
1

@þ
ð�b@þ�cÞ

� 1

@þ
ð ��d@þ ��eÞ þ 1

2
�b ��c�d ��e

��
: (76)

Using this Lagrangian, we can formally write down a well-
defined DeWitt equation for this model. However, we have
found that the resulting expressions are rather messy,
mainly because one has to keep track of all the nonlocal
@�1þ operator insertions. A more promising avenue seems
to be that one should try to link up with very recent
advances in the computation of gauge theory and super-
symmetric Yang-Mills amplitudes [19,20]. Although this
formalism is on shell, whereas the effective action func-
tional is by definition off shell, very recent work [21]
indicates that it might be possible to arrive at a formulation
which is not off shell in the momenta p� _
 � p��

�

� _

but
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would be off shell in the twistorlike variables �� and ~� _


used to represent on-shell momenta via p� _
 ¼ �� ~� _
.

Clearly, this would lead to an entirely new formulation of
quantum field theory and the effective action.
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Note added in proof.—After this article was submitted
we learnt of related work by Ludwig Faddeev, to wit
[22,23].

APPENDIX: NUMERICAL RESULTS

To illustrate the efficiency of the expansion (37), we
present some numerical results for the simple one-
dimensional integral

exp ð�WðJÞÞ ¼
Z dxffiffiffiffiffiffiffi

2�
p exp

�
� 1

2
x2 � �

4
x4 � xJ

�
(A1)

in this appendix. To this aim, we go through the same steps
as before, with the expansion (43) and n ¼ 1 in Eq. (23).
The loop expansion (10) here becomes

�ð0Þð’Þ � Sclð’Þ ¼ ’2

2
þ �’4

4

�ð1Þð’Þ ¼ Scl � 1

2
ln ðGÞ

�ð2Þð’Þ ¼ �ð1Þ �
�
� 3�

4
G2 þ 3�2’2G3

�

�ð3Þð’Þ ¼ �ð2Þ �
�
3�2

4
G4 þ 9�2

4
G4 � 27�3’2G5

� 27�3’2G5 þ 54�4’4G6 þ 81�4’4G6

�
;

(A2)

where G � 1=ð1þ 3�’2Þ and where we have defined

�ðiÞ � P
0�j�i�

ðjÞ. The results for �exact and �ðiÞ for three
exemplary values of � and ’ are given in the following
table:

� 1.0 1.0 100.0 200.0

’ 1.0 4.0 1.0 1.0

�exact 1.4532 73.9458145683 28.353282939 53.6991599696

Scl 0.75 72.0 25.5 50.5

�ð1Þ 1.4431 73.9459101483 28.353555132 53.6992974659

�ð2Þ 1.4431 73.9458145253 28.353282864 53.6915996015

�ð3Þ 1.4512 73.9458145667 28.353282912 53.6991599663

Evidently, the approximation converges rapidly (in the
sense of asymptotic series) even for large values of �.
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