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The scientific objectives of the LISATechnology Package experiment on board of the LISA Pathfinder

mission demand accurate calibration and validation of the data analysis tools in advance of the mission

launch. The level of confidence required in the mission outcomes can be reached only by intensively

testing the tools on synthetically generated data. A flexible procedure allowing the generation of a cross-

correlated stationary noise time series was set up. A multichannel time series with the desired cross-

correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided.

The core of the procedure comprises a noise coloring, multichannel filter designed via a frequency-by-

frequency eigendecomposition of the model cross-spectral matrix and a subsequent fit in the Z domain.

The common problem of initial transients in a filtered time series is solved with a proper initialization of

the filter recursion equations. The noise generator performance was tested in a two-dimensional case study

of the closed-loop LISA Technology Package dynamics along the two principal degrees of freedom.
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I. INTRODUCTION

The LTP (LISATechnology Package) experiment is the
main scientific payload on the European Space Agency
mission, LISA Pathfinder. Its goal is to determine and
analyze all possible sources of disturbance which perturb
the free-falling test masses from their geodesic motion.
The system is composed of two test masses whose position
is sensed by an interferometer. The spacecraft cannot
simultaneously follow both masses, and so the trajectory
of only one test mass serves as the drag-free reference
along the x (measurement) axis. To prevent the trajectories
of the two masses from diverging in response to any
differential force, the second test mass is electrostatically
actuated to follow the spacecraft. In the main science
operating mode, the position of the spacecraft relative to
the first test mass is controlled using micro-Newton thrust-
ers attached to the spacecraft. The position of the second
test mass is controlled using capacitive actuators surround-
ing the test mass. The first interferometer channel measures
the position of the first test mass relative to the spacecraft.
The second interferometer channel (differential channel)
measures the relative displacement between the two test
masses.

A set of different experiments, such as measurements of
parasitic voltages, test mass charging, and thermal and
magnetic disturbances, completely covers the scheduled
90 days of LTP operations; the overall aim of the experi-
ments is to reach the best free-fall quality in a step-by-step

procedure in which the result of the previous experiment is
used to define the detailed configuration of the following
experiment. This cascadelike process aims to demonstrate
the ability to put a test mass into free fall at a level where

any residual acceleration is below 3� 10�14 m s�2=
ffiffiffiffiffiffi
Hz

p
at frequencies around 1 mHz [1–5].
Such a demanding accuracy requires a careful calibra-

tion of the spectral estimation algorithms so as to avoid any
systematic bias in the estimation of the spectrum of the
residual acceleration. Because of the limited time duration
of the mission, the amount of data available will not be
enough for a meaningful and robust calibration of the
dedicated data analysis tools. The natural way to solve
the problem is to calibrate and test the tools in advance
of the mission, by an in-depth analysis of synthetic noise
data. The experiment has a total of 18 measuring channels
sensing the movement of the test masses, many of which
are coupled so that information is contained not only in the
individual power spectra but also in the cross-spectral
densities between different channels. In order to set up a
reliable test bench for such a system, a robust and flexible
multichannel noise generator is required.
The problem of generating a sequence of random vari-

ables having some definite statistical properties is well
examined in literature. Stein and Storer [6] proposed a
procedure for which the computation of N sample values
requires the eigendecomposition of the covariance matrix
of the process. This allows the identification of a trans-
formation matrix that multiplies a vector of independent
samples to provide a noise series with the desired correla-
tion properties. Levin [7] suggested instead to pass white*luigi@science.unitn.it
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noise through a digital noise coloring filter with a rational
transfer function. The problem connected with the initial
transient is solved with the calculation ofK consecutive (K
is the order of the noise shaping filter) output values having
the same statistical properties as if they were produced by
steady-state operation of the filter. An alternative method
for filter initialization was indicated by Kay [8], who
realized that one has just to specify the initial state for
the filter. The method for the calculation of the initial state
is based on the Levinson-Durbin algorithm. As an alter-
native, Franklin [9] described a procedure for the simula-
tion of stationary and nonstationary Gaussian random
processes. The procedure for a nonstationary process is
similar to that reported in [6] and is based on the Crout
factorization of the covariance matrix of the process. The
output for the stationary case is, instead, the result of a
simulation of a continuous system by means of the state
space formalism. The initial state is calculated with a linear
transformation from uncorrelated random noise samples.
All the methods in literature deal with the generation of a
single channel of data with a given correlation function or,
analogously, with a given spectrum. The algorithms pro-
posed by Levin, Kay, and Franklin can be crudely summa-
rized in three steps: (1) identification of the desired system,
(2) initialization of the data sequence, (3) generation of the
colored noise data sequence from a sequence of zero-mean,
delta correlated random numbers.

