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GEOMETRIC SOBOLEV-LIKE EMBEDDING

USING HIGH-DIMENSIONAL MENGER-LIKE CURVATURE

S�LAWOMIR KOLASIŃSKI

Abstract. We study a modified version of Lerman-Whitehouse Menger-like
curvature defined for (m+2) points in an n-dimensional Euclidean space. For
1 ≤ l ≤ m + 2 and an m-dimensional set Σ ⊂ Rn, we also introduce global
versions of this discrete curvature by taking the supremum with respect to
(m+ 2− l) points on Σ. We then define geometric curvature energies by inte-
grating one of the global Menger-like curvatures, raised to a certain power p,
over all l-tuples of points on Σ. Next, we prove that if Σ is compact and m-

Ahlfors regular and if p is greater than the dimension of the set of all l-tuples
of points on Σ (i.e. p > ml), then the P. Jones’ β-numbers of Σ must decay as rτ

with r → 0 for some τ ∈ (0, 1). If Σ is an immersed C1 manifold or a bilipschitz
image of such a set then, it follows that it is Reifenberg flat with vanishing con-
stant; hence (by a theorem of David, Kenig and Toro) an embedded C1,τ man-
ifold. We also define a wide class of other sets for which this assertion is true.
After that, we bootstrap the exponent τ to α = 1 − ml/p, which is optimal
due to our theorem with S. Blatt [Adv. Math., 2012]. This gives an analogue
of the Morrey-Sobolev embedding theorem W 2,p(Rml) ⊆ C1,α(Rml) but, more
importantly, we also obtain a qualitative control over the local graph repre-
sentations of Σ only in terms of the energy.

Introduction

Menger curvature is defined for three points x0, x1, x2 in Rn as follows:

c(x0, x1, x2) =
4H2(�(x0, x1, x2))

|x0 − x1||x1 − x2||x2 − x0|
,

where Hl denotes the l-dimensional Hausdorff measure and �(x0, . . . , xl) is the
convex hull of the set {x0, . . . , xl}. Using the sine theorem one easily sees that
c(x0, x1, x2) is just the inverse of the radius of the circumcircle of �(x0, x1, x2).
Let γ ⊆ R3 be a closed, Lipschitz curve with arc-length parameterization Γ, i.e.
Γ : SL → R3 is such that γ = Γ(SL) and |Γ′| = 1 a.e. (here SL = R/LZ denotes
the circle of length L). Set

c0[γ] = sup
x0,x1,x2∈γ

c(x0, x1, x2) , c1[γ](x0) = sup
x1,x2∈γ

c(x0, x1, x2) ,

c2[γ](x0, x1) = sup
x2∈γ

c(x0, x1, x2) and c3[γ](x0, x1, x2) = c(x0, x1, x2) .
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776 S�LAWOMIR KOLASIŃSKI

Using these quantities we define

�[γ] = c0[γ]
−1 and for i = 1, 2, 3 Mi

p(γ) =

ˆ
(γ)i

cpi [γ] dHi ,

where (γ)i is the Cartesian product of i copies of γ. Gonzalez and Maddocks [7]
suggested that these functionals can serve as knot energies, i.e. energies which
separate knot types by infinite energy barriers. Gonzalez, Maddocks, Schuricht
and von der Mosel [6] showed that whenever c0[γ] < ∞, γ is an embedded (without
self-intersections) manifold of class C1,1 = W 2,∞. The functionals M1

p, M2
p and

M3
p possess a similar property. For i = 1, 2, 3, if Mi

p(γ) < ∞ for some p > i,

then γ is an embedded manifold of class C1,1−i/p (see the articles by Strzelecki,
Szumańska and von der Mosel [23, 24] and by Strzelecki and von der Mosel [25]).
Furthermore, in [25] the authors proved that M1

p(γ) is finite if and only if γ is

an image of a W 2,p function. Later Blatt [2] showed that for i = 2, 3 and p > i
the energy Mi

p(γ) < ∞ if and only if γ belongs to the Sobolev-Slobodeckij space

W 1+s,p, where s = 1 − i−1
p . Note that, W 1+s,p(R) ⊆ C1,1−i/p(R) whenever p > i

and 1 − i/p is the optimal Hölder exponent, so these results deliver geometric
counterparts of the Sobolev-Morrey embedding.

For p below the critical level (i.e. p < i) one cannot expect that finiteness
of Mi

p(γ) implies smoothness. This can easily be seen by considering γ =
�((0, 0), (1, 0), (1, 1))–a triangle in the plane. Take a countable family of paral-
lel lines {lk}∞k=1, such that dist(lk, (0, 0)) = 2−k. Observe that the energy Mi

i is
invariant under scaling, so for each k ∈ N the part of γ lying between the lines
lk and lk+1 has the same energy. Hence Mi

i(γ) = ∞. For any p < i we have
Mp(γ) < ∞ (see Scholtes [20], [21]).

The case p = 2 and l = 3 is particularly interesting. For a 1-dimensional Borel
set E ⊆ R2 a famous result of David and Léger [15] says that M3

2(E) is finite if
and only if E is rectifiable. This was a crucial step in the proof of Vitushkin’s
conjecture characterizing removable sets E for bounded analytic functions.

There are some generalizations of these results to higher dimensions. Lerman
and Whitehouse [16, 17] suggested a few possible definitions of discrete curvatures
of Menger-type. They used these curvatures to characterize uniformly rectifiable
measures in the sense of David and Semmes [4]. In this article we use a modified
version (having different scaling) of one of the quantities introduced in [16].

Our research has been motivated directly by the work of Strzelecki and von
der Mosel [26], where the authors work with 2-dimensional surfaces in R3. They
define the discrete curvature of four points x0, x1, x2, x3 ∈ R3 by the formula

KSvdM (x0, x1, x2, x3) =
H3(�(x0, x1, x2, x3))

H2(∂�(x0, x1, x2, x3)) diam(�(x0, x1, x2, x3))2
.

For Σ ⊆ R3 a closed, connected, Lipschitz surface they also define

MSvdM
p (Σ) =

ˆ
Σ

ˆ
Σ

ˆ
Σ

ˆ
Σ

KSvdM (x0, x1, x2, x3)
p dH2

x0
dH2

x1
dH2

x2
dH2

x3
.

In [26] the authors prove that if MSvdM
p (Σ) ≤ E < ∞ for some p > 8 = dim(Σ4),

then Σ has to be an embedded manifold of class C1,1−8/p with local graph represen-
tations whose domain size is controlled solely in terms of E and p. This additional
control of the graph representations allowed them to prove [26, Theorem 1.5] that
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SOBOLEV EMBEDDING USING MENGER CURVATURE 777

any sequence (Σj)j∈N of closed, connected, Lipschitz surfaces containing the ori-
gin and with uniformly bounded measure and energy, i.e. MSvdM

p (Σj) ≤ E and

H2(Σj) ≤ A for each j ∈ N, contains a subsequence Σjl , which converges in C1

topology to some C1,1−8/p closed, connected manifold. This in turn allowed them to
solve some variational problems with topological constraints (see [26, Theorems 1.6
and 1.7]).

Similar regularity results were also obtained by Strzelecki and von der Mosel [27]
for yet another energy

E tp
p (Σ) =

ˆ
Σ

ˆ
Σ

Rtp(x, y)
−p dHm

x dHm
y , where Rtp(x, y) =

|x− y|2
2 dist(y − x, TxΣ)

and TxΣ is the tangent space to Σ at x. The quantity Rtp(x, y) is called the tangent-
point radius, because it measures the radius of the sphere tangent to Σ at x and
passing through y. If Σ is a closed, connected, Lipschitz surface with E tp

p (Σ) < ∞
for some p > 2m, then Σ ∈ C1,1−(2m)/p.

In this paper we define energy functionals for m-dimensional subsets Σ of Rn

(we always assume m ≤ n) and we study regularity of sets with finite energy. For
m+ 2 points x0, . . . , xm+1 in Rn we set (cf. [16, §6.1.1])

K(x0, . . . , xm+1) =
Hm+1(�(x0, . . . , xm+1))

diam(�(x0, . . . , xm+1))m+2

and for p > 0 and l = 1, 2, . . . ,m+ 2 we define1

E l
p(Σ) =

ˆ
Σl

sup
xl,...xm+1∈Σ

K(x0, . . . , xm+1)
p dHml

x0,...,xl−1
.

We prove that these functionals can be called geometric curvature energies, i.e. for
sets Σ of relatively little smoothness, finiteness of the energy guarantees both em-
beddedness and higher regularity.

Of course, the condition E l
p(Σ) < ∞ cannot guarantee that Σ is a manifold (even

for large p) just for any m-dimensional set Σ. The main issue is that E l
p(Σ \ A) ≤

E l
p(Σ) for any set A, so creating holes in Σ decreases the energy. Hence, we need to

work with a restricted class of sets. We say that Σ is locally lower Ahlfors regular if

(Ahl) ∃RAhl > 0 ∃AAhl > 0 ∀x ∈ Σ ∀r ≤ RAhl Hm(Σ ∩ B(x, r)) ≥ AAhlr
m .

Here B(x, r) denotes the n-dimensional open ball of radius r centered at x. We also
need a variant of the P. Jones’ beta numbers introduced in [10] and the bilateral beta
numbers, which originated from Reifenberg’s work [19] and his famous topological
disc theorem (see [22] for a modern proof). We define

βΣ
m(x, r) =

1

r
inf

H∈G(n,m)
sup

z∈Σ∩B(x,r)

dist(z, x+H)

and θΣm(x, r) =
1

r
inf

H∈G(n,m)
dH(Σ ∩ B(x, r), (x+H) ∩ B(x, r)) ,

where dH(E,F ) = sup
y∈E

dist(y, F ) + sup
y∈F

dist(y, E)

is the Hausdorff distance and G(n,m) denotes the Grassmannian of m-dimensional
linear subspaces of Rn. The β-number measures the flatness of Σ in a given scale

1If l = m+ 2 there are m+ 2 integrals and no supremum.
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778 S�LAWOMIR KOLASIŃSKI

in a scaling invariant way. The θ-number measures additionally the size of holes
in that scale. Using these notions we can formulate our first

Proposition 1. Let Σ ⊆ Rn be a compact set satisfying (Ahl) and let l ∈ {1, . . . ,
m + 2}. If E l

p(Σ) ≤ E < ∞ for some p > ml, then there exists a constant CA =
CA(m, l, p) such that

∀r ≤ RAhl ∀x ∈ Σ βΣ
m(x, r) ≤ CA

(
E

Al
Ahl

) 1
κ

r
λ
κ ,

where κ = (p+ml)(m+ 1) and λ = p−ml.

Applying the result of David, Kenig and Toro [3, Proposition 9.1] (cf. Proposi-
tion 1.3) we then obtain

Theorem 1. Let Σ ⊆ Rn be a compact set satisfying (Ahl) and such that

(θ � β) ∃Rθβ > 0 ∃Mθβ > 1 ∀x ∈ Σ ∀r ≤ Rθβ θΣm(x, r) ≤ Mθββ
Σ
m(x, r) .

If E l
p(Σ) < ∞ for some p > ml, then Σ is a closed, embedded manifold of class

C1,λ/κ.

This motivates the following

Definition 1. We say that a set Σ ⊆ Rn is an m-fine set if it is m-dimensional,
compact and satisfies (Ahl) and (θ � β).

Examples of m-fine sets include closed m-dimensional Lipschitz submanifolds
of Rn and also images of maps ϕ : M → Rn, where M is an abstract, closed
C1-manifold and ϕ is an immersion. Other examples are described in Section 2.2.

The condition (θ � β) is purely geometric but it is hard to understand what
kind of behavior it implies. It gives control over the size of holes in Σ but it does
not imply that the topological boundary of Σ is empty. In [27, Definition 2.9] (cf.
Definition 3.2) the authors considered a class of admissible sets satisfying a different
list of conditions. Their idea was to use the topological linking number to prevent
appearance of holes in Σ. Any admissible set in the sense of [27] with finite E l

p-
energy for some p > ml, satisfies the (θ � β) condition (see [13, Theorem 4.15] for
the case l = m+ 2); hence, by Theorem 1, it is a closed C1,λ/κ-manifold.

Once we have estimates on the β-numbers (Proposition 1), the regularity result
(Theorem 1) follows quite easily but the key point is that one can get a uniform
(not depending on Σ) control over the local graph representations of Σ only in
terms of the energy bound E and the parameters m, l and p. To show that this is
true we first prove the following uniform, with respect to Σ, estimate on the local
lower Ahlfors regularity of Σ.

Theorem 2. Let Σ ⊆ Rn be an m-fine set. If E l
p(Σ) ≤ E < ∞ for some p > ml,

then

∃R0 = R0(E,m, l, p) > 0 ∀x ∈ Σ ∀r ≤ R0 Hm(Σ ∩ B(x, r)) ≥
(√

15
4

)m

ωmrm ,

where ωm = Hm(B(0, 1) ∩ Rm) is the measure of the unit ball in Rm.

Theorem 1 together with Theorem 2 give us estimates on the β-numbers inde-
pendent of Σ. Knowing that Σ is a closed, C1,λ/κ-submanifold of Rn, we also prove
that the constant Mθβ from the (θ � β) condition can be replaced by an absolute
constant. Then we obtain estimates on the oscillation of tangent planes of Σ solely
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SOBOLEV EMBEDDING USING MENGER CURVATURE 779

in terms of E, m, l and p. This allows us to prove that the size of a single patch
of Σ representable as a graph of some function is controlled solely in terms of E,
m, l and p. Next we bootstrap the exponent λ

κ to α = 1− ml
p .

