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Abstract: In this paper we analyze Hertz potentials for free massless spin-s fields on
the Minkowski spacetime, with data in weighted Sobolev spaces. We prove existence
and pointwise estimates for the Hertz potentials using a weighted estimate for the wave
equation. This is then applied to give weighted estimates for the solutions of the spin-s
field equations, for arbitrary half-integer s. In particular, the peeling properties of the
free massless spin-s fields are analyzed for initial data in weighted Sobolev spaces with
arbitrary, non-integer weights.

1. Introduction

The analysis by Christodoulou and Klainerman of the decay of massless fields of spins
1 and 2 on Minkowski space [9] served as an important preliminary for their proof of
the non-linear stability of Minkowski space [10]. The method used in [9] was based on
energy estimates using the vector fields method, see [18]. This approach was extended
to fields of arbitrary spin by Shu [32]. The approach of [10] to the problem of nonlinear
stability of Minkowski space was later extended by Klainerman and Nicolò [21] to give
the full peeling behavior for the Weyl tensor at null infinity.

The vector fields method makes use of the conformal symmetries of Minkowski space
to derive conservation laws for higher order energies, which then via the Klainerman
Sobolev inequality [20] give pointwise estimates for the solution of the wave equation.
An analogous procedure is used for the higher spin fields in the papers cited above. This
procedure gives pointwise decay estimates for the solution of the Cauchy problem of
the wave equation and the spin-s equation, for initial data of one particular falloff at
spatial infinity. The conditions on the initial data originate in the growth properties of
the conformal Killing vector fields on Minkowski space, which are used in the energy
estimates.
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Let H j
δ be the weighted L2 Sobolev spaces on R

3, that is to say, the space of functions
φ for which

j∑

k=0

‖<r>−(3/2+δ)+k Dkφ‖2
L2(R3)

< ∞, where <r> = (1 + r2)1/2.

We use the conventions1 of Bartnik [3]. Since we shall use the 2-spinor formalism, as
defined in Sect. 2.1, we work here and throughout the paper on Minkowski space with
signature + − − −. Consider the Cauchy problem for the wave equation

�φ = 0, (1.1)

φ
∣∣
t=0 = f ∈ H j

−3/2, ∂tφ
∣∣
t=0 = g ∈ H j−1

−5/2.

Then, for j ≥ 2, one has the estimate [18]

|φ(x, t)| ≤ C<u>−1/2<v>−1(‖ f ‖ j,−3/2 + ‖g‖ j−1,−5/2), (1.2)

where<u> = (1 + u2)1/2, u = t − r and v = t + r . On the other hand, if one considers
the wave equation (1.1) on the flat 3+1 dimensional Minkowski spacetime as a special
case of the conformally covariant form of the wave equation

(∇a∇a + R/6)φ = 0,

the condition on the initial data which is compatible with regular conformal compacti-
fication is

∂� f = O(r−2−�), ∂�g = O(r−3−�). (1.3)

Making use of standard energy estimates in the conformal compactification of Minkowski
space, one arrives, after undoing the conformal compactification, at

|φ(x, t)| = O
(
<u>−1<v>−1

)
, (1.4)

see the discussion in [16, §6.7]. In particular, there is an extra r−1/2 falloff in the condition
(1.3) on the initial data compared to (1.1) as well as an additional factor<u>−1/2 decay
in the retarded time coordinate u in (1.4) compared to (1.2).

Let us now consider the case of higher spin fields. Let 2s be a positive integer and
let φA...F be a totally symmetric spinor field of valence 2s. The Cauchy problem for a
massless spin-s field is

∇A′ AφA...F = 0,

φA...F
∣∣
t=0 = ϕA...F .

For s ≥ 1, the Cauchy datum ϕA...F must satisfy the constraint equation

D ABϕAB...F = 0,

where DAB is the intrinsic space spinor derivative on�, see Sect. 2.1. The spin-1/2 case
does not have constraints.

1 The spaces H j
δ are in [3] denoted by W j,2

δ .
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One of the main differences in the asymptotic behavior between a massless scalar
field satisfying a wave equation and a massless higher spin field is the existence of a
hierarchy of decay rates for the different null components of the field along the outgoing
null directions. This property, known as peeling, was first pointed out by Sachs in 1961
[31].

Let oA, ιA be a spin dyad aligned with the outgoing and ingoing null directions ∂v, ∂u ,
and let φi be the scalars of φA...F defined by

φi = φA1...Ai Bi+1...B2s ι
A1 · · · ιAi oBi+1 · · · oB2s .

One says that φA...F satisfies the peeling property if the components φi satisfy

φi = O(r i−2s−1),

along the outgoing null geodesics with affine parameter r .
In [29], Penrose gave two arguments for peeling of massless fields on Minkowski

space. The first, cf. [29, §4], makes use of a representation of the field in terms of a Hertz
potential of order 2s, i.e., the field is written as a derivative of order 2s of a potential
satisfying a wave equation. Penrose assumed that the Hertz potential decays at a specific
rate along outgoing null rays. He then inferred the peeling property from this decay
assumption.

The second approach presented by Penrose, cf. [29, §13], is based on the just men-
tioned fact together with the conformal invariance of the spin-s field equation. Solving
the Cauchy problem in the conformally compactified picture, as was discussed for the
wave equation in [16, §6.7], and taking into account the effect of the conformal rescal-
ing, one recovers the peeling property for the solution of the massless spin-s equation
on Minkowski space. Based on this analysis, Penrose conjectured that the peeling of
massless fields at null infinity should be a generic property of asymptotically simple
space-times.

The estimate proved in [9] for the spin-1 or Maxwell field can be stated in the present
notation as

|φi (t, x)| ≤ C<u>1/2−i<v>i−3‖ϕAB‖ j,−5/2, for i = 1, 2, j ≥ 2,

while for the component φ0 one has

|φ0(t, x)| ≤ Cr−5/2‖ϕAB‖ j,−5/2,

along outgoing null rays. Thus, this result does not give the peeling property for all
components of φAB , which is due to the fact that the norm ‖ϕAB‖ j,−5/2 is not compatible
with the conformal compactification of Minkowski space. Similarly for the spin-2 case,
the result in [9] gives peeling for φi , i = 2, 3, 4 for initial data in H j

−7/2, while peeling
fails to hold for φi , i = 0, 1. On the other hand, the condition on the initial datum which
is compatible with a regular conformal compactification, and also gives peeling, is for a
spin-s field

∂�ϕA...F = O(r−2s−2−�). (1.5)

In this paper we shall follow an approach outlined by Penrose in [29, §6] to give a
weighted decay estimate for spin-s fields of arbitrary, half-integer spin. The result proved
here admits conditions on the initial data which include the ones considered in [9,32],
as well as conditions which are compatible with peeling, but also general weights. The
results of this paper clarify the relation between the condition on the initial datum and
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the peeling property of the solution of the spin-s field equation. In this paper we shall
make use of some estimates for elliptic equations in weighted Sobolev spaces, and for
technical reasons these are not compatible with the integer powers or r as in (1.5).

The method we shall use is based on the notion of Hertz potentials. The reader can
refer for background to Stewart [35], Fayos et al. [13] Benn et al. [5] and references
therein. Since Minkowski space is topologically trivial, there is no obstruction to rep-
resenting a Maxwell field on Minkowski space in terms of a Hertz potential. However,
this general fact does not provide estimates for the potential. In this paper we prove the
necessary estimates not only for the Maxwell field but for fields with general half-integer
spins.

To introduce the method we here consider the spin-1 case, i.e., the Maxwell field
on 3+1 dimensional Minkowski space. With our choice of signature, the metric on the
spatial slices is negative definite.

The Maxwell field, in the absence of sources, is a real differential 2-form Fab which
is closed and divergence free. For convenience we consider the complex anti-self-dual
form

Fab = Fab + i ∗ Fab,

which corresponds to a symmetric 2-spinor φAB via

Fab = φABεA′ B′ . (1.6)

In terms of Fab, the Maxwell equation is simply

(dF)abc = 0. (1.7)

Let ξa = (∂t )
a be the unit normal to the Cauchy surface � = {t = 0}. Given a

complex 1-form Ea on �, satisfying the Maxwell constraint equation

d∗E = 0, (1.8)

there is a unique solution of the Maxwell equation such that

(Fabξ
b)
∣∣
�

= Ea .

Now, let Hab be a self-dual 2-form which solves the wave equation

�Hab = 0, (1.9)

where � = dd∗ + d∗d is the Hodge wave operator, and d∗ = ∗d∗ is the exterior co-
derivative in dimension 4. Defining the form Fab by

Fab = dd∗Hab, (1.10)

we have using (1.9) that Fab is anti-self-dual and solves the Maxwell equation. The form
Hab is called a Hertz-potential for Fab. Since we are working on Minkowski space, the
wave equation (1.9) is just a collection of scalar wave equations for the components
of Hab, and hence the solution to (1.9) for given Cauchy data can be analyzed using
results for the scalar wave equation. Thus, if we are able to relate the Cauchy data for
the Maxwell field Fab to the Cauchy data for Hab, we may use the Hertz potential
construction to prove estimates for the solution of the Maxwell field equation, starting
from estimates for the wave equation.



Hertz Potentials Spin-s Fields 759

Let the complex 1-form Ka be the “electric field” corresponding to Hab,

Ka = Habξ
b.

A calculation shows that if Fab is defined in terms of Hab by (1.10), the Cauchy data
for (1.9) is related to the Cauchy data for Fab by

Ea = − ∗ d ∗ dKa − i ∗ d∂tKa, (1.11)

where in the right hand side we restrict Ka and ∂tKa to �, and d, ∗ act on objects on
�2. The constraint equation d∗Ea = 0 holds automatically for Ea given by (1.11).

Now, in order to prove estimates for the Maxwell equation with data Ea ∈ H j
δ ,

satisfying d∗E = 0, it is sufficient to show that for any such Ea , there exists a 1-form
La ∈ H j+1

δ+1 such that
Ea = −i ∗ dLa . (1.12)

Then taking Hab to be a solution of (1.9) with Cauchy data

Hab
∣∣
t=0 = 0,

(
∂tHabξ

b
) ∣∣

t=0 = La,

gives a solution to the Maxwell equation via (1.10). Estimates for the wave equation can
thus be applied to give estimates for the solution of the Maxwell field equation.

The operator ∗d acting on 1-forms, which appears in Eqs. (1.11) and (1.12) is simply
the curl operator. The first important thing to notice about Eq. (1.12) is the fact that
this is an overdetermined system of partial differential equations; the electric field has
to satisfy constraints in order to ensure the existence of a solution. The integrability of
these equations is well-known to be described by the elliptic complex

C∞(R3,R)
d−→ �1 ∗d−→ �1 d∗−→ C∞(R3,R). (1.13)

This complex, which is derived from the standard de Rham complex, plays a crucial role
in the analysis of Hertz potentials. The geometric constraint d∗Ea = 0 guarantees that
Eq. (1.12) can be solved, at least formally. This is described in Sect. 3.

In Proposition 4.5 below, we shall prove that for non-integer weights δ, ∗d : H j+1
δ+1 →

ker d∗ ∩ H j
δ is a surjection, and the estimate

‖La‖ j+1,δ+1 ≤ C‖Ea‖ j,δ (1.14)

holds, for some constant C . It is instructive to consider two special weights in the spin-1
case. First let Ea ∈ H j

−5/2 be a solution to the Maxwell constraint equation (1.8). This

corresponds to the case considered in [9]. We shall now construct a solution La ∈ H j+1
−3/2

to (1.12), which will give us Cauchy data for the Herz potential. Recall that the Laplacian
� = dd∗ + d∗d is a surjection H j+2

−1/2 → H j
−5/2, cf. Proposition 2.7. Hence, we can find

Qa ∈ H j+2
−1/2 such that

Ea = �Qa .

2 Recall that, in dimension 3, for p-forms, the exterior co-derivative is given by d∗ = (−1)p ∗ d ∗ .
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Making use of the constraint equation (1.8), and the fact that � and d∗ commute, we
find

0 = d∗E = d∗�Q = �d∗Q.

Hence, d∗Q ∈ ker� ∩ H j+1
−3/2. Due to injectivity of � : H j+1

−3/2 → H j−1
−7/2, we have

d∗Q = 0, and hence,

Ea = dd∗Qa + d∗dQa = d∗dQa .

Therefore we can take La = i(∗dQ)a . In this situation, full peeling does not hold, and
the Cauchy data for the Hertz potential is in H j+2

−1/2 × H j+1
−3/2. Secondly, we consider the

case Ea ∈ ker d∗ ∩ H j
−7/2 where full peeling holds. In this case, the Cauchy data for the

Hertz potential is in H j+2
−3/2 × H j+1

−5/2. The relevant fact about the Laplacian is now that

� : H j+2
−3/2 → H j

−7/2 is Fredholm with cokernel consisting of constant forms. Since a
constant form ηa is automatically closed, using the integrability of the complex (1.13),
cf. Remark 3.5, it is also exact, ηa = (d f )a for some f . This fact is usually referred to
as the Poincaré Lemma and can, as we will see below, be generalized to higher spin. It
follows that the cokernel of� is automatically L2-orthogonal to ker d∗ ∩ H j

−7/2. Hence,

� : H j+2
−3/2 → ker d∗ ∩ H j

−7/2

is surjective. Using this fact, by the argument above we can find a solution La ∈ H j+1
−5/2

to equation (1.12). For the case of general weights, see Proposition 4.5.
It is important to notice that, for weights δ < −4, none of the elements in the cokernel

have a preimage under the Laplacian. However, in Lemma 4.4, we prove that one can
add an element ζa in the image of ∗d, so that Ea − i(∗dζ )a is orthogonal to the cokernel
of �, so that a preimage can be found. This way we can always find a preimage under
∗d, even if we can not find a preimage under �.

In the spin-s case, the argument follows the same outline. However, this requires
an extension of the complex (1.13) to arbitrary spin, and relating the corresponding
operators to an elliptic operator, which in this case will be a power of the Laplacian
��s
. Nonetheless, two important preliminary results have to be proved to this end: an
extension of the complex (1.13) to arbitrary spin and a decay result for the solution of the
scalar wave equation with initial data in Sobolev spaces of arbitrary non-integer weights
and its derivatives.

As far as the authors know, not much work has been performed to extend the Hodge-
de Rham theory to arbitrary weighted Sobolev spaces on the one hand and to arbitrary
spin on the other hand. Cantor [7] proved the first steps of a Hodge decomposition for
tensors in weighted Sobolev spaces, and Weck and Witsch [36] gave a Hodge-Helmholtz

decomposition for forms in L p
δ spaces. These two results are nonetheless not sufficient for

our purposes. As far as the extension to arbitrary spin is concerned, for analytic solutions
of the massless field equation of arbitrary spin on the Euclidean 4-sphere, Woodhouse
[37, Section 10] describes the procedure to construct the intermediate potentials, up to
the penultimate, in the form language. Penrose [27,28] extends this construction for the
spin 3/2 in a wider context. Using this formalism, a topological condition on the domain
of validity of the representation on the sphere is given.
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In order to apply standard elliptic theory, one has to perform a 3 + 1 splitting of the
equation relating the field and its Hertz potential

φA...F = ∇AA′ . . .∇F F ′χ A′...F ′
. (1.15)

Assuming that the initial data for the potential are

χ A′...F ′ |t=0 = 0 and ∂tχ
A′...F ′ |t=0 = √

2τ AA′
. . . τ F F ′

ζA...F ,

the 3 + 1 splitting (performed in detail in Sect. 7.1) of Eq. (1.15) gives

ϕA...F = (G2sζ )A...F , (1.16)

where G2s is a differential operator of order 2s − 1 (see Definition 2.11). In the spin-1
case, if one translates the spin formalism into the form language, one recovers Eq. (1.12).

