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We describe the first investigations of the complete engineering model of the optical metrology system
(OMS), a key subsystem of the LISA Pathfinder science mission to space. The latter itself is a techno-
logical precursor mission to LISA, a spaceborne gravitational wave detector. At its core, the OMS consists
of four heterodyne Mach–Zehnder interferometers, a highly stable laser with an external modulator, and
a phase meter. It is designed to monitor and track the longitudinal motion and attitude of two floating
test masses in the optical reference frame with (relative) precision in the picometer and nanorad range,
respectively. We analyze sensor signal correlations and determine a physical sensor noise limit. The
coupling parameters between motional degrees of freedom and interferometer signals are analytically
derived and compared to measurements. We also measure adverse cross-coupling effects originating from
system imperfections and limitations and describe algorithmic mitigation techniques to overcome
some of them. Their impact on system performance is analyzed within the context of the Pathfinder
mission. © 2010 Optical Society of America
OCIS codes: 120.4640, 120.3940, 040.2840, 010.7350, 120.3180, 120.5050.

1. Introduction

The optical metrology system (OMS) [1,2] represents
a key part of the LISATechnology Package, the scien-
tific payload for the LISA Pathfinder (LPF) mission,
due to be launched in 2012 by the European Space
Agency [3]. LISA Pathfinder will demonstrate, be-
sides major other tasks, the operation of an interfe-
rometer with two freely geodetically floating test
masses in its path and will be the most precise geo-
desics explorer flown, as of today. It aims to demon-
strate the technological basis required to perform
measurements of the residual differential test mass
acceleration ar better than 3 × 10−14 ms−2 Hz−1=2, re-

laxing toward higher frequencies, as given in Eq. (1)
for the linear spectral density (LSD) of ar:

LSDðarÞ ≤ 3 × 10−14

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
f

3mHz

�
4

s
ms−2 Hz−1=2;

30mHz ≥ f ≥ 1mHz: ð1Þ

Note that Eq. (1) transforms into a requirement for
the measurement accuracy of the differential test
mass position, which is described later in this manu-
script, by division through ð2πf Þ2.

LPF is essentially a technological precursor mis-
sion to LISA (Laser Interferometer Space Antenna),
the actual mission to detect gravitational waves
based on interferometry [4]. In LISA, the beams will
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propagate between three spacecraft in a triangular
constellation of 5 million km side length. In Pathfin-
der, the distance between the test masses is shrunk
to only 38 cm so that the arm length is far too small to
detect actual gravitational waves. Furthermore, the
sensitivity requirements are somewhat relaxed com-
pared to those of LISA, where technological improve-
ments and lessons learned will help outclass the
performance of LISA Pathfinder. Nonetheless, many
of the measurement principles, key technologies, and
underlying physical noise sources to be characterized
and studied are similar in the two missions, which
makes Pathfinder a crucial milestone, as indicated
by its name, on the way toward a successful LISA
mission.

There are two important aspects of LISA Pathfin-
der that we emphasize at this point, because they
constitute the higher-level motivation for the type
of measurements described in this article and also
determine the accuracy and extent of our data
analysis.

One aspect is the demonstration of two quasi-
freely floating test masses as part of the “drag-free
attitude and control system” (DFACS) [5,6]. Note
that some degrees of freedom are removed by electro-
static suspension while motion along the axis be-
tween the two test masses is left unconstrained. In
“science mode,” DFACS monitors the test mass posi-
tion relative to the electrodes integrated in the walls
of their confining “electrode cage” andmaneuvers the
spacecraft using micro-Newton thrusters in such a
way as to avoid any collision of the drifting test mass
with the electrode housing.

The other aspect is the optical metrology system,
which essentially allows the precise measurement
of test mass position and attitude to provide the
DFACS with the required feedback to steer the
spacecraft and test masses accordingly. As an added
feature, the OMS provides raw data to accurately de-
termine the residual test mass acceleration, which
constitutes a basis to study the noise environment
occurring onboard the spacecraft. The correct align-
ment of the OMS reference frame with the spacecraft
reference frame, in particular with the electrode
housing frame, is essential for that goal [7]. Noise,
alignment, and cross coupling are all crucial factors
in that respect and, therefore, central topics of our
investigations in this article.

We give a detailed account of how the optical
metrology system is characterized and operated, de-
scribe the system parameters and their interdepen-
dencies, and establish the optimal operating points.
A thorough understanding of the sensitive system
features lays the foundations for optimal perfor-
mance of the system and also sheds light onto its lim-
itations and inaccuracies—with direct impact on
mission performance and operations. We purposely
leave out the laser stabilization loops and perfor-
mance measurements, as this would be beyond the
scope of this article, and refer to other dedicated ar-
ticles on this topic [8–10].

The article is structured as follows:
II. Basic Operating Principle: The essential

core structure of the optical metrology system is de-
scribed in a level of detail that is required to under-
stand the succeeding measurements and the
implications of the measurement results.

III. Phase Shifts and Channel Noise: In the
first step, we determine the phase offsets between
the processing channels (phase meter, diode, and
software processing) and measure the density distri-
butions of the phase fluctuations. We then derive the
noise figures of all channels and calculate the noise
correlations between the individual channels, allow-
ing us to derive a physical limit of∼1pm=

ffiffiffiffiffiffiffi
Hz

p
for the

position noise in the absence of laser frequency
fluctuations.