Theorem 3. Let Σ ⊆ Rn be an m fine set. If E l
p(Σ) ≤ E < ∞ for some p > ml,

then Σ is a closed C1,α-manifold, where α = 1 − ml
p . Moreover, there exist two

positive constants Rg = C(m, l, p)E−1/λ and Cg = Cg(E,m, l, p) such that

∀x ∈ Σ ∃Fx ∈ C1,α(TxΣ, (TxΣ)
⊥) Σ ∩ B(x,Rg) = Graph(Fx) ∩ B(x,Rg)

and ∀y, z ∈ TxΣ ‖DFx(y)−DFx(z)‖ ≤ Cg|y − z|α ,

where Graph(Fx) = {z ∈ Rn : ∃y ∈ TxΣ z = y + Fx(y)}.

This work already led to a few other results. In our joint work with Szumańska
[14] we have constructed an example of a function f ∈ C1,α0([0, 1]m), where α0 =

1 − m(m+1)
p , whose graph has infinite Em+2

p -energy and we proved that for any

α1 > α0 the graphs of C1,α1 functions always have finite energy. Later this result
was complemented by our joint work with Blatt [1], where we have shown that
a closed C1-submanifold of Rn has finite E l

p-energy for some p > m(l − 1) and
l ∈ {2, . . . ,m+ 2} if and only if it is locally a graph of a function in the Sobolev-

Slobodeckij space W 1+s,p, where s = 1 − m(l−1)
p . Since W 1+s,p(Rm) ⊆ C1,α(Rm),

this also shows that the exponent α in Theorem 3 is optimal. In another article [12]
written jointly with Strzelecki and von der Mosel, we have shown that an m-fine set
Σ ⊆ Rn is a W 2,p-manifold if and only if it satisfies the condition E1

p (Σ) < ∞. The

paper [12] includes Theorem 3 for the E1
p -energy and a counterpart of Theorem 3 for

a modified version of the E tp
p -energy, where one integration was replaced by taking

the supremum. In a forthcoming joint article with Strzelecki and von der Mosel [11]
we also prove a compactness result similar to [26, Theorem 1.5] for the E l

p and E tp
p

energies.

Organization of the paper. In Section 1 we describe the notation, we state
precisely the result of [3] about Reifenberg flat sets with vanishing constant and we
prove some auxiliary propositions about roughly regular simplices and about the
metric on the Grassmannian. In Subsection 1.4 we also show that C2-manifolds
have finite E l

p-energy for any p > 0. In Section 2 we prove Proposition 1 and
Theorem 1 and we give some examples of m-fine sets. In Section 3 we establish
Theorem 2. For this we need to define another class of admissible sets and prove
some more auxiliary results about cones and homotopies inside cones. In Section 4
we prove a counterpart of Theorem 3, where α is replaced with λ/κ. In Section 5 we
bootstrap the exponent λ/κ to the optimal α = 1− ml

p and consequently establish

Theorem 3.

1. Preliminaries

1.1. Notation. We write S for the unit (n− 1)-dimensional sphere centered at the
origin and we write B for the unit n-dimensional open ball centered at the origin.
We also use the symbols Sr = rS, Br = rB, S(x, r) = x+ rS and B(x, r) = x+ rB.

If v = (v1, . . . , vn) is a vector in Rn, we write |v| =
√∑

|vi|2 =
√

〈v, v〉 for

the standard Euclidean norm of v. If A : Rk → Rl is a linear operator, we write
‖A‖ = sup|v|=1 |Av| for the operator norm of A.
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780 S�LAWOMIR KOLASIŃSKI

The symbol G(n,m) denotes the Grassmann manifold of m-dimensional linear
subspaces of Rn. Whenever we write U ∈ G(n,m) we identify the point U of the
space G(n,m) with the appropriate m-dimensional subspace of Rn. In particular
any vector u ∈ U is treated as an n-dimensional vector in the ambient space Rn

which happens to lie in U ⊆ Rn.
If A is any set, then we write idA : A → A for the identity mapping. Let

H ∈ G(n,m). We use the symbol πH to denote the orthogonal projection onto
H and π⊥

H = I − πH to denote the orthogonal projection onto the orthogonal
complement H⊥. We write aff{x0, . . . , xm} for the smallest affine subspace of Rn

containing the points x0, . . . , xm ∈ Rn, i.e.

aff{x0, . . . , xm} = x0 + span{x1 − x0, . . . , xm − x0} .
Let T = �(x0, . . . , xk). We set

• fciT = �(x0, . . . , x̂i, . . . , xk) - the i-th face of T,
• hi(T) = dist(xi, aff{x0, . . . , x̂i, . . . , xk} - the height lowered from xi,
• hmin(T) = min{hi(T) : i = 0, 1, . . . , k} - the minimal height of T.

In the course of the proofs we will frequently use cones and “conical caps” of different
sorts. We define

• C(δ,H) = {x ∈ Rn : |π⊥
H(x)| ≥ δ|x|} - the cone with “axis” H⊥ and “angle”

δ,
• A(r, R) = BR \ Br - the open shell (or the n-annulus) of radii r and R,
• C(δ,H, r, R) = C(δ,H) ∩ A(r, R) - the conical cap with “angle” δ, “axis”
H⊥ and radii r and R.

Remark. We use the notation C = C(x, y, z) to denote that C depends solely on x,

y and z. The symbols C, Ĉ, C̃, C̄ are used to denote general constants, whose
values may change in different parts of the text. Subscripts in constants (like “Cθ”)
do not denote dependences but are used to name the constant and distinguish it
from other constants. Subscripted constants always have global meaning and do
not change.

1.2. Reifenberg flat sets. For convenience we introduce the following

Definition 1.1. Let Σ ⊆ Rn be any set. Let x ∈ Σ and r > 0. We say that
H ∈ G(n,m) is the best approximating m-plane for Σ in B(x, r) and write H ∈
BAPm(x, r) if the following condition is satisfied:

dH(Σ ∩ B(x, r), (x+H) ∩ B(x, r)) ≤ rθΣm(x, r) .

Since G(n,m) is compact, such H always exists, but it might not be unique,
e.g. consider the set Σ = S ∪ {0} and take x = 0, r = 2.

Recall the definitions of βΣ
m and θΣm given in the introduction. In [3], the authors

define the β and θ numbers in a slightly different way using open balls instead
of closed ones. This does not change much since both definitions lead to comparable
quantities (see [13, Proposition 1.35]).

Definition 1.2 (cf. [3], Definition 1.3). We say that a closed set Σ ⊆ Rn is
Reifenberg-flat with vanishing constant (of dimension m) if for every compact subset
K ⊆ Σ

lim
r→0

sup
x∈K

θΣm(x, r) = 0 .
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SOBOLEV EMBEDDING USING MENGER CURVATURE 781

The following proposition was proved by David, Kenig and Toro.

Proposition 1.3 (cf. [3], Proposition 9.1). Let τ ∈ (0, 1) be given. Suppose Σ is
a Reifenberg-flat set with vanishing constant of dimension m in Rn and that, for
each compact subset K ⊆ Σ there is a constant CK such that

βΣ
m(x, r) ≤ CKrτ for each x ∈ K and r ≤ 1.

Then Σ is a C1,τ -submanifold of Rn.

1.3. Voluminous simplices. Here we define the class of (η, d)-voluminous sim-
plices, where η measures the “regularity” of a simplex. The curvature K of any such
simplex is controlled in terms of η and d. A very similar notion was used by Lerman
and Whitehouse in [16, §3.1], where these kinds of simplices were called 1-separated.
We derive estimates of the distance by which we can move each vertex of an (η, d)-
voluminous simplex without losing the lower bound on the curvature. We will use
this result to obtain a lower bound on the E l

p-energy in the proof of Proposition 2.1.

Definition 1.4. Let T = �(x0, . . . , xk) be a simplex in Rn and let d ∈ (0,∞) and
η ∈ (0, 1). We say that T is (η, d)-voluminous if

diam(T) ≤ d and hmin(T) ≥ ηd .

Remark 1.5. If T = �T is (η, d)-voluminous, then

(ηd)k

k!
≤ Hk(T) ≤ dk

k!
; hence K(T ) ≥ ηk

k!d
.

Let us recall the definition of the outer product:

Definition 1.6. Let w1, . . . , wl be vectors in Rn. We define the outer product

w1 ∧ · · · ∧ wl to be the vector in R(
n
l), whose coordinates are exactly the l-minors

of the (n× l)-matrix (w1, . . . , wl).

Remark. A standard fact from linear algebra says that the length |w1 ∧ · · · ∧ wl|
of the outer product of w1, . . . , wl is equal to the l-dimensional volume of the
parallelotope spanned by w1, . . . , wl. In particular |w1∧· · ·∧wl| ≤ |w1|·|w2| · · · |wk|.

Proposition 1.7. Let T0 = �T0 = �(x0, . . . , xk) be an (η, d)-voluminous simplex
in Rn. There exists a number ςk = ςk(η) ∈ (0, 1) such that for any simplex T1 =
�T1 = �(y0, . . . , yk) satisfying |xi − yi| ≤ ςkd for each i = 1, . . . , k the estimate

(1)
3

4
Hk(T0) ≤ Hk(T1) ≤

5

4
Hk(T0) holds; hence also K(T1) ≥

3ηk

2k+3k!d
.

Proof. Let ς̃ ∈ (0, 1) be some number and let T1 = (y0, . . . , yk) be such that
|xi − yi| ≤ ς̃d for each i = 1, . . . , k. We set vi = xi − x0 and wi = (yi − y0) − vi,
where i = 1, . . . , k.

Hk(T1) =
1

k!
|(v1 + w1) ∧ . . . ∧ (vk + wk)|

=
1

k!
|(v1 ∧ . . . ∧ vk) + (w1 ∧ v2 ∧ . . . ∧ vk) + (v1 ∧ w2 ∧ . . . ∧ vk)

+ . . .+ (w1 ∧ w2 ∧ v3 ∧ . . . ∧ vk) + . . .+ (w1 ∧ w2 ∧ w3 ∧ . . . ∧ wk)| .

Licensed to Max Planck fuer Gravitationsphysik. Prepared on Wed Jan 14 07:12:40 EST 2015 for download from IP 194.94.224.254.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



782 S�LAWOMIR KOLASIŃSKI

Whenever we take an outer product of j vectors from the set {w1, . . . , wk} and (k−j)
vectors from the set {v1, . . . , vk} we obtain a vector of length at most dk−j(2ς̃d)j .
Hence we can write

|(w1∧v2∧ . . .∧vk)+ . . .+(w1∧w2∧ . . .∧wk)| ≤
k∑

j=1

(
k

j

)
dk2j ς̃j = dk((1+2ς̃)k−1) ,

which gives Hk(T0)− dk((1 + 2ς̃)k − 1) ≤ Hk(T1) ≤ Hk(T0) + dk((1 + 2ς̃)k − 1) .

Since T0 is (η, d)-voluminous, it satisfies Hk(T0) ≥ 1
k! (ηd)

k. We set

(2) ςk =
1

2

(
1 +

ηk

4k!

) 1
k

− 1

2
,

so that dk((1 + 2ς̃)k − 1) ≤ 1
4Hk(T0). Thus, if |xi − yi| ≤ ςkd, then we obtain the

desired estimate 3
4Hk(T0) ≤ Hk(T1) ≤ 5

4Hk(T0). �
Remark 1.8. Let x, s ∈ R and s > 0. When |x| ≈ 0, the function (1 + x)s behaves
asymptotically like 1 + sx; hence there exists a constant Cς = Cς(k) > 1 such that

(3) ∀η ∈ (0, 1)
1

Cς
ηk ≤ ςk(η) ≤ Cςη

k .

1.4. The E l
p-energy for smooth manifolds. Observe that K(αT ) = 1

αK(T ) for
any α > 0, so our curvature behaves under scaling like the original Menger curvature
c. If �T is a regular simplex (meaning that all the side lengths are equal), then
K(T ) � 1

diamT � R(T )−1, where R(T ) is the radius of a circumsphere of T . For

m = 1 one easily sees that we always have K(T ) ≤ c(T ) = R−1(T ). In dimension
m = 2 we also have K(T ) ≤ 4πKSvdM (T ) for any T and K(T ) � KSvdM (T ) if T
is a regular simplex.

We emphasize the behavior on regular simplices because small, close to regular
(or voluminous) simplices are the reason why E l

p(Σ) might get very big or infinite.
For the class of (η, d)-voluminous simplices T the value K(T ) is comparable with
yet another possible definition of discrete curvature (cf. [17, §10])

K′(T ) =
hmin(�T )

diam(T )2
=

1

diam(T )

hmin(�T )

diam(T )
,

which is basically 1
diam(T ) multiplied by a scale-invariant “regularity coefficient”

hmin(	T )
diam(T ) . This last factor prevents K′ from blowing up on simplices with vertices

on smooth manifolds.
It occurs that one cannot define k-dimensional Menger curvature using integrals

of R−1. This “obvious” generalization of the Menger curvature fails because of ex-
amples (see [26, Appendix B]) of smooth embedded manifolds for which this kind
of curvature would be unbounded. For the curvature K we have the following.

Proposition 1.9. If M ⊆ Rn is a compact, m-dimensional, C2-manifold embedded
in Rn, then the discrete curvature K is bounded on Mm+2. Therefore E l

p(M) is finite
for every p > 0 and every l ∈ {1, . . . ,m+ 2}.
Lemma 1.10. Let Σ ⊆ Rn be any set and let T = (x0, . . . , xm+1) ∈ Σm+2. We set
T = �T and d = diam(T). There exists a constant CKβ = CKβ(m,n) such that
we have

Hm+1(T) ≤ CKββ
Σ
m(x0, d)d

m+1 and consequently K(T ) ≤ CKβ
βΣ
m(x0, d)

d
.
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Proof. 2 Without loss of generality we can assume that x0 = 0. If the vectors
{x1, . . . , xm+1} are not linearly independent, then Hm+1(T) = 0 and there is noth-
ing to prove.

Let x1, . . . , xm+1 be linearly independent and let W denote the (m + 1)-
dimensional vector space spanned be these vectors. Set

S = {s ∈ W⊥ : |s| ≤ βΣ
m(x0, d)d} .