Finding a generalization of the complex (1.13) to arbitrary spin, which encompasses
equation (1.16), and especially the operator G2s , is then a necessary step in the construc-
tion of the initial data of the Hertz potential. A generalization of the de Rham complexes
have been introduced in the context of the deformation of conformally flat structures by
Gasqui-Goldschmidt [15], and later generalized by Beig [4] (see Sect. 3). They obtained
differential complexes corresponding to the spin-2 case. We generalize, on R

3, their
results to arbitrary spin. One introduces the fundamental operators

(â2sφ)A1...A2s−2 ≡ D A2s−1 A2sφA1...A2s ,

(Ö2sφ)A1...A2s+2 ≡ D(A1 A2φA3...A2s+2).

We prove that, if S2s is the space of symmetric space spinor fields on R
3, the sequence

S2s−2
Ö2s−2−→ S2s

G2s−→ S2s
â2s−→ S2s−2,

is an elliptic complex. For s = 1, one recovers the complex (1.13). In the situation
considered by Gasqui-Goldschmidt and Beig for the spin-2 case, the operator G4 is the
linearized Cotton-York tensor. See Sect. 3 for details.

The existence of a solution to (1.12) with the estimate (1.14) is then used together with
a weighted estimate for the solution of the wave equation with initial ( f, g) ∈ H j

δ ×H j−1
δ−1 .

As we have not found a sufficiently general result in the literature, in particular one which
covers the range of weights δ > −1 which we need for the applications to the Hertz
potential in the range where full peeling fails to hold (including the situation considered
in [9]), we prove the required result in Sect. 5. This result consists in a direct estimate
for the solution of the wave equation, using the representation formula. For δ < −1, we
have in the exterior region

|φ(t, x)| ≤ C<v>−1<u>1+δ (‖ f ‖3,δ + ‖g‖2,δ−1
)
,

see Proposition 5.2.
The main result of the paper, stated in Theorem 7.7, combines the analysis of the

Hertz potential Cauchy data in weighted Sobolev spaces with the weighted estimate for
the solution of the wave equation to provide a weighted estimate for the solution to the
massless spin-s field equation. The peeling properties of the spin-s field with initial data
in weighted Sobolev spaces are analyzed in detail.

Here it is important to note that the detailed decay estimates for the components of the
massless spin-s field φA...F relies on the decay of the Hertz potential χ A′...F ′

, for which
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all components decay as solutions to the scalar wave equation. The decay properties of
the components of φA...F are due to their relation to the derivatives of χ A′...F ′

in terms of
a null tetrad. In particular, the falloff condition on the initial datum of the massless fields
which ensures that the peeling property holds is given explicitly. All the intermediate
cases, where peeling fails because the initial datum does not fall off sufficiently, such
as the decay result obtained by Christodoulou-Klainerman [9], are clearly explained in
terms of a decay result for the scalar wave equation.

Overview of this paper. In Sect. 2 we state our conventions and recall some basic facts
about elliptic operators on weighted Sobolev spaces. In particular we introduce the Stein-
Weiss operators divergence â, curl Á and the twistor operator Ö for higher spin fields,
as well as the fundamental higher order operator G originating in the 3 + 1 splitting
of the Hertz potential equation. In Sect. 3 we use these to introduce a generalization
of the de Rham complex for spinor fields. The problem of constructing initial data for
the Hertz potential is solved in Sect. 4. The weighted estimate for the wave equation is
given in Sect. 5, and the resulting estimates for spin-s fields generated by potentials is
given in Sect. 6. Everything is then tied together in Sect. 7, where the 3 + 1 splitting of
the potential equation is considered and the potential is constructed. The section is then
concluded with the estimates for spin-s fields. Appendix A contains some results on the
operator G used in the analysis of the elliptic complex introduced in Sect. 3, as well as
for the construction of the initial data for the Hertz potential in Sect. 4.

2. Preliminaries

2.1. Conventions. In this paper, we will only work on Minkowski space time. We will use
Cartesian coordinates (t, x1, x2, x3) as well as the corresponding spherical coordinates
(t, r, θ, φ). The spinor formalism with the conventions of [30] is extensively used. For
important parts of the paper, 3+1 splittings of spinor expressions are performed. The
space spinor formalism as introduced in [34] is used for this purpose. In this case,
the conventions of [2] are adopted. We will always consider the space spinors on the
{t = const.} slices of Minkowski space with normal τAA′ = √

2∇AA′ t . Observe that a
negative definite metric on these slices is used.

The Minkowski space-time (R4, ηαβ) is endowed with its standard connection ∇a =
∇AA′ . The time slice {t = 0} is endowed with the connection Da = DAB defined by

DAB = τ(A
A′∇B)A′

where τAA′ is the timelike vector field defined above. Its relation to the connection of
the ambient space-time is given by

∇AA′ = 1√
2
τAA′∂t − τ B

A′ DAB .

Let Sk denote the vector bundle of symmetric valence k spinors on R
3. Furthermore,

let Sk denote the space of smooth (C∞) sections of Sk .

Definition 2.1. Let P<δ(Sk) denote the finite dimensional subspace of Sk spanned by
constant spinors with polynomial coefficients of degree < δ.

Note that with δ ≤ 0,P<δ(Sk) is just the trivial space {0}.
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2.2. Analytic framework. We introduce in this section the analytic framework which is
necessary to understand the propagation of the field as well as the geometric constraints.
We will use the conventions of Bartnik [3]. Even though Bartnik’s paper only gives
statements for functions, we can easily extend this to space spinors on Euclidean space.

We recall first the standard norms, coming from the Hermitian space spinor product.

Definition 2.2. The Hermitian space spinor product is given by

〈ζA...F , φA...F 〉 = ζA...F φ̂
A...F ,

where φ̂A...F = τ AA′
. . . τ F F ′

φA′...F ′ and τAA′ = √
2∇AA′ t . The pointwise norm of a

smooth φA...F is defined via

|φA...F |2 = φA...F φ̂
A...F .

The pointwise norm of the derivatives of the smooth spinor φA...F on R
3 is given by

|DaφA...F |2 = δab DaφA...F D̂bφ
A...F ,

where δab is the standard Euclidean metric on R
3. The norm of higher order derivatives

is defined similarly.

Remark 2.3. The identity

DAB φ̂A...F = −D̂ABφA...F ,

holds, due to the fact that the operator DAB is real.

Definition 2.4. The L2-norm of a smooth spinor field in R
3 is defined by

‖φA...F‖2 =
( ∫

R3
|φA...F |2dμR3

)1/2

,

where dμR3 is the standard volume form on R
3. The L2-norm is also defined for deriv-

atives in the same way using the pointwise definition above.

If u is a real scalar, its Japanese bracket is defined by

<u> = (1 + u2)1/2.

We next define the weighted Sobolev norms, which will be used to describe the asymp-
totic behavior of initial data at space-like infinity.

Definition 2.5 (Weighted Sobolev spaces). Let δ be a real number and j a nonnegative
integer. The completion of the space of smooth spinor fields in S2s with compact support
in R

3 endowed with the norm

‖φA...F‖2
j,δ =

j∑

n=0

∥∥∥<r>−(δ+ 3
2 )+n DnφA...F

∥∥∥
2

2
,

is denoted by H j
δ (S2s).
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For δ = −3/2, the weighted spaces H0−3/2(S2s) are the standard Sobolev spaces

L2(S2s).
Many well-known properties can be proved about these spaces – see for instance

[3, Theorem 1.2] for more details. The only property, crucial to obtain the pointwise
estimates, is the following Sobolev embedding (cf. [3, Theorem 1.2, (iv)], specialized
to dimension 3).

Proposition 2.6. Let δ be a real number and j ≥ 2 an integer. Then, any spinor field in
H j
δ (S2s) is in fact continuous and there exists a constant C such that, for any φA...F in

H j
δ (S2s)

|φA...F (x)| ≤ C<r>δ‖φA...F‖2,δ,

and, in fact,

|φA...F (x)| = o
(
r δ
)

as r → ∞.

We finally recall the following properties of elliptic operators, restricting ourself to
powers of the Laplacian. The result stated is a combination of the standard results, see
e.g., [3,7,17,26].

Proposition 2.7. Let j, l be non-negative integers such that j ≥ 2l, s be in 1
2 N0 and δ

be in R \ Z. The formally self-adjoint elliptic operator of order 2l

�l
2s : H j

δ (S2s) −→ H j−2l
δ−2l (S2s)

is Fredholm and satisfies

• its kernel is a subspace of P<δ(S2s); in particular, �l
2s is injective when δ < 0;

• its co-kernel is a subspace of P<−3−δ+2l(S2s); in particular, �l
2s is surjective when

δ > 2l − 3.

Furthermore, there exists a constant C such that, for all spinor fields in H j
δ (S2s),

inf
ψA...F ∈ker(�l

2s )∩H j
δ (S2s )

‖φA...F + ψA...F‖ j,δ ≤ C‖�l
2sφA...F‖ j−2s,δ−2s .

In fact the infimum is attained, and there exists aψA...F in ker(�l
2s)∩ H j

δ (S2s) such that
θA...F = φA...F + ψA...F satisfies

‖θA...F‖ j,δ ≤ C‖�l
2sθA...F‖ j−2s,δ−2s .

Remark 2.8. (1) In this paper, the set N denotes the set of positive integers and N0 the
set of non-negative integers.

(2) In the range of weights −1 ≤ δ ≤ 0, the operator � is bijective.
(3) The inequality comes from the closed range property (see [17, Theorem 5.2]).

Since this infimum corresponds to the distance to the kernel ker(�l
2s), which is

closed, the infimum is in fact attained.
(4) We recall here that the co-kernel of �l

2s in H j−2l
δ−2l (S2s) is L2-orthogonal to the

kernel of �l
2s in the dual space H− j+2l

−3−δ+2l(S2s).
(5) The dimension of the spaces can be computed explicitly – see for instance [24].

However, we will not make explicit use of this.
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2.3. Fundamental operators.

Definition 2.9. Let φA1...Ak ∈ Sk , that is φA1...Ak = φ(A1...Ak ). Let DAB be the intrinsic
Levi-Civita connection. Define the operators âk : Sk → Sk−2, Ák : Sk → Sk and
Ök : Sk → Sk+2 via

(âkφ)A1...Ak−2 ≡ D Ak−1 AkφA1...Ak ,

(Ákφ)A1...Ak ≡ D(A1
BφA2...Ak )B,

(Ökφ)A1...Ak+2 ≡ D(A1 A2φA3...Ak+2).

These operators will be called divergence, curl and twistor operator respectively.

We suppress the indices of φ in the left hand sides. The label k indicates its valence.
The importance of these operators comes from the following irreducible decomposition
which is valid for any k ≥ 1,

DA1 A2φA3...Ak+2 = (Ökφ)A1...Ak+2 − k
k+2εA1(A3(Ákφ)A4...Ak+2)A2

− k
k+2εA2(A3(Ákφ)A4...Ak+2)A1 + 1−k

1+k εA1(A3(âkφ)A4...Ak+1εAk+2)A2 .

This irreducible decomposition follows from [30, Proposition 3.3.54]. Contraction with
the spin metric εAB and partial expansion of the symmetries give the coefficients.

We consider now the symbols of these operators

σ(Ák) : T �M → L(Sk, Sk), σ (âk) : T �M → L(Sk, Sk−2),

σ (Ök) : T �M → L(Sk, Sk+2),

where L(Sk, S j ) is the space of bundle maps from Sk into S j . When applied to a 1-form
ξAB , one denotes the symbols σξ .

Lemma 2.10. When applied to a 1-form ξAB, the symbol σξ (Ák) : Sk → Sk of Ák is
Hermitian and has only real eigenvalues.

Proof. By definition we have

(σξ (Ák)φ)A1...Ak ≡ ξ(A1
BφA2...Ak )B,

where ξAB , is real, i.e. ξ̂AB = −ξAB . For arbitrary ηA1...Ak and ζA1...Ak , we have

〈(σξ (Ák)η)A1...Ak , ζA1...Ak 〉 = ξA1
BηA2...Ak B ζ̂

A1...Ak = ηA2...Ak B ξ̂
C1 B ζ̂C1

A2...Ak

= 〈ηA1...Ak , (σξ (Ák)ζ )A1...Ak 〉.
Hence, the symbol σξ (Ák) is for each point Hermitian and, by the spectral theorem, has
only real eigenvalues. ��

The operators âk, Ák and Ök are special cases of Stein-Weiss operators. We refer to
[6] and references therein for general properties of this class of operators.

We will now consider some operators of general order, that will play an important
role in this paper. The most important second order operator is clearly the Laplacian
� ≡ DAB D AB . Note that here we are using a negative definite metric on R

3. When the
Laplacian acts on a spinor field φA...F in Sk , we will often use the notation (�kφ)A...F ,
where k indicates the valence of φA...F .
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Definition 2.11. Define the order k − 1 operators Gk : Sk → Sk as

(Gkφ)A1...Ak ≡

⌊ k−1
2

⌋
∑

n=0

(
k

2n + 1

)
(−2)−n D(A1

B1 · · · DAk−2n−1
Bk−2n−1

︸ ︷︷ ︸
k−2n−1

(�n
kφ)Ak−2n ...Ak )B1...Bk−2n−1 .

The first operators are

(G1φ)A ≡ φA,

(G2φ)AB ≡ 2D(A
CφB)C = 2(Á2φ)AB,

(G3φ)ABC ≡ 3D(A
D DB

FφC)DF − 1
2 (�3φ)ABC

= 1
3 (Ö1â3φ)ABC D + 4(Á3Á3φ)ABC ,

(G4φ)ABC D ≡ 4D(A
F DB

H DC
LφD)F H L − 2D(A

F (�4φ)BC D)F

= 2(Ö2â4Á4φ)ABC D + 8(Á4Á4Á4φ)ABC D .

These operators appear naturally in Proposition 7.1 below. The most important properties
of these operators are

âkGk = 0, and Gk Ök−2 = 0, (2.1)

which is valid for any k ≥ 2. The main idea to prove this is to use that âkGk and Gk Ök−2
contains derivatives of the kind DA

C DBC = 1
2εAB�. For a complete proof see Propo-

sition A.3. The operators Gk also commute with Ák ; this is proven in Proposition A.1. To
connect with the standard elliptic theory, we express appropriate powers of the Laplacian
in terms of the operators Gk as

(�k
2kφ)A1...A2k = (Ö2k−2F2k−2â2kφ)A1...A2k − (−2)1−k(G2kÁ2kφ)A1...A2k , (2.2a)

(�k
2k+1φ)A1...A2k+1 = (Ö2k−1F2k−1â2k+1φ)A1...A2k+1 + (−2)−k(G2k+1φ)A1...A2k+1,

(2.2b)

where the operators F2s for s ∈ 1
2 N0 are defined via

(F2sφ)A1...A2s = 2−2s
�s
∑

n=0

�s
−n∑

m=0

(
2s + 2

2n + 2m + 2

)
(−2)n

× D(A1
B1 · · · DA2n

B2n

︸ ︷︷ ︸
2n

(�
�s
−n
2s φ)A2n+1...A2s )B1...B2n .

The first operators are

(F0φ) = φ,

(F1φ)A ≡ 3
2φA,

(F2φ)AB = 7
4 (�2φ)AB − 1

2 D(A
C DB)

DφC D.

See Lemma A.4 in the “Appendix” for the proof of (2.2a) and (2.2b).
The operator Á2 is the spinor equivalent to the operator ∗d acting on 1-forms. The

tensor equivalent of the operator G4 is the linearized Cotton-York tensor acting on sym-
metric trace-free 2-tensors. In the following section, a more detailed description of these
relations is given.
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3. Integrability Properties of Spinor Fields

A crucial part of this work relies on integrability properties for spinors, that is to say,
proving that a spinor belongs to the image of a certain differential operator. In the case of
spin-1, the operator under consideration is the curl operator; its integrability properties
are well known since it is described by the de Rham complex. For spin-2, one has to
resort to a generalization of the de Rham theory to trace free 2-tensors, which happened
to have been studied in the context of conformal deformations of the flat metric by Gasqui
and Goldschmidt [15], whose results were extended by Beig [4]. On R

3, we consider a
generalization of these elliptic complexes for arbitrary spin.