IV. Interferometer Coupling Parameters: In
the next step, we derive analytical expressions for
the coupling parameters describing the relation be-
tween the test mass orientation and the correspond-
ing phase from the interference signals. Then, the
actual coupling parameters are measured and the
used techniques and their limitations are described
in detail.

V. Cross Coupling Terms: We examine the cross
coupling between various test mass degrees of free-
dom and discuss the impact on measurement accu-
racy and system performance. A crucial parameter
in the cross coupling strength is the orientation of
the sensor (quadrant diode) reference frame with re-
spect to the nominal bench frame, which can be in-
ferred from the measurement data. The data also
contain information on the beammisalignments with
respect to the diode centers, the measurement beam
size and profile on the diodes, and the beam power
ratios at certain reference points, all of which have
a direct impact on coupling parameters. We then test
the ability to monitor large test mass displacements
through continuous tracking of the change in longi-
tudinal phase. At the same time, the accuracy to
which the observed motion of test mass 1 decouples
from the motion of test mass 2 is determined.

VI. Conclusions and Outlook:We conclude with
a summary of the measurement results and point out
the system limitations. The latter arise as a combi-
nation of manufacturing tolerances and hardware
limitations on the one hand, and measurement
errors and inaccuracies due to constraints in the test-
ing environment on the other hand.

2. Basic Operating Principle

We shall only briefly describe the basic operating
principle of the optical metrology system and refer
the reader to other publications for more detail
[1–3]. For information on the basics of heterodyne
interferometry, which is at the core of the OMS,
we refer the reader to Ref. [11].

The OMS comprises the following units:

1. The optical bench interferometer: It
consists of four heterodyne Mach–Zehnder interfero-
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meters, each equipped with two quadrant photo-
diodes for interference detection (see Fig. 1). Note
that the “test masses” that are freely floating in
space and reflect the “measurement” beam in two
of the four interferometers are substituted for “dum-
my mirrors” in the test setup.

2. The laser unit: Its stable single-mode output
of wavelength λ ¼ 1:064 μm is split into “reference”
and “measurement” beams, which separately pass
through an external laser modulator. The two mod-
ulator output beams are brought to interfere on the
quadrant diodes of each interferometer. They are fre-
quency-shifted by the heterodyne frequency f het ¼
1kHz relative to another that constitutes the pri-
mary beat frequency of the interference pattern
(see Fig. 1).

3. The phasemeter: It samples the interference
signals from the photodiodes at f s ¼ 50kHz and ap-
plies a discrete Fourier transform (DFT) on a time
series of length TDFT ¼ 10ms. Only the complex am-
plitude of the frequency bin centered around f het and
the real value of the zero frequency bin (DC) are re-
tained and transmitted to the data management unit
(DMU) at a rate of 100Hz. This has the effect that
only the residual phase in each interferometer is re-
tained after subtraction of the time-dependent phase
shift due to the heterodyning.

4. The data management unit (DMU): With
the OMS application software, it receives the DFT
data from the phase meter and continues processing
them. It calculates longitudinal and differential
phases and infers test mass position and attitude
from them. For reasons related to limitations in com-
munication bandwidth, data are downsampled from
100 to 10Hz by application of a moving average filter
before they can be communicated from the DMU to
the experimental test facility where they are dis-
played, recorded, and stored for later retrieval.

As the optical bench plays a central role and is rather
sophisticated in its design, we shall highlight its ba-
sic functionality in the following paragraph. A sche-
matic of the optical bench is given in Fig. 1. It is
comprised of four heterodyne Mach–Zehnder interfe-
rometers, referred to as “x1,” “x1 − x2,” “frequency,”
and “reference” interferometer with the frequently
used suffixes 1, 12, F, andR, respectively. Each inter-
ferometer is equipped with two quadrant photo-
diodes, the nominal diode “A” and the redundant
diode “B,” after the recombination beam splitter;
e.g., the interference pattern of interferometer “x1”
is detected by photodiodes PD1A and PD1B. The re-
dundant interferometer arms and diodes are not
further used and investigated in this article. A

Fig. 1. (Color online) Schematic of the laser, modulator, and optical bench (drawn to scale) comprised of four independent heterodyne
Mach–Zehnder interferometers, referred to as “x1,” “x1 − x2,” “frequency,” and “reference” interferometer with the suffixes 1, 12, F, and R,
respectively. Each interferometer is equipped with two quadrant photodiodes, the nominal diode “A” and the redundant diode “B.” The
solid lines mark the beam paths in the x1 (colored red, online only) and the x1 − x2 interferometers. The dotted lines mark the beam paths
of the reference and frequency interferometers.
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detailed description of their use and functionality is
available in Ref. [12].

Interferometer “x1” determines the position and
attitude of test mass 1 relative to the optical bench,
interferometer “x1 − x2,” the relative position, and
attitude of test mass 2 with respect to test mass 1.
The reference interferometer provides a reference
phase ΨR, which is subtracted from the phases of
all other interferometers through the processing soft-
ware. This effectively cancels optical path length var-
iations that occur before the beams are split by the
first optical elements on the bench, in particular,
phase variations from transmission through the op-
tical fibers or the laser modulator are compensated.
The optical bench, which is made of Zerodur, provides
inherently very low thermal expansion. It has no mo-
vable components, and all silica mirrors and beam
splitters are hydroxyl-catalysis bonded [13] such that
the entire structure forms a quasi-monolithic entity
with excellent mechanical and thermal properties.
Note that all three interferometers (x1, x1 − x2,
and reference) have balanced arms of nearly equal
length so that the impact of laser frequency fluctua-
tions is suppressed as well as possible.