Then, the set T+ S is isometric with T× S and the following holds:
(4)
Hn(T+ S) = Hm+1(T)Hn−m−1(S) = ωn−m−1Hm+1(T)dn−m−1βΣ

m(0, d)n−m−1 .

Using compactness of the Grassmannian we can find a vector space V ∈ G(n,m)
such that

sup
y∈Σ∩B(x0,d)

|π⊥
V (y)| = βΣ

m(x0, d)d .

The vertices of T lie in Σ ∩ B(x0, d) and T is convex, so we also have

∀t ∈ T |π⊥
V (t)| ≤ βΣ

m(x0, d)d .

Let y ∈ T + S and let t ∈ T and s ∈ S be such that s+ t = y. Using the triangle
inequality we see that

|πV (y)| ≤ |y| ≤ (1 + βΣ
m(0, d))d

and |π⊥
V (y)| ≤ |π⊥

V (t)|+ |π⊥
V (s)| ≤ 2βΣ

m(x0, d)d .

Hence, T+ S is a subset of

Z =
{
y ∈ R

n : |πV (y)| ≤ 2d, |π⊥
V (y)| ≤ 2βΣ

m(0, d)d
}

and we obtain

(5) Hn(T+ S) ≤ Hn(Z) = ωmωn−m2nβΣ
m(0, d)n−mdn .

Combining (4) and (5) we obtain the desired estimate. �

Corollary 1.11. Let Σ ⊆ Rn be any set and let T = (x0, . . . , xm+1) ∈ Σm+2.
There exists a constant Cηβ = Cηβ(n,m) such that if �T is (η, d)-voluminous,
then the parameters η and d must satisfy

η ≤ Cηββ
Σ
m(x0, d)

1
m+1 .

Proof. Recalling Remark 1.5 we have the estimate

Hm+1(�T ) ≥ ((m+ 1)!)−1(ηd)m+1,

which, combined with Lemma 1.10, leads to η ≤ ((m + 1)!CKβ)
1

m+1 βΣ
m(x0, d)

1
m+1 .

�

Proof of Proposition 1.9. SinceM is a compact C2-manifold, it has a tubular neigh-
borhood

Mε = M +Bε = {x+ y : x ∈ M, y ∈ Bε}
of some radius ε > 0 and the nearest point projection p : Mε → M is a well-defined,
continuous function (see e.g. [5]).

2The author wishes to thank S. Blatt for significantly simplifying this proof while we were
working on [1].
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We will show that for all r ≤ ε and all x ∈ M we have

(6) βM
m (x, r) ≤ 1

2ε
r .

Next, we apply Lemma 1.10 and get the desired result.
Choose r ∈ (0, ε]. Fix some point x ∈ M and pick a point y ∈ TxM

⊥ with
|x− y| = ε. Note that y belongs to the tubular neighborhood Mε and applying [5,
Theorem 4.8] we see that p(y) = x. Hence, the point x is the only point of M in the
ball B(y, ε). In other words M \ {x} lies in the complement of B(y, ε). This is true
for any y satisfying y ∈ TxM

⊥ and |x− y| = ε, so we have

M ⊆ R
n \

⋃{
B(y, ε) : y ⊥ TxM, |y − x| = ε

}
.

Pick another point x̄ ∈ M ∩ B(x, r). We then have

(7) x̄ ∈ B(x, r) \
⋃{

B(y, ε) : y ⊥ TxM, |y − x| = ε
}
.

Using (7) and simple trigonometry, it is easy to calculate the maximal distance
of x̄ from the tangent space TxM . Let z be any point in the intersection ∂B(x, r)∩
∂B(y, ε). Note that points of M ∩ B(x, ε) must be closer to TxM than z. In other
words

(8) ∀x ∈ M ∩ B(x, r) dist(x, TxM) ≤ dist(z, TxM) .

This situation is presented in Figure 1. Let α be the angle between TxM and z and
set h = dist(z, TxM). We use the fact that the distance |z − x| is equal to r.

(9) sinα =
|z − x|
2ε

=
h

|z − x| ⇒ h =
|z − x|2

2ε
=

r2

2ε
.

This shows (6) and thus finishes the proof. �

x

y

z

x+ TxM

α

α

ε

ε

d
h

Figure 1. All of M ∩ B(x, r) lies in the grey area. The point x̄
lies in the complement of B(y, ε) and inside B(x, r) so it can only
be as far from TxM as z is.
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Remark 1.12. Note that the only property of M , which allowed us to prove Propo-
sition 1.9, was the existence of an appropriate tubular neighborhood Mε. One can
easily see that Proposition 1.9 still holds if M is a compact submanifold of positive
reach as defined in [5].

1.5. The metric on the Grassmannian. Recall that, formally, G(n,m) is de-
fined as the homogeneous space

G(n,m) = O(n)/(O(m)×O(n−m)) ,

where O(n) is the orthogonal group; see e.g. Hatcher’s book [8, §4.2, Examples
4.53, 4.54 and 4.55] for the reference. We treat G(n,m) as a metric space with the
following metric.

Definition 1.13. Let U, V ∈ G(n,m). We define the metric

dGr(U, V ) = ‖πU − πV ‖ = sup
w∈S

|πU (w)− πV (w)| .

Note that this metric is different from the geodesic distance on the Grassman-
nian. However, the topology induced by the metric dGr agrees with the standard
quotient topology which is the same as the topology induced by the geodesic dis-
tance.

Remark 1.14. Let I : Rn → Rn denote the identity mapping. We will frequently
use the following identity without reference:

dGr(U, V ) = ‖πU − πV ‖ = ‖I − π⊥
U − (I − π⊥

V )‖ = ‖π⊥
V − π⊥

U ‖ .
Definition 1.15. Let V ∈ G(n,m) and let (v1, . . . , vm) be the basis of V . Fix
some radius ρ > 0 and a small constant ε ∈ (0, 1). We say that (v1, . . . , vm) is
a ρε-basis if

∀i, j ∈ {1, . . . ,m} (δji − ε)ρ2 ≤ |〈vi, vj〉| ≤ (δji + ε)ρ2 .

Here δji denotes the Kronecker delta.

Proposition 1.16. Let (v1, . . . , vm) be a ρε-basis of V ∈ G(n,m) with constants
ρ = ρ0 > 0 and ε = ε0 ∈ (0, 1). Let (u1, . . . , um) be some basis of U ∈ G(n,m),
such that |ui − vi| ≤ ϑρ0 for some ϑ > 0 and for each i = 1, . . . ,m. There exist
constants Cρε = Cρε(m) and ερε = ερε(m) such that whenever ε0 ≤ ερε, then

dGr(U, V ) ≤ Cρεϑ .

Lemma 1.17. Let (v1, . . . , vm) be a ρε-basis of V ∈ G(n,m) with constants ρ =
ρ0 = 1 and ε = ε0 ∈ (0, 1). There exists an orthonormal basis v̂1, . . . , v̂m of V and
a constant Cgs = Cgs(m) such that |vi − v̂i| ≤ Cgsε0.

Proof. Set

v̂1 =
v1
|v1|

, si =

i−1∑
j=1

〈vi, v̂j〉v̂j , ṽi = vi − si and v̂i =
ṽi
|ṽi|

.

We proceed by induction. For i = 1, we have |v̂1 − v1| = |1 − |v1|| ≤ ε0. Assume
that for i = 1, . . . , i0 − 1 we have |v̂i − vi| = Cε0 for some constant C = C(i). It
follows that

|vi0 − ṽi0 | = |si0 | ≤
i0−1∑
j=1

|〈vi0 , vj〉|+ |〈vi0 , v̂j − vj〉| ≤ Ĉ(i0)ε0
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and

1− (Ĉ(i0) + 1)ε0 ≤ |vi0 | − |si0 | ≤ |ṽi0 | ≤ |vi0 |+ |si0 | ≤ 1 + (Ĉ(i0) + 1)ε0 ;

hence |vi0 − v̂i0 | ≤ |vi0 − ṽi0 |+ |ṽi0 − v̂i0 | ≤ (2Ĉ(i0) + 1)ε0. �
Lemma 1.18. Let (v̂1, . . . , v̂m) be an orthonormal basis of V ∈ G(n,m) and let
U ∈ G(n,m) be such that |π⊥

U (v̂i)| ≤ ϑ. There exists a constant Cπ = Cπ(m) such
that dGr(U, V ) ≤ Cπϑ.

Proof. Without loss of generality, we can assume that ϑ < 1. If ϑ ≥ 1, then we can
set Cπ = 2 and there is nothing to prove. Set ui = πU v̂i. Since ui = v̂i − π⊥

U v̂i and

〈v̂i, v̂j〉 = δji , we have

δji − (ϑ2 + 2ϑ) ≤ |〈ui, uj〉| ≤ δji + (ϑ2 + 2ϑ) ,

so u1, . . . , um is a ρε-basis with ρ = 1 and ε = 3ϑ. From Lemma 1.17 there exists
an orthonormal basis û1, . . . , ûm such that |ui − ûi| ≤ 3Cgsϑ. Hence |v̂i − ûi| ≤
3Cgsϑ+ ϑ ≤ (1 + 3Cgs)ϑ.

We calculate

dGr(U, V ) = sup
w∈S

|πU (w)− πV (w)| = sup
w∈S

∣∣∣∣∣
m∑
i=1

〈w, ûi〉ûi − 〈w, v̂i〉v̂i

∣∣∣∣∣(10)

≤ sup
w∈S

m∑
i=1

|〈w, ûi〉(ûi − v̂i)|+ |〈w, (ûi − v̂i)〉v̂i| ≤ 2m(1 + 3Cgs)ϑ . �

Proof of Proposition 1.16. Dividing each vi by ρ0, we get a ρε-basis with ρ = 1.
Hence we can assume that ρ0 = 1. Without loss of generality we may also assume
that ϑ < 1. Indeed, we always have the trivial estimate dGr(U, V ) ≤ 2, so if ϑ ≥ 1
we can set Cρε = 2.

Let v̂1, . . . , v̂m be the orthonormal basis given by Lemma 1.17 applied to v1, . . . ,
vm. Then

|π⊥
U v̂i| ≤ |π⊥

U (v̂i− vi)|+ |π⊥
U vi| ≤ |v̂i− vi|dGr(U, V )+ |vi−ui| ≤ Cgsε0dGr(U, V )+ϑ

for each i = 1, . . . ,m. We set ερε = ερε(m) = 1
2 (CπCgs)

−1 and we assume ε0 ≤ ερε.
Applying Lemma 1.18 we obtain the estimate

dGr(U, V ) ≤ CπCgsε0dGr(U, V ) + Cπϑ ⇐⇒ dGr(U, V ) ≤ Cπ

1− CπCgsε0
ϑ . �

2. Geometric Morrey-Sobolev embedding

In this section we prove Theorem 1 which is a geometric counterpart of the
Morrey-Sobolev embedding W 2,p(Rk) ⊆ C1,1−k/p for p > k. We also give some
examples of m-fine sets to which Theorem 1 applies.

2.1. Proof of Theorem 1.

Proposition 2.1. Let l ∈ {1, 2, . . . ,m+ 2} and p > ml. Assume Σ ⊆ Rn satisfies
(Ahl) and also E l

p(Σ) ≤ E < ∞. Let T0 = (x0, . . . , xm+1) ∈ Σm+2. If T0 = �T0 is
(η, d)-voluminous with d ≤ RAhl, then η and d must satisfy

(11) d ≥
(
CηdA

l
Ahl

E

)1/λ

ηκ/λ or equivalently η ≤
(

E

CηdAl
Ahl

)1/κ

dλ/κ ,

where Cηd = Cηd(m, l, p) is some constant, λ = p−ml and κ = (p+ml)(m+ 1).
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Proof. We shall estimate the E l
p-energy of Σ. Recall that ςm+1 ≤ 1

4 was defined
by (2).

(12) ∞ > E ≥ E l
p(Σ) =

ˆ
Σl

sup
yl,...,ym+1∈Σ

Kp(y0, . . . , ym+1) dHml
(y0,...,yl−1)

≥
ˆ
Σ∩B(x0,ςm+1d)

· · ·
ˆ
Σ∩B(xl−1,ςm+1d)

sup
yl,...,ym+1∈Σ

Kp(y0, . . . , ym+1) dHml
(y0,...,yl−1)

.

Proposition 1.7 combined with Remark 1.5 lets us estimate the integrand

sup
yl,...,ym+1∈Σ

Kp(y0, . . . , ym+1) ≥
(

3ηm+1

2m+4(m+ 1)!d

)p

.

Since Σ satisfies (Ahl), we get a lower bound on the measure of the sets over which
we integrate

Hm(Σ ∩ B(xi, ςm+1d)) ≥ AAhl(ςm+1d)
m .

Plugging the last two estimates into (12) and recalling (3) we obtain

E ≥ (AAhl(ςm+1d)
m)l

(
3ηm+1

2m+4(m+ 1)!d

)p

= Cηd(m, l, p)Al
Ahld

ml−pη(p+ml)(m+1) .

�

Proposition 2.1 is interesting in itself. It says that whenever the energy of Σ is
finite, we cannot have very small and voluminous simplices with vertices on Σ. It
gives a bound on the “regularity” (i.e. parameter η) of any simplex in terms of its
diameter d and we see that η goes to 0 when we decrease d. Now we are ready to
prove Proposition 1.

Proof of Proposition 1. Fix some point x ∈ Σ and a radius r ∈ (0, RAhl). Let
T = �T = �(x0, . . . , xm+1) be an (m+ 1)-simplex such that xi ∈ Σ ∩ B(x, r) for
i = 0, 1, . . . ,m+1 and such that T has maximal Hm+1-measure among all simplices
with vertices in Σ ∩ B(x, r).

Hm+1(T) = max{Hm+1(�(x′
0, . . . , x

′
m+1)) : x

′
i ∈ Σ ∩ B(x, r)} .

The existence of such simplex follows from the fact that the set Σ ∩ B(x, r) is
compact and from the fact that the function T �→ Hm+1(�T ) is continuous with
respect to x0, . . . , xm+1.