We present here the general picture of this integrability result for smooth spinors. It
is well known that for 1-forms the integrability conditions are given by the following
elliptic complex

C∞(R3,R)
d−→ �1 ∗d−→ �1 d∗−→ C∞(R3,R),

whose spinorial equivalent is

S0
Ö0−→ S2

Á2−→ S2
â2−→ S0. (3.1)

Gasqui and Goldschmidt were interested in the conformal deformation of a metric on a
3-manifold M . A deformation gt of a metric g0 is said to be conformally rigid if there
exist a family of diffeomorphisms φ�t and of functions ut such that

φ�t g0 = eut gt .

The infinitesimal equation corresponding to this deformation is given by the conformal
Killing equation

LX g0 − 1

3
Trg0(LX g0)g0 = h (3.2)

where X is a vector field on M and h is a trace free 2-tensor. The spinor equivalent of
this equation is given by

2D(AB XC D) = h ABC D .

Solving (3.2) requires that the 2-tensor h satisfies the constraint equation. This is stated
in [15, Theorem 6.1, (2.24)] and in [4].

Theorem 3.1 (Gasqui-Goldschmidt). If (M, g) is a conformally flat 3-dimensional man-
ifold, then the following is an elliptic complex

�1(M)
L−→ S2

0 (M, g)
R−→ S2

0 (M, g)
div−→ �1(M),

where�1(M) is the space of 1-forms over M, S2
0 (M, g) is the space of symmetric trace

free 2-tensors and

(LW )ab = D(a Wb) − 1

3
gab DcWc

(div t)a = 2gbc Dctab

and
R(ψ)ab = εcd

a D[cσd]b where
σab = D(a Dcψb)c − 1

2�ψab − 1
4 gab Dc Ddψcd .
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Remark 3.2. (1) A consequence of Theorem 3.1 is that Eq. (3.2) is integrable provided
that

R(h)ab = 0.

(2) In terms of spinors, the operator Rab reads

Rab = RABC D = − i

2
√

2
(G4)ABC D .

The spinorial equivalent of this sequence is the following elliptic complex

S2
Ö2−→ S4

G4−→ S4
â4−→ S2. (3.3)

We now state, using the fundamental operators Ö2s−2,G2s and â2s , a generalization
of the elliptic complexes (3.1) and (3.3) for arbitrary spin.

Lemma 3.3. The sequence

S2s−2
Ö2s−2−→ S2s

G2s−→ S2s
â2s−→ S2s−2,

is an elliptic complex.

Proof. In view of (2.1), the sequence is a differential complex. It is therefore enough to
check that the symbol sequence is exact, i.e. for a non-zero ξ in T �M

S2s−2
σξ (Ö2s−2)−→ S2s

σξ (G2s )−→ S2s
σξ (â2s )−→ S2s−2.

This follows from the vanishing properties (2.1) and the expression of powers of the
Laplacian in terms of these operators, i.e. (2.2a) and (2.2b).

Let ξ be a fixed non-zero element of T �M . We first notice that (2.1) implies

im(σξ (G2s)) ⊂ ker(σξ (â2s)) and im(σξ (Ö2s−2)) ⊂ ker(σξ (G2s)).

We then notice that the symbol of the Laplacian�k
2s is an invertible symbol which is in

the center of the algebra of symbols since its expression is

σξ (�
k
2s) = |ξAB |2k I.

Furthermore, using the relations stated in Lemma A.4, we have

(�s
2sφ)A1...A2s = (Ö2s−2F2s−2â2sφ)A1...A2s − (−2)1−s(G2sÁ2sφ)A1...A2s for s ∈ N0,

(3.4)

(�
s−1/2
2s φ)A1...A2s+1 = (Ö2s−2F2s−2â2sφ)A1...A2s +(− 2)−1/2−s(G2sφ)A1...A2s for s ∈ 1

2 + N0.

Assume now that the spin is an integer. The proof in the case when the spin is a
half integer is left to the reader (the proof is almost identical). Let Y be an element of
ker(σξ (â2s)). Using formula (3.4), we get

Y = σξ (�
s
2s)

−1σξ (�
s
2s)Y

= σξ (�
s
2s)

−1
(
σξ (Ö2s−2)σξ (F2s−2)σξ (â2s)− (−2)1−sσξ (G2s)σ (Á2s)

)
Y

= −(−2)1−sσξ (�
s
2s)

−1σξ (G2s)σξ (Á2s)Y.
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Since the symbol of the Laplacian commutes with all other symbols, we consequently
get

Y = −(−2)1−sσξ (G2s)σξ (�
s
2s)

−1σξ (Á2s)Y,

that is to say that Y belongs to the image of σξ (G2s). If we now assume that Y is in
ker(σξ (G2s)). Using formula (3.4), we get

Y = σξ (�
s
2s)

−1σξ (�
s
2s)Y

= σξ (�
s
2s)

−1
(
σξ (Ö2s−2)σξ (F2s−2)σξ (â2s)− (−2)1−sσξ (G2s)σξ (Á2s)

)
Y.

Since G2s and Á2s commute (Lemma A.1) and since the symbol of the Laplacian com-
mutes with all other symbols, we get

Y = σξ (Ö2s−2)σξ (�
s
2s)

−1σξ (F2s−2)σξ (â2s),

that is to say that Y belongs to the image of σξ (Ö2s−2). ��
Using the ellipticity of the sequence, it is finally possible to prove the existence of

solutions of equations involving G2s and Ö2s . This theorem is a direct consequence of
[33, Theorem 1.4].

Proposition 3.4. For x in R
3, there exists an open neighborhood U of x such that the

sequence

A(U, S2s−2)
Ö2s−2−→ A(U, S2s)

G2s−→ A(U, S2s)
â2s−→ A(U, S2s−2),

is exact, where A(U, E) denotes the space of real analytic sections of E.

Remark 3.5. We in fact only need this result in the context of polynomials. The problem
will be to solve, for any real number δ, the equations

Ö2s−2φ = ψ, when ψ ∈ P<δ(S2s),

and

G2sξ = ζ, when ζ ∈ P<δ(S2s).

Proposition 3.4 ensures the local existence of solutions to these equations provided that

G2sψ = 0 and â2sζ = 0.

By integration, these solutions are necessarily polynomials.

Proof. The proof of Proposition 3.4 is a direct consequence of the fact that the fundamen-
tal operators Ö2s−2,G2s and â2s are operators with constant coefficients, which consist
only of higher order homogeneous terms. As a consequence, these operators are all
sufficiently regular in the terminology of [33] (since they have constant coefficients, cf.
[33, Remark 1.16]) and formally integrable (since they have only homogeneous terms
of the highest possible order, cf. [33, Remark 1.21]). Proposition 3.4 is then a direct
consequence of [33, Theorem 1.4]. ��
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4. Construction of Initial Data for the Potential

As seen in the introduction, one of the key points when constructing the initial data for
the potential for the massless free field is the ability to solve, at the level of the initial
data, the equation

ϕA...F = (G2sζ )A...F .

This requires a partial generalization of Proposition 3.4 to weighted Sobolev spaces. The
main difficulty in the construction of ζA...F is to obtain the estimate

‖ζA...F‖ j+2s−1,δ+2s−1 ≤ C‖ϕA...F‖ j,δ.

This inequality is similar to those in standard elliptic theory. The main idea of this section
is to construct a solution using the relations between the operator G2s and powers of the
Laplacian � as stated in Eqs. (2.2a) and (2.2b). The strategy of the proof is as follows:

(1) using the elliptic properties of the Laplacian and its powers, a preimage θA...F of
ϕA...F is constructed;

(2) using Eqs. (2.2a) and (2.2b), the constraint equation satisfied by the initial datum,
and the differential complex stated in Lemma (3.3), we prove that the only non-
vanishing term of Eqs. (2.2a) and (2.2b) is the one containing G2s .

However, this schematic procedure works only for a certain range of weights. Outside
this range, a more thorough discussion has to be performed. One of the key facts which
is used is that the polynomial nature of the elements of the kernel of the Laplacian (and
its powers) makes it possible to use Proposition 3.4 (and Remark 3.5).

This section deals strictly with the initial data both for the field and the potential. The
corresponding Cauchy problems for higher spin fields and for the potential are described
in Sect. 7. More precisely, the details regarding the relation between the Hertz potential
and the field are given in Sect. 7.1, which is devoted to the 3+1 splitting of the potential
equation. Furthermore, the representation Theorem 7.6 for a massless field in terms of
a Hertz potential, based on the uniqueness of solutions of the Cauchy problem, is given
in Sect. 7.2.

For s = 1/2, we immediately get the desired solution by setting ζA = ϕA. For higher
spin, a more careful analysis is required. To simplify the presentation, the spin-1 case is
discussed first in detail, followed by the general spin case.

The following lemma is a technical result describing the orthogonality properties of
the range of Ö and the kernel of â.

Lemma 4.1. Assume that ϕA...F ∈ H1
δ (S2s) satisfies the constraint (â2sϕ)C ...F = 0, and

ηC ...F ∈ H1−2−δ(S2s−2). Then ϕA...F is L2 orthogonal to (Ö2s−2η)A...F .

Proof. Let {ϕi
A...F }∞i=0 ⊂ C∞

0 (S2s) such that ‖ϕi
A...F − ϕA...F‖1,δ → 0 as i → ∞. An

integration by parts and Remark 2.3 give
∫

R3
ϕi

A...F
̂D(ABηC ...F)dμR3 =

∫

R3
D ABϕi

A...F η̂
C ...F dμR3 ,

that is
〈ϕi

A...F , (Ö2s−2η)A...F 〉L2 = 〈(â2sϕ
i )C ...F , ηC ...F 〉L2 .

Taking the limit as i → ∞ on both sides gives 〈ϕA...F , (Ö2s−2η)A...F 〉L2 = 0. ��
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Definition 4.2. Let δ be in R \ Z and s ∈ 1
2 N. Furthermore, let

Fs,δ ≡ ker��s

2s ∩ L2−3−δ(S2s).

Define the space Es,δ to be the L2−3−δ-orthogonal complement of Fs,δ ∩ ker G2s in Fs,δ .

Remark 4.3. If δ ≥ −2s−2, the space Es,δ is trivial. This follows from the fact that Fs,δ ⊂
P<−3−δ(S2s) and that G2s is a homogeneous order 2s −1 operator. With −3−δ ≤ 2s −1
or equivalently δ ≥ −2s − 2 we have Fs,δ ⊂ P<−3−δ(S2s) ⊂ ker G2s and consequently
Es,δ = {0}.

Before we prove existence of preimages under G2s , we prove a technical lemma that
allows us to reduce the problem of finding a preimage of ker â2s ∩ H j

δ (S2s) under G2s

to that of finding a preimage of ker â2s ∩ H j
δ (S2s) orthogonal to Es,δ .

Lemma 4.4. Let δ be in R \ Z, j > 0 integer, ϕA...F in H j
δ (S2s). If δ < −2s − 2 we can

find a ζ̃A...F ∈ H j+2s−1
δ+2s−1 (S2s) and a constant C depending only on s, j and δ such that

ϕA...F + (G2s ζ̃ )A...F is orthogonal to Es,δ and

‖ζ̃A...F‖ j+2s−1,δ+2s−1 ≤ C‖ϕA...F‖ j,δ.

Proof. Let {μi
A...F }i be an L2−δ−2s−2(S2s) orthonormal basis for the finite dimensional

space G2s(Es,δ) ⊂ H j+2s−2
−δ−2s−2(S2s). Due to the splitting Fs,δ = Es,δ ⊕ (Fs,δ ∩ ker G2s),

we have for each μi
A...F a unique ξ i

A...F ∈ Es,δ such that (G2sξ
i )A...F = μi

A...F , and
{ξ i

A...F }i span Es,δ . Let ηi
A...F ≡ <r>2δ+4s+1μi

A...F . By [7, Lemma 5.2] we have that

ηi
A...F ∈ H j+2s−1

δ+2s−1 (S2s). We can now approximate ξ i
A...F ∈ H j+4s−3

−δ−3 by choosing a

sequence {ξ i,k
A...F }k∈N ⊂ C∞

0 (S2s) such that ‖ξ i
A...F − ξ

i,k
A...F‖ j+4s−3,−δ−3 → 0 for k →

∞. Repeated integration by parts gives

<(G2sη
i )A...F , ξ

j,k
A...F>L2 = −<ηi

A...F , (G2sξ
j,k)A...F>L2 ,

where the boundary terms vanish due to the compact support of ξ i,k
A...F . In the limit

k → ∞, this gives, making use of the definition of the weighted spaces,

<(G2sη
i )A...F , ξ

j
A...F>L2 = −<ηi

A...F , (G2sξ
j )A...F>L2

= −<μi
A...F , μ

j
A...F>L2−δ−2s−2

= −δi j .

Now, let

ζ̃A...F ≡
∑

i

<ϕA...F , ξ
i
A...F>L2ηi

A...F .

This gives that<ϕA...F +(G2s ζ̃ )A...F , ξ
i
A...F>L2 = 0 for all i . Hence, ϕA...F +(G2s ζ̃ )A...F

is orthogonal to Es,δ .
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We also get the estimates

‖ζ̃A...F‖ j+2s−1,δ+2s−1 ≤
∑

i

|<ϕA...F , ξ
i
A...F>L2 | ‖ηi

A...F‖ j+2s−1,δ+2s−1

≤
∑

i

‖ϕA...F‖L2
δ
‖ξ i

A...F‖L2−3−δ
‖ηi

A...F‖ j+2s−1,δ+2s−1

≤ C‖ϕA...F‖ j,δ, (4.1)

where C only depends on s, j and δ. ��

4.1. The spin-1 case. To show how to solve the equation ϕA...F = (G2sζ )A...F , we begin
with the spin-1 case to illustrate the idea. We then use the same ideas for general spin in
Proposition 4.6.

Proposition 4.5. Let δ be in R\Z, j a positive integer,ϕAB in H j
δ (S2) such that D ABϕAB =

0. Then there exist a spinor field ζAB ∈ H j+1
δ+1 (S2) and a constant C depending only on

δ and j such that

ϕAB = (G2ζ )AB,

‖ζAB‖ j+1,δ+1 ≤ C‖ϕAB‖ j,δ.

Proof. By Remark 4.3 we see that ϕAB is automatically orthogonal to E1,δ if δ ≥ −4. If
δ < −4, we can use Lemma 4.4 to construct ζ̃AB ∈ H j+1

δ+1 (S2) such that ϕAB +(G2ζ̃ )AB ∈
ker â2 ∩ H j

δ (S2) is orthogonal to E1,δ . The estimates in Lemma 4.4 are of the right type,
so if we can prove the proposition for ϕAB + (G2ζ̃ )AB instead of ϕAB , we are done.
We can therefore in the rest of the proof without loss of generality assume that ϕAB is
orthogonal to E1,δ . From now on, to make the link with the language of forms clear, we
replace the operator G2 = 2Á2 with the curl operator Á2.

Let θAB be in F1,δ ∩ ker Á2. The field θAB is then in P<−3−δ(S2) and therefore real
analytic. Furthermore it is curl-free (i.e., in ker Á2). Using Proposition 3.4, the sequence

P<−4−δ(S0)
Ö0−→ P<−3−δ(S2)

Á2−→ P<−2−δ(S2),

is exact and, therefore, θAB can be written as a gradient DABη = (Ö0η)AB = θAB , where
η ∈ P<−2−δ(S2) ⊂ H1−2−δ(S2). Then, by Lemma 4.1, ϕAB is L2-orthogonal to θAB . As
θAB was arbitrary in F1,δ ∩ ker Á2 and ϕAB was by assumption orthogonal to E1,δ , we
have that ϕAB is orthogonal to all of F1,δ .

The Laplacian �2 : H j+2
δ+2 (S2) → H j

δ (S2) is formally self-adjoint and has closed
range and finite dimensional kernel – see [7,23,26] for details. By Fredholm’s alternative,
there exists a θAB ∈ H j+2

δ+2 (S2) such that ϕAB = (�2θ)AB . Using Proposition 2.7, we

can modify θAB within the class ker�2 ∩ H j+2
δ+2 to obtain the estimate

‖θAB‖ j+2,δ+2 ≤ C‖ϕAB‖ j,δ,

where C only depends on j and δ.
Now, we can re-express the Laplacian �2 as

ϕAB = (�2θ)AB = −2(Á2Á2θ)AB + (Ö0â2θ)AB .
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We now want to show that (Ö0â2θ)AB vanishes (for δ < 0) or is in the image of Á2 (for
δ > 0).