Additionally, the reference phase serves as an error
signal for a feedback loop to compensate the adver-
sary effects of optical sidebands in the laser frequency
spectrum, which appear as a consequence of radio-
frequency cross talk inside the laser modulator [8,9].
The frequency interferometer “F” translates laser fre-
quency noise into phase noise through a deliberate
mismatch of the optical path length of the two inter-
fering beams (the phase noise scales proportional to
frequency fluctuations and optical path length differ-
ence). The phase of the frequency interferometer
serves as error signal to close two feedback loops for
laser frequency stabilization (“fast” and “slow” loop),
which actuate the laser cavity length through
changes in mechanical stress and temperature, re-
spectively. Laser power fluctuations are stabilized
through a “fast” and a “slow” power loop, which ob-
tains their error signal from the two single-element
photodiodes PDA1, PDA2 and actuates the power
throughput of themodulator and the laser current, re-
spectively. The “fast” loop compensates differential
and the “slow” loop commonmode power fluctuations.
Note that the beams on the optical bench are s
polarized, and the fiber-output-couplers contain
polarizers tomaintain polarization stability at the ex-
pense of small amplitude variations, which are, in
turn, compensated by the power stabilization loops.

Characterization and calibration of the OMS laser
loops and their impact on performance is not the de-
clared objective of this article, and the interested
reader is referred to dedicated publications with pri-
mary focus on the loop performance [8,10]. For the
measurements discussed in this article, only the fast
power loop, balancing and stabilizing the power ratio
between the measurement and the reference beam,
is relevant, and the other loops have been left open.

3. Phase Shifts and Channel Noise

In the first step, we aim to measure the phase differ-
ences between the various processing channels and
to characterize the phase fluctuations. As a proces-
sing channel, we understand the collective of photo-
diode, cables from/to the phase meter, the phase
meter itself (including input filters), and the proces-
sing software.

The relative phases of the interference signals com-
ing from the photodiodes in the four interferometers
are generally arbitrary, as they depend on a variety of
things that we cannot precisely measure or control,
such as exact position and orientation of test masses
1 and 2 or minute differences in the optical path
length of the two beams. It is therefore not possible
to extract readily exploitable channel calibration
and noise data when operating the interferometers
in nominal configuration as phase-sensitive detec-
tors. An easy way to resolve this problem is to ampli-
tude modulate one of the beams at 1kHz and switch
off the other beam. The phase detected on each photo-
diode is then given by the phase of the amplitude
modulation alone, which is the same on all diodes (ne-
glecting time delays of the order of 1–2ns due to dif-
ferent arm lengths from fiber output to photodiode,
which amount to phase offsets of 2π × 1kHz ×
1ns∼ 6 × 10−6 rad). As theOMS lasermodulator does
not support amplitude modulation of the laser beams
at1kHz (<50Hz is supported),wehave recourse to an
auxiliarymodulationbench.A commercial signal gen-
erator was frequency locked to the DMU clock signal.
The generator is configured to a 1kHz sine output,
which is fed to the amplitude control of the auxiliary
modulation bench. The modulated laser beam is fed
through the reference beam fiber injector onto the op-
tical bench. The phase signals are detected by the
diodes, processed by the phase meter and application
software, and recorded for a period of approximately
3 min, giving a total of 1800 points per channel.

When plotting the phase of any channel, we ob-
serve a strong linear drift of ∼8 rad=min and a much
weaker quadratic drift of an∼0:01 rad=min2 common
mode on all channels, which we attribute to an offset
and drift, respectively, of the generator frequency
with respect to the DMU master clock. In addition
to this drift, there is a common mode noise pattern
on all channels, which we also attribute to the signal
source. In order to proceed with our investigation, it
is therefore necessary to subtract the phase of one
channel—we chose quadrant A of diode PD1A and
termed it the “reference phase”—from all the others
to cancel the common mode drift and the common
mode noise related to the signal source. The resulting
relative phases of all channels, all relating to quad-
rant A of PD1A as their reference, display a Gaussian
sampling distribution of width σ and centered
around φ0. As an example, the distributions of chan-
nels Q3 and Q4 of PD12A are displayed in Fig. 2. The
two distributions are offset by approximately
−4mrad and þ1mrad from the phase of channel
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(Q1, PD1A), respectively, and have a Gaussian width
(rms) of 1:61E − 4 rad and 1:42E − 4 rad, respectively.

Analyzing the data for all channels, we find that the
relative phases range from −8mrad to þ11mrad and
the distribution widths from 1:3E − 4 to 1:6E − 4 rad.
Phase offsets between channels introduce a bias in
the attitude measurements where a differential
phase between diode quadrants is calculated (more
details on differential phasemeasurements are found
in the next section). Our measurement data indicate
that these phase offsets are relatively small so that a
maximal bias error of 10 μrad in the attitude is intro-
duced if we do not compensate them. However, to
minimize bias errors, we subtract the offsets by appli-
cation of specific rotation matrices to the real and
imaginary components of the complex amplitude vec-
tor of each channel. This process, which is executed
automatically in the application software, effectively
shifts the channel phase by the rotation angle θ and
brings all phases “into alignment.”

