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Abstract
The definition of a double scaling limit represents an important goal in the
development of tensor models. We take the first steps towards this goal by
extracting and analysing the next-to-leading order contributions, in the 1/N
expansion, for the colored tensor models. We show that the radius of con-
vergence of the NLO series coincides with that of the leading order melonic
sector. Meanwhile, the value of the susceptibility exponent, γNLO = 3/2, signals a
departure from the leading order behavior. Both pieces of information provide
clues for a non-trivial double scaling limit, for which we put forward some
precise conjecture.

Keywords: tensor models, quantum gravity, matrix models

1. Introduction

Growing evidence is being accumulated for the (tensorial) group field theory (TGFT) formalism
[1–4] as a promising overarching framework for a quantum theory of gravity; one that is able to
incorporate aspects of several current discrete approaches within a powerful quantum field
theory setting. TGFTs are theories of rank-D tensorial fields which generate, in their
perturbative expansions, a sum over D-dimensional cellular (usually, simplicial) complexes.
Their simplest incarnation are tensor models [6, 7], wherein the tensors have finite index sets of
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size N. These were proposed already in the early 1990s as an attempt to reproduce, in d3 and
d4 , the successes of the matrix model formalism in defining both a controllable sum over
topologies and a theory of random discrete geometries with a nice continuum limit (given in d2
by Liouville gravity). Such tensor models describe discrete geometry in purely combinatorial
terms (the natural notion of distance being the graph distance on each cellular complex). Their
Feynman amplitudes can thus be understood in terms of the Regge action for discrete gravity
evaluated on equilateral triangulations. Moreover, the perturbative sum over Feynman diagrams
coincides with the definition of quantum gravity given by the (Euclidean) dynamical
triangulations (EDTs) approach [10], after appropriate identification of their respective
parameter sets. When one enriches the combinatorics of tensor models with the group-theoretic
data suggested by loop quantum gravity [9], spin foam models [16] and simplicial geometry
[11], one obtains (TGFTs) proper field theories, with richer state spaces (with generic states
being superpositions of spin networks) and quantum amplitudes, given by simplicial path
integrals and spin foam models. It is these richer field theories, building up on the understanding
of quantum geometry obtained in loop quantum gravity, that we believe offer the most
promising candidates for a complete quantum theory of gravity. Actually, with the appropriate
data and constructions [8, 13], TGFTs provide what can be argued to be the best fundamental
definition of covariant loop quantum gravity dynamics, adapted to a simplicial context. In
particular, TGFTs provide loop gravity and spin foams, as well as dynamical triangulations,
with powerful, analytic field theoretic tools, suited to study of non-perturbative physics, the
dynamics of many degrees of freedom, and the extraction of effective continuum geometry.

While a main motivation for TGFTs is quantum gravity, this is not their only reason of
interest. TGFTs can be seen, more generally, as a new class of quantum field theories, posing
interesting mathematical challenges, in particular from the axiomatic and renormalization
theory perspective [4]. At the same time, they define a new approach to statistical systems on
random lattices, such as dimers, Ising and loop models [25–27], and even in disordered systems
like spin glasses [24].

As mentioned, and whatever the perspective, their crucial asset is to provide a new setting
in which unsolved problems can be tackled with the aid of powerful analytical tools from
statistical and quantum field theory. In fact, many important results have been obtained in the
last few years, confirming such potential. It is not the place to review all these results [1–3, 6].
Beyond model building of 4d gravity models, mainly from the spin foam and loop quantum
gravity perspective, as well as the associated study of their quantum geometric degrees of
freedom (see [8, 12, 14] and references therein), work in tensor models includes: (i) a detailed
understanding of the combinatorics and topology of the cellular complexes generated in
perturbative expansion, which takes advantage of results in combinatorial topology [36],
concerns the absence of extended topological singularities [37], as well as the presence of
embedded Riemann surfaces [38]; (ii) the important identification of a large-N expansion for
tensor models and topological GFTs [18–20] (other types of large-N expansion have been
proposed in [21, 22]); leading then to (iii) many further results concerning the critical behavior
of various tensor models [23, 28] and topological GFTs; and (iv) the identification the leading
order sector as branched polymers [29]. Many more results concern field theory aspects of the
formalism, including universality [34, 35], scaling behavior [43], renormalizability
[15, 17, 39, 41, 42, 44–47], Schwinger–Dyson [30–33] and quantum and classical symmetries
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[56, 57], non-perturbative aspects [48, 49]. Finally, ways to extract effective continuum physics
have been explored, for example [51–55], culminating in the recent [50].

Despite all these recent successes, much remains to be done. In particular, given its crucial
role in ensuring analytic control over the perturbative expansion of these models, it is important
that we improve our understanding of the large-N expansion of both tensor models and the more
involved TGFTs. The first step is to go beyond the leading order in such an expansion, which is
by now well understood, with the aim to understand the next-to-leading order (and possibly yet
more sub-dominant) behavior. In full TGFTs, sub-dominant processes may become dominant in
certain scenarios, e.g. for particular boundary states, or with different choices of weights (that is,
within different models). Even in the simplest tensor models, control over sub-dominant orders
is necessary to be able to define double (and multiple) scaling limits. While for higher-
dimensional models, one should not expect two parameters to control the full series, the two
parameters in the simplest colored model should at least allow one to extract a broader subclass
of graphs than just the leading order graphs. In turn, they should capture better the statistical and
topological properties of the sum over complexes and reveal new critical behavior, as has been
achieved in matrix models [58, 59]. From the perspective of dynamical triangulations, the aim is
to study analytically the continuum limit for finite Newtonʼs constant.

In this paper, we study the next-to-leading order in the large-N expansion, focusing on the
simplest tensor models: the colored tensor models with independent identically distributed
covariance, in any dimension. We consider this the necessary first step before tackling more
involved tensor models or TGFTs proper. To begin, we provide a brief review of such
colored models, the combinatorial structures arising in their perturbative expansion, some key
tools for their analysis, the large-N expansion and the leading (melonic) order. We then move
on to present the new results of our work. Our first main result is that we identify the graphs
contributing to the next-to-leading order, starting from their core graphs. We show that they
correspond to a precise family of graphs decorated by melons, generalizing melonic diagrams
with a single two-dipole insertion. We then show that it is possible to use the Schwinger–Dyson
equations of the model to obtain a closed expression for the connected two point function at
next-to-leading order, as a function of the same quantity at leading order. From this, one can
extract the critical behavior of the free energy for next-to-leading order graphs. We show that
the critical value of the coupling constant is the same as at leading order, and we identify the
new critical (susceptibility) exponent. This is our second main result. In the process, we unravel
a few more interesting technical properties of the combinatorial structures generated by tensor
models. Together with most of the technical details and proofs of the main results, they can be
found in a final appendix. We close with an extended discussion of the double scaling limit,
explaining the implications of our results for this issue, and putting forward some precise
conjectures concerning its realization.

1.1. Random matrices, 2d dynamical triangulations and double scaling limit

Before moving into our tensor model case, we summarize some key results from matrix models
[5]. This should serve to clarify some of our motivations as well as providing a template of what
one could hope to achieve in simple tensor models.

Consider a matrix model, based on a complex N × N matrix M, defined by the partition
function:
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where h is the genus of the surface encoded by the graph  and ( )SYM is a symmetry factor3.
One can organize the graphs according to their topology in a N1 expansion:
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and it is clear that only the h = 0 sector of graphs, that is the spherical triangulations, survives in
the large-N limit. Analyzing the series defined by E g0, , one finds that it has a finite radius of

convergence g
c
and leading order (non-analytic) behavior given by:
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where the critical exponent γ is known as the string susceptibility. As one tunes the coupling
constant to its critical value, →g g

c
, a non-perurbative regime is reached, controlled by those

graphs with increasingly large numbers of vertices.
A double scaling limit ensues from the fact that the series in g at all orders in the N1

expansion have the same radius of convergence g
c
, although different critical behaviors given

by:
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where κ is a constant, then the series α κ≡ ∼ ∑ −F N E ( )
N g N g h h

h
,

2
,

2 includes contributions from all

topologies. This is the double scaling limit.
To provide these amplitudes with a gravitational interpretation, one defines bare Newtonʼs

(G) and cosmological (Λ) constants through:
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and  are the vertices, edges and faces of , respectively.
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where = 2 and = G0 are the numbers of triangles and vertices respectively in the

triangulation represented by . The exponent on the right hand side is the Regge action for an
equilateral triangulation with edge length a and thus, is of the form prescribed by the EDTs
approach to two-dimensional quantum gravity.