By the constraint equation and commutations of the divergence and the Laplace
operator, we have

0 = (â2ϕ) = D ABϕAB = D AB (�θAB) = �
(

D ABϕAB

)
= (�0â2θ).

Hence, (â2θ) ∈ ker�0 ∩ L2
δ+1(S0).

If δ < 0, we know that ker�0 ∩ L2
δ+1(S0) only contains polynomials with degree

< 1, i.e. constants, which means that they are in the kernel of the gradient operator Ö0.
Hence,

ϕAB = −2(Á2Á2θ)AB = −(G2Á2θ)AB

and we can therefore choose ζAB = −(Á2θ)AB , and we get

‖ζAB‖ j+1,δ+1 ≤ ‖θAB‖ j+2,δ+2 ≤ C‖ϕAB‖ j,δ.

If δ > 0, we need to be more careful. Let � ≡ ker�0 ∩ L2
δ+1(S0), i.e. the set of

harmonic polynomials with degree strictly smaller than δ + 1. Then Ö0(�) ⊂ L2
δ (S2) is

also a finite dimensional space of smooth fields. Since â2Ö0 = �0, we have the following
diagram

� ⊂ ker (�0) ⊂ S0
Ö0 �� Ö0 (�) ⊂ S2

â2 �� {0} ⊂ S2

(Á2)
−1 (Ö0 (�)) ⊂ S2

Á2

�� .

Using the integrability condition stated in Proposition 3.4, and Remark 3.5, and more
specifically by

P<δ+1(S2)
Á2−→ P<δ(S2)

â2−→ P<δ−1(S0),

we can define an a priori non unique linear mapping T : Ö0(�) → S2, such that Á2T
acts as the identity on Ö0 (�). As a linear operator from the finite dimensional space
Ö0(�) ⊂ H j

δ (S2) into H j+2
δ+2 (S2) (endowed with their respective induced Sobolev norms),

T is bounded and, therefore, there exists a constant C , depending on the choice of the
mapping T, such that

‖(TÖ0â2θ)AB‖ j+1,δ+1 ≤ C‖(Ö0â2θ)AB‖ j,δ,

(Á2TÖ0â2θ)AB = (Ö0â2θ)AB .

Now, let
ζAB = −(Á2θ)AB + (TÖ0â2θ)AB .

This gives the desired relations

(G2ζ )AB = 2(Á2ζ )AB = −2(Á2Á2θ)AB + 2(Ö0â4θ)AB = ϕAB,

‖ζAB‖ j+1,δ+1 ≤ ‖θAB‖ j+2,δ+2 + C‖(Ö0â2θ)AB‖ j,δ ≤ C‖ϕAB‖ j,δ.

��
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4.2. The spin-s case.

Proposition 4.6. Let δ be in R\Z, j > 0 integer, ϕA...F in ker â2s ∩ H j
δ (S2s). Let m =

�s
, i.e. the largest integer such that m ≤ s. Then there exist a spinor field ζA...F ∈
H j+2s−1
δ+2s−1 (S2s) and a constant C depending only on δ and j such that

ϕA...F = (G2sζ )A...F ,

‖ζA...F‖ j+2s−1,δ+2s−1 ≤ C‖ϕA...F‖ j,δ.

Proof. By Remark 4.3 we see that ϕA...F is automatically orthogonal to Es,δ if δ ≥
−2s − 2. If δ < −2s − 2, we can use Lemma 4.4 to construct ζ̃A...F ∈ H j+2s−1

δ+2s−1 (S2s)

such that ϕA...F +(G2s ζ̃ )A...F ∈ ker â2s ∩ H j
δ (S2s) is orthogonal to Es,δ . The estimates in

Lemma 4.4 are of the right type, so if we can prove the proposition forϕA...F +(G2s ζ̃ )A...F
instead of ϕA...F , we are done. Without loss of generality, we can therefore for the rest
of the proof assume that ϕA...F is orthogonal to Es,δ .

Now, we will establish thatϕA...F is orthogonal to Fs,δ by using the constraint equation
and the orthogonality to Es,δ . The spinors in Fs,δ ⊂ P<−3−δ(S2s) are polynomial, so we
can use Proposition 3.4 to conclude that Fs,δ ∩ ker G2s = Fs,δ ∩ Ö2s−2(P

<−2−δ(S2s−2)).
But P<−2−δ(S2s−2) ⊂ H1−2−δ(S2s−2), so Lemma 4.1 gives that<ϕA...F , ζA...F>L2 = 0
for all ζA...F ∈ Fs,δ ∩ Ö2s−2(P

<−2−δ(S2s−2)) = Fs,δ ∩ ker G2s . By assumption ϕA...F is
orthogonal to Es,δ and therefore orthogonal to all of Fs,δ .

The operator �m
2s : H j+2m

δ+2m (S2s) → H j
δ (S2s) is formally self-adjoint and has closed

range and finite dimensional kernel – see [7,23,26] for details. By the Fredholm alter-
native, and the orthogonality, there exists a θA...F ∈ H j+2m

δ+2m (S2s) such that ϕA...F =
(�m

2sθ)A...F . Using Proposition 2.7 we can modify θA...F within the class ker�m
2s ∩

H j+2m
δ+2m (S2s) to obtain the estimate

‖θA...F‖ j+2m,δ+2m ≤ C‖ϕA...F‖ j,δ,

where C only depends on j and δ.
For integer spin we can express the �m

2s operator as

(�m
2sθ)A...F = (Ö2s−2F2s−2â2sθ)A...F − (−2)1−m(G2sÁ2sθ)A...F .

For half integer spin we can express the �m
2s operator as 2s = 2m + 1

(�m
2sθ)A...F = (Ö2s−2F2s−2â2sθ)A...F + (−2)−m(G2sθ)A...F .

We now want to show that (Ö2s−2F2s−2â2sθ)A...F vanishes (for δ < 0) or is in the
image of G2s (for δ > 0).

By the constraint equation and the fact that the divergence and the Laplace operator
commute, we have

0 = (â2sϕ)C ...F = D ABϕA...F = D AB (
�m

2sθA...F
) = �m

2s−2

(
D ABϕA...F

)

= (�m
2s−2â2sθ)C ...F .

Hence, (â2sθ)C ...F is in ker�m
2s−2 ∩ L2

δ+2m−1(S2s−2).
If δ < 0, we know that fields in ker�m

2s−2 ∩ L2
δ+2m−1(S2s−2) are in P<2m−1(S2s−2),

i.e. they are spanned by constant spinors times polynomials with maximal degree 2m −
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2. They therefore belong to the kernel of the homogeneous order 2m − 1 operator
Ö2s−2F2s−2. Hence, (Ö2s−2F2s−2â2sθ)A...F = 0 and we get

ϕA...F = −(−2)1−m(G2sÁ2sθ)A...F ,

for integer spin, and
ϕA...F = (−2)−m(G2sθ)A...F ,

for half integer spin. For integer spin we can therefore choose ζA...F = −(−2)1−m

(Á2sθ)A...F , and we get

‖ζA...F‖ j+2s−1,δ+2s−1 ≤ C‖θA...F‖ j+2m,δ+2m ≤ C‖ϕA...F‖ j,δ.

For half integer spin we can choose ζA...F = (−2)−mθA...F , and we get

‖ζA...F‖ j+2s−1,δ+2s−1 = (−2)−m‖θA...F‖ j+2m,δ+2m ≤ C‖ϕA...F‖ j,δ.

If δ > 0, we need to be more careful. Let� ≡ ker(�m
2s−2)∩im(â2s)∩L2

δ+2m−1(S2s−2).
We know that it is a finite dimensional space of polynomial fields. Ö2s−2F2s−2(�) ⊂
L2
δ (S2s) is therefore also a finite dimensional space in P<δ(S2s).

Using the relations (2.1), (2.2a) and (2.2b), we get

�m
2s−2â2s = â2s�

m
2s = â2s Ö2s−2F2s−2â2s .

Consequently, on � ⊂ im(â2s), the relation

â2s Ö2s−2F2s−2
∣∣
�

= �m
2s

∣∣
�

= 0,

holds. The relations between the considered operators can be summarized by

� ⊂ ker
(
�m

2s−2

) ⊂ S2s−2
Ö2s−2F2s−2 �� Ö2s−2F2s−2 (�) ⊂ S2s

â2s �� {0} ⊂ S2s−2

(G2s)
−1 (Ö2s−2F2s−2 (�)) ⊂ S2s

G2s

�� .

Using the integrability condition stated by the exact sequence in Proposition 3.4 applied
to polynomials (cf. Remark 3.5), and more specifically

P<δ+2s−1(S2s)
G2s−→ P<δ(S2s)

â2s−→ P<δ−1(S2s−2),

we can define an a priori non unique linear mapping T : Ö2s−2F2s−2 (�) → S2s such
that G2sT is the identity operator on Ö2s−2F2s−2(�). As a linear operator on the finite
dimensional space Ö2s−2F2s−2(�) ⊂ H j

δ (S2s) into H j+2s−1
δ+2s−1 (S2s) (endowed with their

respective induced Sobolev norms), T is bounded and, therefore, there exists a constant
C , depending on the choice of the operator T, such that

‖(TÖ2s−2F2s−2â2sθ)A...F‖ j+2s−1,δ+2s−1 ≤ C‖(Ö2s−2F2s−2â2sθ)A...F‖ j,δ,

(G2sTÖ2s−2F2s−2â2sθ)A...F = (Ö2s−2F2s−2â2sθ)A...F .

Now, for integer spin we can therefore choose

ζA...F = (TÖ2s−2F2s−2â2sθ)A...F − (−2)1−m(Á2sθ)A...F .
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This gives the desired relations

(G2sζ )A...F = (Ö2s−2F2s−2â2sθ)A...F − (−2)1−m(G2sÁ2sθ)A...F

= (�m
2sθ)A...F = ϕA...F ,

‖ζA...F‖ j+2s−1,δ+2s−1 ≤ C(‖θA...F‖ j+2m,δ+2m + ‖(Ö2s−2F2s−2â2sθ)A...F‖ j,δ)

≤ C‖ϕA...F‖ j,δ.

For half integer spin, we can choose

ζA...F = (TÖ2s−2F2s−2â2sθ)A...F + (−2)−mθA...F .

This gives the desired relations

(G2sζ )A...F = (Ö2s−2F2s−2â2sθ)A...F + (−2)−m(G2sθ)A...F

= (�m
2sθ)A...F = ϕA...F ,

‖ζA...F‖ j+2s−1,δ+2s−1 ≤ C(‖θA...F‖ j+2m,δ+2m + ‖(Ö2s−2F2s−2â2sθ)A...F‖ j,δ)

≤ C‖ϕA...F‖ j,δ.

��

5. Estimates for Solutions of the Scalar Wave Equation with Initial Data with
Arbitrary Weight

This section contains complementary results for the study of the decay of the solution of
the wave equation for the Cauchy problem, such as the one stated in [18,19] (using the
vector field method), in [1] (using the integral representation), and [11] (using Strichartz
estimates). The purpose is to relate the asymptotic behavior of the initial data at i0 to
the asymptotic behavior in the future region t ≥ 0.

It is important to remark that these decay results for the wave equation require differ-
ing regularity assumptions on the initial data ( f, g). In all the above mentioned results,
the limiting factor is the use of the Sobolev embedding from H2 into L∞, and more
precisely the way it is used. If the Sobolev embedding is used at the level of both f and
g, we need ( f, g) ∈ H j

δ × H j−1
δ−1 for j ≥ 3. This phenomenon occurs for instance in

the work of Asakura [1], who relies on the integral representation of solutions. Energy
methods can be used to give a result with weaker regularity assumtions. The Klainerman-
Sobolev inequality [20, Theorem 1] yields a decay estimate with weight δ = −3/2 for
j = 2. Further, using the conformal compactification of Minkowski space to a subset of
the Einstein cylinder, and the conformal transformation properties of the wave equation,
gives using standard estimates for the wave equation in the Einstein cylinder the decay
result for δ = −2 and j = 2, cf. [16, Section 6.7]. It appears to be an open problem to
prove the corresponding decay result with j = 2 for general weight δ.
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In this section we shall prove estimates for general weights δ. Although, for δ > 0,
these are not actually decay estimates, it will be convenient to refer to them using this
term. It goes without saying that the most important applications are those with δ < 0.
In the following, we shall consider the Cauchy problem

⎧
⎨

⎩

�φ = 0,
φ|t=0 = f ∈ H j

δ (R
3,C),

∂tφ|t=0 = g ∈ H j−1
δ−1 (R

3,C).

(5.1)

The following representation formula then holds ([12] on flat space-time or [14,
Theorem 5.3.3] for arbitrary curved background).

Lemma 5.1. The solution of the Cauchy problem (5.1) is given by the representation
formula

φ(t, x) = 1

4π

( ∫

S2
t (g(x + tω) + ∂ω f (x + tω)) + f (x + tω)dμS2

)
,

where S
2 is the unit 2-sphere and ∂ω is the derivative in the unit outer normal direction

ω to S
2.

Making use of the representation formula stated in Lemma 5.1, and of Proposition 2.6,
gives the following result.

Proposition 5.2. Let j ≥ 3 and δ in R, and let φ be a solution to the Cauchy problem
(5.1). The following inequality holds in the region t > 0.

|φ(t, x)| ≤ C
(‖ f ‖3,δ + ‖g‖2,δ−1

)

⎧
⎪⎪⎨

⎪⎪⎩

<v>−1<u>1+δ if δ < −1,
log<v>− log<u>

<v>−<u>
if δ = −1,

<v>δ if δ > −1.

If, furthermore, (k, l,m) is a triple of non-negative integers, j ≥ 3 + k + l + m, the
following pointwise inequality holds, for all t > 0 and r > 1,

|∂k
v ∂

l
u /∇m

φ| ≤ C
(‖ f ‖3+k+l+m,δ + ‖g‖2+k+l+m,δ−1

)

⎧
⎪⎪⎨

⎪⎪⎩

<u>1+δ−l<v>−1−k−m if δ < l − 1
log<v>− log<u>

<v>l+m (<v>−<u>)
if δ = l − 1

<v>δ−l−m−k if δ > l − 1,

where ∂v = 1
2 (∂t + ∂r ) and ∂u = 1

2 (∂t − ∂r ) are respectively the outgoing and ingoing
null directions.

Remark 5.3. (1) For δ = −1, it is important to notice that the following inequalities
hold

log<v>− log<u>

<v>−<u>
≤ 1

<u>
and

log<v>− log<u>

<v>−<u>
≤ C

log<v>

<v>
.

As a consequence, in the interior region t > 3r , the decay result for φ is

|φ(t, x)| ≤ C̃

<v>
,
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and, in the exterior region 3r > t > r
3 ,

|φ(t, x)| ≤ C̃
log<v>

<v>
.

The constant C̃ depends on the norms of f and g as above.
(2) It is important to note that, in the interior region, <u> and <v> are equivalent,

and, as a consequence, the general estimate holds, for all weight δ:

|∂k
v ∂

l
u /∇m

φ| ≤ C̃<v>δ−l−m−k .

For the proof we will need some integral estimates.

Lemma 5.4. For any δ in R, we have the following integral estimates, for all t > 0 and
x in R

3,
∫

S2
<|x + tω|>δdμS2 ≤ 8π max

(
1,

1

|2 + δ|
)

max
(
<u>δ+2,<v>δ+2

)

<v> (<u> +<v>)
for δ �= −2

and

∫

S2
<|x + tω|>δdμS2 = 8π

log
(<u>

<v>

)

(<u>2 −<v>2)
for δ = −2

Remark 5.5. (1) For δ �= −2, the upper bounds become lower bounds if one replaces
max(1, 1

|2+δ| ) by min(1, 1
|2+δ| ).