The fact that the distributions for the relative
phase fluctuations are of similar width together with
the assumption that the noise sources of any two
channels do not correlate implies that the distribu-
tion width of a single channel is a factor of

ffiffiffi
2

p
smaller

than the relative distribution width, i.e., σrelative ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2channel þ σ2reference

q
≈

ffiffiffi
2

p
σchannel.

This can be proved by showing that there is no (or
only negligible) correlation between any two chan-
nels from the matrix of correlation coefficients.
Unfortunately, the correlation between the two chan-
nels cannot be directly calculated for the respective
channel phase φi of channel “i,” but only for the re-
lative phase φi − φ0 in order to remove the aforemen-
tioned common mode drifts and the noise of the
signal source. Note that the total channel phase φi
is given by the sum of a constant phase Ci, the noise
of the signal source N, and the channel noise Xi:
φi ¼ Ci þN þ Xi. Therefore, subtracting the refer-
ence phase φ0 from the channel phase φi removes
the common mode noise of the signal source and
yields the relative channel noise Zi (omitting a con-

stant offset):

φ1 − φ0 ¼ Z1 ¼ X1 − X0 φ2 − φ0 ¼ Z2 ¼ X2 − X0;

ð2Þ

where X0 denotes the noise of the reference channel
(quadrant A of photodiode PD1A).

The intrachannel correlation coefficients rði; jÞ are
defined through the covariances CðZi;ZjÞ as follows:

rði; jÞ ¼ CðZi;ZjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðZi;ZiÞCðZj;ZjÞ

p
¼ hðZi − hZiiÞ · ðZj − hZjiÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðZi − hZiiÞ2i · hðZj − hZjiÞ2i
q : ð3Þ

If we assume that the channels do not correlate, i.e.,
CðXi;XjÞ ¼ 0, we find for rði; jÞ that

rði; jÞ ¼ σ20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ21 þ σ20Þ þ ðσ22 þ σ20Þ

q ≈
1
2
: ð4Þ

If, on the other hand, we assume there is correlation
between any two channels, we find that rði; jÞ ¼ 0 for
negative correlation, i.e., CðXi;XjÞ ¼ −1, and rði; jÞ ¼
1 for positive correlation, i.e., CðXi;XjÞ ¼ 1. As an ex-
ample of the statistical analysis, the correlation
matrix for the relative phases of the four channels
of the nominal photodiode of the reference interfe-
rometer (PDRA) is given in Table 1.

We observe that all cross correlations are close to
0.5, indicating that there is no correlation between
the noise sources of any two channels. The minor de-
viation from the exact value of 0.5 is explained by the
fact that the noise distributions do not have exactly
the same width, as we have already pointed out. At
this point, we have shown that the sensor processing
chain is free of intrachannel noise correlations, which
could originate from cross talk between diode quad-
rants, input filters, or phase meter channels with
possibly serious impact on performance.

Fig. 2. Gaussian distribution of relative (to Q1 of PD1A) phases for the processing channels Q3 and Q4 of diode PD12A.
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A further indication that the noise sources do not
correlate is given by the combined longitudinal track-
ing phase ψ1, which is calculated from the average
phase of the four quadrants of PD1A minus the aver-
age reference phase of the PDRA. Assuming the in-
dividual noise sources do not correlate, the combined
noise floor σlong of the longitudinal tracking phase is
then expected to be

σlong ≈
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

�σ2
vuut ¼ �σ

2
¼ 1:4 · 10−4

2
rad; ð5Þ

where �σ denotes the average distribution width of the
relative phase between two channels, as introduced
above. The validity of the assumption made in the
derivation of Eq. (5) is confirmed by the measure-
ment data.

At this point, we would like to remind the reader
that one major purpose of analyzing the channel
noise is to find an estimate for the theoretical limit
we can achieve in performance measurements of the
longitudinal test mass displacement. We therefore
aim to scale the result of the root-mean-square noise
of Eq. (5) in such a way that it can be compared to
performance measurements at nominal system con-
figurations, which were executed at a later point in
time [10]. In order to do that we extract the utiliza-
tion of an analog-to-digital converter (ADC) dynamic
range from the measurement data and find that the
peak-to-peak amplitude of the modulation is only 1=3
of the amplitude at nominal configuration (we had to
restrict ourselves to small amplitudes in order to re-
main in the linear range of the beam amplitude mod-
ulator). Theoretical analysis shows that, in our
operating range, the effective channel noise scales in-
versely proportional to the utilization of dynamic
range [14] so that the expected noise limit at nominal
operation is 1=3 of the limit given in Eq. (5).

Collecting all relevant factors and considering that
the phase data were output at 10Hz, we arrive at
10 μrad=

ffiffiffiffiffiffiffi
Hz

p
for the one-sided linear spectral density

of the longitudinal phase noise (LSDψ ), which, upon
application of the coupling factor K long ≈ λ=4π, trans-
lates into 0:88pm=

ffiffiffiffiffiffiffi
Hz

p
for the displacement noise.