Rearranging the vertices of T we can assume that hmin(T) = hm+1(T), so the
largest m-face of T is �(x0, . . . , xm). Let H = span{x1 − x0, . . . , xm − x0}, so
that x0 + H contains the largest m-face of T. Note that the distance of any
point y ∈ Σ ∩ B(x, r) from the affine plane x0 + H has to be less than or equal
to hmin(T) = dist(xm+1, x0 + H). If we could find a point y ∈ Σ ∩ B(x, r) with
dist(y, x0 + H) > hmin(T), then the simplex �(x0, . . . , xm, y) would have larger
Hm+1-measure than T but this is impossible due to the choice of T.

Since x ∈ Σ ∩ B(x, r), we know that dist(x, x0 +H) ≤ hmin(T), so we obtain

(13) ∀y ∈ Σ ∩ B(x, r) dist(y, x+H) ≤ 2hmin(T) .

Now we only need to estimate hmin(T) = hm+1(T) from above. Of course T is
(hmin(T)/(2r), 2r)-voluminous, so applying Proposition 2.1 we obtain

(14)
hmin(T)

2r
≤

(
E

CηdAl
Ahl

)1/κ

(2r)λ/κ .
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Putting (13) and (14) together we get

βΣ
m(x, r) ≤ 2hmin(T)

r
≤ 4

(
E

CηdAl
Ahl

)1/κ

(2r)λ/κ = C(m, l, p)

(
E

Al
Ahl

)1/κ

rλ/κ .

�
Having Proposition 1 at our disposal, we can easily prove Theorem 1.

Proof of Theorem 1. We know already that βΣ
m(x, r) ≤ C(m, l, p, AAhl, E)rλ/κ for

r < RAhl. We assumed (θ � β), so Σ is Reifenberg-flat with vanishing constant.
We finish the proof by applying Proposition 1.3. �
2.2. Examples of m-fine sets. Here we give a few examples of m-fine sets.

Example 2.2. Let M be any m-dimensional, compact, closed manifold of class
C1 and let f : M → Rn be an immersion. Then the image Σ = im(f) is an m-
fine set. At each point x ∈ M , there is a radius Rx such that a neighborhood
Ux ⊆ f−1(B(f(x), Rx)) of x in M is mapped to the set Vx = f(Ux) ⊆ B(f(x), Rx)
and is a graph of some Lipschitz function Φx : Df(x)TxM → (Df(x)TxM)⊥. If
we choose Rx small, then we can make the Lipschitz constant of Φx smaller than
some ε > 0. Due to the compactness of M and continuity of Df we can find a global
radius RΣ = min{Rx : x ∈ M}. Then conditions (Ahl) and (θ � β) are satisfied

with AAhl =
√
1− ε2, RAhl = Rθβ = RΣ and Mθβ = 4.

Example 2.3. Let Σ be the van Koch snowflake in R2. Then Σ is 1-fine but it
fails to be 1-dimensional.

0 1−1

Figure 2. This set is 1-fine despite the fact that it has boundary points.

Example 2.4. Let m = 1, n = 2 and

Σ =
∞⋃
k=1

(−Qk) ∪
{
(t, 0) ∈ R

2 : t ∈ [−1, 1]
}
∪

∞⋃
k=1

Qk ,

where Q0 = ∂
(
[0, 1]× [0, 1]

)
and Qk =

( k∑
j=1

2−j ,− 1
2

)
+ 2−(k+1)Q0 .

See Figure 2 for a graphical presentation. Condition (θ � β) holds at the boundary
points (−1, 0) and (1, 0) of Σ, because the β-numbers do not converge to zero with
r → 0 at these points. All the other points of Σ are internal points of line segments
or corner points of squares, so at these points condition (θ � β) is also satisfied.
Hence, Σ is 1-fine.

This example shows that condition (θ � β) does not exclude boundary points,
but at any such boundary point we have to add some oscillation to prevent β-
numbers from getting too small. The same effect can be observed in the following
example:

Σ = ∂
(
[1, 2]× [−1, 1]

)
∪
{
(x, x sin( 1x )) : x ∈ (0, 1]

}
.
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3. Uniform Ahlfors regularity–the proof of Theorem 2

Here we give the proof of Theorem 2. First we introduce the class of admissi-
ble sets, which is tailored for proving the existence of many voluminous simplices
(cf. Proposition 3.18) with vertices on Σ. Proposition 3.18 is crucial in the proof
of Theorem 2. In the end we also show how to make all the emerging constants
depend solely on E, m, l and p.

3.1. The class of admissible sets. In this section we introduce the definition
of the class A(δ,m) of (δ,m)-admissible sets–here δ ∈ (0, 1) is some number. This
definition is essentially the same as [27, Definition 2.9] but it is more convenient
for us to impose only local lower Ahlfors regularity (Ahl) instead of Condition H1
of [27, Definition 2.9].

Definition 3.1. Let I be a countable set of indices and assume there exist compact,
closed, m-dimensional manifolds Mi of class C1, a set Z with Hm(Z) = 0 and
continuous maps fi : Mi → Rn for i ∈ I, such that

Σ =
⋃
i∈I

fi(Mi) ∪ Z .

Let N be an (n − m)-dimensional, compact, closed submanifold of Rn such that
fi(Mi)∩N = ∅ for all i ∈ I. We say that Σ is linked with N and write lk2(Σ, N) = 1,
if there exists an i ∈ I such that the map

F : Mi ×N → S
n−1 , F (w, z) =

fi(w)− z

|fi(w)− z| satisfies deg2 F = 1 ,

where deg2 is the topological degree modulo 2.

For the definition of the degree of a map we refer the reader to [9, Chapter 5,
§1].
Definition 3.2 (cf. [27] Definition 2.9). Let δ ∈ (0, 1) and let I be a countable set
of indices. Let Σ be a compact subset of Rn satisfying (Ahl). We say that Σ is
(δ,m)-admissible and write Σ ∈ A(δ,m) if the following conditions are satisfied:

A1 Mock tangent planes and flatness. There exists a dense subset Σ∗ ⊆ Σ
of full measure in Σ (i.e. Hm(Σ \ Σ∗) = 0) such that for each x ∈ Σ∗ there
is an m-plane H = Hx ∈ G(n,m) and a radius r0 = r0(x) > 0 such that

|π⊥
H(y − x)| < δ|y − x| for each y ∈ B(x, r0) ∩ Σ .

A2 Structure and linking. There exist compact, closed, m-dimensional
manifolds Mi of class C1, a set Z with Hm(Z) = 0 and continuous maps
fi : Mi → Rn for i ∈ I, such that

Σ =
⋃
i∈I

fi(Mi) ∪ Z

(15) and ∀x ∈ Σ∗ lk2(Σ,Sx) = 1 where Sx = S
(
x, 12r0

)
∩ (x+H⊥

x ) .

Condition A1 ensures that at every point x ∈ Σ∗ one can touch Σ with an ap-
propriate cone. Condition A2 says that at each point of Σ there is a sphere Sx

which is linked with Σ. This means intuitively that we cannot move Sx far away
from Σ without tearing one of these sets. Example 3.10 shows that this condition
is unavoidable for the theorems stated in this paper to be true.

There are three especially useful properties of lk2 that we want to use.
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Proposition 3.3 (cf. [27], Lemma 3.2). Let A ⊆ Rn be a (δ,m)-admissible set
and let N be a compact, closed (n−m− 1)-dimensional manifold of class C1, and
let Nj = hj(N) for j = 0, 1, where hj is a C1-embedding of N into Rn such that
Nj ∩ Σ = ∅. If there is a homotopy

G : N × [0, 1] → R
n \ Σ ,

such that G(−, 0) = h0 and G(−, 1) = h1, then

lk2(Σ, N0) = lk2(Σ, N1) .

Proposition 3.4 (cf. [27], Lemma 3.4). Let Σ ⊆ Rn be a (δ,m)-admissible set.
Choose y ∈ Rn and ε ∈ R such that 0 < ε < r < 2ε and dist(y,Σ) ≥ 3ε. Then

lk2(Σ, S(y, r) ∩ (y + V )) = 0

for each V ∈ G(n, n−m).

Proposition 3.5 (cf. [27], Lemma 3.5). Let Σ ⊆ Rn be a (δ,m)-admissible set.
Assume that for some y ∈ Rn, r > 0 and V ∈ G(n, n−m) we have

lk2(Σ, S(y, r) ∩ (y + V )) = 1 .

Then the disk B(y, r) ∩ (y + V ) contains at least one point of Σ.

Example 3.6. Let Σ be any closed, compact, m-dimensional submanifold of Rn

of class C1. Then Σ ∈ A(δ,m) for any δ ∈ (0, 1).
It is easy to verify that Σ ∈ A(δ,m). Take M1 = Σ and f1 = idM1

. The set Z
will be empty, so Σ∗ = Σ. At each point x ∈ Σ we set Hx to be the tangent space
TxΣ. Small spheres centered at x ∈ Σ and contained in x+H⊥

x are linked with Σ;
for the proof see e.g. [18, pp. 194-195]. Note that we do not assume orientability;
that is why we used degree modulo 2.

Example 3.7. Let Σ =
⋃N

i=1 Σi, where Σi are closed, compact, m-dimensional
submanifolds of Rn of class C1. Moreover assume that these manifolds intersect
only on sets of zero m-dimensional Hausdorff measure, i.e.

Hm(Σi ∩ Σj) = 0 for i �= j .

Then Σ ∈ A(δ,m) for any δ ∈ (0, 1).

Remark 3.8. Any compact C1-manifold is (δ,m)-admissible (cf. Example 3.6) for
any δ ∈ (0, 1); hence any m-fine set with finite E l

p-energy for some p > ml is also
(δ,m)-admissible.

It turns out that any (δ,m)-admissible set with finite E l
p-energy for some p > ml

is also m-fine. We will not use this fact in this article. The proof for the Em+2
p -

energy can be found in [13, Theorem 2.13].
If we do not assume finiteness of the E l

p-energy, then these two classes of sets are
different and none of them is contained in the other.

Example 3.9. Let

Σ =
(
[0, 1]× {0}

)
∪
(
{1} × [0, 1]

)
∪
(
{(x, x2) : x ∈ [0, 1]}

)
⊆ R

2 .

Then Σ is (δ, 1)-admissible for any δ ∈ (0, 1) but it is not 1-fine. It does not satisfy
(θ � β) at the points (0, 0) and (1, 1).

Now we give some negative examples showing the role of condition A2.
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Example 3.10. Let H ∈ G(n,m) and let Σ = πH(S) = B ∩ H. Then Σ satisfies
(Ahl) and condition A1 but it does not satisfy A2. Hence, it is not admissible.
Although Σ is a compact, m-dimensional submanifold of Rn of class C1, it is not
closed.

Example 3.11. Let Σ = S ∩ Rm+1. Of course Σ is admissible as it falls into the
case presented in Example 3.6. We want to emphasize that there are good and bad
decompositions of Σ into the sum

⋃
fi(Mi) from condition A2.

The easiest one and the best one is to set M1 = Σ and f1 = idM1
. But there are

other possibilities. Set M1 = S ∩ Rm+1 and M2 = S ∩ Rm+1 and set

f1(x1, . . . , xm+1) = (x1, . . . , xm, |xm+1|) ,
f2(x1, . . . , xm+1) = (x1, . . . , xm,−|xm+1|) ,

so that f1 maps M1 to the upper hemisphere and f2 maps M2 to the lower hemi-
sphere. This decomposition is bad, because (15) is not satisfied at any point.

3.2. Homotopies inside cones. In this section we prove a few useful facts about
cones. In the proof of Proposition 3.18 we construct a set F by glueing conical caps
together. Then we need to know that we can deform one sphere lying in F to some
other sphere lying in F without leaving F . To be able to do this easily we need
Propositions 3.16 and 3.17.

Definition 3.12. Let H ∈ G(n,m) be an m-dimensional subspace of Rn and let
δ ∈ (0, 1) be some number. We define the set

G (δ,H) = {V ∈ G(n, n−m) : ∀v ∈ V |π⊥
H(v)| ≥ δ|v|} .

In other words V ∈ G (δ,H) if and only if V is contained in the cone C(δ,H).
If n = 3 and m = 1, then H is a line in R3 and the cone C(δ,H) contains all the
2-dimensional planes V such that sin(�(H,V )) ≥ δ.

Proposition 3.13 (cf. [13], Proposition 4.2). For any two spaces U and V in
G (δ,H) there exists a continuous path γ : [0, 1] → G (δ,H) such that γ(0) = V and
γ(1) = U .

Corollary 3.14 (cf. [13], Corollary 4.3). The path γ from Proposition 3.13 lifts to
a continuous path γ̃ : [0, 1] → O(n) in the orthogonal group.

The proof of Proposition 3.13 is quite elementary and Corollary 3.14 follows
from the homotopy lifting property of fiber bundles (see [8, Proposition 4.48]). The
details of the proofs can be found in [13, Section 4.1.1].

Corollary 3.15. Let H and δ be as in Proposition 3.13. Let S1 and S2 be two
round spheres centered at the origin, contained in the conical cap C(δ,H, ρ1, ρ2) and
of the same dimension (n − m − 1). Moreover assume that 0 ≤ ρ1 < ρ2. There
exists an isotopy

F : S1 × [0, 1] → C(δ,H, ρ1, ρ2) ,

such that F (−, 0) = idS1
and F (S1 × {1}) = S2 .

Proof. Let r1 and r2 be the radii of S1 and S2 respectively. We have ρ1 < r1, r2 <
ρ2. Let V1, V2 ∈ G(n, n − m) be the two subspaces of Rn such that S1 ⊆ V1 and
S2 ⊆ V2. In other words S1 = Sr1 ∩ V1 and S2 = Sr2 ∩ V2. Because S1 and S2

are subsets of C(δ,H), we know that V1 and V2 are elements of G (δ,H). From
Proposition 3.13 we get a continuous path γ joining V1 with V2. By Corollary 3.14,
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this path lifts to a path γ̃ in the orthogonal group O(n). For z ∈ S1 and t ∈ [0, 1]
we set

F (z, t) = γ̃(t)γ̃(0)−1z .