(2) It is important to notice that, for δ ∈ (−2,−1], the estimate
∫

S2
<|x + tω|>δdμS2 ≤ C<v>δ

is stronger than
∫

S2
<|x + tω|>δdμS2 ≤ C

<u>1+δ

<v>

since

<v>δ = <u>1+δ<v>−1<v>δ+1<u>−(1+δ) ≤ <u>1+δ<v>−1

(since δ + 1 < 0). It should also be noted that this result agrees with the estimate
stated by Asakura in [1]. His assumptions on the initial data

f = O(<r>δ), g = O(<r>δ),

as well as their derivatives, implies that the integral
∫
S2<|x + tω|>δdμS2 gives the

asymptotic behavior of the solutions of the linear wave equation.

Proof. Let (t, x) be fixed and consider the sphere S(x, t) with center x and radius t . Let
q be a point on the sphere S(x, t). The coordinates of q are then given by (θ, φ) defined
by:

• in the 2-plane containing the origin o, the point x and q, θ is the oriented angle

θ = ( �xo, �xq) ∈ (0, π);
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• in the plane orthogonal to �ox and passing through x , one chooses a direction of
origin. The direction of the orthogonal projection of �xq on this plane is labeled by
an angle φ belonging to (0, 2π).

The integral can now be rewritten as
∫

S2
<|x + tω|>δdμS2 =

∫ 2π

0

∫ π

0
(1 + r2 + t2 − 2tr cos θ)δ/2 sin θdθdφ

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

8π
<u>2+δ−<v>2+δ

(2+δ)(<u>2 −<v>2)
if δ �=−2 and <u> �=<v>,

8π
log

(
<u>
<v>

)

(<u>2−<v>2)
if δ=−2 and <u> �=<v>,

4π<v>δ if <u> = <v>.

We note that <u> and <v> always satisfy

• <u> ≥ 1 and <v> ≥ 1;
• for t ≥ 0,<u> ≤ <v>.

Let Fκ denote the function defined, for κ ≥ 0 and z in (0, 1],

Fκ(z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 − zκ

κ(1 − z)
if κ > 0 and z �= 1,

− log z

1 − z
if κ = 0 and z �= 1,

1 if z = 1.

For κ > 0, Fκ is a continuous monotonic non-negative function on (0, 1]. It is bounded
from above by Cκ = max(1, κ−1) and from below by cκ = min(1, κ−1) on (0, 1]. For
all δ, the following identities hold,

<u>2+δ −<v>2+δ

(2 + δ)(<u>2 −<v>2)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

<u>δ+2

<v> (<v> +<u>)
F−δ−2

(<u>

<v>

)
if δ + 2 < 0.

<v>δ+1

<v> +<u>
Fδ+2

(<u>

<v>

)
if δ + 2 ≥ 0.

Using the bounds on Fκ , one gets

<u>2+δ −<v>2+δ

(2 + δ)(<u>2 −<v>2)
≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C−δ−2
<u>δ+2

<v> (<v> +<u>)
if δ < −2

Cδ+2
<v>δ+1

<v> +<u>
if δ > −2,

and

<u>2+δ −<v>2+δ

(2 + δ)(<u>2 −<v>2)
≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c−δ−2
<u>δ+2

<v> (<v> +<u>)
if δ < −2

cδ+2
<v>δ+1

<v> +<u>
if δ > −2.

��
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Remark 5.6. These inequalities actually provide us with global estimates for the solution
of the wave equation, that is to say inequalities valid both on the exterior and the interior
regions.

Proof of Proposition 5.2. Using Proposition 2.6, one knows that if f ∈ H j
δ , g ∈ H j−1

δ−1 ,

j ≥ 2 + n and j ≥ 3 + m, there is constant C such that

|Dn f (y)| ≤ C<y>δ−n‖ f ‖2+n,δ

|Dm g(y)| ≤ C<y>δ−1−m‖g‖2+m,δ−1.

Using the representation formula stated in Lemma 5.1, one gets immediately

|φ(t, x)| ≤ C
(‖ f ‖3,δ + ‖g‖2,δ−1

) ∫

S2

(
<|x + tω|>δ + t<|x + tω|>δ−1

)
dμS2 .

We can use the estimate t ≤ (<u>2 + <v>2)1/2 and Lemma 5.4 to obtain global
estimates for solutions of the wave equation. We compare the contributions from f in
H j
δ and g in H j−1

δ−1 in the following table. Its first column is the range of weights δ
considered. The second column contains the asymptotic behavior of

∫

S2
<|x + tω|>δdμS2

coming from f in H j
δ . The third column gives the behaviour of

∫

S2
t<|x + tω|>δ−1dμS2

coming from ∂ f and g in H j−1
δ−1 . The estimates stated in these columns are written in such

a way that the first factor gives the estimate which is multiplied by bounded quantities,
except when considering logarithmic terms. Finally, the last column gives the estimate
for the full solution of the wave equation obtained by summing the previous integrals.
We use the function F0 defined by

F0(z) = − log(z)

1 − z
which satisfies F0(z) ≤ z−1 for all 0 ≤ z ≤ 1.

f t (∂ω f + g) f + t∂ω f + tg

δ < −2
<u>δ+1

<v>
· <u>

(<v> +<u>)

<u>δ+1

<v>
· t

<v> +<u>

<u>δ+1

<v>

δ = −2
1

<u> +<v>
· F0

(
<u>
<v>

)

<v>

1

<u><v>
· t

(<v> +<u>)

<u>δ+1

<v>

δ = −1 <v>δ · <v>

<v> +<u>

F0
(
<u>
<v>

)

<v>
· t

<u> +<v>

F0
(
<u>
<v>

)

<v>

−2 < δ < −1 <v>δ · <v>

<v> +<u>

<u>δ+1

<v>
· t

(<v> +<u>)

<u>δ+1

<v>

δ > −1 <v>δ · <v>

<v> +<u>
<v>δ · t

<v> +<u>
<v>δ
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As a consequence, the following pointwise estimate holds for φ: for all t ≥ 0 and x
in R

3,

|φ(t, x)| ≤ C
(‖ f ‖3,δ + ‖g‖2,δ−1

)

⎧
⎪⎪⎨

⎪⎪⎩

<v>−1<u>1+δ for δ < −1
log<v>− log<u>

<v>−<u>
for δ = −1

<v>δ for δ > −1

. (5.2)

The same process can be applied to the derivatives of φ in the direction of u and v.
The integral representations of the derivatives are then

∂vφ(t, x) = 1

8π

∫

S2

(
t (∂r g(x + tω) + ∂ωg(x + tω)) + g(x + tω)

+t
(
∂r∂ω f (x + tω) + ∂2

ω f (x + tω)
)

+ ∂r f (x + tω) + 2∂ω f (x + tω)
)
dμS2 ,

∂uφ(t, x) = 1

8π

∫

S2

(
t (−∂r g(x + tω) + ∂ωg(x + tω)) + g(x + tω)

+t
(
−∂r∂ω f (x + tω) + ∂2

ω f (x+tω)
)

−∂r f (x+tω)+2∂ω f (x+tω)
)
dμS2 .

Using Sobolev embeddings, one gets immediately

|∂vφ(t, x)| ≤ C
(‖ f ‖4,δ + ‖g‖3,δ−1

) ∫

S2

(
<|x + tω|>δ−1 + t<|x + tω|>δ−2

)
dμS2 ,

|∂uφ(t, x)| ≤ C
(‖ f ‖4,δ + ‖g‖3,δ−1

) ∫

S2

(
<|x + tω|>δ−1 + t<|x + tω|>δ−2

)
dμS2 .

Again using Lemma 5.4 and the same comparison procedure as in the previous table,
one gets that, for all t > 0 and x in R

3,

max (|∂vφ(t, x)|, |∂uφ(t, x)|) ≤ C
(‖ f ‖4,δ + ‖g‖3,δ−1

)

⎧
⎪⎪⎨

⎪⎪⎩

<v>−1<u>δ for δ < 0
log<v>− log<u>

<v>−<u>
for δ = 0

<v>δ−1 for δ > 0

.

(5.3)

Using these results, one can now refine the estimates for the derivatives of the func-
tion φ, using the commutators properties of the wave equation with the vector fields
generating the symmetries of the metric. Introducing

S = u∂u + v∂v which satisfies [S,�] = −2�,
the function Sφ satisfies the Cauchy problem for the linear wave equation

⎧
⎨

⎩

� (Sφ) = 0
Sφ|t=0 ∈ H j−1

δ (R3)

∂t Sφ|t=0 ∈ H j−2
δ−1 (R

3).

As a consequence, one can apply the decay results (5.2) and(5.3) to Sφ. This gives

|Sφ(t, x)| ≤ C
(‖ f ‖4,δ + ‖g‖3,δ−1

)
⎧
⎪⎨

⎪⎩

<v>−1<u>1+δ for δ < −1

(<v>−<u>)−1 (log<v>− log<u>) for δ = −1

<v>δ for δ > −1

.
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To get the full decay result, we need to compare carefully the decay for Sφ, and the
decay for ∂uφ to get the full decay result for ∂vφ. We follow the same procedure as
above to compare the decay of these terms in a table using

|u| ≤ <u>, v ≤ <v>, and, for all r > 1,
∣∣∣
u

v

∣∣∣ ≤ C
<u>

<v>
≤ C.

Sφ
v

u
v
∂uφ ∂vφ

δ < −1
<u>δ+1

<v>
· 1

v

<u>δ

<v>
· u

v

<u>δ+1

<v>2

δ = −1
1

v

F0
(
<u>
<v>

)

<v>

1

<u><v>
· u

v

F0
(
<u>
<v>

)

<v>2

−1 < δ < 0
<v>δ

v

<u>δ

<v>
· u

v
<v>δ−1

δ = 0
<v>δ

v

u

v
· F0

(
<u>
<v>

)

<v>
<v>δ−1

δ > 0
<v>δ

v

u<v>δ−1

v
<v>δ−1

This consequently gives the following

|∂vφ(t, x)| ≤ C
(‖ f ‖4,δ + ‖g‖3,δ−1

)

⎧
⎪⎪⎨

⎪⎪⎩

<v>−2<u>δ+1 if δ < −1,
1

<v>

log<v>− log<u>

<v>−<u>
if δ = −1,

<v>δ−1 if δ > −1.

Finally, the fact that � commutes with the generators of SO(3),

xi∂ j − x j∂i ,

can be used to obtain, for t > 0 and r > 1,

| /∇φ| ≤ C
(‖ f ‖4,δ + ‖g‖3,δ−1

)

⎧
⎪⎪⎨

⎪⎪⎩

<v>−2<u>δ+1 if δ < −1,
1

<v>

log<v>− log<u>

<v>−<u>
if δ = −1,

<v>δ−1 if δ > −1.

The proof is completed by a recursion over the number of derivatives, which is not
written here in detail. ��
Remark 5.7. (1) The derivatives ∂u and ∂v, /∇ play different roles when considering the

full scale of weights. This difference is at the origin of the failure of the peeling
property for higher spin fields when the rate of decay at i0 of the initial data is too
low.

(2) This difference between derivatives can be explained by considering the derivatives
of the fundamental solution of the wave equation.
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6. Estimates for Spinor Fields Represented by Potentials

Penrose, in his original paper on zero-rest mass fields [29], proved the following two
results:

• the existence for analytic massless fields of arbitrary spin of representation of the form

φA...F = ξ A′
1 . . . ξ F ′

2s ∇AA′ . . .∇F F ′χ,

where the ξ A′
are constant spinors and χ is a complex function satisfying the wave

equation

�χ = 0.

• from a decay ansatz for χ along outgoing null light rays, he deduced the full peeling
result for the considered field.

The purpose of this section is to give a similar result for massless field admitting a
potential of the form considered by Penrose. The decay result for the solution of the
wave equation which is used in this section is given by Proposition 5.2.

6.1. Geometric background and preliminary lemmata. The geometric framework and
notations are introduced in this section. The geometric background is the Minkowski
space-time. We consider on this space time the normalized null tetrad defined by

la = √
2∂v = 1√

2

(
∂

∂t
+
∂

∂r

)
, ma = 1

r
√

2

(
∂

∂θ
+

i

sin θ

∂

∂ϕ

)
,

na = √
2∂u = 1√

2

(
∂

∂t
− ∂

∂r

)
, ma = 1

r
√

2

(
∂

∂θ
− i

sin θ

∂

∂ϕ

)
,

so that lana = 1 and mama = −1, and the plane spanned by la, na is orthogonal to
that spanned by ma,ma . The derivatives in the directions la, na,ma,ma are denoted by
D, D′, δ, δ′ respectively. Consider finally a spin basis (oA, ιA) arising from this tetrad,
i.e.,

la = oAoA′
, ma = oAιA

′
,

na = ιAιA
′
, ma = ιAoA′

.

This basis satisfies

DoA = 0, DιA = 0, (6.1a)

D′oA = 0, D′ιA = 0, (6.1b)

δoA = cot θ

2r
√

2
oA, διA = − cot θ

2r
√

2
ιA − 1

r
√

2
oA, (6.1c)

δ′oA = − cot θ

2r
√

2
oA +

ιA

r
√

2
, δ′ιA = cot θ

2r
√

2
ιA. (6.1d)
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Lemma 6.1 (Commutators). The following commutator relations hold:

• D and D′ commute.
• consider the gradient /∇ on the sphere of radius r ,

/∇ = −mδ − mδ′,

then, for any positive integer k,

/∇k D = D /∇k +
k

r
√

2
/∇k
,

/∇k D′ = D′ /∇k − k

r
√

2
/∇k
,

where /∇k is the k-th power of the operator /∇.

Remark 6.2. One can directly infer from this lemma that the operator r /∇ commutes with
D and D′.

Proof. The proof follows directly from the commutator relations

δD = Dδ +
1

r
√

2
δ, δD′ = Dδ − 1

r
√

2
δ,

and their complex conjugates, and on

Dma = D′ma = 0,

and their complex conjugates. ��
Lemma 6.3 (Asymptotic behavior of the decomposition of a constant spinor). Let ξ A

be a constant spinor over M and consider its decomposition over the basis (oA, ιA):

ξ A = αoA + βιA.

Then, for any integer n,∇nα and ∇nβ are smooth bounded functions on M\{R ×
B(0, 1)}. Furthermore, considering the derivatives in the null directions, the following
estimates hold for θ ∈ [c, π − c] (c > 0):

Dα = D′α = 0, Dβ = D′β = 0

|δnα| ≤ C

rn
, |δnβ| ≤ C

rn
,

|δ′nα| ≤ C

rn
, |δ′nβ| ≤ C

rn
.

Proof. To prove that α and β are bounded functions, it suffices to consider the decom-
position of the real vector field ξ Aξ A′

in Cartesian coordinates. The time component of
the vector field is |α2| + |β|2 and it is constant. As a consequence, α and β are smooth
bounded functions.

The second step consists in calculating the derivatives of the components in ξ A. Since
oA and ιA are constant along outgoing and ingoing null rays, the following identities
hold:

Dα = D′β = Dα = D′β = 0.
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For the angular derivatives, we have:
(
δα + α

cot θ

2r
√

2
− β

r
√

2

)
oA +

(
δβ − β

cot θ

2r
√

2

)
ιA = 0,

(
δ′α − α

cot θ

2r
√

2

)
oA +

(
δ′β + β

cot θ

2r
√

2
+

α

r
√

2

)
ιA = 0.

An induction using these recursive relations gives the desired results. ��

6.2. Proof of the decay result. We consider in this section a spin-s field represented as

φA...F = ξ A′
1 . . . ξ F ′

2s ∇AA′ . . .∇F F ′χ, (6.2)

where χ is a complex scalar Hertz potential satisfying the wave equation

�χ = 0,

and ξ A′
1 , . . . , ξ

F ′
2s are constants spinors.

The purpose of this section is to give a result which is similar to the one obtained
for the wave (or spin-0) equation in order to retrieve similar decay estimates as in the
pioneering work of Christodoulou-Klainerman [9].

Proposition 6.4 (Decay estimates for arbitrary spin). Let (k, l,m) be a triple of non-
negative integers and denote by n their sum. We assume that the Hertz potential is a
solution of the Cauchy problem, for j > 2 + 2s + n and δ /∈ Z

⎧
⎨

⎩

�χ = 0,
χ |t=0 ∈ H j

δ (R
3,C),

∂tχ |t=0 ∈ H j−1
δ−1 (R

3,C).