Similarly, we obtain 15 μrad=
ffiffiffiffiffiffiffi
Hz

p
for the one-sided

linear spectral density of the angular phase noise
(LSDDWS),which, uponapplication of the coupling fac-
tor K−1

DWS ≈ 1=5000, translates into 3nrad=
ffiffiffiffiffiffiffi
Hz

p
for

the attitude noise. The coupling factors for test mass
rotations (KDWS) and testmass translations (K long) to-

gether with the definition of differential wavefront
sensing (DWS) will be discussed in the following sec-
tions.Note that the angular phase is calculated differ-
ently from the longitudinal phase so that the noise of
the former scales is �σ=

ffiffiffi
2

p
whereas the noise of the lat-

ter scales is �σ=2 [see Eq. (5)]. We would like to remind
the reader that, although the noise limits were de-
rived from data taken during only180 s of measure-
ments, the corresponding noise floor is applicable
for the entire frequency spectrum—assuming the pro-
cessing channels have reached a quasi-stationary
state.We have also calculated the linear spectral den-
sities from the Fourier transform of the time series
data of the channel phases and found them to be per-
fectly flat, confirming that the phase fluctuations are
white noise. Equation (6) summarizes the result for
the lower noise threshold applicable to performance
measurements of the test mass position:

LSDψ ¼ 1:4 × 10−4 radffiffiffiffiffiffiffiffiffiffi
5Hz

p 1
2
1
3
¼ 10 × 10−6 rad

· Hz−1=2��!×λ=4π
0:88pmHz−1=2;

LSDDWS ¼ 1:4 × 10−4 radffiffiffiffiffiffiffiffiffiffi
5Hz

p 1ffiffiffi
2

p 1
3
¼ 15 × 10−6 rad

· Hz−1=2 ��!×K−1
DWS3:0nradHz−1=2: ð6Þ

These values constitute lower limits for the noise
(best possible performance). The actual performance
is generally expected to be lower due to laser fre-
quency fluctuations and variations in optical path
length, which contribute significantly to the total
noise level. However, once the laser frequency and op-
tical path-length difference (OPD) stabilization loops
operate optimally, we should be able to approach the
noise levels given in Eq. (6). In order to achieve the
primary mission goal, i.e., the sensitivity in the over-
all measurement of residual acceleration as given in
Eq. (1) of Section 1, the total noise level of the OMS
measurements within the measurement bandwidth
(3 to 30mHz) is required to be lower than 6:4pm=
Hz1=2 for the longitudinal displacement between
the two test masses and 10nrad=Hz1=2 for the test
mass attitude. We conclude that the noise from the
phasemeter, electronics, photodiodes, anddigital pro-
cessing is compliant with the requirement (on a mea-
surement time scale of ∼180 s), leaving laser
frequency fluctuations andOPDnoise as themajor re-
maining noise sources.

4. Interferometer Coupling Parameters

A. Interferometer Signals and Their Reference Frame

The OMS application software on the data manage-
ment unit (DMU) receives the complex phase data
and processes it to obtain what is commonly referred
to as DC and DWS alignment signals. The DC signals
are calculated from the DC values of the discrete
Fourier transform. The DC signal DCϕ for the

Table 1. Correlation Matrix between the Relative Phases of the
Quadrants of PDRA

Z1 Z2 Z3 Z4

Z1 1.00 0.45 0.49 0.48
Z2 0.45 1.00 0.46 0.43
Z3 0.49 0.46 1.00 0.47
Z4 0.48 0.43 0.47 1.00
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horizontal angle ϕ, which corresponds to a rotation
around the z axis perpendicular to the optical table
[see Fig. 3(a)], is defined as the normalized difference
in laser power between the left and the right diode
halves:

DCϕ ¼ DCA þDCC −DCB −DCD

DCA þDCB þDCC þDCD
: ð7Þ

Similarly, the DC signals DCη for the vertical angle η,
which corresponds to a rotation around the y axis ly-
ing in the optical table and perpendicular to the x
axis connecting the two test masses, are defined as
the normalized difference in laser power between
the upper and the lower diode halves. An illustration
of the applicable coordinate system and the naming
convention of the diode quadrants is given in
Figs. 3(a) and 3(b), respectively.

The DWS signals are calculated from the complex
amplitude of the Fourier transform. After some re-
scaling of the complex amplitude and applying the
rotation matrices discussed in the previous section,
we obtain the phasor F. The “horizontal” DWS signal
is defined as the phase difference between the left
and the right diode halves, and the “vertical” DWS
signals as the phase difference between the upper
and the lower diode half:

DWSϕ ¼ arg
�
FA þ FC

FB þ FD

�
;

DWSη ¼ arg
�
FA þ FB

FC þ FD

�
: ð8Þ

Whereas the DWS signals are very sensitive and al-
low highly accurate measurements at small angles
(<200 μrad), the DC signals are much less sensitive
but allow the measurement of angles over a much
larger range (<2000 μrad), which finds its main ap-
plication in the initial coarse alignment of the test
masses.

Assuming a linear relationship between the test
mass attitude degrees of freedom and the interferom-
eter DWS and DC signals, and referring to the basic
operating principle of the interferometers x1 and
x1 − x2 as shown in Fig. 1, we define the interfero-
meter coupling constants K1–K6 and K11–K16

through the following set of equations:

DWSϕ
1 ¼ K1ϕ1; DCϕ

1 ¼ K11ϕ1;

DWSη
1 ¼ K2η1; DCη

1 ¼ K12η1;
DWSϕ

12 ¼ K3ϕ1 þ K4ϕ2; DCϕ
12 ¼ K13ϕ1 þ K14ϕ2;

DWSη
12 ¼ K5η1 þ K6η2; DCη

12 ¼ K15η1 þ K16η2; ð9Þ

where indices “1” and “12” for the DWS and DC
signals refer to interferometers x1 and x1 − x2, re-
spectively, and the indices “1” and “2” for the test
mass angles ϕ and η refer to test masses 1 and 2,
respectively.