In this gravitational re-phrasing, the large-N limit corresponds to the limit in which (the
bare) Newtonʼs constant vanishes: →G 0. Tuning the coupling constant g to its critical value,
and thus to a regime controlled by those graphs with increasingly large numbers of triangles,
corresponds to the large-volume limit. However, by tuning the edge length to zero
simultaneously, one can obtain a continuum limit characterized by surfaces with finite

macroscopic area. The expectation of the area observable ≡ ( )A a3 4 2
2 is:

∼ ∂
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where ΛR is a renormalized cosmological constant.
The double scaling limit equation (6), in this perspective, has the advantage of taking into

account all 2d topologies at the quantum level, but also of accessing the regime of finite
Newtonʼs constant. Indeed, it gives a renormalized constant:

κ≡ = + −
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⎟

G G

g
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1
8 log

1
8 log 1 . (11)
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2. Tensor model essentials

We now review the basic definitions and properties of colored tensor models, their N1
expansion, and the mathematical tools that are used to analyze the combinatorics and topology
of their Feynman graphs.

2.1. Partition function

Consider +D 1 complex rank-D tensors: ϕ
n
i

i
, where ∈ { }i D0 ,..., is the color of the tensor.

Moreover, each subscript ni is actually an abbreviation of the form

= − +( )n n n n n,..., , ,...,i ii i iD ii1 0 1 , where each ∈ { }n N1 ,...,ij for some N. The +( )D 1 -colored
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model is defined by the partition function:

∫ ϕ ϕ= ¯
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where ϕ ϕ̄⎡⎣ ⎤⎦d d is the Gaussian-normalized measure on each of the +( )D N1 D tensor
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It is dependent on three parameters: λ λ̄{ }N , , ; the size N and two coupling constants. In

the interaction terms, ∑
n
denotes the sum over all indices nij, subject to the condition that

=n nij ji. Thus, each tensor shares one argument pairwise with each of the other D tensors. Let

us remark briefly that this colored model, defined in terms of +D 1 complex tensors with
simplicial interaction5, is equivalent to a tensor model for a single tensor. This equivalence may
be directly constructed via successive integration of all but one the tensors within the partition
function of the colored simplicial model above and leads to an effective action for the remaining

tensor that contains an infinite number of ( )U N
D
-invariant interactions, whose respective

coupling constants are precise monomials of λλ̄ (see [35] for details).

2.2. 1/N expansion

One recognizes immediately that expressions such as equation (12) are not naïvely integrable,
so one performs a Taylor expansion of the integrand with respect to the coupling constants, λ
and λ̄, to obtain more manageable quantities. One evaluates the resulting Gaussian integrals via
Wick contraction. The result is summarized in a Feynman expansion as:

∑
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where the Feynman graphs  label the pattern of contractions, SYM ( )G is a symmetry factor,

ω ( ) is the degree of divergence, while  and  are the number of vertices and faces in ,
respectively.

There are two of remarks to be made at this stage:

• The Feynman graphs  are closed +( )D 1 -colored graphs. This coloring allows to
encode topological information, in such a way that such graphs are topologically dual to
abstract simplicial D-dimensional pseudomanifolds. We will give more details on the
definition and properties of colored graphs in the following. Thus, the partition function is
a weighted sum over such objects.

• The degree is a non-negative graph-dependent integer. Therefore, graphs may be ordered
according to their degree and since it is bounded from below by zero, it makes sense to
consider a N1 expansion.

In fact, one can re-organize the graphs as:

∑∑ ∑= =
ω

ω
ω

ω
ω ω

−
− !

=

=


 



( )
Z N Z N g Z, where

1
. (16)( )

( ) SYM
N g

D

p
p

D p
p

p

, ,

2
1

,

:
2

Calculating the coefficients ωZ p, allows one to extract the critical behavior of the series:

∑=ω ωZ Z g , (17)g
p

p
p

, ,

that is, the behavior of the partition function at a given order in the N1 expansion. With this in
mind, one must label and enumerate the graphs at the order of interest, which in turn requires a
more detailed examination of the +( )D 1 -colored graphs, to which we now turn.

2.3. Essentials of (D þ1)-colored graphs

In this section, we present an intuitive description of some basic features of +( )D 1 -colored
graphs. For more technically precise definitions, we refer the reader to [6].

(D +1)-colored graphs: a +( )D 1 -colored graph is a graph comprising of +( )D 1 -valent vertices,
such that any given vertex is colored either black or white, and each of its +D 1 incident edges is
distinctly colored from the set { }D0 ,..., . Moreover, the vertices are connected so that black
vertices have only white neighbours and vice versa. An example is provided in figure 1.
Importantly for applications to quantum theories of gravity, these colored graphs are
topologically dual to D-dimensional abstract simplicial pseudo-manifolds.

k-bubbles: one identifies the k-bubbles of species −{ }i i,..., k0 1 as the maximally connected

subgraphs containing the k distinct colors: ⊂−{ } { }i i D,..., 0 ,...,k0 1 . In an obvious fashion, k-

bubbles are nested within +( )k 1 -bubbles and so forth. More subtly, the k-bubbles are dual to

the −( )D k -dimensional simplices in the associated simplicial complex, while the nesting
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relations encode how these simplices are glued together. Some k-bubbles of figure 1 are
identified in figure 2.
In particular, note that the faces are the two–bubbles. We shall often use the notation:

^ ^ = ⧹− −{ } { }{ }i i D i i,..., 0 ,..., ,..., .k k0 1 0 1

It is possible to express the degree of a graph in terms of the degree of its +( )k 1 -bubbles:

∑

ω

ω

= ! +
+ !

+
−

+

−
! − !

+ − !
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τ
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⎜ ⎟⎛
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D D

k D
p

k D k
B D k
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2
1

1
1

1

2
, (18)[ ]

( )
( )

k

i i
i i

1

... ;
... ;

k

k

0

0
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Figure 1. A +( )D 1 -colored graph, with D = 3.

Figure 2. The three-bubbles of species ̂{ }0 , ^{ }1 , ̂{ }2 and ^{ }3 (clockwise).



where ρ( )i i... ;k0 labels distinct +( )k 1 -bubbles in  and +B[ ]k 1 denotes the total number of

+( )k 1 -bubbles in , which in the case of its D-bubbles, reduces to the following relation:

∑ω ω=
− !

+ − +
ρ

ρ
ˆ

ˆ ( )( )( ) ( )

( )
( )

D
p D B

1

2
. (19)[ ]D

i

i

;

;

k-dipoles: one wishes to catalogue graphs. For colored graphs, the key tool to do so is a class of
combinatorial moves that have a well-controlled effect on bubble structure. These
transformations are known as k-dipole moves. A k-dipole move of species −{ }i i,..., k0 1 is
illustrated in figure 3. As one can see, there are actually two types of dipole moves, dipole
creation and dipole annihilation, one being the inverse of the other. A k-dipole annihilation
consists, roughly speaking, in the removal of k lines connecting a white and a black vertex,
together with the vertices themselves, while joining the remaining + −D k1 lines. There is
one condition that must be satisfied by the k edges of colors −i i,..., k0 1 on the right of figure 3—

they should separate two distinct + −( )D k1 -bubbles of species ^ ^
−{ }i i,..., k0 1 . Thus, k-dipole

creation (annihilation) increases (resp. decreases) the number of + −( )D k1 -bubbles of

species ^ ^
−{ }i i,..., k0 1 by 1.