The norm of the initial data is denoted by I j,δ ,

I j,δ = ‖χ |t=0‖ j,δ + ‖∂tχ |t=0‖ j−1,δ−1

Then, the following inequalities hold, for all i in {0, . . . , 2s}:
(1) for any t ≥ 0, x ∈ R

3, such that t > 3r , that is to say in the interior region,

|∇nφA...F | ≤ c<t>δ−2s−n In+2s+3,δ,

(2) for i such that 1 + δ− l − i < 0, for any t ≥ 0, x ∈ R
3, such that 3r > t > r

3 , that
is to say in the exterior region,

|Dk D′l /∇m
φi | ≤ c<u>1+δ−i−l

<v>1+2s−i+k+m
In+2s+3,δ,

(3) for i such that 1 + δ− l − i > 0, for any t ≥ 0, x ∈ R
3, such that 3r > t > r

3 , that
is to say in the exterior region,

|Dk D′l /∇m
φi | ≤ c<v>δ−2s−l−k−m In+2s+3,δ.
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Remark 6.5. (1) For the spin-1 case with δ = −1/2, that is to say for initial data for the
Maxwell fields lying in H−5/2, which is the case considered in [9], one recovers the
decay result stated in that paper. For the spin-2 case with δ = 1/2, that is to say for
initial data in H−7/2, which is the case considered by Christodoulou-Klainerman,
their results are recovered. We need slightly higher regularity though, due to our
estimates for the wave equation.

(2) It should be noted that in the case when the potential does not decay enough (for
δ > −2s−2), the decay rates of some components of the field cannot distinguished,
and hence the peeling property fails to hold.

(3) The estimates stated in Proposition 5.2 hold for all weights δ in R. This would
in principle allow us to deal with all weights for the initial data of the Hertz po-
tential. However, our result concerning the representation of massless free fields,
cf. Proposition 4.6, does not cover integer weights. An extension of that result to
general weights would require working in terms of weighted Sobolev spaces with
logarithmic weight functions throughout the paper, and for this reason we chose to
omit integer δ from consideration.

(4) The peeling result obtained by Penrose [29] depends on the assumption that the
Hertz potential decays as χ ∼ 1/r where r is a parameter along the outgoing null
rays. For such a decay result to hold, the initial data for the potential have to lie
in Hδ with δ < −1. The peeling result by Mason-Nicolas [25], which holds for
the spins 1/2 and 1 on the Schwarzschild space-time, is for initial data lying in a
Sobolev space whose weights are not equally distributed on the components.

Proof. The proof is made by induction on the spin. The result for the spin-0 case is
exactly the one obtained for the wave equation and is the base step of the induction.

We now make the following induction hypothesis for spin-s, with s ∈ 1
2 N0: for any

triple (k, l,m), and for any spin-s field represented by

ψ A...F︸︷︷︸
2s indices

= ξ A′
1 . . . ξ F ′

2s ∇AA′ . . .∇F F ′χ,

where χ is a potential whose initial data lie in H j
δ (R

3,C) × H j−1
δ−1 (R

3,C), for j >
2 + 2s + n with n = k + l + m, the estimates stated in the theorem hold.

Let now (k, l,m) be a triple of non-negative integers and consider a spin-(s + 1/2)
field written

φ A...FG︸ ︷︷ ︸
2s+1 indices

= ξ A′
1 . . . ξG ′

2s+1∇AA′ . . .∇GG ′χ,

whereχ is a potential whose initial data are in H j
δ (R

3,C)×H j−1
δ−1 (R

3,C) ( j > 3+2s+n).
Consequently, the induction hypothesis is satisfied for the spin-s field

ψ B...G︸︷︷︸
2s indices

= ξ B′
2 . . . ξG ′

2s+1∇B B′ . . .∇GG ′χ,

with the same χ whose initial data also lies in H p
δ (R

3) × H p−1
δ−1 (R

3)

(p = j − 1 > 2 + 2s + n). It remains then to prove that

φA...G = ξ A′∇AA′ψB...G

satisfies the appropriate decay result.
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We first consider the interior decay. The result trivially follows from the interior decay
result for the wave equation stated in Proposition 5.2 and Remark 5.3. As a consequence,
the following relation holds:

|∇nφA...G | = |ξ A′∇AA′
(∇nψB...G

) |,

which is a derivative of order n + 1 of a spinor field of valence 2s which satisfies the
induction hypothesis. As a consequence, the following decay result is immediate, in the
interior region 3t ≤ r :

|∇nφA...F | ≤ C
In+2s+3,δ

<t>−δ+2s+n+1 ,

where C is a constant depending on n and s. This closes the induction for the part
concerning the interior decay.

Now we consider the problem of the exterior decay, that is to say the decay in the
neighborhood of an outgoing light cone:

r

3
≤ t ≤ 3r ⇔ |t − r | ≤ 1

2
|t + r | . (6.3)

Recall that the components of the spinor ψB...F are defined by

ψi = ιB . . . ιC︸ ︷︷ ︸
i

oD . . . oG
︸ ︷︷ ︸

2s−i

ψB...G .

The proof in this region is done by induction as in the first part of the proof. Let (k, l,m)
be a given triple of non negative integers and denote by n their sum. The induction
hypothesis is written as follows for spin-s:

For any spinor field of valence 2sψB...G satisfying:

ψB...G = ξ B′
2 . . . ξG ′

2s+1∇B B′ . . .∇GG ′χ

where χ is a complex scalar solution of the massless wave equation whose initial
data lies in H j

δ (R
3,C) × H j−1

δ−1 (R
3,C) ( j > 3 + 2s + n), the following decay

results holds, in the exterior region t
3 ≤ r ≤ 3t , for all integer k, l,m:

• for i such that 1 + δ − l − i < 0:

|Dk D′l /∇m
ψi | ≤ c<u>δ+1−i−l

<v>1+2s−i+k+m
In+2s+3,δ.

• for i such that 1 + δ − l − i > 0:

|Dk D′l /∇m
ψi | ≤ C<v>δ−2s−l−k−m In+2s+3,δ,

where the constant C depends on the bounds of the exterior domain and the
integers k, l,m.
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There is no need to prove the initial step since it is exactly the result for the stan-
dard wave equation. Assume that the induction hypothesis holds for spin-s in 1

2 N0 and
consider the field φA...G of spin-(s + 1/2) written as:

φA...G = ξ A′
1 . . . ξG ′

2s+1∇AA′ . . .∇GG ′χ

where χ is a complex scalar solution of the massless wave equation whose initial data
lies in H j

δ (R
3,C)× H j−1

δ+1 (R
3,C) ( j > 2 + 2s + n). As a consequence, the spinor:

ψB...G = ξ B′
2 . . . ξG ′

2s+1∇B B′ . . .∇GG ′χ

is a spinor field of valence s satisfying the requirements of the induction assumption.
To insure the proof of the induction assumption, a relation between the components

of φA...F and the components of the field ψB...G have to established. The components of
these fields are related by the following Lemma.

Lemma 6.6. Let s ∈ 1
2 N0. The components of φA...G of spin-(s + 1/2) and ψB...G of

spin-s, related by

φA...G = ξ A′∇AA′ψB...G where ξ A′ = αoA′
+ βi A′

are given by the following relations:

φ0 = αDψ0 + βδψ0 − sβ
cot θ

r
√

2
ψ0, (6.4)

φi = αδ′ψi−1 + βD′ψi−1 +
α

r
√

2

(
(s + 1 − i) cot θψi−1 − (2s + 1 − i)ψi

)
, (6.5)

for i > 0.

Proof. The proof is carried out by using relations (6.1) and is a basic calculation. We
have

φ0 = oA . . . oGφA...G,

= oA . . . oGξ A′∇AA′ψB...G ,

= αoB . . . oG DψB...G + βoB . . . oGδψB...G .

Since DoA = 0 and δoA = cot θ
2r

√
2

oA, we have

oB . . . oGδψB...G = δψ0 − 2s
cot θ

2r
√

2
ψ0,

and hence

φ0 = αDψ0 + βδψ0 − sβ
cot θ

r
√

2
ψ0.

Consider now i > 0 fixed; we have

φi = ιA . . . ιC︸ ︷︷ ︸
i times

oD . . . oG
︸ ︷︷ ︸

2s+1−i

φA...G

= α ιB . . . ιC︸ ︷︷ ︸
i−1

oD . . . oG
︸ ︷︷ ︸

2s+1−i

δ′ψB...G + β ιB . . . ιC︸ ︷︷ ︸
i−1

oD . . . oG
︸ ︷︷ ︸

2s+1−i

D′ψB...G .
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Since δ′oA = − cot θ
2r

√
2

oA + ιA

r
√

2
and δ′ιA = cot θ

2r
√

2
ιA we have

ιB . . . ιC︸ ︷︷ ︸
i−1

oD . . . oG
︸ ︷︷ ︸

2s+1−i

δ′ψB...G = δ′ψi−1 − (i − 1)

⎛

⎝ cot θ

2r
√

2
ιB . . . ιC︸ ︷︷ ︸

i−1

oD . . . oG
︸ ︷︷ ︸

2s+1−i

ψB...G

⎞

⎠

− (2s + 1 − i)

⎛

⎝− cot θ

2r
√

2
ιB . . . ιC︸ ︷︷ ︸

i−1

oD . . . oG
︸ ︷︷ ︸

2s+1−i

ψB...G

+
1

r
√

2
ιB . . . ιC︸ ︷︷ ︸

i

oD . . . oG
︸ ︷︷ ︸

2s−i

ψB...G

⎞

⎠ .

Consequently, by the relations D′ιA = D′oA = 0, we get (6.5). ��
Using Lemma 6.6, the proof of Proposition 6.4 can be continued. The two cases

(i = 0 and i > 0) are treated separately although the method is the same. Here we
present the case i = 0, the other case follows similarly.

The expression of the derivative Dk D′l /∇m
φ0 is calculated explicitly, one derivative

at a time, using the Leibniz rule:

/∇m
φ0 =

m∑

a=0

(
a

m

)
/∇a
α /∇m−a Dψ0 +

m∑

a=0

(
a

m

)
/∇a
β /∇m−a

δψ0

−2s
∑

a+b+c=m

m!
a!b!c!

(
∂b
θ (cot θ)

2
√

2rb+1

)
/∇a
β∂b

θ
/∇c
ψ0

since

/∇b cot θ = 1

rb

∂b cot θ

∂θb
∂b
θ ,

the power on the vector field have to be understood as a symmetric tensor product.
We then apply simultaneously the derivatives D and D′, using the Leibniz rule again.

Notice first that /∇a
α and /∇a

β depend on r but ra /∇a
α and ra /∇a

β do not, since both α
and β are independent both of time and radius, and r /∇ commutes with D and D′ (cf.
Remark 6.2). We have

Dk D′l /∇m
φ0

=
k∑

d=0

l∑

e=0

m∑

a=0

[(
d

k

)(
e

l

)(
a

m

) (
ra /∇a

α
) (
(−1)d Ad+e

a+d+e

)]{Dk−d D′l−e /∇m−a Dψ0

ra+d+e

}

+
k∑

d=0

l∑

e=0

m∑

a=0

[(
d

k

)(
e

l

)(
a

m

) (
ra /∇a

β
) (
(−1)d Ad+e

a+d+e

)]{Dk−d D′l−e /∇m−a
δψ0

ra+d+e

}

+2s
k∑

d=0

l∑

e=0

∑

a+b+c=m

[(
d

k

)(
e

l

)
m!∂b

θ (cot θ)

2
√

2a!b!c!
(
ra /∇a

β
) (
(−1)d Ad+e

1+a+d+e

)]

×
{

Dk−d D′l−e /∇c
ψ0

r1+a+b+d+e

}
,
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where

An
m = n!

(m − 1)! .

The factors in the square brackets are clearly bounded provided that θ lies in [c, π − c]
for a given (arbitrarily small) positive constant c. The singularity of the tetrad at the axis
θ = ±π prevents from covering the entire interval [0, π ]. The problem can be easily
solved by considering another tetrad associated to another spherical coordinate system.
There exists consequently a constant C depending on the spin, the L∞-bounds on the
coefficients of the spinor field ξ A′

and their derivatives, such that

|Dk D′l /∇m
φ0| ≤ C

(
k∑

d=0

l∑

e=0

m∑

a=0

∣∣∣∣∣
Dk−d D′l−e /∇m−a Dψ0

ra+d+e

∣∣∣∣∣

+
k∑

d=0

l∑

e=0

m∑

a=0

∣∣∣∣∣
Dk−d D′l−e /∇m−a

δψ0

ra+d+e

∣∣∣∣∣

+
k∑

d=0

l∑

e=0

∑

a+b+c=m

∣∣∣∣
Dk−d D′l−e /∇c

ψ0

r1+a+b+d+e

∣∣∣∣

)
. (6.6)

Each of these terms is treated separately.
The first term can be transformed to fit the induction hypothesis using Lemma 6.1:

Dk−d D′l−e /∇m−a Dψ0 = Dk−d+1 D′l−e /∇m−a
ψ0 + Dk−d D′l−e

(
m − a

r
√

2
/∇m−a

ψ0

)

= Dk−d+1 D′l−e /∇m−a
ψ0

+
k−d∑

f =0

l−e∑

g=0

(
f

k − d

)(
g

l − e

)
(−1) f (m − a)(k − d + l − e)!

r1+ f +g
√

2
Dk−d− f D′l−e−g /∇m−a

ψ0.

In order to use the decay result stated in the induction hypothesis, the number of
derivatives in the ingoing direction has to be taken into account:

a) if 1 + δ − l < 0, then

|Dk D′l /∇m
ψ0| ≤ C<u>1+δ−l<v>−1−2s−k−m In+2s+3,δ;

b) if 1 + δ − l > 0, then

|Dk D′l /∇m
ψ0| ≤ C<v>δ−2s−k−l−m In+2s+3,δ.

In order to simplify the presentation of the proof, we deal specifically with the sum

A =
k∑

d=0

l∑

e=0

m∑

a=0

∣∣∣∣∣
Dk−d+1 D′l−e /∇m−a

ψ0

ra+d+e

∣∣∣∣∣ .

Assume first that 1 + δ − l < 0.
For this case the sum a priori contains terms of both type a and type b. We therefore

split up the sum over e into two parts corresponding to the different types. Let e′ be the
largest integer such that e′ ≤ l and δ − l + e′ < 0. This means that, if 0 ≤ e ≤ e′ − 1,
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we have 1 + δ − (l − e) < 0 and if e′ ≤ e ≤ l we have 1 + δ − (l − e) > 0. Using the
induction hypothesis, the sum A can then be bounded as follows: there exists a constant
C such that

A ≤ C
k∑

d=0

m∑

a=0

In+2s+4,δ

ra+d
·
( e′−1∑

e=0

<u>1+δ−(l−e)

<v>2+2s+k−d+m−are
+
∑l

e=e′
<v>δ−2s−k+d−1−l+e−m+a

re

)

≤ C
<u>1+δ−l In+2s+4,δ

<v>2s+2+k+m

(
k∑

d=0

m∑

a=0

(<v>
r

)a+d
)

×
⎛

⎝
e′−1∑

e=0

(<u>

<v>

)e (<v>
r

)e
+

l∑

e=e′

(<u>

<v>

)−(1+δ−l) (<v>
r

)e

⎞

⎠ .

Since we are considering the exterior region, that is to say the region defined by

t

3
≤ r ≤ 3t,

the following inequalities hold (assuming also r > 1, which is not restrictive, when
studying the asymptotic behavior),

<v>

r
≤ √

17 and
<u>

<v>
≤ 1.

As a consequence, there exists a constant C depending only on the considered region
and of the number of derivatives such that

A ≤ C<u>1+δ−l<v>−1−2s−1−k−m In+2s+4,δ.