This gives a continuous deformation of S1 = Sr1 ∩ V1 into Sr1 ∩ V2. Now, we only
need to adjust the radius but this can be easily done inside V2 ∩ A(ρ1, ρ2) so the
corollary is proven. �

Proposition 3.16. Let H ∈ G(n,m). Let S be a sphere perpendicular to H,
meaning that S = S(x, r) ∩ (x +H⊥) for some x ∈ H and r > 0. Assume that S
is contained in the conical cap C(δ,H, ρ1, ρ2), where ρ2 > 0. Fix some ρ ∈ (ρ1, ρ2).
There exists an isotopy

F : S × [0, 1] → C(δ,H, ρ1, ρ2) ,

such that F (·, 0) = idS and F (S × {1}) = Sρ ∩H⊥ .

O

z

F (z, 1)

x
H

ρ1

ρ2

S

Figure 3. When we move the center of a sphere to the origin, we
need to control the radius so that the deformation is performed
inside the conical cap.

Proof. Any point z ∈ S can be uniquely decomposed into a sum z = x+ ry, where
y ∈ S ∩H⊥ is a point in the unit sphere in H⊥. We define

F (x+ ry, t) = (1− t)x+ y
√
r2 + |x|2 − |(1− t)x|2 .

This gives an isotopy which deforms S to a sphere perpendicular to H and centered
at the origin (see Figure 3). Fix some z = x + ry ∈ S. The sphere S is contained
in C(δ,H), so it follows that

|π⊥
H(F (z, t))|
|F (z, t)| =

√
r2 + |x|2 − |(1− t)x|2√

r2 + |x|2
≥ r√

r2 + |x|2
=

|π⊥
H(z)|
|z| ≥ δ .

This shows that the whole deformation is performed inside C(δ,H). Next, we need
to continuously change the radius to the value ρ but this can be easily done inside
H⊥ ∩ (Bρ2

\ Bρ1
). �
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Next, we give a sufficient condition on α and β assuring that C(α, P )∩C(β,H)
contains another cone C(γ,H) for some γ ∈ (0, 1). This allows us to construct
homotopies of spheres inside C(α, P ) ∪ C(β,H).

Proposition 3.17. Let α > 0 and β > 0 be two real numbers satisfying α + β <√
1− β2 and let H0, H1 ∈ G(n,m) be two m-planes in Rn. Assume that

C(
√
1− α2, H⊥

0 ) ∩ C(
√
1− β2, H⊥

1 ) �= ∅ .
Then for any ε > 0 we have the inclusion

(16) C((α+ β)/
√
1− β2 + ε,H0) ⊆ C(ε,H1) .

In particular, if α+ β ≤ (1− β)
√
1− β2, then

H⊥
0 ⊆ C(α,H0) ∩ C(β,H1) .

Proof. First we estimate the “angle” between H0 and H1. Since the cones

C(
√
1− α2, H⊥

0 ) and C(
√
1− β2, H⊥

1 ) have nonempty intersection they both must
contain a common line L ∈ G(n, 1).

L ⊆ C(
√
1− α2, H⊥

0 ) ∩ C(
√
1− β2, H⊥

1 ) .

Choose some point z ∈ H1 and find a point y ∈ L such that z = πH1
(y). Since y ∈

C(
√
1− β2, H⊥

1 ) it follows that |π⊥
H1

(y)| < β|y|. Furthermore, by the Pythagorean
theorem

|y|2 = |πH1
(y)|2 + |π⊥

H1
(y)|2 ≤ |z|2 + β2|y|2 ; hence |y| ≤ |z|√

1− β2
.

Because y also belongs to the cone C(
√
1− α2, H⊥

0 ) we have |π⊥
H0

(y)| < α|y|, so we
obtain

|π⊥
H0

(z)| ≤ |π⊥
H0

(y)|+ |π⊥
H0

(z − y)| ≤ |π⊥
H0

(y)|+ |z − y|

= |π⊥
H0

(y)|+ |π⊥
H1

(y)| ≤ α|y|+ β|y| ≤ α+ β√
1− β2

|z| for all z ∈ H1 .(17)

Choose some ε > 0 and let

x ∈ C

(
α+ β√
1− β2

+ ε,H0

)
, so |π⊥

H0
(x)| ≥

(
α+ β√
1− β2

+ ε

)
|x| .

If ε is small enough, then such x exists by the assumption that α + β <
√
1− β2.

For bigger ε the inclusion C((α+ β)/
√
1− β2 + ε,H0) ⊆ C(ε,H1) is trivially true.

From the triangle inequality

α+ β√
1− β2

|x| ≤ |π⊥
H0

(x)| ≤ |π⊥
H0

(π⊥
H1

(x))|+ |π⊥
H0

(πH1
(x))|

≤ |π⊥
H1

(x)|+ |π⊥
H0

(πH1
(x))| ;

hence |π⊥
H1

(x)| ≥ α+ β√
1− β2

|x|+ ε|x| − |π⊥
H0

(πH1
(x))| .

Because πH1
(x) ∈ H1 and because of estimate (17) we have

|π⊥
H1

(x)| ≥ α+ β√
1− β2

|x|+ ε|x| − α+ β√
1− β2

|πH1
(x)| ≥ ε|x| . �
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3.3. The construction of voluminous simplices. For any x0 ∈ Σ∗ Proposi-
tion 3.18, stated below, ensures the existence of d = d(x0) > 0 and an (η, d)-
voluminous simplex with vertices on Σ ∩ B(x0, d) and also that at any scale below
d our set Σ has big projection onto some affine m-plane. The reasoning used here
mimics [26, Proposition 3.5]. Note that, finiteness of the E l

p-energy is not used in
the proof.

Proposition 3.18. Let δ ∈ (0, 1) and Σ ∈ A(δ,m) be an admissible set. There
exists an η0 = η0(δ,m) > 0 such that for every point x0 ∈ Σ∗ there is a stopping
distance d = d(x0) > 0 and an (m + 1)-tuple of points (x1, x2, . . . , xm+1) ∈ Σm+1

such that T = �(x0, . . . , xm+1) is (η0, d)-voluminous. Moreover, for all ρ ∈ (0, 12d)
there exists an m-dimensional subspace H = H(x0, ρ) ∈ G(n,m) with the property

(18) (x0 +H) ∩ B(x0,
√
1− δ2ρ) ⊆ πx0+H(Σ ∩ B(x0, ρ)) .

Corollary 3.19. For any x0 ∈ Σ∗ and any ρ ≤ 1
2d(x0) we have

Hm(Σ ∩ B(x0, ρ)) ≥ (1− δ2)
m
2 ωmρm .

Proof. The orthogonal projection πx0+H is Lipschitz with constant 1 so it cannot
increase the Hm-measure. From (18) we know that the image of Σ∩B(x0, ρ) under

πx0+H contains the ball (x0+H)∩B(x0,
√
1− δ2ρ). The measure of that ball equals

(1− δ2)
m
2 ωmρm. �

Proof of Proposition 3.18. Without loss of generality we can assume that x0 = 0 is
the origin. To prove the proposition we will construct finite sequences of

• compact, connected, centrally symmetric sets F0 ⊆ F1 ⊆ . . . ⊆ FN ,
• m-dimensional subspaces Hi ⊆ Rn for i = 0, 1, . . . , N ,
• and of radii ρ0 < ρ1 < · · · < ρN .

For brevity, we define

ri =
√
1− δ2ρi .

The above sequences will satisfy the following conditions:

• the interior of Fi is disjoint with Σ, i.e.

(19) Σ ∩ intFi = ∅ ,
• the radii grow geometrically, i.e.

(20) ρi+1 ≥ 2ρi ,

• for each i ≥ 0 the set Fi+1 contains a large conical cap, i.e.

(21) C(δ,Hi+1,
1
2ρi, ρi+1) ⊆ Fi+1 ,

• all spheres S centered at Hi ∩ Bri , perpendicular to Hi (i.e. S ⊆ H⊥
i + p

for some p ∈ Rn) and contained in Fi are linked with Σ, i.e.

(22) ∀x ∈ Hi ∩ Bri ∀ s > 0
(
S = S(x, s) ∩ (x+H⊥

i ) ⊆ Fi ⇒ lk2(Σ, S) = 1
)
.

Let us define the first elements of these sequences. We set H0 = Hx0
, ρ0 = 0

and F0 = ∅. Next, we set

H1 = H0 , ρ1 = inf{s > 0 : C(δ,H0, 0, s) ∩ Σ �= ∅} and F1 = C(δ,H1, 0, ρ1) .

Directly from the definition of an admissible set, we know that ρ1 > 0, so the
condition (20) is satisfied for i = 0. Conditions (19) and (21) are immediate for
i = 0. Using Proposition 3.16 one can deform any sphere S from condition (22) to

Licensed to Max Planck fuer Gravitationsphysik. Prepared on Wed Jan 14 07:12:40 EST 2015 for download from IP 194.94.224.254.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SOBOLEV EMBEDDING USING MENGER CURVATURE 795

the sphere Sx defined in A2 of the definition of A(δ,m). This shows that (22) is
satisfied for i = 0.

We proceed by induction. Assume we have already defined the sets Fi, sub-
spaces Hi and radii ρi for i = 0, 1, . . . , I. Now, we will show how to continue the
construction.

Let (e1, e2, . . . , em) be an orthonormal basis of HI . We choose m points lying
on Σ such that

xi ∈ Σ ∩ B(rIei, δρI) ∩ (H⊥
I + rIei)

(23) and in particular xi ∈ B(x0, 2ρI) for i ∈ {0, 1, . . . ,m} .
Condition (22) together with Proposition 3.5 ensure that such points exist. The
m-simplex R = �(x0, x1, . . . , xm) will be the base of our (m+ 1)-simplex T. Note
that

diam(R) ≤ 4ρI and πHI
(R) = �(0, rIe1, rIe2, . . . , rIem) ;

hence Hm(R) ≥ rmI
m!

.

Recall that x0 = 0 and set P = span{x1, x2, . . . , xm}. It suffices to find one
more point xm+1 ∈ Σ such that the distance dist(xm+1, P ) ≥ η̃ρI for some positive
η̃. Indeed, if we set T = �(x0, . . . , xm+1), we have

(24) hmin(T) =
(m+ 1)Hm+1(T)

max{Hm(fciT)}m+1
i=0

≥ η̃ρI(m+ 1)Hm(R)

(4ρI)mωm
≥ (4ρI)

η̃(1− δ2)
m
2

ωm4m+1m!
.

Choose a small positive number h0 = h0(δ) ≤ 1
2 such that

(25) δ + 2h0δ ≤ (1− 2h0δ)
√
1− (2h0δ)2 .

This is always possible because when we decrease h0 to 0 the left-hand side of (25)
converges to δ < 1 and the right-hand side converges to 1. We need this condition
to be able to apply Proposition 3.17 later on.

Remark 3.20. Note that if δ ≤ 1
4 , we can set h0 = 1

2 because then

δ + 2h0δ ≤ 1
2 and (1− 2h0δ)

√
1− (2h0δ)2 ≥ 3

4

√
15
16 ≥ 9

16 .

There are two possibilities (see Figure 4):

(A) there exists a point xm+1 ∈ Σ ∩ A( 12ρI , 2ρI) such that

dist(xm+1, P ) ≥ h0δρI ,

(B) Σ is contained in a small neighborhood of P , i.e.

Σ ∩ A( 12ρI , 2ρI) ⊆ P + Bh0δρI
.

If case (A) occurs, then we can end our construction immediately. The point
xm+1 satisfies

xm+1 ∈ B(x0, 2ρI) and dist(xm+1, P ) ≥ h0δρI .

Hence, recalling (24), we may set
(26)

T = �(x0, . . . , xm+1) , N = I , η0 =
h0δ(1− δ2)

m
2

ωm4m+1m!
and d = d(x0) = 4ρI .
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HI

P

2ρI1
2ρI

HI

P

2ρI1
2ρI

ΣΣ xm+1

(A) (B)

Figure 4. The two possible configurations.

If case (B) occurs, then our set Σ is almost flat in A( 12ρI , 2ρI) so there is no
chance of finding a voluminous simplex in this scale and we have to continue our
construction. Let

• HI+1 = P ,
• ρI+1 = inf{s > ρI : C(δ, P, ρI , s) ∩ Σ �= ∅} and
• FI+1 = FI ∪ C(δ, P, 12ρI , ρI+1).

We assumed (B), so it follows that

(27) ∀x ∈ Σ ∩ A( 12ρI , 2ρI) |π⊥
P (x)| ≤ h0δρI ≤ 2h0δ|x| < δ|x| .

This means that C(δ, P, 12ρI , 2ρI) does not intersect Σ and we can safely set HI+1 =
P . It is immediate that ρI+1 ≥ 2ρI so conditions (19), (20) and (21) are satisfied.
Now, the only thing left is to verify condition (22).

We are going to show that all spheres S contained in FI+1 of the form

S = S(x, r) ∩ (x+ P⊥) , for some x ∈ P ∩ BrI+1

are linked with Σ. By the inductive assumption, we already know that spheres
centered at HI ∩ BrI , perpendicular to HI and contained in FI are linked with Σ.
Therefore, all we need to do is to continuously deform S to an appropriate sphere
centered at HI and contained in FI in such a way that we never leave the set FI+1

(see Figure 5).
We know that FI+1 contains the conical cap C = C(δ, P, 12ρI , ρI+1), so we can

use Proposition 3.16 to move S inside C, so that it is centered at the origin.
From (27) we get

Σ ∩ A( 12ρI , 2ρI) ⊆ R
n \ C(2h0δ, P ) ⊆ C(

√
1− (2h0δ)2, P

⊥) .