B. Theoretical Derivation of Coupling Constants

From the definition in Eq. (7), it is easy to derive an
analytical expression for the DC signals as a function
of the beam displacement from the quadrant diode
center: Consider a Gaussian measurement and refer-
ence beam with intensity IMðy; zÞ, IRðy; zÞ, center
along the y direction y0M, y0R, beam waist wM , wR,
and total power PM, PR, respectively. We then find
for the horizontal DC signal:

DCϕ ¼
R
∞

−∞
dz

R
0
−∞

dyðIMðy; zÞ þ IRðy; zÞÞ −
R
∞

−∞
dz

R
∞

0 dyðIMðy; zÞ þ IRðy; zÞÞR
∞

−∞
dz

R
∞

−∞
dyðIMðy; zÞ þ IRðy; zÞÞ

¼ PM

PM þ PR
erf

� ffiffiffi
2

p
y0M

wM

�
þ PR

PM þ PR
erf

� ffiffiffi
2

p
y0R

wR

�
: ð10Þ

When the dummy mirror is tilted by an angle ϕ, the
measurement beam center moves accordingly by a
distance of y0M ¼ 2ϕLTM, where LTM is the lever
arm from test mass to diode, whereas the reference
beam remains static. Substituting the expression for
the beam displacement y0M into Eq. (10) and expand-
ing it to first order, we obtain an expression for the
DC coefficients:

KDC ¼ PM

PM þ PR

ffiffiffi
2
π

r
4LTM

wM
: ð11Þ

Note that the coefficient depends on the beam power
ratio, the lever arm length, and the beam waist.
We give an example for the expected order of magni-
tude for the DC coefficient: Assuming that the beam
powers are equal and that the beam waist is 1mm,
and considering that the lever arm length from
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dummy mirror 1 to PD1A is LTM ¼ 29:5 cm, we
obtain K11 ¼ 470.

Calculation of the DWS coupling coefficients is
more difficult as the coefficients depend strongly
on the wavefront curvatures of the two interfering
beams. Assuming the curvatures are small, a simpli-
fied expression is found [15] for the DWS signal and
its linearized slope, the KDWS coefficient:

DWSϕ ≈ a tan
�
erfi

�
2π
λ
wMffiffiffi
2

p 2ϕ
�
1 −

LTM

R

���
;

KDWS ≈ 4
ffiffiffiffiffiffi
2π

p wM

λ

�
1 −

LTM

R

�
; ð12Þ

where “erfi” is the imaginary error function defined
by erfiðzÞ ¼ −i · erf ðizÞ, and R is the beam radius of
curvature at the interference point. It is important
to note that the coefficient depends on beam waist,
lever arm length, and wavefront curvature. As an ex-
ample for the expected order of magnitude, we con-
sider the interference on PD12A: Assuming that the
beam waist is 1mm, the beam radius of curvature is

R ¼ 1:4m, and the lever arm length is LTM ¼
52:2 cm, we find that K3 ¼ 5911.

C. Measurement Approach for Coupling Constants

In order to find the accurate values of the K coeffi-
cients we determine the linear dependence of the
DC and DWS signals on the tilt angle of the test mass
(represented by a dummy mirror). The mirror is at-
tached to the surface of a three-axis piezoelectric
transducer (PZT) to accomplish the tilt. The PZT de-
vice consists of a metal cylinder containing three
identical PZTs that are symmetrically placed around
the central axis. A suitable PZT driver applies vari-
able voltages to the PZTs, which affects a correspond-
ing tilt across an axis determined by the voltage
ratios. Through appropriate choice of two “orthogo-
nal” sets of basis voltages, the front-face mirror can
be tilted across either of two corresponding orthogo-
nal directions. In particular, it can be tilted horizon-
tally (angle ϕ) or vertically (angle η). We could adjust
the basis voltages up to a certain accuracy so as to
make the tilt axes orthogonal to within 1:5 deg. Be-
cause of limitations of the test setup, the axes of the
PZT assembly cannot be aligned with the reference
axes of the bench in a well-controlled way. This re-
sults in an a priori unknown misalignment of the
PZT tilt axes with respect to the optical bench frame
by an angle γ on the order of 3 deg. All the measure-
ments rely on signals from the quadrant diodes,
which in turn have an unknown tilt of their quadrant
axes with respect to the optical bench frame. We can
therefore only determine the angle ε between the
PZT tilt axes and the diode quadrant axes, as shown
in Fig. 3(b), but not the angle γ.

The calibration coefficients K are defined as the
slope of the DWS/DC signal against the mirror tilt
angle in the linear central region around the angle
ϕ ¼ 0, as described in Eqs. (11) and (12). In our mea-
surements, we determine the slope of DWS/DC
signal against applied PZT driver voltage. We there-
fore must divide this slope by a “PZT calibration fac-
tor,” describing the linear relation (valid for small tilt
angles) between mirror tilt angle and the applied
PZT voltage, to obtain the required coefficient.