In the case when 1 + δ− l > 0, all the indices 1 + δ− l + e are a fortiori positive and,
as a consequence, the induction hypothesis gives immediately: there exists a constant C
depending on the number of derivatives and on the bounds of the derivatives of α and β
such that

A ≤ C<v>δ−2s−1−k−l−m In+2s+4,δ

k∑

d=0

l∑

e=0

m∑

a=0

(<v>
r

)a+e+d
.

There exists consequently, as previously, a constant C depending on the number of
derivatives such that

A ≤ C<v>δ−2s−1−k−l−m In+2s+4,δ.

The other terms in (6.6) can be studied in a similar way and details are left to the
reader. Collecting all the inequalities obtained for these derivatives, one gets that there
exists a constant C , depending only on the Sobolev embeddings and the number of
derivatives such that

|Dk D′l /∇m
φ0| ≤ C In+2s+4,δ

{
<u>1+δ−l<v>−1−2s−1−k−m if 1 + δ − l < 0
<v>−2s−1−k−l−m if 1 + δ − l > 0.

The other components ψi of the field can be studied in a similar way. The discussion
will this time occur on the sign of 1 + δ− l − i . These complementary computations are
left to the reader.

We have now proved that the induction hypothesis holds also for s + 1/2. We can
therefore conclude that it holds for all s ∈ 1

2 N0. ��
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7. Asymptotic Behavior of Higher Spin Fields Using Hertz Potential

This section contains the main result of the paper, which consists, for arbitrary spin, in a
decay result for solutions of the Cauchy problem with initial data in weighted Sobolev
spaces. This extends the result contained in [9] for the fixed weight δ = −s − 3/2
(for spin-s fields with s = 1, 2) and clarifies the fact that peeling fails for the rapidly
decaying components of the field. Furthermore, through Theorem 7.6, we establish a
full correspondence between the decay result of the wave equation and the peeling result
for the higher spin fields.

Consider a free massless spin-s field φA...F , i.e. a symmetric valence 2s spinor field
on Minkowski space, which solves

{
∇ AA′

φA...F = 0,
φA...F |t=0 = ϕA...F ∈ H j

δ (S2s).
(7.1)

For s ≥ 1, this Cauchy problem is consistent only when the geometric constraint

D ABϕABC ...F = (â2sϕ)C ...F = 0 (7.2)

is satisfied.
In this section, we first investigate which spin-s fields can be represented by a potential

of the form
φA...F = ∇AA′ · · · ∇F F ′ χ̃ A′...F ′

, (7.3)

where the Hertz potential satisfies a Cauchy problem
⎧
⎨

⎩

�χA...F = 0,
χA...F |t=0 = ξA...F ∈ H j+2s

δ+2s (S2s),

∂tχA...F |t=0 = √
2ζA...F ∈ H j+2s−1

δ+2s−1 (S2s),

(7.4)

with
χA...F ≡ τAA′ · · · τF F ′ χ̃ A′...F ′

.

To achieve this, a 3+1 splitting of Eq. (7.3) with respect to the Cauchy surfaces {t =
const.} is performed in Sect. 7.1 so that the initial data for the field ϕA...F and for
the potential (ξA...F , ζA...F ) are related through the operator G2s . Theorem 4.6 is then
used to construct initial data for the Hertz potential and control their Sobolev norms.
In Sect. 7.2, the uniqueness of the Cauchy problem for higher spin fields ensures that
this field is represented by a Hertz potential satisfying the Cauchy problem (7.4) with
the constructed data. Finally, in Sect. 7.3, the asymptotic behavior of the field is derived
from the decay result for the scalar wave equation stated in Proposition 5.2 through the
technical Proposition 6.4.

7.1. Space spinor splitting. A 3+1 splitting of the potential equation (7.3) is now per-
formed. Let τAA′ = √

2∇AA′ t , which is covariantly constant. The operator DAB =
τ(A

A′∇B)A′ is valid everywhere and it coincides with the intrinsic derivative on the
slices {t = const.}. We therefore can consider it as an operator acting both on space-
time spinors and on spatial spinors on a time slice. All other operators defined for fields
on R

3 also extend in this way to operators on fields on Minkowski space. With this view,
we have the decomposition τB

A′∇AA′ = DAB + 1√
2
εAB∂t .

The evolution equations of the Cauchy problems (7.1) and (7.4) can be re-expressed
as
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∂tφA···F = √
2(Á2sφ)A···F , (7.5)

∂t∂tχA···F = −�2sχA···F . (7.6)

For the spin-1/2 case, we immediately get

φA = (Á1χ)A + 1√
2
∂tχA = (G1Á1χ)A + 1√

2
(G1∂tχ)A.

This simple pattern in fact generalizes to arbitrary spin:

Proposition 7.1. The equation (7.3) together with (7.6) implies

φA1...A2s = (G2sÁ2sχ)A1...A2s + 1√
2
(G2s∂tχ)A1...A2s .

Remark 7.2. The property â2sG2s = 0 of the operators directly gives that the constraint
(â2sφ)C ···F = 0 is automatically satisfied for s ≥ 1.

Proof. See Proposition A.2 in the “Appendix” for a proof. ��

7.2. Representation by a Hertz potential. We will investigate under which conditions
on the initial datum ϕA...F we can construct initial data for the potential. We immediately
see from Proposition 7.1 that if a potential exists, then ϕA...F has to be in the image of
G2s . Therefore, we can without loss of generality choose ξA...F = 0. This means that we
have to solve the equation ϕA...F = (G2sζ )A...F . Since the integrability condition (7.2)
is satisfied, Proposition 4.6 can be used to construct ζA...F .

A key point which will be used later to prove that the field can be represented by a
potential is the uniqueness of the Cauchy problem for first order hyperbolic systems. For
such a result, the reader can refer either to [22] or [8, Appendix 4]. That the massless spin-
s field equation has a first order symmetric hyperbolic formulation follows immediately
from Eq. (7.5) and Lemma 2.10.

Lemma 7.3. Consider a spinor field ϕA...F in L2
loc(S2s). Then the Cauchy problem (7.1)

admits at most one solution in C0(R, L2
loc(S2s)).

Proof. This lemma is a direct consequence of the energy estimate. ��
Remark 7.4. This lemma does not state existence of solutions to the Cauchy problem for
the massless free fields with initial datum in weighted Sobolev spaces. However, one can
use Theorem 7.6 to obtain existence of solutions of this Cauchy problem from standard
existence theorems for solutions of the wave equation with initial data in weighted
Sobolev spaces.

We can now use Lemma 7.3 and Proposition 7.1 to reduce the problem of constructing
a Hertz potential to the level of initial data.

Lemma 7.5. Let j ≥ 2 be an integer and ϕA...F be a spinor field in H j
δ (S2s) satisfying

the constraint equation (â2sϕ)C ...F = 0. Assume that there exist spinor fields ξA...F ∈
H j+2s
δ+2s (S2s) and ζA...F ∈ H j+2s−1

δ+2s−1 (S2s) satisfying

ϕA...F = (G2sÁ2sξ)A...F + (G2sζ )A...F .

Then the only solution to the Cauchy problem (7.1) for massless free fields is given by

φA...F = ∇AA′ · · · ∇F F ′ χ̃ A′...F ′
,

where χ̃ A′...F ′
is obtained through the Cauchy problem (7.4) for χA...F with the initial

data (ξA...F ,
√

2ζA...F ).



794 L. Andersson, T. Bäckdahl, J. Joudioux

Proof. Let
φ̃A...F = ∇AA′ · · · ∇F F ′ χ̃ A′...F ′

.

It is a simple calculation to check that φ̃A...F satisfies the massless field equation of
spin-s (see [29], for instance). Furthermore, the restriction of φA...F and φ̃A...F agree
on {t = 0} and are equal to ϕA...F which lies in H j

δ (S2s) and consequently in L2
δ (S2s).

Using the uniqueness stated in Lemma 7.3, we can conclude that both agree. ��
Theorem 7.6. Let s be in 1

2 N, δ be in R \ Z and j ≥ 2 an integer. We consider ϕA...F in

H j
δ (S2s) satisfying the constraint equation D ABϕA...F = 0. Then there exists a spinor

field ζA...F , solving the equation

ϕA...F = (G2sζ )A...F

and satisfying the estimates

‖ζA...F‖ j+2s−1,δ+2s−1 ≤ C‖ϕA...F‖ j,δ.

Furthermore, the unique solution of the Cauchy problem for massless fields (7.1) with
the initial datum ϕA...F is given by

φA...F = ∇AA′ . . .∇F F ′ χ̃ A′...F ′
,

where the spinor field χA...F , defined by

χA...F = τAA′ · · · τF F ′ χ̃ A′...F ′
,

satisfies the Cauchy problem (7.4) for the wave equation with initial data (0,
√

2ζA...F ).

Proof. This result is a direct consequence of Lemma 7.5, and of propositions 4.5
and 4.6. ��

7.3. Decay result for higher spin fields. The notations adopted in the formulation of the
main theorem is consistent with the ones which are adopted in Sect. 6.1.

The following decay result for higher spin fields recovers the decay result obtained
by Christodoulou and Klainerman in [9] for the spins 1 (corresponding to the weight
δ = −5/2) and 2 (corresponding to the weight δ = −7/2). The main difference is the
regularity of the initial data: Christodoulou and Klainerman rely on weighted Sobolev
embedding to obtain their decay result, so that only two derivatives of the initial data are
required. The result which is presented here is based on the decay result of solutions of
the wave equation stated in Sect.5 and consequently requires at least three derivatives
of the initial data. This restriction can be removed as soon as a decay result for the wave
equation for initial data with arbitrary decay at spatial infinity, and regularity H2 × H1,
is established. The following theorem will then also hold with one derivative less in the
norms.

Theorem 7.7. Let s be in 1
2 N, δ in R\Z, j > 2 an integer and consider the Cauchy

problem for the massless free spin-s fields
⎧
⎨

⎩

∇ AA′
φA...F = 0

φA...F |t=0 = ϕA...F ∈ H j
δ (S2s)

D ABϕA...F = 0.
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We finally consider three nonnegative integers k, l,m whose sum is denoted by n ≤
j − 3. The following inequalities hold, for all i in {0, . . . , 2s}: there exists a constant C
depending only on a choice of a constant dyad and of k, l,m such that:

(1) for any t ≥ 0, x ∈ R
3 such that t > 3r , that is to say, in the interior region,

|∇nφA...F | ≤ C<t>δ−n‖ϕA...F‖3+n,δ;
(2) for i such that 1 + 2s + δ− l − i < 0, for any t ≥ 0, x ∈ R

3, such that 3r > t > r
3 ,

that is to say in the exterior region,

|Dk D′l /∇m
φi | ≤ C<u>1+δ+2s−l−i

<v>1+2s−i+k+m
‖ϕA...F‖3+n,δ;

(3) for i such that 1 + 2s + δ− l − i > 0, for any t ≥ 0, x ∈ R
3, such that 3r > t > r

3 ,
that is to say in the exterior region,

|Dk D′l /∇m
φi | ≤ C<v>δ−n‖ϕA...F‖3+n,δ.

Proof. Let s and δ be such as in the theorem and consider ϕA...F a initial datum in
H j
δ (S2s) satisfying the constraints equation

D ABϕA...F = 0.

The initial datum ϕA...F satisfies the assumptions stated in Theorem 7.6, so that there
exists a potential χ̃ A′...F ′

of order 2s such that the solution of the Cauchy problem with
initial datum ϕA...F is given by:

φA...F = ∇AA′ . . .∇F F ′ χ̃ A′...F ′

and χA...F = τAA′ . . . τF F ′ χ̃ A′...F ′
satisfies the Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

�χA...F = 0

χA...F |t=0 ∈ H j+2s
δ+2s (S2s)

∂tχA...F |t=0 ∈ H j+2s−1
δ+2s−1 (S2s).

Furthermore, the norm of the potential is controlled by the norm of the initial data

‖χA...F‖3+n+2s,δ+2s ≤ C‖ϕA...F‖3+n,δ.

A constant dyad (eA
0 , eA

1 ) on the Minkowski space is chosen. The components of
the field χA...F are then of the form χξ1

A . . . ξ
2s
F , where the constant spinor ξ i

A (for
i ∈ {1, . . . , 2s}) belongs to {e0

A, e1
A} and χ is a complex function satisfying a Cauchy

problem of the form
⎧
⎪⎪⎨

⎪⎪⎩

�χ = 0,

χ |t=0 ∈ H j+2s
δ+2s (R

3,C),

∂tχ |t=0 ∈ H j+2s−1
δ+2s−1 (R

3,C).

Proposition 6.4 can then be used, on each of the components of the field. All these
components decay exactly in the same way and, consequently, the field φA...F decays
exactly as the field under consideration in Proposition 6.4. ��

Acknowledgements. We thank Dietrich Häfner, Jean-Philippe Nicolas and Lionel Mason for helpful discus-
sions.
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Appendix A. Algebraic Properties of the Fundamental Operators

To prove Proposition 7.1, we need the following relation

Lemma A.1. The operators Gk and Ák commute and we have

(GkÁkφ)A1...Ak = (ÁkGkφ)A1...Ak

=

⌊ k
2

⌋
∑

n=0

(
k

2n

)
(−2)−n D(A1

B1 · · · DAk−2n
Bk−2n

︸ ︷︷ ︸
k−2n

(�n
kφ)Ak−2n+1...Ak )B1...Bk−2n .

Proof. We begin by proving that (GkÁkφ)A1...Ak has the desired form. By partially ex-
panding the symmetrization in the defintion of the operator Ák , we get

D(A1
B1 · · · DAk−2n−1

Bk−2n−1

︸ ︷︷ ︸
k−2n−1

(�n
k Ákφ)Ak−2n ...Ak )B1...Bk−2n−1

= 2n + 1

k
D(A1

B1 · · · DAk−2n
Bk−2n

︸ ︷︷ ︸
k−2n

(�n
kφ)Ak−2n+1...Ak )B1...Bk−2n

+
k − 2n − 1

k
D(A1

B1 · · · DAk−2n−1
Bk−2n−1

︸ ︷︷ ︸
k−2n−1

D|Bk−2n−1|Bk−2n

(�n
kφ)Ak−2n ...Ak )B1...Bk−2n−2 Bk−2n

= 2n + 1

k
D(A1

B1 · · · DAk−2n
Bk−2n

︸ ︷︷ ︸
k−2n

(�n
kφ)Ak−2n+1...Ak )B1...Bk−2n

− k − 2n − 1

2k
D(A1

B1 · · · DAk−2n−2
Bk−2n−2

︸ ︷︷ ︸
k−2n−2

(�n+1
k φ)Ak−2n−1...Ak )B1...Bk−2n−2 .

Where we used DA
C DBC = − 1

2εAB� in the last step. We therefore get

(GkÁkφ)A1...Ak

=

⌊ k−1
2

⌋
∑

n=0

(
k − 1

2n

)
(−2)−n D(A1

B1 · · · DAk−2n
Bk−2n

︸ ︷︷ ︸
k−2n

(�n
kφ)Ak−2n+1...Ak )B1...Bk−2n

+

⌊ k−1
2

⌋
∑

n=0

(
k − 1

2n + 1

)
(−2)1−n D(A1

B1 · · · DAk−2n−2
Bk−2n−2

︸ ︷︷ ︸
k−2n−2

(�n+1
k φ)Ak−2n−1...Ak )B1...Bk−2n−2

=

⌊ k−1
2

⌋
∑

n=0

(
k − 1

2n

)
(−2)−n D(A1

B1 · · · DAk−2n
Bk−2n

︸ ︷︷ ︸
k−2n

(�n
kφ)Ak−2n+1...Ak )B1...Bk−2n

+

⌊ k+1
2

⌋
∑

n=1

(
k − 1

2n − 1

)
(−2)−n D(A1

B1 · · · DAk−2n
Bk−2n

︸ ︷︷ ︸
k−2n

(�n
kφ)Ak−2n+1...Ak )B1...Bk−2n . (A.1)
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Where we just changed n → n−1 in the last sum. The Pascal triangle gives the algebraic
identity

⌊ k−1
2

⌋
∑

n=0

(
k − 1

2n

)
Ak−n Bn +

⌊ k+1
2

⌋
∑

n=1

(
k − 1

2n − 1

)
Ak−n Bn =

⌊ k
2

⌋
∑

n=0

(
k

2n

)
Ak−n Bn,

which in turn gives the desired form for (GkÁkφ)A1...Ak . To handle (ÁkGkφ)A1...Ak we
partially expand the symmetry in the following expression

DA1
C D(A2

B2 · · · DAk−2n
Bk−2n

︸ ︷︷ ︸
k−2n−1

(�n
kφ)Ak−2n+1...AkC)B2...Bk−2n

= k − 2n − 1

k
DA1

C DC
B2 D(A2

B3 · · · DAk−2n−1
Bk−2n

︸ ︷︷ ︸
k−2n−2

(�n
kφ)Ak−2n ...Ak )B2...Bk−2n

+
2n + 1

k
DA1

C D(A2
B2 · · · DAk−2n

Bk−2n

︸ ︷︷ ︸
k−2n−1

(�n
kφ)Ak−2n+1...Ak )C B2...Bk−2n

= − k − 2n − 1

2k
D(A2

B3 · · · DAk−2n−1
Bk−2n

︸ ︷︷ ︸
k−2n−2

(�n+1
k φ)Ak−2n ...Ak )A1 B3...Bk−2n

+
2n + 1

k
DA1

B1 D(A2
B2 · · · DAk−2n

Bk−2n

︸ ︷︷ ︸
k−2n−1

(�n
kφ)Ak−2n+1...Ak )B1...Bk−2n .