The method proposed in the present paper follows this
classical scheme with the relevant difference that it is
designed to work with multichannel systems (i.e., multiple
inputs, multiple outputs). In the following, the mathemati-
cal basis of the method is developed, and a case study is
discussed in order to quantitatively assess the reliability of
the procedure.

II. PRINCIPLES OF THE NOISE GENERATION
PROCEDURE

It can be assumed, in complete generality, that the noise
to be generated xðtÞ has a power spectral density (PSD) that
can be written as

Sxxð!Þ ¼ jHð!Þj2S0: (1)

The process xðtÞ can be thought of as the output of a
rational continuous filter with transfer function Hð!Þ, at
the input of which is a white, zero-mean noise �ðtÞ with
PSD equal to S0. The filter Hð!Þ can be written as

Hð!Þ ¼ XN
h¼1

rh
{!� ph

; (2)

with rh the residue of Hð!Þ in ph [10].
Equation (2) shows that the process xðtÞ can in turn be

considered as

xðtÞ ¼ XN
h¼1

yhðtÞ; (3)

where

yhðtÞ ¼ rh
Z 1

0
epht

0
�ðt� t0Þdt0: (4)

Thus, generating the process xðtÞ is equivalent to gen-
erating the N correlated processes yhðtÞ. A discrete process
with time step T can be realized from the recursive equa-
tions:

yhðtþ TÞ ¼ yhðtÞephT þ �hðtþ TÞ;
�hðtþ TÞ ¼ rh

Z T

0
epht

0
�ðtþ T � t0Þdt0;

h ¼ 1; . . . ; N:

(5)

Since the procedure must not diverge, only poles ph with
a negative real part (stable poles) are considered. The
processes �hðtþ TÞ are not independent but it can be
verified that their cross correlations are vanishing for
time intervals larger than T. Then, indicating with k and
m integers’ values, the cross correlation between input
processes can be written as

h�iðkTÞ�jðmTÞi ¼ �km

S0rirj
pi þ pj

½eðpiþpjÞT � 1�; (6)

where the notation hi indicates the expectation value
operator. If the process �ðtÞ is zero-mean Gaussian, then
so is �jðkTÞ, and Eq. (6) is sufficient to determine the

statistics.
The generated series xðkTÞ exactly represents the sam-

pling of the continuous process xðtÞ with a time step T, and
therefore it also reproduces the aliasing if the filter Hð!Þ
has a response different from zero at frequencies larger
than 1=2T. This is a consequence of the well known
relation between the spectra of discrete and continuous
processes [11]:

�S xxð!Þ ¼ X1
k¼�1

Sxx

�
!þ 2�k

T

�
; j!j � 2�k

T
: (7)

Here T is the sampling time, and �Sxxð!Þ and Sxxð!Þ are
the spectra of the discrete and continuous processes,
respectively.
From the point of view of the numerical implementation,

it is more convenient to start from the assumption of a
discrete filter. In the case of finite length discrete time
series, Eqs. (1) and (2) can be rewritten as

Sxxð�Þ ¼ jHð�Þj2S0; Hð�Þ ¼ XN
h¼1

rh

1� phe
�{�

; (8)

where � is the normalized angular frequency � ¼
2�f=fs, and fs is the sampling frequency.
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Each element of the partial-fraction expansion in Eq. (8)
can be considered as a simple autoregressive moving av-
erage filter for which the usual recursive relation holds
[12]:

xðnÞ þ a1xðn� 1Þ þ � � � þ aNxðn� NÞ
¼ b0iðnÞ þ � � � þ bMiðn�MÞ;

a1 ¼ �p and a2; . . . ; aN ¼ 0;

b0 ¼ r and b1; . . . ; bM ¼ 0: (9)

Here, ai are the coefficients of the denominator poly-
nomial, bj are the coefficients of the numerator polyno-

mial, r and p are residues and poles as written in Eq. (8),
and iðn� kÞ is the step k delayed input to the system. Thus
the complete noise generation process is obtained by

xðnÞ ¼ XN
k¼1

xkðnÞ; xkðnÞ ¼ pkxkðn� 1Þ þ rk�ðnÞ:

(10)

Each xkðnÞ can be generated according to the recursive
Eq. (10) starting from the same white noise series �ðnÞ.