Using this and our inductive assumption we obtain

Σ ∩ A( 12ρI , ρI) ⊆ C(
√
1− δ2, H⊥

I ) ∩ C(
√
1− (2h0δ)2, P

⊥) .

We have two cones that have nonempty intersection and we chose h0 such
that (25) holds, so we can apply Proposition 3.17 with α = δ and β = 2h0δ.
Hence the intersection C(δ,HI) ∩ C(δ, P ) contains the space H⊥

I . Therefore

H⊥
I ∩ A( 12ρI , ρI+1) ⊆ C(δ, P, 12ρI , ρI+1) ∩ FI .
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x0

C(δ,HI ,
1
2ρI−1, ρI)

C(δ, P, 1
2 ρI , ρI+1)

HI

P

S

Figure 5. First we move the center of S to x0. Then we rotate S
so that it is perpendicular to HI . Finally we change the radius so
that it is between 1

2ρI−1 and ρI .

Using Corollary 3.15 we can rotate S inside C, so that it lies in H⊥. Then we
decrease the radius of S to the value e.g. 3

4ρI ∈ ( 12ρI−1, ρI). Applying the inductive
assumption we obtain condition (22) for i = I + 1.

The set Σ is compact and ρi grows geometrically, so our construction has to end
eventually. Otherwise we would find arbitrary large spheres, which are linked with
Σ but this contradicts compactness. �

3.4. The proof of Theorem 2.

Proof of Theorem 2. From Theorem 1 we already know that Σ is an embedded,
C1,λ/κ-smooth manifold without boundary. Hence, it is also (δ,m)-admissible for
any δ ∈ (0, 1) (cf. Example 3.6) and Σ∗ = Σ. Set δ = 1

4 , then Corollary 3.19 gives
us Theorem 2 where R0 can be any number less than d(Σ) = infx0∈Σ d(x0). Hence,
it suffices to show that d(Σ) can be bounded below independently of Σ.

From Proposition 2.1 we know that d(Σ) must satisfy (11) with η = η0 defined
by (26). Hence, we already have a positive lower bound on d(Σ). We only need to
show that it does not depend on AAhl.
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Fix a point x0 ∈ Σ such that d(x0) < (1 + ε)d(Σ) for some small ε ∈ (0, 1).
Proposition 3.18 gives us an (η0, d(x0))-voluminous simplex �(x0, . . . , xm+1). Re-
call that ςm+1 < 1

4 was defined by (2). For each i = 1, 2, . . . ,m+ 1 we have

ςm+1d(x0) ≤ ςm+1(1 + ε)d(Σ) ≤ 1

2
d(Σ) ≤ 1

2
d(xi) .

Hence, applying Corollary 3.19 we get

Hm(Σ ∩ B(xi, ςm+1d(x0))) ≥
√
15m

4m
ωm(ςm+1d(x0))

m .

Now we can repeat the calculation from the proof of Proposition 2.1, replacing AAhl

with
√
15m

4m ωm, to obtain

E ≥
(√

15m

4m
ωm(ςm+1d(x0))

m

)l (
3ηm+1

0

4(m+ 1)!d(x0)

)p

= C(m, l, p)d(x0)
ml−p .

Therefore

�(28) 1
2d(Σ) =

1
2 lim
ε→0+

(1 + ε)d(Σ) ≥ 1
2d(x0) ≥ C(m, l, p)E

−1
λ = R0 .

3.5. Removing the dependence on Mθβ and Rθβ. In this section we show that
if Σ ism-fine with finite E l

p-energy, then the constantsMθβ and Rθβ from Theorem 1
can be chosen depending solely on E, m, l and p.

Proposition 3.21. Let Σ ⊆ Rn be an m-fine set such that E l
p(Σ) ≤ E < ∞ for

some p > ml. Then there exists R1 = R1(E,m, l, p) such that Σ satisfies (Ahl) and

(θ � β) with constants Mθβ = 5, Rθβ = RAhl = R1 and AAhl =
√
15m

4m ωm.

Proof. From Theorem 1 and Theorem 2 we already know that Σ is ( 14 ,m)-admissible

with Σ∗ = Σ and satisfies (Ahl) with RAhl = R0 and AAhl =
√
15m

4m ωm. Hence, by
Proposition 1, we also have

∀r ≤ R0 ∀x ∈ Σ βΣ
m(x, r) ≤ C(m, l, p)E

1
κ r

λ
κ .

Fix a point x0 ∈ Σ and a radius r ≤ R0. Choose some m-plane P ∈ G(n,m) such
that

(29) ∀y ∈ Σ ∩ B(x0, r) |π⊥
P (y − x0)| ≤ βΣ

m(x0, r)r .

For brevity we set β = βΣ
m(x0, r) and γ =

√
15
4 . Inspecting the proof of Proposi-

tion 3.18 we can find i ∈ N such that ρi ≤ r < ρi+1. We set H = Hi. Let y ∈ Rn be
any point such that y−x0 ∈ H and |y−x0| = γr. We see that S(y, 14r)∩(y+H⊥) is

linked with Σ; hence (cf. Proposition 3.5) there exists z ∈ Σ∩B(y, 14r)∩ (y+H⊥).
Note that γr ≤ |z − x0| ≤ r, so

|π⊥
P (z − x0)|
|z − x0|

≤ βr

γr
=

β

γ
; hence (z − x0) ∈ C

((
1− β2

γ2

) 1
2 , P⊥

)
∩ C(γ,H⊥) .

To apply Proposition 3.17 we need to ensure the condition
(30)√

1− γ2 + β
γ ≤

(
1− β

γ

)√
1−

(
β
γ

)2

⇐⇒ β
γ ≤ (1− β

γ )

√
1−

(
β
γ

)2

−
√
1− γ2 .
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Substituting Ψ = β
γ in (30) and recalling that γ =

√
15
4 we obtain the following

inequality:

(31) Ψ ≤ (1−Ψ)
√
1−Ψ2 − 1

4 .

Note that if Ψ → 0, then the right-hand side converges to 3
4 . Let Ψ0 be the smallest,

positive root of the equation Ψ = (1−Ψ)
√
1−Ψ2− 1

4 . Then any Ψ ∈ [0,Ψ0] satisfies

(31). Recall that β = βΣ
m(x, r) ≤ C(m, l, p)E1/κrλ/κ, so to ensure condition (30) it

suffices to impose the following constraint:

(32) r ≤ min

{
1

2

(
γΨ0

C(m, l, p)

) κ
λ

E
−1
λ , R0

}
= R1(E,m, l, p) .

Now, for such r we can use Proposition 3.17 to obtain

H⊥ ⊆ C
(
1
4 , H

)
∩ C

(
β
γ , P

)
.

x0 y

z ∈ Σ

S1

S2

S3

x0 +H

x 0
+
P

x 0
+
C
(
β
γ
, P
, γ
r,
r)

x0 + C( 14 , H, 1
2ρi, r)

βr

Figure 6. If β is small enough, then the cone C( 8β7γ , P ) contains

H⊥ and we can continuously transform S1 into S3 inside the conical
cap C( 8β7γ , P,

7
8rγ,

7
8r).

We set C = x0+C
(
1
4 , H, 12ρi, ρi+1

)
and S1 = S(x0, r)∩ (x0+H⊥) ⊆ C. Observe

that C ∩ Σ = ∅ and lk2(S1,Σ) = 1. Using Corollary 3.15 we rotate S1 into S2 =

S(x0, r) ∩ (x0 + P⊥) (see Figure 6) inside C(βγ , P, rγ, r). Note that for x ∈ Σ such

that |x− x0| > γr we have

π⊥
P (x− x0)

|x− x0|
<

βr

γr
=

β

γ
;
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hence the conical cap C
(
β
γ , P, γr, r

)
does not intersect Σ and the resulting sphere S2

is still linked with Σ. Next we decrease the radius of S2 to the value βr obtaining
another sphere S3 = S(x0, βr) ∩ (x0 + P⊥) which is also linked with Σ.

We can translate S3 along any vector v ∈ P with |v| ≤
√
1− β2r without

changing the linking number. This way we see that for any point w ∈ (x0 + P ) ∩
B(x0,

√
1− β2r) there exists a point z ∈ Σ such that |z − w| ≤ βr.

For any other point w ∈ (x0 + P ) with
√
1− β2r ≤ |w − x0| ≤ r we set

w̃ = w − (w − x0)|w − x0|−1(1−
√
1− β2)r ,

so that |w̃ − x0| ≤
√
1− β2r. Then we find z ∈ Σ such that |w̃ − z| ≤ βr and we

obtain the estimate

|z − w| ≤ |z − w̃|+ |w̃ − w| ≤ βr + (1−
√
1− β2)r

= r

(
β +

β2

1 +
√
1− β2

)
≤ 2βr = 4βΣ

m(x, r)r .

This implies that dH(Σ∩B(x0, r), (x0 +P )∩B(x0, r)) ≤ 5βΣ
m(x0, r). Therefore the

infimum over all H ∈ G(n,m) must be even smaller, so θΣm(x0, r) ≤ 5βΣ
m(x0, r) for

any r ≤ Rθβ = R1 and we can safely set Mθβ = 5. �

4. Uniform estimates on the local graph representations

For the sake of brevity we introduce the following notation

πx = πTxΣ and π⊥
x = π⊥

TxΣ ,

where x ∈ Σ. The main result of this section is

Theorem 4.1. Let Σ ⊆ Rn be an m-fine set. If E l
p(Σ) ≤ E < ∞ for some

p > ml, then Σ is a closed C1,λ/κ-manifold (by Theorem 1) and there exist constants
Rλκ = Rλκ(E,m, l, p) and Cλκ = Cλκ(E,m, l, p) ≥ 1 such that for all x ∈ Σ there
exists a function Fx : TxΣ → (TxΣ)

⊥ of class C1,λ/κ such that

(Σ− x) ∩ BRλκ
= Graph(Fx) ∩ BRλκ

and ∀y, z ∈ TxΣ ‖DFx(y)−DFx(z)‖ ≤ Cλκ|y − z|λκ .

To prove this theorem we fix a point x ∈ Σ and for each radius r > 0 we choose
the best approximating m-plane P (x, r) for Σ in B(x, r). Then we use the fact that
θΣm(x, r) ≤ Mθββ

Σ
m(x, r) together with Proposition 1 to show that P (x, r) converge

to the tangent plane TxΣ, when r → 0. This also gives a bound on the oscillation
of TxΣ. Then we derive Lemma 4.8, which says that at some small scale we cannot
have two distinct points y and z of Σ such that the vector v = (y− z) is orthogonal
to TxΣ. Any such vector v would be close to the tangent plane TzΣ and this would
violate the bound on the oscillation of tangent planes proved earlier. From here,
it follows that there exists a small radius Rλκ such that Σ ∩ B(x,Rλκ) is a graph
of some function Fx, which is of class C1,λ/κ by Theorem 1.

In the sequel of this section we always assume that Σ satisfies the hypotheses
of Theorem 4.1.

Licensed to Max Planck fuer Gravitationsphysik. Prepared on Wed Jan 14 07:12:40 EST 2015 for download from IP 194.94.224.254.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SOBOLEV EMBEDDING USING MENGER CURVATURE 801

4.1. Estimates on the oscillation of tangent planes. Combining Proposi-
tions 3.21 and 1 we see that

(33) ∀r ≤ R1 ∀x ∈ Σ θΣm(x, r) ≤ 5βΣ
m(x, r) ≤ 5C(m, l, p)E

1
κ r

λ
κ .

Let R̃1 = R̃1(E,m, l, p) ∈ (0, R1] be such that 5C(m, l, p)E
1
κ r

λ
κ ≤ 1

4 for all r ≤ R̃1,

so R̃1 = C0E
−1/λ for some C0 = C0(m, l, p).

Lemma 4.2. Choose a point x ∈ Σ and fix some r0 ≤ R̃1. Choose another point
y ∈ Σ ∩ B(x, 12r0) and some r1 ∈

[
1
2r0, r0 − |x− y|

]
. Let H0 ∈ BAPm(x, r0) and

H1 ∈ BAPm(y, r1). Then there exists a constant Chh = Chh(m, l, p) ≥ 1 such that

dGr(H0, H1) ≤ ChhE
1/κr

λ/κ
0 .

β
0 r

0

β
1 r

1

x

y
z ∈ Σ

v

x+H0

y +
H1

y + v

Figure 7. Existence of z ∈ Σ is guaranteed by the condi-
tion (θ � β). This allows us to estimate dGr(H0, H1).

Proof. Set β0 = βΣ
m(x, r0) and β1 = βΣ

m(y, r1). Recall (33) to see that since r1 ≤ R̃1,
we have 5β1 ≤ 1

4 . Let v ∈ H1 be any vector of length |v| = r1(1 − 5β1). Since

θΣm(y, r1) ≤ 5β1, there exists a point z ∈ Σ∩B(y+ v, 5β1r1). Hence |(y+ v)− z| ≤
5β1r1 (see Figure 7). Note that B(y + v, 5β1r1) ⊆ B(y, r1) ⊆ B(x, r0). Therefore
dist(z, x+H0) = |π⊥

H0
(z − x)| ≤ β0r0 and we obtain the estimate

|π⊥
H0

(v)| ≤ |π⊥
H0

((y − x) + v)|+ |π⊥
H0

(y − x)|
≤ |((y − x) + v)− (z − x)|+ |π⊥

H0
(z − x)|+ |π⊥

H0
(y − x)|

≤ 5β1r1 + β0r0 + β0r0 ≤ 7CE1/κr
1+λ/κ
0 .
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Since v was chosen arbitrarily we get the following estimate for any unit vector
e ∈ H1 ∩ S:

|π⊥
H0

(e)| ≤ 7CE1/κ r
1+λ/κ
0

r1(1− 5β1)
≤ 7CE1/κ 4r

1+λ/κ
0

3r1
.