These measurements are either performed “point-
by-point,” where the driver voltage is stepwise incre-
mented, or by application of a sinusoidal voltage to
the PZT driver. In the latter case, the amplitudes
of the sinusoidal response in the DWS/DC signals
are determined instead of fitting the linear central
slope. The amplitudes are then divided by a different
PZT calibration factor, which relates amplitude of
the dummy mirror tilt angle to the amplitude of
the sinusoidal voltage applied to the driver.

Figure 4 displays a summary of the point-by-point
calibration measurements for a horizontal tilt of
dummy mirror 1. In Fig. 4(a), the DC signals are
plotted for the case where the dummy mirror is at
first turned counterclockwise and then clockwise.
A PZT hysteresis effect is clearly visible so that
the mirror tilt differs between the path where the

Fig. 3. (a) Definition of the optical bench reference frame. The
horizontal angle ϕ corresponds to a rotation around the z axis per-
pendicular to the optical table, and the vertical angle η corresponds
to a rotation around the y axis lying in the optical table and per-
pendicular to the x axis connecting the two test masses. (b) The
diode quadrants are labeled A, B, C, and D from top to bottom.
The PZT sweep axes (dotted lines) are rotated by the angle ε with
respect to the quadrant diode axes (solid lines).
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PZT voltage is increased (counterclockwise rotation,
upper curve) and the return path (lower curve). How-
ever, the linear central region, critical for obtaining
the coupling coefficients, yields the same slope to
within �2% for both curves, which is of acceptable
accuracy. The upper curve is also fitted by an error
function, represented by the solid line, from which
the width of the Gaussian beam in the horizontal di-
rection can be directly determined. Additionally, the
calibration constant K11, as defined in Eq. (11), is
extracted from the linear region of the error function,
and we find K11 ¼ 510 in accordance with the theo-
retical expectations.

The contrasts of the interference pattern are dis-
played in Fig. 4(c) for the same counterclockwise
(right curve) and clockwise (left curve) sweeps, as
in Fig. 4(a). The contrasts grow and peak in the re-
gion where the DC and DWS signals display a linear
dependence on the test mass tilt. Note that the
curves for the contrasts have a Gaussian shape in ac-
cordance with the Gaussian beam profile.

Figure 4(b) displays the DWS signals which are the
same as for the counterclockwise (upper curve) and
clockwise (lower curve) rotations as in Fig. 4(a).
The DWS signals show a similar error-functionlike
dependency on the dummy mirror tilt angle as the
DC signals, albeit in a much smaller range between
−1 and +1 mrad. The linear central region of the
DWS signal curves is approximately 500 μrad in
width and its slope determines the coefficient K1 of
Eq. (12). The fit to this linear region, which also cor-
responds to the five points withmaximum contrast in
the right curve of Fig. 4(b), yieldsK1 ¼ 5190, in accor-
dance with the theoretical expectations.

D. Discussion of Measurement Results

In a similar way to the measurements described in
the preceding section, we obtained all the interferom-
eter coupling coefficients that are listed in Table 2.
The estimated total error of the K coefficients is
5% of the absolute value. It is given by a combination
of fitting error and systematic errors, due to PZT hys-
teresis and nonlinearity.

The PZT nonlinearity is especially problematic for
increasingly large tilt angles that require high bias
voltages. To derive the K coefficients in the linear
central region, this is unproblematic in contrast to
a full sweep of the beam across the diode, as required
to fit the error function of the beam profile to deter-
mine the beam width wM . In that case, the PZT non-
linearity occurring toward the extremes of the sweep
leads to an underestimate of the beam width. How-
ever, a better estimate of the beam width, wM , can be
found when solving Eq. (11) for wM ¼ PM=ðPM þ
PRÞ

ffiffiffiffiffiffiffiffi
2=π

p ð4LTM=KDCÞ and inserting the measured
value KDC, the known arm length LTM, and the mea-

sured power ratio of the beams. The power ratio is
found from the fit of the whole PZT sweep with an
error function, whose amplitude, according to Eq.
(10), is given by the beam power ratio. When compar-
ing the beam width found from KDC to the beam
width found from the error function fit, we find that
the latter has been consistently underestimated by
∼5% in all cases. Taking this into account, the ad-
justed horizontal and vertical widths of the measure-
ment beam are found to be (9:37E − 4m, 7:73E − 4m)
on PD1A and (11:02E − 4m, 9:44E − 4m) on PD12A,
respectively. This clearly indicates that the beam is
elliptic and not circular (ellipticity∼1:20). The impli-
cations of ellipticity immediately become evident in
the difference between “vertical” and “horizontal”
coupling parameters of Table 2. Further conse-
quences are discussed in the next section.

It is possible to deduce the radius of beam curva-
ture of the measurement beam on PD12A from the K
coefficients and therefore completely determine the
Gaussian beam parameters [15]. We find R∼

1:40m for the measurement beam on PD12A. We
also obtain the ratio of beam powers from the DC sig-
nals recorded during a long-range PZT sweep and
find that the two interfering beams have exactly
the same power on PD1A, but PR ¼ ð1:47� 0:04Þ ·
PM on PD12A. The most likely explanation is that
the measurement beam is split 3∶2 at BS3 (see
Fig. 1), which results in lower beam power in the

Fig. 4. All the plots refer to the samemeasurement series, and all
the data were recorded simultaneously. (a) The DC signals are
plotted for a counterclockwise (upper curve) and clockwise (lower
curve) rotation of the dummy mirror. The upper curve is fitted by
an error function (solid line). (b) The DWS signals are plotted for
counterclockwise (upper curve) and clockwise (lower curve) rota-
tion of the dummy mirror. (c) The interference contrasts are
plotted for counterclockwise (right curve) and clockwise (left curve)
rotation. The points are interconnected for illustration only. (d)
The linear central region of the upper curve in (b) was fitted to
extract the calibration coefficient K1.