Such a procedure provides a noise series whose PSD is
an accurate replica of the continuous noise spectrum up to
the Nyquist frequency. Aliasing is not reproduced in the
discrete case. In the rest of the paper, the detailed calcu-
lations for the implementation of a discrete multichannel
procedure are presented.

III. MULTICHANNEL NOISE GENERATION

A. Noise coloring filter identification

A multichannel sequence can be described by the
M-dimensional vector:

y ðtÞ ¼
y1ðtÞ
..
.

yMðtÞ

0
BB@

1
CCA; (11)

where yiðtÞ is the data sequence at the ith channel. If the
process is stationary, the cross-correlation matrix at a given
delay � is defined as [13]:

R ð�Þ ¼
Z 1

�1
yðtÞyyðtþ �Þdt: (12)

The elements of the matrix Rð�Þ are the cross correla-
tions between the different elements of the multichannel
sequence. The symbol y indicates a matrix conjugate
transpose. The cross-spectral density matrix for the given
multichannel process is defined as the Fourier transform of
the cross-correlation matrix:

S ð!Þ ¼
Z 1

�1
Rð�Þ expð�{!�Þd�;

Sð!Þ ¼
S11ð!Þ � � � S1Mð!Þ

..

. . .
. ..

.

SM1ð!Þ � � � SMMð!Þ

0
BB@

1
CCA:

(13)

A noise coloring multichannel filter is a linear operation
which transforms a delta correlated unitary variance multi-
channel random sequence [multichannel white noise "ðtÞ]
into a noise sequence with the given cross-spectral density
matrix,

yiðtÞ ¼
XN
j¼1

Z 1

�1
hijð�Þ"jðt� �Þd�;

h"iðtÞ"jðtþ �Þi ¼ �ij�ð�Þ; (14)

where hijð�Þ is the impulse response of the filter between

the jth input and the ith output. Assuming that the number
of input channels N is the same as the number of output
channels M, the multichannel coloring filter can be repre-
sented by a square matrix. The cross-spectral matrix of the
output process can be obtained by the combination of the
cross-spectral matrix of the input and the frequency re-
sponse of the filter:

S ð!Þ ¼ Hð!Þ � I �Hyð!Þ: (15)

Here I is the unit matrix corresponding to the cross-
spectral matrix of the input multichannel white noise pro-
cess "ðtÞ andHð!Þ is the frequency response matrix of the
multichannel filter. The problem of the generation of a
multichannel noise series with the given cross-spectral
matrix starts from the identification of the noise coloring
filter Hð!Þ.
The eigendecomposition of the cross-spectral matrix

Sð!Þ is defined as

S ð!Þ ¼ Vð!Þ � �ð!Þ � V�1ð!Þ; (16)

where Vð!Þ and �ð!Þ are the eigenvector and eigen-
value matrices of the cross-spectral matrix Sð!Þ. Since
Sð!Þ is Hermitian, its eigenvector matrix is unitary, i.e.,
Vð!ÞVyð!Þ¼I. Therefore, combining Eqs. (15) and (16),
the noise coloring filter can be obtained:

H ð!Þ ¼ Vð!Þ �
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð!Þ

q
: (17)

As �ð!Þ is a diagonal matrix,
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð!Þp

is a diagonal
matrix with elements given by the square root of the
elements of �ð!Þ.

B. System discretization

Once the frequency response of the coloring filter Hð!Þ
is known, a discrete multichannel filter is required for the
generation of discrete synthetic noise data series. Discrete
filters can be estimated by a least squares fit procedure

CALIBRATING SPECTRAL ESTIMATION FOR THE LISA . . . PHYSICAL REVIEW D 82, 042001 (2010)

042001-3



carried out in the frequency domain. Such a process can
produce a set of discrete autoregressive moving average
filters which together reproduce the multichannel system
frequency response to the given accuracy. The fitting pro-
cess is based on a modified version of the vector fitting
algorithm [14,15] adapted to work in the Z domain [16].
This procedure allows the frequency response of the color-
ing filter to be fit with autoregressive moving average
functions expanded in partial fractions:

Hð!Þ ¼
h11ð!Þ � � � h1Mð!Þ

..