Additionally, if the + −( )D k1 -bubble added (removed) is a −( )D k -sphere, then the k-
dipole implements a homeomorphism on the associated topological space.
Then, consider the following example where  possesses a k-dipole of some species and the
graph resulting from the annihilation of this dipole is denoted by ⧹ dk. Their respective degrees
are related by:

ω ω= ⧹ +
− !

− − ( )( ) ( ) ( ) ( )d
D

k D k
1

2
1 . (20)k

Importantly, for both k = 1 and k = D the degree is unchanged.

One-dipoles and core graph equivalence classes: given that one-dipole moves preserve the
degree, it is perhaps unsurprising that they play a special role in cataloguing Feynman graphs of
the colored model. One can partition the graphs with a given degree into equivalence classes,
where the one-dipole moves constitute the equivalence relation. In other words, two graphs are
in the same equivalence class if they are related by a sequence of one-dipole moves (both of
creation and annihilation type). Furthermore, it emerges that these equivalence classes come
equipped with convenient representatives, known as core graphs— those members of the class
from which no more one-dipoles can be annihilated. In general, there are several core graphs
within a particular equivalence class. However, this does not pose a problem. One simply picks
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one such graph for each equivalence class. The rest of the graphs in the class are generated by
performing arbitrary sequences of one-dipole moves on this core graph.
One would also like to label each graph in the equivalence class uniquely, so that the
coefficients in equation (16) can be computed. This turns out to be tricky and, unfortunately, the
sequences of one-dipole moves mentioned a moment ago are not the best tool to achieve this
goal. The reason is that often there are several distinct sequences that transform a representative
core graph to the same graph in the equivalence class. The next section details the solution to
this problem in the leading order and next-to-leading order sectors.

Jackets: jackets are the name given to a certain class of two-dimensional surfaces embedded
within the D-dimensional topological manifold. They are encoded via a +( )D 1 -cycle σ of the

set { }D0 ,..., . The surface is constructed from the cycle as follows. Consider a graph  and a
planar projection of the neighbourhood of each black vertex such that the incident colored edges
are ordered clockwise around the vertex according to the cycles σ. For white vertices, the cycle
determines the anti–clockwise ordering. Since a +( )D 1 -colored graph is not generally planar,
away from the vertices the edges cross and the graph is embedded in a surface of non-zero
genus. This surface is provided by  itself, comprising of the totality of its vertices and edges,
along with all the faces whose two colors are adjacent in the cycle σ.
There are !D 2 distinct jackets  in a graph6. As a result, the degree may be re–expressed as a
sum over the genera of the jackets7:

∑ω =


( ) h . (21)

Gravitational interpretation: as in the 2d case outlined in the introduction, the amplitudes have a
gravitational interpretation in terms of the Regge action evaluated on equilateral triangulations8,
and the sum over graphs can thus be put in correspondence with the definition of quantum
gravity suggested by the EDTs approach. Defining:

π
π Λ

=

= − − + −

−

−
⎜ ⎟⎛
⎝

⎞
⎠



 ( ) ( )

N
G

g
D

G
D D

D

log
8

,
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16

1 1 arccos
1

2 , (22)

D

D D

2

2
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different surface.
7 For an orientable surface: = − − +     ( )h 1 2, where  ,  ,  are respectively the

vertices, edges and faces of the jacket  .
8 In proper TGFTs, on the other hand, thanks to their richer set of data, the correspondence can be improved to
give generic simplicial path integrals for discrete (1st order) gravity actions, with generic assignment of geometric
variables (areas of triangles, holonomies of discrete gravity connections, etc), in turn dual to spin foam models
[1, 2, 8, 12, 13].



one may recast the weights as:
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D
D

D D

D D D D

S

2
2

1

2 2 2

,G a D D, , 2

where = D and =− D G1 are the numbers of D- and −( )D 2 -simplices respectively in

the triangulation represented by , while = ! + ( ) ( )a k k 1 2k
k k is the volume of an

equilateral k-simplex with edge-length a. Once again, this is the action prescribed by the EDT
approach. The large-N limit corresponds to the vanishing of (the bare) Newtonʼs constant:

→G 0, while tuning the coupling constant to its critical value lead to a regime whose behavior
is controlled by D-complexes with increasingly large numbers of D-simplices. As in the 2d
case, a double scaling limit would then allow not only to include a more general class of
triangulations in the sum (although in this case it may not allow to go beyond spherical
topology), but also to probe the regime corresponding to finite Newtonʼs constant.

2.4. Observables

Rather than deal with the partition function directly, two other observables are studied in this
paper. First, the free energy is defined as:

=E
N

Z
1

log , (24)N g D N g, ,

and its contributions come from connected closed +( )D 1 -colored graphs. Meanwhile, the
connected two-point function is defined as:

∫ϕ ϕ ϕ ϕ ϕ ϕ¯ = ¯ ¯ ϕ ϕ
¯ ¯

− ¯⎡⎣ ⎤⎦
Z

1
d d e , (25)( )

m
i

m

i

c N g
m
i

m

i S

,

,

and its contributions come from connected +( )D 1 -colored graphs with two external edges of

color i. Since all connected closed +( )D 1 -colored graphs are also one-particle irreducible
(1PI), cutting a single edge of color i within any connected closed graph gives a connected two-

point graph. Moreover, for a closed graph  scaling like ω−
− !

N ( )D ( )D
2

1 , its associated two-point

graph, ͠, scales like ω−
− !

N ( )( )D
2

1 . In other words, all graphs get rescaled by the same factor −N D.
Thus, a two-point graph contributes at a certain order to the two-point function if and only if its
associated closed graph contributes at that order to the free energy.

New J. Phys. 16 (2014) 063048 W Kamiński et al

11



Due to index conservation, the connected two-point function may be factorized as:

ϕ ϕ δ¯ =¯ ¯G , (26)
m
i

m

i

c
N g mm,

where the factor GN g, is independent of the color of the external edges. Indeed, there exists a

Schwinger–Dyson equation relating these observables9:

= + ∂
∂

G g
g

E1 . (27)N g N g, ,

Thus, the behavior of the free energy is directly and easily related to that of the connected two-
point function. This is a very useful property for the analysis to be detailed below, since
connected two-point graphs are more easily catalogued than closed graphs.

3. Graphs

We now present the analysis of the combinatorial structure of the graphs appearing in the
perturbative expansion 15, in the N1 expansion, at both leading and next-to-leading order. We
focus on the main steps of the analysis and on the results, leaving the detailed proofs to the
appendix.

3.1. Leading order

We shall just state the results obtained in [23]. One finds that the leading order in the N1
expansion is specified by: ω =( ) 0. Thus, the pertinent coefficients are the:

∑= = ͠
ω =

=
͠

∼


 



( )
G G:

1
. (28)

( ) SYM
p p

p

, 0,

:
0

2

LO

where  is the closed graph obtained from the two-point graph ͠ by joining its two external
lines of color 0.

For the leading order closed graphs, there is a single equivalence class with a unique core
graph called the supermelon. It is illustrated in figure 4.

Then, one turns to the two-point graphs. The graphs occurring at leading order are known
as rooted melonic graphs. The fundamental building blocks of any rooted melonic graph are the
elementary melons, illustrated in figure 5.