Where we in the last step again used DA
C DBC = − 1

2εAB�. Using this in the definition
of Gk yields

DA1
C (Gkφ)C A2...Ak

=

⌊ k−1
2

⌋
∑

n=0

(
k − 1

2n+1

)
(−2)1−n D(A2

B3 · · · DAk−2n−1
Bk−2n−2

︸ ︷︷ ︸
k−2n−2

(�n+1
k φ)Ak−2n ...Ak )A1 B3...Bk−2n

+

⌊ k−1
2

⌋
∑

n=0

(
k − 1

2n

)
(−2)1−n DA1

B1 D(A2
B2 · · · DAk−2n

Bk−2n

︸ ︷︷ ︸
k−2n−1

(�n
kφ)Ak−2n+1...Ak )B1...Bk−2n .

After symmetrization we get that (ÁkGkφ)A1...Ak has an expansion identical to the one
in the first equation in (A.1). This gives the desired result. ��

Proposition A.2. The equation (7.3) together with (7.6) implies

φA1...A2s = (G2sÁ2sχ)A1...A2s + 1√
2
(G2s∂tχ)A1...A2s .
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Proof. Using τB
A′∇AA′ = DAB + 1√

2
εAB∂t we can write the potential equation in terms

of DAB and ∂t . We have

φA1...A2s = ∇A1 A′
1
· · · ∇A2s A′

2s︸ ︷︷ ︸
2s

χ̃ A′
1...A

′
2s = τ B1 A′

1∇A1 A′
1
· · · τ B2s A′

2s ∇A2s A′
2s︸ ︷︷ ︸

2s

χB1...B2s

= (DA1
B1 + 1√

2
εA1

B1∂t ) · · · (DA2s
B2s + 1√

2
εA2s

B2s∂t )
︸ ︷︷ ︸

2s

χB1...B2s

=
2s∑

n=0

(
2s

n

)
2−n/2 D(A1

B1 · · · DA2s−n
B2s−n

︸ ︷︷ ︸
2s−n

∂n
t χA2s−n+1...A2s )B1...B2s−n .

We can now use (7.6) to eliminate all higher order time derivatives. This gives

φA1...A2s

=
�s
∑

n=0

(
2s

2n

)
2−n D(A1

B1 · · · DA2s−2n
B2s−2n

︸ ︷︷ ︸
2s−2n

∂2n
t χA2s−2n+1...A2s )B1...B2s−2n

+

⌊
s− 1

2

⌋
∑

n=0

(
2s

2n + 1

)
2−n−1/2 D(A1

B1 · · · DA2s−2n−1
B2s−2n−1

︸ ︷︷ ︸
2s−2n−1

∂2n+1
t

× χA2s−2n ...A2s )B1...B2s−2n−1

=
�s
∑

n=0

(
2s

2n

)
(−2)−n D(A1

B1 · · · DA2s−2n
B2s−2n

︸ ︷︷ ︸
2s−2n

(�n
2sχ)A2s−2n+1...A2s )B1...B2s−2n

+ 1√
2

⌊
s− 1

2

⌋
∑

n=0

(
2s

2n + 1

)
(−2)−n D(A1

B1 · · · DA2s−2n−1
B2s−2n−1

︸ ︷︷ ︸
2s−2n−1

(�n
2s∂tχ)A2s−2n ...A2s )B1...B2s−2n−1

= (G2sÁ2sχ)A1...A2s + 1√
2
(G2s∂tχ)A1...A2s .

In the last step we used the definition of G2s and Lemma A.1. In fact we have defined
Gk to match the ∂t part of this expression. ��
Proposition A.3. For k ≥ 2, the operators Gk have the properties âkGk = 0 and
Gk Ök−2 = 0.

Proof. First we prove that âkGk = 0. By partially expanding the symmetrization in the
definition of Gk and restricting the summation to non-vanishing terms we get

(Gkφ)A1...Ak

=

⌊ k−3
2

⌋
∑

n=0

(
k − 2

2n + 1

)
(−2)−n DA1

B1 DA2
B2 D(A3

B3 · · · DAk−2n−1
Bk−2n−1

︸ ︷︷ ︸
k−2n−3

(�n
kφ)Ak−2n ...Ak )B1...Bk−2n−1
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+

⌊ k−1
2

⌋
∑

n=0

(
k − 2

2n

)
(−2)−n DA1

B2 D(A3
B3 · · · DAk−2n

Bk−2n

︸ ︷︷ ︸
k−2n−2

(�n
kφ)Ak−2n+1...Ak )A2 B2...Bk−2n

+

⌊ k−1
2

⌋
∑

n=0

(
k − 2

2n

)
(−2)−n DA2

B2 D(A3
B3 · · · DAk−2n

Bk−2n

︸ ︷︷ ︸
k−2n−2

(�n
kφ)Ak−2n+1...Ak )A1 B2...Bk−2n

+

⌊ k−1
2

⌋
∑

n=1

(
k − 2

2n − 1

)
(−2)−n D(A3

B3 · · · DAk−2n+1
Bk−2n+1

︸ ︷︷ ︸
k−2n−1

(�n
kφ)Ak−2n+2...Ak )A1 A2 B3...Bk−2n+1 .

Using DA
C DBC = − 1

2εAB�we get D A1 A2 DA1
B1 DA2

B2 = 1
2 DB1 B2�, D A1(A2 DA1

B2)

= 0 and

(âkGkφ)A1...Ak

= −

⌊ k−3
2

⌋
∑

n=0

(
k − 2

2n + 1

)
(−2)−n−1 DB1 B2 D(A3

B3 · · · DAk−2n−1
Bk−2n−1

︸ ︷︷ ︸
k−2n−3

(�n+1
k φ)Ak−2n ...Ak )B1...Bk−2n−1

+

⌊ k−1
2

⌋
∑

n=1

(
k − 2

2n − 1

)
(−2)−n DB1 B2 D(A3

B3 · · · DAk−2n+1
Bk−2n+1

︸ ︷︷ ︸
k−2n−1

(�n
kφ)Ak−2n+2...Ak )B1...Bk−2n+1 .

The first sum is identical to the second sum after a variable change n → n − 1, hence
âkGk = 0.

Now, we turn to the proof of Gk Ök−2 = 0. Partial expansion of the symmetrization in
the definition of Ök−2 gives

D(A1
B1 · · · DAk−2n−1

Bk−2n−1

︸ ︷︷ ︸
k−2n−1

(�n
k Ök−2φ)Ak−2n ...Ak )B1...Bk−2n−1

= (k − 2n − 1)(k − 2n − 2)

k(k − 1)
DB1 B2 D(A1

B1 · · · DAk−2n−1
Bk−2n−1

︸ ︷︷ ︸
k−2n−1

(�n
k−2φ)Ak−2n ...Ak )B3...Bk−2n−1

+
2(k − 2n − 1)(2n + 1)

k(k − 1)
DB1(Ak DA1

B1 · · · DAk−2n−1
Bk−2n−1

︸ ︷︷ ︸
k−2n−1

(�n
k−2φ)Ak−2n ...Ak−1)B2...Bk−2n−1

+
2n(2n + 1)

k(k − 1)
D(Ak−1 Ak DA1

B1 · · · DAk−2n−1
Bk−2n−1

︸ ︷︷ ︸
k−2n−1

(�n
k−2φ)Ak−2n ...Ak−2)B1...Bk−2n−1

= (k − 2n − 1)(k − 2n − 2)

2k(k − 1)
D(A1 A2 DA3

B3 · · · DAk−2n−1
Bk−2n−1

︸ ︷︷ ︸
k−2n−3

(�n+1
k−2φ)Ak−2n ...Ak )B3...Bk−2n−1

+
2n(2n + 1)

k(k − 1)
D(Ak−1 Ak DA1

B1 · · · DAk−2n−1
Bk−2n−1

︸ ︷︷ ︸
k−2n−1

(�n
k−2φ)Ak−2n ...Ak−2)B1...Bk−2n−1 .

Where we again used D A1 A2 DA1
B1 DA2

B2 = 1
2 DB1 B2� and D A1(A2 DA1

B2) = 0. We
therefore get
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(Gk Ök−2φ)A1...Ak

= −

⌊ k−3
2

⌋
∑

n=0

(
k − 2

2n + 1

)
(−2)1−n D(A1 A2 DA3

B3 · · · DAk−2n−1
Bk−2n−1

︸ ︷︷ ︸
k−2n−3

(�n+1
k−2φ)Ak−2n ...Ak )B3...Bk−2n−1

+

⌊ k−1
2

⌋
∑

n=1

(
k − 2

2n − 1

)
(−2)−n D(Ak−1 Ak DA1

B1 · · · DAk−2n−1
Bk−2n−1

︸ ︷︷ ︸
k−2n−1

(�n
k−2φ)Ak−2n ...Ak−2)B1...Bk−2n−1 .

The first sum is identical to the second sum after a variable change n → n − 1, hence
Gk Ök−2 = 0. ��

To use elliptic theory, we need well behaved elliptic operators. Gk is in general not
elliptic but, through the following lemma, it can related to some power of the Laplacian
– which of course is elliptic.

Lemma A.4. The formulae (2.2b) and (2.2a) hold, that is to say

(�k
2kφ)A1...A2k = (Ö2k−2F2k−2â2kφ)A1...A2k − (−2)1−k(G2kÁ2kφ)A1...A2k ,

(�k
2k+1φ)A1...A2k+1 = (Ö2k−1F2k−1â2k+1φ)A1...A2k+1 + (−2)−k(G2k+1φ)A1...A2k+1 .

Proof. For both formulae, we will use the following help quantity for the spin-(k + j/2)
case

I j,k
m ≡

k−1∑

n=m

(
2k + j

2n + j − 2m

)
(−2)−n D(A1

B1 · · · DA2k−2n
B2k−2n

︸ ︷︷ ︸
2k−2n

× (�n
2k+ jφ)A2k−2n+1...A2k+ j )B1...B2k−2n

Multiplying DA1
B1 DC1

B2φA3...AkC2 B2 with εA2
C1εB1

C2 = εA2 B1ε
C1C2 +εA2

C2εB2
C1 and

using DA
C DBC = − 1

2εAB�, we get

DA1
B1 DA2

B2φA3...Ak B1 B2 = − 1
2 (�kφ)A1...Ak + DA1 A2(âkφ)A3...Ak .

Using this in the definition of I j,k
m gives

I j,k
m =

k−1∑

n=m

(
2k + j

2n + j − 2m

)
(−2)−n−1

× D(A1
B1 · · · DA2k−2n−2

B2k−2n−2

︸ ︷︷ ︸
2k−2n−2

(�n+1
2k+ jφ)A2k−2n−1...A2k+ j )B1...B2k−2n−2

+
k−1∑

n=m

(
2k + j

2n + j − 2m

)
(−2)−n

× D(A1 A2 DA3
B3 · · · DA2k−2n

B2k−2n

︸ ︷︷ ︸
2k−2n−2

(â2k+ j�
n
2k+ jφ)A2k−2n+1...A2k+ j )B3...B2k−2n
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= I j,k
m+1 +

(
2k + j

2k + j − 2m

)
(−2)−k(�k

2k+ jφ)A1...A2k+ j +
k−1∑

n=m

(
2k + j

2n + j − 2m

)
(−2)−n

× D(A1 A2 DA3
B3 · · · DA2k−2n

B2k−2n

︸ ︷︷ ︸
2k−2n−2

(â2k+ j�
n
2k+ jφ)A2k−2n+1...A2k+ j )B3...B2k−2n .

(A.2)

Here, we have changed n → n − 1 in the first sum, and identified that as I j,k
m+1 plus the

term where n = k, which gives us the�k-term. We can easily solve the recursion (A.2)
and get

I j,k
0 =

k−1∑

m=0

(
2k + j

2k + j − 2m

)
(−2)−k(�k

2k+ jφ)A1...A2k+ j +
∑k−1

m=0

k−1∑

n=m

(
2k + j

2n + j − 2m

)
(−2)−n

× D(A1 A2 DA3
B3 · · · DA2k−2n

B2k−2n

︸ ︷︷ ︸
2k−2n−2

(â2k+ j�
n
2k+ jφ)A2k−2n+1...A2k+ j )B3...B2k−2n

=
k−1∑

m=0

(
2k + j

2m

)
(−2)−k(�k

2k+ jφ)A1...A2k+ j +
k−1∑

n=0

k−1−n∑

m=0

(
2k + j

2n + 2m + 2

)
(−2)n+1−k

× D(A1 A2 DA3
B3 · · · DA2n+2

B2n+2

︸ ︷︷ ︸
2n

(�k−1−n
2k+ j−2â2k+ jφ)A2n+3...A2k+ j )B3...B2n+2

=
k−1∑

m=0

(
2k + j

2m

)
(−2)−k(�k

2k+ jφ)A1...A2k+ j − 2 j−1(−2)k(Ö2k+ j−2F2k+ j−2â2k+ jφ)A1...A2k+ j .

In the second sum we have changed the order of summation followed by the change
n → k − n − 1.

For the operators acting on an odd number of indices we have

(G2k+1φ)A1...A2k+1

=
k∑

n=0

(
2k + 1

2n + 1

)
(−2)−n D(A1

B1 · · · DA2k−2n
B2k−2n

︸ ︷︷ ︸
2k−2n

(�n
2k+1φ)A2k−2n+1...A2k+1)B1...B2k−2n

= I 1,k
0 +

(
2k + 1

2k + 1

)
(−2)−k(�k

2k+1φ)A1...A2k+1

=
k∑

m=0

(
2k + 1

2k + 1 − 2m

)
(−2)−k(�k

2k+1φ)A1...A2k+1 − (−2)k(Ö2k−1F2k−1â2k+1φ)A1...A2k+1

= (−2)k(�k
2k+1φ)A1...A2k+1 − (−2)k(Ö2k−1F2k−1â2k+1φ)A1...A2k+1 .

Hence, we have (2.2b).
For the operators acting on an even number of indices we can use (A.1) to obtain

(G2kÁ2kφ)A1...A2k

=
k∑

n=0

(
2k

2n

)
(−2)−n D(A1

B1 · · · DA2k−2n
B2k−2n

︸ ︷︷ ︸
2k−2n

(�n
2k+1φ)A2k−2n+1...A2k )B1...B2k−2n
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= I 0,k
0 +

(
2k

2k

)
(−2)−k(�k

2kφ)A1...A2k

=
k∑

m=0

(
2k

2k − 2m

)
(−2)−k(�k

2kφ)A1...A2k + (−2)k(Ö2k−2F2k−2â2kφ)A1...A2k

= − (−2)k−1(�k
2kφ)A1...A2k + (−2)k−1(Ö2k−2F2k−2â2kφ)A1...A2k .

Hence, we have (2.2a). ��
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