. . .
. ..

.

hM1ð!Þ � � � hMMð!Þ

0
BBB@

1
CCCA !

! HðzÞ ¼
h11ðzÞ � � � h1MðzÞ

..

. . .
. ..

.

hM1ðzÞ � � � hMMðzÞ

0
BBB@

1
CCCA;

hijðzÞ ¼
XN
k¼1

rij;k

1� pij;kz
�1

: (18)

The number of poles required to obtain a satisfactory fit
of the model transfer function is automatically determined
by an iterative procedure in which the number of poles is
increased by one at each step of the fit loop. The iteration
stops when the mean square error between fit function
response and model response comes to a value smaller
than the user-defined threshold. Since the fit is performed
in the Z domain, the noise generation procedure turns out
to be free from aliasing as discussed in Sec. II.

It is worth noting that the eigenvectors in Eq. (16) are
defined up to an arbitrary phase factor. This means that the
columns of the Vð!Þ matrix can be multiplied by arbitrary
phase factors ei� without changing their property of being
eigenvectors of the cross-spectral matrix. Such phase arbi-
trariness does not extend to the single elements in the
columns of Vð!Þ; they are elements of the same eigenvec-
tor of Vð!Þ and their phase relation must be carefully
preserved during the fit process because it is connected to
the correlation properties of the multichannel system. It
can happen, after the eigendecomposition process, that the
phase of the elements of Vð!Þ is such that the frequency
response of the elements of Hð!Þ cannot be fit with stable
poles. In that case, the poles must be stabilized after the fit
process by the application of an all-pass filter [12]. The all-
pass function substitutes unstable poles with the inverse of
their conjugates which are stable. Its magnitude (absolute
value) is 1 at each frequency. As already mentioned, the
phase relation between the elements of each column of
HðzÞmust be kept constant to prevent the corruption of the
system correlation properties. The proper all-pass filter for
the elements of HðzÞ stabilizes the unstable poles of the
given hijðzÞ and at the same time adds an extra phase in

order to keep the phase relation between the columns of
HðzÞ constant. Therefore each element ofHðzÞ is modified

according to

h��ðzÞ ! h��ðzÞ
YNu
��

k¼1

�
z� p��;k

zp�
��;k � 1

�

�
�Y
���

�YNu
��

h¼1

�
z� p��;h

zp�
��;h � 1

���
;

�; �; � ¼ 1; � � � ;M:

(19)

Here,Nu
�� is the number of unstable poles in h��ðzÞ. The

function
QNu

��

k¼1ð z�p��;k

zp�
��;k

�1Þ has the purpose of poles stabiliza-
tion for the element h��ðzÞ of HðzÞ. The productQ

���½
QNu

��

h¼1ð z�p��;h

zp�
��;h

�1Þ� provides an extra phase coming

from the poles stabilization procedure for the other ele-
ments of the same column of HðzÞ. In this way, each
element of the matrix HðzÞ comes with such a phase
allowing the representation with just stable poles, and at
the same time, the original phase relation between ele-
ments of the same column of HðzÞ is preserved. A second
fit step with stable poles provides usable filters for noise
generation.

C. Filter initialization

The output of a linear discrete causal filter is a function
of the present and all previous input values. Since the input
to the filter must start at some time t ¼ 0, the output
process will consist of an unwanted filter transient response
added to the desired stationary random process. One pos-
sible approach to handle the problem of the filter transients
is to wait for the time necessary for the transients to decay
to an acceptable level. However, the transient response is
proportional to the filter impulse response, and if there are
poles too near the unitary circle of the complex plane, the
transient response could last for an unacceptably long time.
Moreover the practice of hand removing initial data is
always inaccurate and can hide important features or in-
troduce fake signals especially when the spectrum spans
several decades in frequency. Therefore the filter for the
noise generation should be always properly initialized.
We are searching for an initialization for the recursive

equation of an autoregressive moving average process
written as a sum of partial fractions [Fig. 1, Eq. (18)]:

xij;kðnÞ ¼ pij;kxij;kðn� 1Þ þ rij;k"jðnÞ;

yijðnÞ ¼
XNij

k¼1

xij;kðnÞ:
(20)

The recursive Eq. (20) calculates the output of the
system at a given time on the basis of the input "jðnÞ at
the same time and the information from the previous output
xij;kðn� 1Þ. In the present case the input process "jðnÞ is
an element of a discrete multichannel unitary variance
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white noise process such that

h"iðnÞ"jðmÞi ¼ �i;j�n;m: (21)