Such a melon consists of two vertices sharing D edges. Both vertices have one external
edge. Obviously, both external edges possess the same color, say i0. Thus, one refers to such an
object as an elementary melon of color i0. Moreover, an elementary melon has two
distinguished features: (i) an external edge of color i0 incident to the white vertex, which is
known as the inactive edge; (ii) +D 1 edges incident at the black vertex, which are known as
active edges.
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9 The appropriate Schwinger–Dyson equation is:

∫ ϕ ϕ
ϕ

ϕ= ¯ ∂
∂

ϕ ϕ

¯

− ¯( )0 [d d ] e .( )

m
i m

i S ,



The set of all rooted melonic graphs, denoted by M, is the union of the subsets Mp

containing rooted melonic graphs with p2 vertices:

= ⋃
⩾

M M . (29)
p

p
1

One may define the elements of Mp as follows:

p = 1: there are only +D 1 rooted melonic graphs in M1, the elementary melons illustrated in

figure 5 for different choices of ∈ { }i D0 ,...,0 .

p = 2: one obtains the graphs in M2 from the graphs in M1 by replacing an active edge of a given
color by an elementary melon of the same color, as shown in figure 6. (In fact, this is D-dipole
creation.)

p = k: one obtains the graphs in Mp from those in −Mp 1 by replacing some active edge by an

elementary melon.
For a graph occurring in Mp, the initial combinatorial factor coming from the Taylor

expansion is !p1 , while the graph is obtained from exactly !p Wick contractions. Thus, the final

combinatorial factor is =͠( ) 1SYM . As a result, the problem of calculating the coefficients

G p,LO
has been reduced to the enumeration of distinct patterns of melonic insertions.

Remark. A generic leading order two-point graph is obtained from a leading order two-point
graph at p = 1 by performing some sequence of one-dipole moves, just as a generic leading
order closed graph is obtained from SUPERMELON by some sequence of one-dipole moves.
However, in our definition of rooted melonic graphs, we have only talked about inserting
melons within melons. This stems from the result, proven in [23], that: the set of rooted melonic
graphs M is closed under one-dipole creation and annihilation.
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Figure 4. The supermelon core graph, denoted SUPERMELON.

Figure 5. An elementary melon of species i0.



3.2. Next-to-leading order: statement of the results

In this section, we present the results of our analysis of the next-to-leading order sector. One can
anticipate its components: (i) the identification of NLO core graphs; (ii) an iterative procedure to
generate all graphs at that order, starting from the core graphs. For the technical aspects, we
refer the reader to appendix A where the precise statements are laid out and proven. Our first
main result concerns the core graphs:

Proposition 3.1. Consider the colored tensor model with ⩾D 3. The graphs ‐2 DIPOLE (seen in
figure 7) are the NLO core graphs.

In the NLO sector, there are +( )D 1

2
core graphs, all of the form given in figure 7. Note that

they may be obtained from the supermelon graph by creating a single 2-dipole, illustrated in

figure 8, of which there are +( )D 1

2
distinct species.

It emerges that the creation of the first one-dipole in the NLO core graphs is equivalent to
the insertion of an elementary melon. However, the creation of a second one-dipole has two
possible effects: (i) it may again be equivalent to the insertion of an elementary melon or (ii) it
may produce a graph of the form illustrated in figure 9.

One may iterate this procedure to arrive at graphs of the form drawn in figure 10. Note that
the graphs produced by ℓ − 1 iterations of this procedure have two faces of species { }i i0 1 , each
with ℓ2 edges. We shall denote such graphs by ℓ‐ ,2 DIPOLE

, in which case, ≡ ‐‐ ,1 2 DIPOLE2 DIPOLE
.

Definition 3.2. One denotes by ℓS n, , the set of closed graphs derived from ℓ‐ ,2 DIPOLE
by inserting

arbitrary combinations of n elementary melons.

Proposition 3.3. The set of graphs:

= ⋃
ℓ⩾ ⩾

ℓ

S (30)
n

S
1 0

n,

is closed under one-dipole creation and annihilation.
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Figure 6. An elementary melon of color 2 inserted along the active edge of color 2 (for
D = 3). The active edges are drawn using full lines.



As at leading order, it is easier to accurately count distinct NLO connected two-point graphs
rather than closed graphs. Given that the next-to-leading order sector in the N1 expansion is

specified by: ω ω= = −‐
− ! ( )( ) ( )D 2( )D

2 DIPOLE
1

2
, one finds that:

New J. Phys. 16 (2014) 063048 W Kamiński et al

15

Figure 7. The core graphs at NLO, denoted collectively by ‐2 DIPOLE.

Figure 8. A 2-dipole of species { }i i0 1 .

Figure 9. The creation of a second one-dipole, of species { }i0 , which is not equivalent to
the insertion of an elementary melon. The edges contributing to the one-dipole are
tagged.

Figure 10. The graphs ℓ‐ ,2 DIPOLE .



∑= = ͠
ω

− !
−

=
− !

−

=
͠

∼


 



( )
G G:

1
. (31)( ) ( )

( ) ( ) ( )
SYM

p D
D p

D
D

p

, 1
2

2 ,

:

1
2

2

2

NLO

There are a number elementary building blocks that are used to define two-point graphs at
this order. Supplementing the elementary melons, there are the two-point insertions obtained by
cutting a edge of ℓ‐ ,2 DIPOLE

(with ℓ ⩾ 1 ). Depending on the edge cut, they take the forms
illustrated in figure 11 and we shall refer to them all as elementary 2-dipoles. Note that, once
again, the solid edges are active, while there is still just one inactive edge, marked by a dashed
line.

Proposition 3.4. For the colored model, the set of NLO connected two-point graphs is:

= ⋃
ℓ

ℓ
⩾
⩾
⩾

T T .

m
n

m n
1
0
0

, ,

The subsets ℓT m n, , are defined as follows:

ℓ, m = 0, n = 0: the graphs in ℓT ,0,0 are the two-point graphs obtained by cutting the edges of

ℓ‐ ,2 DIPOLE
, that is, they are the elementary 2-dipoles illustrated in figure 11.

ℓ, m, n = 0: the graphs in ℓT m, ,0 are obtained by replacing an interior active edge of an
elementary melon with a graph from ℓ −T m, 1,0. Thus, they have the generic form drawn in
figure 12.

ℓ, m n: the graphs in ℓT m n, , are obtained from those in ℓ −T m n, , 1 by replacing an active edge with an
elementary melon.

Thus, the subset of graphs with p2 vertices is:

= ⋃
ℓ

ℓ

ℓ ℓ
⩽ ⩽⌊ ⌋
⩽ ⩽ −

− −T T . (32)p
p

m p

m p m
1 2

0 2

, , 2

As before, the initial combinatorial factor coming from the Taylor expansion for a graph in

ℓS m n, , is ℓ + + !( )m n1 2 , while the graph is obtained from exactly ℓ + + !( )m n2 Wick
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Figure 11. The elementary 2-dipole insertions ℓ ,0,0.



contractions. Thus, the final combinatorial factor is =͠( ) 1SYM . This concludes the

identification of the graphs contributing to the next-to-leading order.

Remark. We stress here the important point that the core graphs ‐2 DIPOLE and thus the whole
NLO sector correspond to D-dimensional cellular complexes of spherical topology, just like the
leading–order graphs. As a result, the two-point graphs represent the D-dimensional ball.

4. Critical behavior

One now turns to an analysis of EN g, , which as one may recall is the free energy at given values

of the expansion parameter N and coupling constant g. This may be expanded in both
parameters:

∑∑ ∑= =
ω

ω
ω

ω
ω ω

−

=

=


 



( )
E E N g Ewhere

1
. (33)

( ) SYM
N g

p
p

p
p

p

, , ,

:
2

The quantity ωE p, counts the number of closed +( )D 1 -colored graphs with a given degree and a

given number of vertices (weighted by the relevant symmetry factors). In turn, the large-p
behavior of ωE p, provides the radius of convergence of the series along with the critical

exponent10:

∑= ∼ − →ω ω ω
ω

γ

ω

− ω⎛
⎝⎜

⎞
⎠⎟E E g A

g

g
g g1 as , (34)g

p
p

p c

c, ,
,

2

,

where ωA is a constant of proportionality, while ωg
c,

and γω are the radius of convergence and the

susceptibility exponent, respectively. In the coming section, both leading order and next-to-
leading order sectors are analysed. The leading order melonic sector not only provides an
invaluable introduction to the techniques used, but also some necessary results. So, it is worth
reviewing explicitly, albeit briefly.