Recall that r1 ≥ 1
2r0, so if (e1, . . . , em) is any orthonormal basis of H1, then for all

i = 1, . . . ,m we have |π⊥
H0

(ei)| ≤ 8·7
3 CE1/κr

λ/κ
0 . Applying Lemma 1.18 we get

dGr(H0, H1) ≤ C̃(m, l, p)Cπ(m)E1/κr
λ/κ
0 . �

Lemma 4.3. Choose a point x ∈ Σ. For each r ≤ R̃1 fix an m-plane P (r) ∈
BAPm(x, r). There exists a limit limr→0 P (r) = TxΣ ∈ G(n,m) and it does not
depend on the choice of P (r) ∈ BAPm(x, r).

Proof. Set ρk = 2−kR̃1 and for each k choose Pk ∈ BAPm(x, ρk). Set βk =
βΣ
m(x, ρk). We will show that {P (r)}r<R̃1

satisfies the Cauchy condition. Fix
some 0 < s < t < ρ0 and find two natural numbers a < b such that ρb+1 < s ≤ ρb
and ρa+1 < t ≤ ρa.

Applying Lemma 4.2 with x = y, r0 = ρj and r1 = 1
2r0 = ρj+1 we obtain

dGr(Pj , Pj+1) ≤ CE1/κρ
λ/κ
j .

Setting r0 = ρb and r1 = s or r0 = ρa and r1 = t we also get

dGr(P (s), Pb) ≤ CE1/κρ
λ/κ
b and dGr(P (t), Pa) ≤ CE1/κρλ/κa .

Using these estimates we can write

dGr(P (r), P (s)) ≤ dGr(P (r), Pa) +
b−1∑
j=a

dGr(Pj , Pj+1) + dGr(Pb, P (s))

≤ CE1/κ

⎛⎝ρλ/κa +
b∑

j=a

ρ
λ/κ
j

⎞⎠
= CE1/κρλ/κa

⎛⎝1 +
b−a∑
j=0

2−jλ/κ

⎞⎠ ≤ Ĉ(m, l, p)E1/κρλ/κa ,

which shows that the Cauchy condition is satisfied, so P (r) converges in G(n,m)
to some m-plane, which must be the tangent plane TxΣ. �

Corollary 4.4. There exists a constant Cth = Cth(m, l, p) ≥ 1 such that for all

x ∈ Σ, all r ≤ R̃1 and all H ∈ BAPm(x, r) we have

dGr(TxΣ, H) ≤ CthE
1/κrλ/κ.

Corollary 4.5. There exists a constant Ctp = Ctp(m, l, p) ≥ 1 such that for all

x ∈ Σ and all y ∈ Σ ∩ B(x, R̃1) we have

dist(y, x+ TxΣ) = |π⊥
x (y − x)| ≤ CtpE

1/κ|y − x|1+λ/κ .
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Proof. Choose an m-plane H ∈ BAPm(x, |y− x|). Using (33) and Corollary 4.4 we
get

|π⊥
x (y − x)| ≤ |π⊥

H(y − x)|+ |π⊥
x (πH(y − x))|

≤ |y − x|βΣ
m(x, |y − x|) + |y − x|CthE

1/κ|y − x|λ/κ

≤ CtpE
1/κ|y − x|1+λ/κ . �

Lemma 4.6. There exists a constant Ctt = Ctt(m, l, p) ≥ 1 such that for all x ∈ Σ

and for all y ∈ Σ ∩ B(x, 1
2 R̃1) we have

dGr(TxΣ, TyΣ) ≤ CttE
1/κ|x− y|λ/κ .

Proof. Let y ∈ Σ ∩ B(x, 12 R̃1). Set r0 = 2|x − y| and r1 = |x − y|. Choose any
H0 ∈ BAPm(x, r0) and any H1 ∈ BAPm(y, r1). From Lemma 4.2 we have

dGr(H0, H1) ≤ CE1/κr
λ/κ
0 .

On the other hand Corollary 4.4 says that

dGr(TxΣ, H0) ≤ CthE
1/κr

λ/κ
0 and dGr(TyΣ, H1) ≤ CthE

1/κr
λ/κ
0 .

Putting these estimates together we obtain

dGr(TxΣ, TyΣ) ≤ dGr(TxΣ, H0) + dGr(H0, H1) + dGr(H1, TyΣ) = C̄E1/κ|x− y|λ/κ .
�

4.2. Uniform estimates on the size of maps. Combining Corollary 4.5 and
Lemma 4.6 one can see that if we have two distinct points y, z ∈ Σ such that
y − z ⊥ TxΣ and |y − z| � |x − y|, then the tangent plane TyΣ must form a large
angle with the plane TxΣ. Such situation can only happen far away from x because
of the bound on the oscillation of tangent planes.

Remark 4.7. Let ι = ι(m) =
ερε

100 . Lemma 4.6 allows us to find R̃2 ∈ (0, R̃1] such

that R̃2 = C(m, l, p)E−1/λ and whenever |x − y| ≤ R̃2 for some x, y ∈ Σ, then
dGr(TxΣ, TyΣ) ≤ ι.

Lemma 4.8. Choose any point x ∈ Σ. There exists a radius R2 = C(m, l, p)E−1/λ

∈ (0, R̃2] such that if y, z ∈ Σ ∩ B(x, 12 R̃2) and (y − z) ⊥ TxΣ, then necessarily
max{|x− y|, |x− z|} > R2.

Proof. Let Ctp ≥ 1 be the constant from Corollary 4.5 and let C0 be such that

R̃1 = C0E
−1/λ (cf. (33)). Assume there exist two points y, z ∈ Σ ∩ B(x, 12 R̃2)

such that (z − y) ⊥ TxΣ and max{|x− y|, |x− z|} ≤ 1
2 R̃1(C0Ctp)

−1. Without loss
of generality we can assume that |x− z| ≤ |x− y| ≤ 1; hence

|x− z|1+λ/κ ≤ |x− y|1+λ/κ ≤ R̃
λ/κ
1 |x− y| ≤ C0E

−1/κ|x− y| .

First we estimate the distance |y − z| using Corollary 4.5:

|y − z| = |π⊥
x (y − z)| ≤ |π⊥

x (y − x)|+ |π⊥
x (x− z)|(34)

≤ CtpE
1/κ(|y − x|1+λ/κ + |x− z|1+λ/κ) ≤ 2CtpC0|x− y| ≤ R̃1 .
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Hence we can use Corollary 4.5 once again to estimate the distance between z
and TyΣ. Using the definition of dGr we may write

dGr(TxΣ, TyΣ) ≥ |z − y|−1|πx(z − y)− πy(z − y)| = |z − y|−1|πy(z − y)|(35)

≥ |z − y|−1
(
|z − y| − |π⊥

y (z − y)|
)

≥ |z − y|−1
(
|z − y| − CtpE

1/κ|z − y|1+λ/κ
)

= 1− CtpE
1/κ|z − y|λ/κ .

On the other hand Lemma 4.6 gives us

(36) dGr(TxΣ, TyΣ) ≤ CttE
1/κ|x− y|λ/κ .

Putting these two estimates together we have

1−CtpE
1/κ|z − y|λ/κ≤dGr(TxΣ, TyΣ) ≤ CttE

1/κ|x− y|λ/κ ,
so by (34) 1− CtpE

1/κ(2CtpC0|x− y|λ/κ) ≤ CttE
1/κ|x− y|λ/κ ;

hence |x− y| ≥ Ĉ(m, l, p)E−1/λ .

We set R2 = 1
2 min{R̃2(C0Ctp)

−1, Ĉ(m, l, p)E−1/λ}. �

Corollary 4.9. For each x ∈ Σ and each y ∈ Σ ∩ B(x,R2) the point y is the only
point in the intersection Σ ∩ (y + TxΣ

⊥) ∩ B(x,R2). Therefore (Σ − x) ∩ BR is
a graph of the function

Fx : D(x) → TxΣ
⊥ ∩ BR2

defined by(37)

Fx(w) + w = (Σ− x) ∩ (w + TxΣ
⊥) ∩ BR2

,

where D(x) = πx(Σ ∩ BR2
) ⊆ TxΣ. By Theorem 1 the function Fx is of class

C1,λ/κ.

Fix a point o ∈ Σ. We define the parameterization

(38) ϕ : D(o) → Σ ∩ B(o,R2) by ϕ(x) = o+ Fo(x) + x .

Recall our convention, that when we write ToΣ we always mean the appropriate
subspace of Rn. For x ∈ D(o) we set

Lx =
(
πo|Tϕ(x)Σ

)−1
: ToΣ → Tϕ(x)Σ

and

Kx =
(
π⊥
o |Tϕ(x)Σ⊥

)−1

: ToΣ
⊥ → Tϕ(x)Σ

⊥ .

Observe that these mappings are well defined since R2 is not greater than R̃2 defined
in Remark 4.7, which ensures that dGr(ToΣ, Tϕ(x)Σ) ≤ ι. Note also that for any unit

vector v ∈ Tϕ(x)Σ we have |π⊥
o v| = |πov−πϕ(x)v| ≤ ι; hence |πov| = |v−π⊥

o v| ≥ 1−ι.

This shows that the norms ‖Lx‖ToΣ and ‖Kx‖ToΣ⊥ are less or equal to (1− ι)−1.

Remark 4.10. Recall that ι < 1
2 . For x ∈ D(o) and h ∈ ToΣ we have (cf. [13,

Lemma 3.15])

DFo(x)h = Lxh− h = π⊥
o (Lxh) and Dϕ(x)h = Lxh ;

hence ‖DFo(x)‖ ≤ ι

1− ι
< 2ι < 1 and ‖Dϕ(x)‖ ≤ 1

1− ι
< 1 + 2ι < 2 .
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Remark 4.11. For all x ∈ D(o) we have ‖Dϕ(x)‖ < 2 and in consequence
|ϕ(x)− ϕ(o)| < 2|x− o|. Hence ToΣ ∩ B 1

2R2
⊆ D(o).

Lemma 4.12. Let Cρε be the constant from Proposition 1.16. For any x, y ∈ D(o)
we have

‖Dϕ(x)−Dϕ(y)‖ ≤ 4dGr(Tϕ(x)Σ, Tϕ(y)Σ)

and dGr(Tϕ(x)Σ, Tϕ(y)Σ) ≤ Cρε‖Dϕ(x)−Dϕ(y)‖ .

Proof. We want to estimate

‖Dϕ(x)−Dϕ(y)‖ = ‖DFo(x)−DFo(y)‖ = ‖Lx − Ly‖ .
Let h ∈ S and set u = Lx(h) and v = Ly(h). Note that u − v ∈ ToΣ

⊥ and that
|v| ≤ 2 and also dGr(Tϕ(x)Σ, ToΣ) ≤ 1

2 , so we can write

|Lx(h)− Ly(h)| = |u− v| ≤ 2|π⊥
ϕ(x)(u− v))| = 2|π⊥

ϕ(x)(v)|
≤ 2|v|dGr(Tϕ(x)Σ, Tϕ(y)Σ) ≤ 4dGr(Tϕ(x)Σ, Tϕ(y)Σ) .

To prove the second part of Lemma 4.12 we will use Proposition 1.16. Let
(e1, . . . , em) be some orthonormal basis of ToΣ. For each i = 1, . . . ,m set ui =
Dϕ(x)ei and vi = Dϕ(y)ei. Then (u1, . . . , um) is a basis of Tϕ(x)Σ and (v1, . . . , vm)
is a basis of Tϕ(y)Σ. By Remark 4.10 for i, j = 1, . . . ,m and i �= j we have

1 ≤ |ei +DFo(x)ei| = |ui| = |Dϕ(x)ei| ≤
1

1− ι
< 1 + 2ι

and |〈ui, uj〉| = |〈DFo(x)ei + ei, DFo(x)ej + ej〉| ≤ 4ι2 + 2ι+ 2ι < 6ι .

These estimates show that (u1, . . . , um) is a ρε-basis of Tϕ(x)Σ with ρ = 1 and
ε = 6ι. Moreover

|ui − vi| = |Dϕ(x)ei −Dϕ(y)ei| ≤ ‖Dϕ(x)−Dϕ(y)‖ .
Since 6ι = 6

100ερε ≤ ερε we can use Proposition 1.16 to obtain

dGr(Tϕ(x)Σ, Tϕ(y)Σ) ≤ Cρε‖Dϕ(x)−Dϕ(y)‖ . �

Proof of Theorem 4.1. Combining Lemma 4.6 with Lemma 4.12 we get

‖DFo(x)−DFo(y)‖ = ‖Dϕ(x)−Dϕ(y)‖ ≤ 4CttE
1/κ|x− y|λ/κ

for all x, y ∈ D(o) = πo(Σ ∩ BR2
) ⊆ ToΣ. Since πo is continuous and Σ ∩ BR2

is compact, the function Fo : D(o) → ToΣ
⊥ can be extended to a function Fo :

ToΣ → ToΣ
⊥ without increasing Hölder norm of its derivative and in such a way

that {y + Fo(y) : y ∈ ToΣ \ D(o)} ∩ BR2
= ∅. Hence we may set

Rλκ = R2 = C(m, l, p)E− 1
λ and Cλκ = 4CttE

1
κ . �

5. Optimal Hölder regularity

In the previous paragraph we showed that Σ is a closed manifold of class C1,λ/κ

but λ/κ was not an optimal exponent. Now we shall prove that for any o ∈ Σ the
map Fo is of class C1,α, where α = 1− ml

p . For this purpose we employ a technique

developed by Strzelecki, Szumańska and von der Mosel in [24].
The key to the proof of Theorem 3 is Lemma 5.1. It says that the oscillation

of Dϕ on ball of radius r can be bounded above by the oscillation of Dϕ on a ball
of radius r/N , where N is some big number, plus a term of order rα. If we choose
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806 S�LAWOMIR KOLASIŃSKI

N big enough, then, upon iteration, the first term disappears and the sum of the
second terms is still of order rα.