In order to properly initialize the recursive equations for
the implementation of the multichannel filter, it is neces-
sary to calculate the covariance matrix of the initial states
xij;kð0Þ. It should be considered that the M2 processes

represented in Eq. (14) are not independent from each
other. A combined process should be defined in which all
the recursive equations [Eq. (20)] for each of the M2

processes are incorporated. Readily it is seen that, thanks
to the delta correlation properties (21) of the input signals,
the processes applied to different input data series are
independent. This means that, instead of building a single
combined process, one has to build M independent pro-
cesses which combine those applied to the same input. The
new processes can then be written as

� jðnÞ !

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

x1j;1ðnÞ ¼ p1j;1x1j;1ðn� 1Þ þ r1j;1"jðnÞ
..
.

x1j;N1j
ðnÞ ¼ p1j;N1j

x1j;N1j
ðn� 1Þ þ r1j;N1j

"jðnÞ
..
.

xMj;1ðnÞ ¼ pMj;1xMj;1ðn� 1Þ þ rMj;1"jðnÞ
..
.

xMj;NMj
ðnÞ ¼ pMj;NMj

xMj;NMj
ðn� 1Þ þ rMj;NMj

"jðnÞ;

j ¼ 1; � � � ;M: (22)

The covariance of such processes (22) can be written as

h	i;�ðnÞ	�
j;�ðmÞi ¼ hpi;�	i;�ðn� 1Þp�

i;�	
�
j;�ðm� 1Þi

þ hri;�"iðnÞr�i;�"�j ðmÞi;
� ¼ 1; . . . ; N1i þ � � � þ NMi;

� ¼ 1; . . . ; N1j þ � � � þ NMj;

i; j ¼ 1; � � � ;M; (23)

where, again, the symbol hi represents the expectation
value operator. Assuming stationary processes,

h	i;�ðnÞ	�
j;�ðmÞi ¼ Rij;��ðn;mÞ ¼ Rij;��ðn�mÞ; (24)

and thanks to the properties of the input functions (21),

Rij;��ðn�mÞ ¼ ri;�r
�
j;�

1� pi;�p
�
j;�

�ij�ðn�mÞ; (25)

which provides the desired covariance for the first state
of the recurrence sequences,

Rj;��ð0Þ ¼
rj;�r

�
j;�

1� pj;�p
�
j;�

: (26)

Initial states for the filter recurrence sequence can then
be generated by a multivariate noise generator according to

the given covariance (26). As an alternative, they can be
calculated from random independent variables through a
linear transformation [6] of the type

� jð0Þ ¼ Aj � �j; (27)

where �j is a column vector of N1j þ � � � þ NMj inde-

pendent zero mean and unit variance random numbers and
Aj is a ðN1j þ � � � þ NMjÞ � ðN1j þ � � � þ NMjÞ transfor-
mation matrix. If Rj;��ð0Þ is calculated for the variables in

Eq. (27), it is found

R jð0Þ ¼ ðAj � �jÞ � ðAj � �jÞy ¼ Aj � I �Ay
j ; (28)

and it is readily seen that

A j ¼ Vj �
ffiffiffiffiffiffi
�j

q
; (29)

where Vj and �j are the eigenvector and eigenvalue

matrices of Rjð0Þ.

IV. A CASE STUDY, LTP ALONG THE X AXIS

A. Response model and fit

An application of the noise generation procedure is
presented for a two channel system simulating the LTP
along the principal measurement axis [1–5,17–19]. The

FIG. 1. Scheme for the application of a multichannel filter
expanded in partial fractions.
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complete set of algorithmsis available as MATLAB tools in
the framework of the LTPDA toolbox [18,20] and can be
freely downloaded, together with the complete toolbox, at
the LTPDA project Web page [21].