As already mentioned, the strategy involves examining the behavior of the connected two-
point function at the relevant order. The corresponding behavior for the free energy can then be
found by integrating equation (27). To succeed, one needs also the 1PI two-point function, given
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Figure 12. The recursive definition of the elements in ℓT m, ,0, where ∈ℓ ℓ Tm m, ,0 , ,0 and
∈ℓ ℓ− − Tm m, 1,0 , 1,0.

10 For clarity, we have assumed that there are no logarithmic factors contributing to the leading divergence as
→ ωg g

c,
. In practice, one should demonstrate this explicitly.



by:

ϕ ϕ δ Σ¯ =¯ , (35)
m
i

m

i
mn N g

1PI
,

i i

where ΣN g, is a constant, depending on N and g. There is a convenient identity relating this to

the connected two-point function:

Σ= −
−( )G 1 . (36)N g N g, ,

1

This leads immediately to the following relations11:

Σ

Σ Σ Σ
Σ

= −

= − −
=

−

− −

( )
( ) ( )

G

G

G G

1

1 1

(38)

g g

g g g g

g g g

, ,

1

, ,

1

, ,

1

, , ,

LO LO

NLO LO NLO LO

LO NLO LO

One simply needs to find some more equations to close the system and solve it for the desired
function. The equation to be used depend on the detailed combinatorial structure of the graphs
at each order.

4.1. Leading order sector

The second equation for the leading order two-point functions descends directly from the
melonic structure of the contributing graphs. A rooted melonic graph has the generic form given
in figure 13.

Thus, any leading order 1PI two-point graph has the form given in figure 14, where the
shaded circles indicate the insertion of an arbitrary connected rooted melonic graph.

The diagram illustrates the following mathematical relation:

Σ = g G . (39)g g
D

, ,LO LO
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Figure 13. A generic LO two-point graph.

11 We have used the shorthand:

≡
≡ − !

−

X X

X X (37)( )
( )

g g

g D
D g

, 0,

, 1

2
2 ,

LO

NLO

where X may be replaced by the suitable observable e.g. Σ{ }E G, , .



Using equation (38), this leads to a closed equation for G g,LO
:

= + +G g G1 , (40)g g
D

, ,
1

LO LO

which in turn can be solved via a series expansion for the coefficient:

= =
+ +

+ ++
⎛
⎝⎜

⎞
⎠⎟( )

( )
G C

D p

D p

p

1
1 1

1 1
, (41)( )

p p
D

,
1

LO

where +C ( )
p

D 1 are the +( )D 1 -Catalan numbers. Applying Stirlingʼs formula12 to the series

coefficients, one can examine their large order behavior:

β
β

π
∼

= +

=
+

− −

+

⎧

⎨
⎪⎪

⎩
⎪
⎪

( )
( )

G g p

e D

D

g
D

D

where
2

1

1

. (43)p c

p

c

D

D

, LO ,

3
2

LO 3

, 1

LO LO

LO

Such a series has a radius of convergence g
c,LO

and the behavior of the series in the vicinity of

g
c,LO

is given by:

∼ −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G

g

g
1 . (44)g

c

,

,

1
2

LO

LO

This implies the following critical behavior for the free energy:

γ∼ − =
γ−⎛

⎝
⎜⎜

⎞
⎠
⎟⎟E A

g

g
1 where

1
2

. (45)g

c

, LO

,

2

LOLO

LO

LO

In this context, γ
LO

is known as the entropy exponent or susceptibility.
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Figure 14. The generic graph contributing to the LO1PI two-point function.

12 Stirlingʼs formula states that:

π
! =

→∞ ( )
n

n
lim

2
1 (42)

n n

e

n



4.2. Next-to-leading order sector

The analysis at NLO proceeds similarly. In effect, it requires one to obtain the cardinality of the
set T defined in section 3.2. Consider a 1PI two-point graph occurring at NLO. It receives
contributions from two-point graphs of the form drawn in figure 15. The first corresponds to the
insertion an elementary 2-dipole into an elementary melon followed by melonic insertions
thereafter (the graphs in ℓT m n, , with ⩾m 1 ). The others correspond to melonic insertions into the
elementary 2-dipole graphs (the graphs in ℓT n,0, ).

In terms of generating functions, this relation translates into the following equation:

∑

Σ =

+
+

ℓ

ℓ ℓ

−

⩾

+ −

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦( )

g D G G

D D
g G

1

2
, (46)

( )

g g

D

g

g

D

, ,

1

,

1

2
,

2 1 1

NLO LO NLO

LO
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Figure 15. The NLO consistency equation.



where the D-dependent factors arise from the choice of species. After rearrangement, one finds:

∑
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2 3

0
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1
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LO LO

LO

where the second equality uses equation (40). The summation over ℓ can be performed

explicitly13, since − <G 1 1g,LO
in the range ⩽ ⩽g g0

c,LO
and one gets:

=
−

−

+ + −

+

⎡⎣ ⎤⎦
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Moveover, upon differentiating equation (40), one finds:

∂
∂

=
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+
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G
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g D G1
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so that:

=
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∂
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Knowing the critical behavior of G g,LO
allows one to determine the behavior of the NLO series

from equation (51):

∼ − ∼ + −
−⎛
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13 Inverting equation (40) for g as a function of GLO, one finds:

= − +g G G G( ) ( 1) [ ] . (48)D
LO LO LO

1

One can see that g = 0 corresponds to =G 1LO . Moreover, one knows that the right hand side is a monotonically

increasing function of GLO up to some critical value G ,criticalLO , where one encounters a stationary point. By

examining its derivatives, one finds that ( )g GLO has a maximum at = +( )G D D1,criticalLO , leading to

= + =+( ) ( )g G D D g1D D

c,critical

1

,LO LO
, as expected. Since − = <G D1 1 1,criticalLO , we have what we need to

resum the series in equation (47).



This implies the following critical behavior for the free energy:

γ∼ − =
γ−⎛

⎝
⎜⎜

⎞
⎠
⎟⎟E A

g

g
1 where

3
2

. (53)g
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2

NLONLO

LO

NLO

We find then that the critical point of the NLO is the same as that of the leading order, while
the critical exponent differs. This is exactly the property indicating the potential for a double
scaling limit.

5. Discussion: a double scaling limit?

Before concluding, we would like to discuss briefly the implications of our results for the
existence and nature of the double scaling limit. With the above analysis, we have seen that:

∼ − + − +−
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟E A N

g

g
A N

g

g
1 1 ... (54)N g

c

D

c

, LO
0

3
2

NLO
2

1
2

Obviously, these two pieces of information already allow one to conjecture a possible form of
double scaling limit, whose actual realization relies on the following two properties:

A1: there is subset (perhaps with infinite cardinality) of orders, whose elements are labelled by
∈m 0, behaving as:

∼ −−

−⎛
⎝
⎜

⎞
⎠
⎟E A N

g

g
1 (55)( )

m g m
m D

c

m

,
2

3
2

A2: all other orders are still washed away in the double scaling limit.

If one assumes these two properties, then the double scaling limit of −( )N E( )D
N g

3 2 2
, ensues

from:

κ→ ∞ → − =
−⎛

⎝
⎜

⎞
⎠
⎟N g g N

g

g
, , such that 1 . (56)

( )

c
c

D1 2

We do not have a proof for the above assumptions. The proposed form of double scaling
remains, therefore, a conjecture. We can give, however, some supporting arguments for it.

As regards (A1), there are certainly core graphs weighted by −N ( )m D2 , namely, those that
reduce to the supermelon graph through the annihilation of m successive 2-dipoles14.

Having said that, one would need to show that the sectors, which we call 2-dipole sectors,
generated from these core graphs each give rise to a resummable series with the radius of
convergence and critical exponent conjectured in equation (55).

Moreover, for a given m, there may be other sectors of graphs weighted by −N ( )m D2 . If such
sectors exist, one would need to show the realization of one of the following two scenarios,
either (i) they have the same behavior as the 2-dipole sectors or (ii) they are less singular as
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14 A subtlety of 2-dipole annihilation is that one may need to insert one-dipoles briefly in order to effect the
annihilation.