To prove Lemma 5.1 we choose two points x, y ∈ D(o) and we set r = |x − y|.
From Lemma 4.12 we know that the oscillation of Dϕ is comparable with the
oscillation of Tϕ(·)Σ. We choose points x0, . . . , xm and y0, . . . , ym near x and y
respectively, such that {xi − x0}mi=1 and {yi − y0}mi=1 form a roughly (up to an
error of order 1

k , where k is some big number) orthogonal bases of ToΣ. Moreover
|xi−x0| ≈ r/N and |yi−y0| ≈ r/N . In the scale we are working in, we always have
‖Dϕ‖ ≤ 1 + ι, so {ϕ(xi)− ϕ(x0)}mi=1 and {ϕ(yi) − ϕ(y0)}mi=1 are also roughly (up
to an error of order 1

k + ι) orthogonal and span some m-dimensional secant spaces
X and Y respectively. If we choose the points y0, . . . , ym appropriately, then the
“angle” dGr(X,Y ) can be estimated by rα. The error we make when we pass from
dGr(Tϕ(x, Tϕ(y)) to dGr(X,Y ) is comparable with the oscillation of Dϕ on balls of
radius r/N .

To choose “good” points y0, . . . , ym we first define the set of “bad parameters”
B(x0, . . . , xl−2), i.e. such z ∈ D(o) that the integrand

Kl,ϕ(x0, . . . , xl−2, z) = sup
pl,...,pm+1∈Σ

K(ϕ(x0), . . . , ϕ(xl−2), z, pl, . . . , pm+1)

is big. From finiteness of E l
p(Σ), we derive the conclusion that the measure of

B(x0, . . . , xl−2) has to be smaller than the measure of a ball of radius r/(kN);
hence close to any p̃ ∈ D(o) there exists p ∈ D(o) which does not belong to
B(x0, . . . , xl−2). From the fact that Kl,ϕ(x0, . . . , xl−2, y) is small, we derive an es-
timate dist(ϕ(y), ϕ(x0) +X) � r1+α, which in turn gives dGr(X,Y ) � rα.

In the sequel of this section we always assume that Σ satisfies the hypotheses
of Theorem 4.1, o ∈ Σ is fixed, ϕ is given by (38) and l is a fixed number from the
set {1, 2, . . . ,m+ 2}.

5.1. Bootstrapping the Hölder exponent. Let S ⊆ D(o) be any set and r ≤
1
2Rλκ. We define the oscillation of Dϕ on S as follows:

Φ(r, S) = sup
{
‖Dϕ(x)−Dϕ(y)‖ : x, y ∈ S, |x− y| ≤ r

}
.

For x, y ∈ ToΣ we set

Dr = ToΣ ∩ Br , D(x, r) = x+ Dr and D(x, y) = D|x−y| +
x+y
2 ⊆ ToΣ ,

and we define

M l
p(a, ρ) =

(
E l
p

(
ϕ(D(a, ρ))

)) 1
p and El

p(x, y) = E l
p

(
ϕ(D(x, y))

)
.

Note that if we set |Jϕ(x)| =
√
det((Dϕ(x))tDϕ(x)) and

(39) Kl,ϕ(x0, . . . , xl−1) = sup
pl,...,pm+1∈Σ

K(ϕ(x0), . . . , ϕ(xl−1), pl, . . . , pm+1) ,

then El
p(x, y) =

ˆ
[D(x,y)]l

Kl,ϕ(x0, . . . , xl−1)
p |Jϕ(x0)| · · · |Jϕ(xl−1)| dx0 · · · dxl−1.

Lemma 5.1. For all k ≥ k0 = 100/ερε and N ≥ N0 = 8 there exist constants
C1 = C1(m) and C2 = C2(m, l, p, k,N) such that for all x, y ∈ D 1

6Rλκ

(40) ‖Dϕ(x)−Dϕ(y)‖ ≤ C1Φ
(

2|x−y|
N ,D(x, y)

)
+ C2E

l
p(x, y)

1
p |x− y|α .

Using this lemma we can prove Theorem 3.
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Proof of Theorem 3. Fix some a ∈ D 1
12Rλκ

and a radius R ∈ (0, 1
36Rλκ]. Taking

the supremum on both sides of (40) over all x, y ∈ D(a,R) satisfying |x−y| ≤ r ≤ R
we obtain the estimate

Φ(r,D(a,R)) ≤ C1Φ
(
2r
N ,D(a,R+ r)

)
+ C2M

l
p(a,R+ r)rα .

Choose any j ∈ N. Iterating the above inequality j times we get

Φ(r,D(a,R)) ≤ Cj
1Φ

(
2jN−jr,D(R+ rj)

)
+ C2Mp(a,R+ rj)r

α

j−1∑
l=0

(
C1

Nα

)l

,

where rj = r
∑j−1

l=0 2lN−l ≤ 2r. Recall that we know a priori that ϕ is C1,λ/κ-
smooth, so we can estimate the first term on the right-hand side by

Φ
(
2jN−jr,D(a,R+ rj)

)
≤ Cλκ2

jλ/κN−jλ/κrλ/κ ,

which gives

Φ(r,D(a,R)) ≤ Cλκ2
jλ/κ(C1N

−λ/κ)jrλ/κ + C2M
l
p(a, 3R)rα

j−1∑
l=0

(C1N
−α)l

for each j ∈ N. To ensure that the first term disappears and that the second term
converges when j → ∞ we need to know the following:

(41) C12
λ/κN−λ/κ < 1 and C1N

−α < 1 .

Since C1 = C1(m), we can find N = N(m, l, p) ≥ N0 for which condition (41) is
satisfied. Passing with j to the limit j → ∞ we obtain the bound

Φ(r,D(a,R)) ≤ C2M
l
p(a, 3R)

∞∑
l=0

(C1N
−α)lrα = C(m, l, p)M l

p(a, 3R)rα .

Hence, for any x, y ∈ D 1
36Rλκ

, taking a = x+y
2 and r = R = |x− y| we get

‖Dϕ(x)−Dϕ(y)‖ ≤ C(m, l, p)M l
p

(
x+y
2 , 3|x− y|

)
|x− y|α . �

Proof of Lemma 5.1. Let us fix x, y ∈ D 1
6Rλκ

. Since |x − y| < 1
3Rλκ and |x+y|

2 <
1
6Rλκ, we have D(x, y) ⊆ D 1

2Rλκ
. Let x0, . . . , xl−2 ∈ D(x, y). If l ≥ 2 we define the

set of bad parameters as

B(x0, . . . , xl−2) =

{
z ∈ D(x, y) : Kl,ϕ(x0, . . . , xl−2, z)

p >
(kN)m

|x− y|mlωl
m

El
p(x, y)

}
and in case l = 1 we set

B =

{
z ∈ D(x, y) : Kl,ϕ(z)

p >
(kN)m

|x− y|mωm
E1

p(x, y)

}
.

Recalling (39) and using the fact that |Jϕ| ≥ 1 we can estimate the measure of
B(x0, . . . , xl−2) as follows:

El
p(x, y) ≥

ˆ
[D(x,y)]l−1

ˆ
B(x0,...,xl−2)

Kl,ϕ(x0, . . . , xl−2, z) dz dx0 · · · dxl−2

> ωl−1
m |x− y|m(l−1)Hm(B(x0, . . . , xl−2))

(kN)m

|x− y|mlωl
m

El
p(x, y)

⇐⇒ Hm(B(x0, . . . , xl−2)) < ωm

(
|x− y|
kN

)m

.(42)
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Fix an orthonormal basis (e1, . . . , em) of ToΣ. For i = 1, . . . ,m we set

x0 = x , xi = x0 +
|x−y|
N ei , ỹ0 = y and ỹi = ỹ0 +

|x−y|
N ei .

Estimate (42) shows that we can find

y0, . . . , ym ∈ D(x, y) \B(x0, . . . , xl−2) , such that |yi − ỹi| ≤
|x− y|
kN

for each i = 0, . . . ,m. We set

X = span{ϕ(xi)− ϕ(x0)}mi=1 and Y = span{ϕ(yi)− ϕ(y0)}mi=1 .

Using Lemma 4.12 we obtain

(43)

‖Dϕ(x)−Dϕ(y)‖ ≤ ‖Dϕ(x)−Dϕ(x0)‖+‖Dϕ(x0)−Dϕ(y0)‖+‖Dϕ(y0)−Dϕ(y)‖

≤ 4dGr(Tϕ(x0)Σ, Tϕ(y0)Σ) + Φ
(

|x−y|
kN ,D(x, y)

)
≤ Φ

(
|x−y|
kN ,D(x, y)

)
+ 4dGr(Tϕ(x0)Σ, X) + 4dGr(X,Y ) + 4dGr(Y, Tϕ(y0)Σ) .

For each i = 1, . . . ,m, from the fundamental theorem of calculus we have

vi = ϕ(xi)− ϕ(x0) =

ˆ 1

0

d
dt (ϕ(x0 + t(xi − x0))) dt

=

ˆ 1

0

(Dϕ(x0 + t(xi − x0))−Dϕ(x0)) (xi − x0) dt+Dϕ(x0)(xi − x0)

= σi + wi .

Observe that w1, . . . , wm form a basis of Tϕ(x0)Σ and v1, . . . , vm span X. Using the
above estimate we see that

|vi − wi| = |σi| ≤ Φ
(
|xi − x0|,D(x, y)

)
|xi − x0| = Φ

(
|x−y|
N ,D(x, y)

)
|x−y|
N .

Let ai = xi − x0 = |x−y|
N ei and bi = Fo(xi) − Fo(x0). Then vi = ai + bi. From

Remark 4.10 we know that |bi| ≤ 2ι|ai| = |x−y|
50N ερε; hence

|x− y|2
N2

(
δji −

ερε
25

−
ε2ρε
502

)
≤ |〈vi, vj〉| = |〈ai + bi, aj + bj〉|

≤ |x− y|2
N2

(
δji +

ερε
25

+
ε2ρε
502

)
.

Applying Proposition 1.16 we come to

(44) dGr(Tϕ(x0)Σ, X) ≤ CρεΦ
(

|x−y|
N ,D(x, y)

)
.

We estimate dGr(Tϕ(y0)Σ, Y ) in a similar way. For i = 1, . . . ,m we define v̄i, w̄i,

āi and b̄i as follows:

āi = yi − y0 , b̄i = Fo(yi)− Fo(y0) ,

v̄i = ϕ(yi)− ϕ(y0) = āi + b̄i and w̄i = Dϕ(y0)(yi − y0) ,

so that Y = span{v̄1, . . . , v̄m} and Tϕ(y0)Σ = span{w̄1, . . . , w̄m}. Again, using the
fundamental theorem of calculus, we get

|v̄i − w̄i| ≤ Φ
(
|yi − y0|,D(x, y)

)
|yi − y0| ≤ 2Φ

(
2|x−y|

N ,D(x, y)
)

|x−y|
N .
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Recall that k ≥ 100/ερε. It is easy to verify that

|x− y|2
N2

(
δji −

8

k

)
≤ |〈āi, āj〉| ≤

|x− y|2
N2

(
δji +

8

k

)
,

which implies that |b̄i| ≤ 2ι|āi| ≤ |x−y|
25N ερε. Therefore

|x− y|2
N2

(
δji − ερε

)
≤ |〈v̄i, v̄j〉| = |〈āi + b̄i, āj + b̄j〉| ≤

|x− y|2
N2

(
δji + ερε

)
and we can apply Proposition 1.16 once more obtaining

(45) dGr(Tϕ(y0)Σ, Y ) ≤ 2CρεΦ
(

2|x−y|
N ,D(x, y)

)
.

Combining estimates (45), (44) and (43) and using Lemma 4.12 we get

(46) ‖Dϕ(x)−Dϕ(y)‖ ≤ C1(m)Φ
(

2|x−y|
kN ,D(x, y)

)
+ 4dGr(X,Y ) .

Hence, we only need to estimate dGr(X,Y ).
Observe that for each z ∈ D(x, y) \B(x0, . . . , xl−2) we have

(47) Kl,ϕ(x0, . . . , xl−2, z) ≤
(kN)m/p

ω
l/p
m |x− y|ml/p

El
p(x, y)

1/p .

Using the following basic formula for the measure of a simplex �(p0, . . . , pm+1) ⊂
Rn

Hm+1(�(p0, . . . , pm+1)) =
1

m+ 1
Hm(�(p0, . . . , pm)) dist(pm+1, aff{p0, . . . , pm})

and using the definition of Kl,ϕ we can write

(48) Kl,ϕ(x0, . . . , xl−2, z) ≥ K(ϕ(x0), . . . , ϕ(xm), ϕ(z))

=
Hm(�(ϕ(x0), . . . , ϕ(xm)) dist(ϕ(z), ϕ(x0) +X))

(m+ 1) diam(�(ϕ(x0), . . . , ϕ(xm), ϕ(z)))m+2

≥ Hm(�(x0, . . . , xm)) dist(ϕ(z), ϕ(x0) +X)

(m+ 1)(2|x− y|)m+2
=

dist(ϕ(z), ϕ(x0) +X)

(m+ 1)!Nm2m+2|x− y|2 .

Putting (47) and (48) together we get

dist(ϕ(z), ϕ(x0) +X) ≤ C(m, l, p, k,N)El
p(x, y)

1/p|x− y|1−ml
p
|x− y|
N

.

We have shown already that v̄1, . . . , v̄m forms a ρε-basis of Y with ρ = |x−y|
N and

ε = ερε. Moreover, since yi /∈ B(x0, . . . , xl−2), we have

dist(v̄i, X) = |π⊥
X v̄i| ≤ dist(ϕ(yi), ϕ(x0) +X) + dist(ϕ(y0), ϕ(x0) +X)

≤ 2C(m, l, p, k,N)El
p(x, y)

1/p|x− y|1−ml
p
|x− y|
N

.

Thence, by Proposition 1.16, the following holds:

dGr(X,Y ) ≤ C̃(m, l, p, k,N)El
p(x, y)

1/p|x− y|1−ml
p .

Together with (46) this gives (40) and Lemma 5.1 is proven. �
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