The expected power spectra and cross-power spectrum
at the output of the system can be calculated (Fig. 2) on the
basis of some assumptions on the properties of input noise
sources [4]. The noise coloring filters can be calculated
following the procedure described in Secs. III A and III B.
A frequency domain fit is performed on the models for the
coloring filters obtained by eigendecomposition (fre-
quency by frequency) of the expected cross-spectral den-
sity matrix. The fit procedure takes around 200 seconds on
a standard desktop machine [22]. The four transfer func-
tions h11ðzÞ, h12ðzÞ, h21ðzÞ, and h22ðzÞ have, respectively,
25, 30, 28, and 30 poles. The fit loop stops when the mean
square error between fit function response and model
response is smaller than 1� 10�4. The response of the

filter designed to reproduce the cross-spectral density can
be calculated according to Eq. (15). It can then be com-
pared with the model cross-spectral density of the system
as reported in Fig. 3.
In order to compare the correlation properties of the

expected model with the fit results, it is useful to introduce
the complex cross coherence:


ð!Þ ¼ S12ð!Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S11ð!ÞS22ð!Þp ; (30)

where S12ð!Þ, S11ð!Þ, and S22ð!Þ are cross spectrum
and power spectra of the first and second channels. The real
and imaginary part of the cross coherence for the expected
and fit cross-spectral matrices are reported in Fig. 4.
Any discrepancy between the expected model and the fit

model can be considered as a systematic error in the
procedure, whose influence on the process can be mini-
mized by increasing the fit accuracy. Clearly this has a
computational cost in terms of the number of poles re-
quired to match the accuracy goal and on the amount of
time required to complete the fit loop. Hereafter, the fit
model will be considered as the reference model.

B. Noise generation tests

Once the two channel noise coloring filter is obtained, it
can be used to generate a two channel noise data series
according to the procedure described in Sec. III C. Data
series are 3� 105 seconds long at a sampling rate of 10 Hz.
The chosen rate is the same as the LTP experiment opera-
tions; e.g., the control forces acting on test masses and the
spacecraft will be calculated by controllers on the basis of
10 Hz sampled data streams.
In order to realize a statistically meaningful test, N ¼

500 independent realizations of the two channel process
were generated. Power spectra of the two channels are
calculated with the windowed periodogram method using

10
−6

10
−4

10
−2

10
0

10
2

10
−30

10
−25

10
−20

10
−15

M
ag

n
it

u
d

e 
 [

m
2  H

z−1
]

Frequency  [Hz]

10
−6

10
−4

10
−2

10
0

10
2

−200

−100

0

100

200

P
h

as
e 

A
n

g
le

 [
d

eg
]

Frequency  [Hz]

S
11

S
12

S
22

FIG. 2 (color online). Model power spectra and cross spectrum
for the signals at the output of the two channels. S11 and S22 are
real values so they do not appear in the bottom plot.
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FIG. 3 (color online). Comparison between model power spectral densities and fit result. (a) Output of the first channel. (b) Output of
the second channel.
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a 4-term Blackman-Harris window [23]. The choice of
such a window is justified by the requirements in terms
of spectral leakage performances. A 4-term Blackman-
Harris window, having the highest side-lobe level of -
92 dB (relative to the main lobe level) [23], is indeed one
of the best-performing available windows in terms of
spectral leakage suppression. The N realizations of the
power spectrum were averaged and compared with the
reference model expectation (Fig. 5).

The reported uncertainty is calculated under the assump-

tion that �meanð!Þ ¼ �popð!Þffiffiffi
N

p , where �popð!Þ is the sample

standard deviation of the spectra population at a given
frequency. In doing this we have considered that, since
the power spectrum is 	2

2 distributed [24], the mean of the
N independent realization of the same spectrum will also
be 	2

2N distributed. Since in our case N ¼ 500, the average
of the spectra is 	2 distributed with 1000 degrees of free-
dom, and such a variable can be considered to be Gaussian
distributed with reasonable accuracy [25]. The expected
standard deviation (normalized to the mean) for the equiva-
lent normal distribution is 0:045 where we measure on
average �mean ¼ 0:044� 0:002 [26].

In the procedure for the calculation of the power spec-
trum, data are multiplied in the time domain for the time
response of the window function. As this operation corre-
sponds to a convolution in the frequency domain, the
reference model must include also the effect of the window
function. Windowed spectra can be calculated as

Sw

�
c ¼ 2�k

N

�
¼ 1

2�N

Z �

��
Sð�Þ

��������
XN�1

q¼0

wqe
{qð��kðð2�Þ=NÞÞ

��������
2

�d�; (31)

where N is the number of samples in the data series and
wq are the time samples of the window function. The

integral in Eq. (31) is numerically evaluated, and the
results are reported in Fig. 5. As can be seen, the effect

of the window convolution is visible at the lowest frequen-
cies, where the departure from the reference model is
remarkable.
A quantitative analysis of the results is better performed

with the introduction of the variable

�Sð!Þ ¼ Syyð!Þ � Sð!Þ
Sð!Þ : (32)
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FIG. 4 (color online). Comparison between expected coherence and fit result. (a) Real part. (b) Imaginary part.
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nel.
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Sð!Þ represents the expected value for the spectrum (at
each frequency) and Syyð!Þ is the estimated spectrum

(averaged over 500 realizations) at the given frequency.