→g g
c
(for example, the radius of convergence is larger then g

c
, implying finiteness in that

limit).
To prove (A2), one would need to show that the 2-dipole sectors dominate over all other

sectors. This appears a rather daunting task. One might attempt to tackle it by showing that for
sectors generated from core graphs with, say, p2 vertices, then the 2-dipole sector generated
from core graphs with p2 vertices dominate.

For example, we can show that this is already for those sectors generated from core graphs
with four vertices. As illustrated in figure 16, all such core graphs are obtained from the
supermelon core graph after the creation of a k-dipole of some species with ⩾k 3 and denoted
here by −k dipole. The techniques that we developed for the NLO sector work on these sectors

perfectly15. One finds that while their weight in the N1 expansion is + − −N ( ) ( )D k k D1 , they generate

a resummable series with behavior −( )g g1
c

1 2
. Thus, their contribution to the series

−( )N E( )D
N g

3 2 2
, is:

− ⟶− + − −
⎛
⎝
⎜

⎞
⎠
⎟N

g

g
1 0 (57)( ) ( ) ( )D k k D

c

3 2 2 1

1
2

in the double scaling limit defined by equation (56). The aim is to extend such arguments to
higher orders in the expansion.

There are two points of further interest pertaining to the double scaling limit conjectured
above.

The first is a comparison to the double scaling limit of the single matrix model. In that
context, the double scaling limit captures contributions from all topologies. For D = 3, rather
than contain contributions from all topologies, the limit above captures the complete spherical
sector of the colored tensor model, since graphs representing the 3-sphere may be obtained from
SUPERMELON by some sequence of one-dipole and 2-dipole moves. For >D 3, the limit captures
less and less of the spherical sector, since performing k-dipole moves (with >k 2) on
SUPERMELON may also result in a graph encoding the D-sphere. This means that, the higher the
dimension, the harder it is for the simplest tensor models to capture the topology of the
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Figure 16. A subdominant core graph with four vertices.

15 In fact, for the sectors generated from ‐k dipole with ⩾k 3, the equivalent of the closed graphs ℓ‐ ,2 DIPOLE with

ℓ > 1 do not exist. Thus, the set of closed graphs for these sectors is simply ∪= ⩾S Sn n0 1, where

= ‐{ }S G with arbitrary melonic insertionsn k1, dipole . This, however, is already enough to determine the same

critical behavior.



continuum spacetime they aim to describe, not to mention its geometry. Richer models
involving more coupling constants, thus multiple-scaling limits, or more structured amplitudes,
depending on a richer set of data, are then called for.

The second utilizes the gravitational interpretation provided by EDTs. As before, it allows
one to enter a regime of finite Newtonʼs constant, by defining a renormalized constant:

κ= = + −
− −

−⎛
⎝
⎜

⎞
⎠
⎟ G G

g

g

1 8 log 1 8
log 1 . (58)

( )

R D D c

D

2 2

1 2

However, for >D 2, Newtonʼs constant is dimensionful. As a result, this GR is finite in the
large-volume limit rather than the continuum limit, where one has also →a 0 and which will
require a more subtle analysis.

6. Conclusions

We have studied the next-to-leading order in the large N expansion of colored tensor
models, in any dimension. We have identified the graphs contributing to it, corresponding to
families ℓS n, of graphs. We then studied the critical behavior of the free energy for such
graphs. The result is that the critical value of the coupling constant is the same as at leading
order, while the critical (susceptibility) exponent is different. These results support the
possibility of a double scaling limit capturing more properties of the sum over triangulations
for spherical topologies, and suggest the form that this double scaling may take, as we have
discussed in some detail. The analysis we performed for such simple tensor models can also
form the basis of a similar analysis for more involved tensor models as well as for proper
TGFTs.
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Appendix A. Next-to-leading order: technical details

In this appendix, we collect the needed technical definitions, report the details of our results and
present the corresponding proofs.

A.1. Some features of (rooted) melonic graphs

A.1.1. Irreducibility. To begin, we generalize the idea of n–particle reducibility to include some
color information.

Definition A.1. A graph is said to be ( )a a,..., D0 –particle irreducible, if it remains connected,
having cut aj edges of color j, for all j.
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We shall denote by ⃗ej j... k1
the vector with components j j,...,

k1
equalling 0 and with the rest

equalling 1. Here are some easily verified facts about +( )D 1 -colored graphs:

Q1: all connected closed +( )D 1 -colored graphs are ⃗ej–particle irreducible, for all

∈ { }j D0 ,..., . In other words, one may cut along any D distinctly colored edges and the
graph remains connected.

Q2: all 1PI two-point +( )D 1 -colored graphs with external edges of color { }i , other than the

elementary melon, are ⃗ej–particle irreducible, for all ∈ ^{ }j i . The elementary melon is the

exception, since it does not have an internal edge of color { }i . Rather the elementary melon is of

species { }i is ⃗eij–particle irreducible, for all ∈ ^{ }j i .

Now we specialize to melonic graphs.

A.1.2. Melonic vertex pairs. Any closed +( )D 1 -colored graph has equal numbers of black
and white vertices. Thus, in principle, there are many possible ways to partition these vertices
into black-white pairs. However, certain graph properties serve to distinguish particular
pairings.

Definition A.2. Rooted melonic graphs have a melonic vertex pairing defined at:

p = 1: an elementary melon has just two vertices and these form a melonic vertex pair.

p = k: such a graph is constructed via the iterative insertion of elementary melons. Each
elementary melon has a pair of vertices. Thus, the vertices of the graph are paired according to
the elementary melon, within which they were inserted.

As a result, for a given vertex in a rooted melonic graph, one may identify its paired vertex
by deleting all sub-nested melons. Moreover, for a closed melonic graph , one may construct a
melonic vertex pairing by inserting a fictitious cut along one edge and utilizing the resultant
rooted graph. From this, one can derive a number of properties:

P1: a closed melonic graph  has a unique melonic vertex pairing.

P2: consider cutting the two edges of some color { }i that are incident to the vertices of a
melonic vertex pair. This splits the graph  into two disjoint connected components (unless the
edge of color { }i joined the vertices of the vertex pair directly).

P3: consider the k-bubbles of . These are also melonic and preserve the melonic vertex pairing
defined by . Therefore, in particular, a vertex lies in the same k–bubble as its melonic pair.

P4: consider a melonic vertex pair with vertices v and v̄, then v lies in a face of  if and only if v̄
lies in that face. In other words, they lie in the same +( )D D 1 2 faces.
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A.1.3. one-dipole creation. Let us remind ourselves that:

Definition A.3. A k-dipole dk is a subset of  comprising of two vertices v, v̄ such that:

• v and v̄ share k edges of colors −i i,..., k0 1;

• v and v̄ lie in distinct + −( )D k1 -bubbles. In the arguments below, we say that the k-
dipole ‘separates’ the vertices in the two bubbles.

Lemma A.4. Consider a melonic graph. Then, one-dipole creation separates some melonic
vertex pair.

Proof. Consider a +( )D 1 -colored graph and insert a one-dipole. The resulting graph is
melonic since the insertion of a one-dipole does not change the degree of divergence equation
(20) and all graphs of vanishing degree are melonic [23]. These two new vertices lie in distinct
D-bubbles and, by property (P3), one knows that they must be paired with vertices that existed
before their insertion. □

Now, consider a melonic vertex pair ¯vv. By property (P4), they both lie in the same
+( )D D 1 2 faces, one of each species { }j k, . Now, let us examine these faces more closely,

and in particular, their bounding edges:

• ¯ j k
vv
, is the set of edges of color { }j that lie in the boundary of the face of species { }j k, .

• = ⋂¯
∈

¯ { }j
vv

k j j k
vv
, is the set of edges of color { }j that lie in the boundary of all such faces.

Definition A.5. Consider a generic (not necessarily melonic) graph that possesses a melonic
vertex pairing. −

¯vv
0 dipole denotes all the edges that may be cut to create a zero-dipole, which

separates the melonic vertex pair ¯vv. −
¯ i

vv
1 dipole, denotes all the edges that may be cut to create a

one-dipole of species { }i , which separates the melonic vertex pair ¯vv.

Lemma A.6. For a melonic graph:

= ⋃ = ⋃−
¯

∈

¯
−
¯

∈ ^

¯   
{ }

, . (A.1)
{ }

vv

j D
j
vv

i
vv

j i

j
vv

0 dipole
0 ,...,

1 dipole,

Proof. Consider a closed melonic graph in figure 17, with melonic vertex pair ¯vv. We have
decomposed all melonic decorations into their 1PI components. −

¯vv
0 dipole contains all, and only,

those edges exterior to all 1PI decorations. That –
¯vv

0 dipole cannot contain edges interior to some 1PI

decoration follows very simply from the irreducibility property (Q2). Similarly, −
¯ i

vv
1 dipole,

contains those edges of color { }j (with ∈ ^{ }j i ) exterior to all 1PI decorations.

Finally, a result from [23]:
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Proposition A.7. The set of rooted melonic graphs M is closed under one-dipole creation and
annihilation.

A.2. Identifying NLO core graphs

At first glance, it is perhaps unsurprising that the graphs illustrated in figure 7, being also the
next simplest in terms of number of vertices, are the NLO core graphs. However, it emerges that it
requires quite some care to prove this definitively. Closer inspection reveals that the graphs
have degree:

ω =
− !

−‐( ) ( ) ( )
D

D
1

2
2 . (A.2)2 DIPOLE

Since the degree of ‐2 DIPOLE scales factorially with D, it is unclear at the outset that no other
graph, perhaps less superficially obvious, sneaks in with a smaller degree to take the role of the
NLO core graph. As it stands, the constraints on core graphs are not strong enough to rule out this
possibility; one has only that they must be connected with >p 1. The aim of this subsection is
to develop constraints that rule out this possibility.

Lemma A.8. Consider a +( )D 1 -colored core graph , at order p and ⩾D 4, with the
following properties:

•  possesses exactly two melonic D-bubbles, say of species { }i0 and { }i1 .

•  possesses a planar jacket.

Then,  is the supermelon graph with −p 1 2-dipoles of species { }i i,0 1 inserted.

Proof. Since  is a core graph, it contains a single D-bubble for each color, labelled ^( )i for
∈ { }i D0, 1 ,..., . We shall denote the two melonic D-bubbles by ^( )i0

, ^( )i1
, respectively.

Moreover, these D-bubbles each contain all the vertices of .
Since ^( )i0

and ^( )i1
are closed melonic graphs, by (P1), they each have unique melonic

vertex pairing. Thus, a priori, a given vertex in  has two melonic vertex pairings: one induced
by ^( )i0

and another by ^( )i1
. However, given the property (P3) of melonic vertex pairs, these

vertex pairings coincide since both ^( )i0
and ^( )i1

contain the −( )D 1 -bubbles of species ^^( )i i0 1 .

Thus, even though  is not melonic it has a melonic vertex pairing.
Moreover, since  possesses a planar jacket, we can draw it on the plane without

crossings, such that the colored edges incident to each and every vertex are ordered according to
some +( )D 1 -cycle τ.
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We utilize the planar illustration of  in figure 18, where the cycle has the form
τ = ( )jkl... ... . Consider a melonic vertex pair in  and say that they do not share an edge of

color ∈ ^ ^{ }k i i,0 1 . Our argument has three subcases:

(i) Neither j nor l equal i0. In ^( )i0
, property (P2) ensures that cutting the edges of color k

disconnects a subgraph from the rest of ^( )i0
. Thus, there is a 1-dipole of species k in ^( )i0

.

Upon reinserting the lines of color i0, the planarity of the jacket ensures that this one-dipole
of species k persists into .

(ii) Neither j nor l equal i1. The argument here is similar to the above with i1 swapped for i0.

(iii) = { }{ }j l i i, ,0 1 . In ^( )i0
, property (P2) ensures that cutting the edges of color k disconnects

a subgraph from the rest of ^( )i0
. As a result, the two distinguished edges of color k lie in

the same face of color ( )i k1 . Swapping the roles of i0 and i1, we can show that the two

distinguished edges of color k lie in the same face of color ( )i k0 . Thus, back in , there is a
one-dipole of species k.

Thus, all lines of color ∉ { }k i i,0 1 directly connect melonic vertex pairs. In turn, this means that

^( )i0
is the D-colored supermelon with −p 1 1-dipoles of species i1 inserted (and vice versa).

We illustrate ^( )i0
in figure 19.

Once again, the planarity of the jacket ensures that, upon reinserting the edges of color i0,

 is the +( )D 1 -colored supermelon with −p 1 2-dipoles of species { }i i,0 1 inserted. □

A corollary of this statement is the following:

Corollary A.9. Consider a +( )D 1 -colored core graph  with ⩾D 4. If  possesses three (or
more) melonic D-bubbles and a planar jacket, then it is the supermelon.

Now for the main result of this subsection, the identification of the NLO core graphs:

Proposition 3.1. Consider the colored tensor model with ⩾D 3. The graphs ‐2 DIPOLE are the
NLO core graphs.
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Proof. One uses an inductive argument on the number of colors. A k-colored core graph is

denoted by ( )k . To start off, one shows that the statement holds true for D = 3. While lemma
A.8 does not apply to this case, luckily it is simple to show directly. The following three

statements hold in D = 3: (i) ω =‐( ) 1( )3
2 DIPOLE , so it is certainly a NLO core graph (it is only

sub-dominant by one power of (N); (ii) ‐( )3
2 DIPOLE is the only core graph with p = 2; (iii)

equation (19) implies that ω ⩾ −( ) p 1( )3 , so given the second point, any other graph has a

higher degree than ‐( )3
2 DIPOLE. Thus, the NLO core graphs are as proposed: = ‐ ( ) ( )3

NLO
3

2 DIPOLE.

Say next that the statement holds true for the D-colored model: = ‐ ( ) ( )D D
NLO 2 DIPOLE. Thus

ω = −− !( ) ( )D 3( ) ( )D D

NLO
2

2
.

Now, say that despite this assumption, the statement does not hold for the +( )D 1 -colored

model. Alas, the graphs +
‐( )D 1

2 DIPOLE, are trumped by some other graph + ( )D 1
SNEAKY. In other

words, their degrees satisfy the following inequality:

ω ω⩽ =
− !

−+ +
‐ ( ) ( ) ( ) ( )

D
D

1

2
2 . (A.3)( ) ( )D D1

SNEAKY
1

2 DIPOLE

A generic core graph of the +( )D 1 -colored model satisfies the equality:

∑ω ω=
− !

− ++  ( )( ) ( ) ( )
D

p
1

2
1 , (A.4)( ) ( )

( )
D

i

D
i

1

where ( )
( )

D
i are its D-bubbles. In particular, + ( )D 1

SNEAKY obeys such a relation. The key now is

to put a lower bound on both the number of vertices and the degrees of the D-bubbles and force
a contradiction.

First of all, one knows also that ⩾p 2, since the only core graph with p = 1 is the

supermelon. Secondly, + ( )D 1
SNEAKY possesses at least one planar jacket, else
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ω = ∑ ⩾ !+   ( ) g D 2( )D 1
SNEAKY . Moreover, appealing to corollary A.9, one can exclude

all cases with three or more melonic D-bubbles. Thus, given that there are +D 1 D-bubbles
in total, the configuration minimizing equation (A.4) has −D 1 of them at NLO. But remember

that D-bubbles are D-colored graphs, so the lower bound for the degree of + ( )D 1
SNEAKY is

already:

ω

ω ω ω ω

⩾
− !

− + −
− !

−

+ + =
− !