�S can be considered distributed in accordance to a
	2
M�M

M

function. Therefore its expectation value is 0.
�S is calculated for the simulated data and the win-

dowed model with respect to the reference model. Results
are reported in Fig. 6. A 99.97% confidence interval is
calculated on the basis of the statistical properties of �S.

The effect of the window on the spectra calculation is
noticeably high on the first 3 frequency bins, where the
deviation from the reference model exceeds the confidence
interval. In addition, it is clearly observable up to the 10th
bin. The windowed model and the simulated data are
consistent on the basis of the chosen confidence region.

A considerable number of data points, especially at high
frequencies, lie outside the confidence levels, and it is of
fundamental importance to assess if such outliers are
caused by the random nature of the data, or if they come
from systematic errors in the spectral estimation or data
generation processes. The confidence levels at 99.97%
define a region in which the data are expected to lie within
that probability. This also means that in 0.03% of the
observations an outlier can be observed. As we are dealing

with data sets of 1:5� 106 points, the number of expected
outliers is high.
In order to distinguish between systematic outliers and

statistical outliers, the averaging process over 500 inde-
pendent realizations was repeated 5 times and the frequen-
cies at which the values of �S were outside the defined
confidence interval were recorded. The first 10 frequency
bins are excluded from the numbering because they are
systematically affected by the spectral window effect.
Figure 7 reports a histogram of the cumulative count of
the outliers’ frequencies for the 5 different realizations. If
an outlier is originated by a systematic error, then it is
expected to be counted 5 times. As can be observed from
Fig. 7, the maximum value obtained is 2 for both channels;
this is a definitive indication of the statistical nature of the
observed outliers.
As stated above, the correlation properties of the data

series can be explored with the sample coherence calcu-
lated as in Eq. (30). Power spectra and cross spectrum were
estimated with the averaged Welch periodogram method
using a 4-term Blackman-Harris window over 145 data
segments 6� 104 points long. The separate 500 realiza-
tions are then averaged, and assuming the averaged process
is approximately normally distributed, the error on the
estimation is calculated as described above. Results are
reported in Fig. 8 and compared with the expectation from
the reference model. Since the coherence is constructed
from a ratio between cross spectrum and power spectra, the
effect of the window on the lowermost frequency bins is
strongly attenuated.
The simulated data (averaged over 500 realizations) and

the reference model are in satisfactory agreement within
the tolerance region defined by the uncertainty. On the
basis of the above discussion, the oscillations observed in
the coherence curves (Fig. 8) can be associated with the
statistical fluctuations caused by the random nature of the
data.
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V. CONCLUSIONS

A robust procedure for the generation of multichannel
stationary noise with a given cross-spectral matrix is re-
ported. Based on some assumptions on the noise sources
acting on the system under study, an expected model for
the cross-spectral matrix of the multichannel output noise
can be developed. From such a model the noise coloring
filters are identified by an eigendecomposition of the cross-
spectral matrix (frequency by frequency) and a frequency
domain fit procedure. A multichannel colored noise data
series can then be generated from a multichannel � corre-
lated random noise process provided that the recurrence
equations are properly initialized in order to avoid tran-
sients at the beginning of the noise sequence. It is demon-
strated that the only source of systematic errors in the

process is associated with the fit procedure. On the other
hand, the accuracy of the fit can be increased at the expense
of the computational cost of the whole process; this, in
principle, ensures that the process reaches the desired
accuracy. An average over 500 independent realizations
of the multichannel noise process has demonstrated the
statistical consistency between generated noise and the
reference model if the effect of the spectral window is
taken into account. Oscillations in the averaged spectra
with respect to the model can be unambiguously attributed
to statistical fluctuations. The analysis reported demon-
strates that the tool can be applied for the calibration of
spectral estimators in experiments where noise spectral
energy content must be estimated with very high accuracy,
as is the case for the LTP experiment [27].
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