+ − + +

+ 

   ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

D
p D

D
D

D
p D

1

2
1 1

2

2
3

1

2
4 . (A.5)

( )

( )
( )

( )
( )

( )
( )

( )
( )

D

D
i

D
i

D
i

D
i

1
SNEAKY

0 1 0 1

In order to satisfy the bound equation (A.3), one must set p = 2 and

ω ω= = ( ) ( ) 0( )
( ) ( )

( )
D

i
D

i0 1
. Thus, one falls into the case dealt with by lemma A.8 and a

contradiction follows thereafter. □

A.3. Generating all NLO graphs

From these core graphs, one can generate all graphs at NLOby performing arbitrary sequences
of one-dipole moves. At LO, such sequences resulted in the insertion of some set of
elementary melons into the core graph. At NLO, while it is certainly true that most one-dipole
moves still result in the creation/annihilation of elementary melons, there is a subset that
departs from this rule. The set of graphs S is certainly obtained by performing some sequence
of 1-dipoles moves on the NLO core graph ‐2 DIPOLE. Our aim is to show now that these are all
the graphs.

With these properties at our disposal, we can proceed to analyse the NLO sector.

Definition 3.2. One denotes by ℓS n, , the set of closed graphs derived from ℓ‐ ,2 DIPOLE
by inserting

arbitrary combinations of n elementary melons.

Proposition 3.3. The set of graphs:

= ⋃
ℓ

ℓ
⩾
⩾

S S

n

n
1
0

,

is closed under one-dipole creation and annihilation.

Proof. Every element of ℓS n, is built from the graph ℓ‐ ,2 DIPOLE
decorated by some combination of

n melons. A generic graph in ℓS n, is drawn in figure 20.

One-dipole creation: from definition A.3, to create a one-dipole of some species { }i , one must

pick D edges of distinct colors taken from the set ^{ }i that ensure the separation property. It will

emerge that any one-dipole involves D edges from a single partial subgraph of the type in
figure 21.
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To begin, the analysis of section A.2 shows that the graphs in ℓS n, have two melonic D-

bubbles (of species ^{ }i0 and ^{ }i1 ), which induce a unique melonic vertex pairing16. One can

easily identify this melonic vertex pairing in figures 20 and 21. While the rooted melonic
insertions have their melonic vertex pairs, those vertices exterior to any melonic decoration are
in pairs of type AA , DD and so forth.

In general, the creation of a one-dipole in the graph corresponds to the creation of a 0–or
one-dipole in its melonic D-bubbles. By lemma A.4, a one-dipole insertion separates some
melonic vertex pair of a melonic D-bubble (and a zero-dipole certainly does). Thus, a one-
dipole insertion separates some melonic vertex pair of the graph.

Recall from definition A.5: − i
vv
1 dipole, denotes the set of edges that may be cut to create a

one-dipole of species { }i in the graph, so as to separate the melonic vertex pair ¯vv.
One proceeds on a case by case basis.

Case 1: say one wishes to create one-dipole of species { }i to separate a melonic vertex pair of

type AA . The key is to examine the effect of the corresponding 0–/one-dipole on the melonic
D-bubbles. This restricts the elements of − i

vv
1 dipole, . One finds that in all cases, − i

vv
1 dipole, contains

those edges of species j (with ∈ ^{ }j i ) in figure 21 that are exterior to any melonic decoration.
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Figure 20. A generic element of ℓS n, , where n counts the number of elementary melon
insertions.

Figure 21. A partial subgraph.

16 For D = 3, there is little subtlety in that the NLO graphs have four melonic three-bubbles. For all graphs in ℓS n,

with ℓ > 1, this poses no problem. However, examining the core graph ‐2 DIPOLE explicitly, one notices that it is

symmetric and does not have a distinguished melonic vertex pairing. For this subset of graphs there are two
different choices of pairing. This subtlety will be important later.



Any choice of D distinctly colored edges from this set sends the graph in ℓS n, to a graph in ℓ +S n, 1.

Without loss of generality, let us assume that the melonic decoration between Bj and Bj is 1PI, so

that Bj and Bj form a melonic vertex pair. If it is not, then one decomposes this decoration into

its 1PI components and proceeds with one of the resulting vertex pairs.

Case 2: say one wishes to create a one-dipole of species { }i to separate a melonic vertex pair of

type BBj j .

∈ ^ ^{ }j i i, :0 1 unless D = 3 and ℓ = 1, − i
B B
1 dipole,

j j contains only edges interior to the rooted melonic

subgraph AB BAj j . Thus, we may apply proposition A.7 and one sees that one-dipole creation

sends the graph from ℓS n, to a graph in ℓ +S n, 1. The case D = 3 and ℓ = 1 is special, as explained
in footnote 16, since there are two possible pairings for the four vertices exterior to any melonic
decoration. However, a pairing can always be chosen so that the assumption ∈ { }j i i,0 1 is valid
and therefore we can avoid this case.

=j i0, ∈ ^{ }i i1 : − i
B B
1 dipole,

0 0 contains only edges interior to the rooted melonic subgraph AB B D0 0 .

as above, we may apply proposition A.7.

=j i1, ∈ ^{ }i i :0 as above, with the roles of i0 and i1 swapped.

=j i0, =i i :1 as elements of − i
B B
1 dipole, 1

0 0 , those edges of color { }k with ∈ ^{ }k i0 are interior to the

melonic decoration between B0 and B0. Those edges of color { }i0 lie along the paths AB B D0 0

and DC C A0 0 . If the melonic decorations B B0 0 and C C0 0 are 1PI, then the viable edges of color

{ }i0 are explicitly: AB0, B D0 , DC0, C A0 . If these melonic decorations are not 1PI, then the edges

of color { }i0 separating the 1PI components must be added to the viable set. If one chooses to cut

an edge of color{ }i0 contained in the path AB B D0 0 , then one sends the graph in ℓS n, to a graph in

ℓ +S n, 1. However, if one chooses an edge of color { }i0 contained in the path DC C A0 0 , then one
sends the graph in ℓS n, to a graph in ℓ+ −S n1, 1. This is the type of move illustrated in figure 9.

=j i1, =i i :0 as above, with the roles of i0 and i1 swapped.

Case 3: a one-dipole to separate a melonic vertex pair nested at least once inside a melonic
decoration. In this case, the viable edge set is contained entirely within the melonic insertion.
Thus, we may apply proposition A.7 yet again.

One-dipole annihilation: this involves picking an edge of color { }i such that after contraction,

the number of D-bubbles of species ^{ }i is reduced by one.
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Case 1: one picks a one-dipole edge interior to some melonic insertion. Then, proposition A.7
holds and the graph in ℓS n, is sent to a graph in ℓ −S n, 1.

Case 2: one picks a one-dipole edge exterior to any melonic insertion. Then, the only one-
dipole edges are those or color { }i0 and { }i1 . Consider the path → → →A B B D0 0 . There are
two subcases:

• The path from A to D in figure 21 is decorated by a melonic insertion. Then, the edge of
color { }i0 joining vertices A and B0 is a one-dipole edge. Contracting this one-dipole sends
the graph in ℓS n, to a graph in ℓ −S n, 1.

• The path from A to D is undecorated. Then, the edge joining the vertices A and D͠ is a one-
dipole edge, whose contraction sends the graph in ℓS n, to a graph in ℓ− +S n1, 1. This is the
inverse of the move illustrated in figure 9.

By cutting some single edge of the graphs in S, one generates the set of NLO connected two-
point graphs, denoted by T. These are defined and catalogued in section 3.2.

Proposition A.13. For the colored model, the set of NLO connected two-point graphs is:

= ⋃
ℓ

ℓ
⩾
⩾
⩾

T T .

m
n

m n
1
0
0

, ,

Proof. This is a proof by inspection. One examines the graph in ℓS n, , as drawn in figure 20. For
our purposes, there are two types edges in such a graph:

• Cutting an edge interior to some melonic insertion sends a graph in ℓS n, to some graph in

ℓ −T m n m, , , where m denotes the level of nesting (within the melonic insertion) of the cut edge;

• Cutting an edge exterior to any melonic insertion sends a graph in ℓS n, to some graph in

ℓT n,0, .

Moreover, taking a graph any graph in ℓT m n, , and joining its two open edges produces a
graph in ℓ +S n m, . □
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