Table 2. Measured Coupling Coefficients, K1–K6 (DWS) and K11–K16 (DC)

K1 K2 K3 K4 K5 K6 K11 K12 K13 K14 K15 K16

5190 4963 5174 7281 4898 6793 510 595 615 191 718 228
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measurement arm to TM2 and, therefore, unba-
lanced beam powers at PD12A. As a consequence,
the interference contrast is reduced by an insignifi-
cant amount on diode PD12A. Note that power mea-
surements at any location in the interferometers
are precluded by the lack of space to insert a separate
power sensor and generally by the stringent require-
ments on handling, cleanliness, and contact
avoidance.

5. Interferometer Cross-Coupling Terms

Cross coupling between the two tilt axes, i.e., the ap-
pearance of a “false” signal along one tilt direction,
although the test mass tilts along the orthogonal di-
rection, is an undesirable effect that frequently be-
comes apparent. When we modulate the dummy
mirror tilt in the horizontal direction, we observe that
the primary horizontal DCϕ=DWSϕ signals are ac-
companiedbya tiny residual oscillation in thevertical
direction. The origin of this residual oscillation is the
imperfect alignment between the mirror tilt axes and
the diode quadrant axes, as mentioned before and il-
lustrated in Fig. 3(b). The relative orientation of the
two axis pairs is easily inferred from the ratio of the
two oscillation amplitudes.

From certain measurements, where data were si-
multaneously recorded on interferometers x1 and
x1 − x2,wecanadditionallydetermine the relativean-
gle between the diode quadrant reference frames of
PD1A and PD12A. We find that there is an angle of
approximately 3 deg between PD1A and PD12A,
which is also an indication for the degree of accuracy
withwhich thediodequadrant framehasbeenaligned
with the reference frameof the optical bench.We shall
now investigate the impact of such amisalignment on
the cross coupling between the directional degrees of
freedom and the resulting steady states in a closed
feedback system as used in the mission when the test
masses are actually floating [5–7]. In the following de-
rivation, we revert to the defining Eqs. (9) of the cou-
pling coefficients for the DC signals (for DWS signals,
an analogous derivation applies) and introduce the
following equations for ease of notation:

�
DC1

DC2

�
¼

�
A 0

B C

��φ
1

φ
2

�
; φ

i
¼

�ϕi

ηi

�
;

DCi ¼
�
DCϕ

i

DCη
i

�
; A ¼

�
K11 0

0 K12

�
;

B ¼
�
K13 0

0 K15

�
; C ¼

�
K14 0

0 K16

�
: ð13Þ

A. Primary Reference Frames and Their Symmetries

We shall at first only look at the equations governing
TM1. Note that the coupling constants K11 and K12
are not identical but differ by 10–20%. As discussed
in the previous section, their difference in value ori-
ginates from anisotropies in the beam parameters. In

our discussion, it is useful to remember that there
are essentially three different reference frames:

1. The optical bench frame: Measurement
(and, per default, reference) beams are nearly per-
fectly aligned with this frame when the DWS signals
are zero.

2. The diode quadrant frame: The diodes are
our primary sensor, all processing is based on their
signals, and all output (DC and DWS signals) is
therefore referenced to the quadrant frame.

3. The beam frame: The ellipsoidal beam shape
(and its associated beam curvature radii) defines an
intrinsic reference frame through its major and min-
or axes, which are not generally aligned with either
optical bench or quadrant reference frames.

B. Effect of Beam Asymmetry on the Coupling
Coefficients

We shall first examine the impact of a rotated beam
frame. We assume that the coupling constants K11
and K12 were initially measured with both quadrant
andbeam frame, alignedwith another.We then rotate
the beam axes counterclockwise by an angle β with
respect to the diode quadrants. After some rather
lengthy calculations, following a similar ansatz to
the one of Eq. (10), we find for the effective K coeffi-
cients Keff

11 ðβÞ and Keff
12 ðβÞ in the quadrant frame

Keff
11 ¼ ðK−2

11cos
2β þ K−2

12sin
2βÞ−1=2;

Keff
12 ¼ ðK−2

12cos
2β þ K−2

11sin
2βÞ−1=2: ð14Þ

We observe that the coupling coefficients changewith
an increased rotation angle of the ellipse so that, gra-
dually, K11 turns into K12, and vice versa. Note that
there are no off-diagonal coupling elements intro-
duced by rotation of the beam ellipsoid with
respect to the quadrant frame, but the value of the
diagonal elements is changing accordingly.

C. Effect of Photodiode Misalignment on the Coupling
Coefficients

We shall now investigate the impact of misalignment
between the bench frame (associated parameters
have a tilde) and the quadrant frame. We assume
that the bench frame is rotated clockwise by an angle
α1 with respect to the quadrant frame of PD1A. The
tilt angles φ

1
in the quadrant frame are obtained

from the tilt angles ~φ
1
in the optical bench frame

through an orthogonal transformation, represented
by the matrix Rðα1Þ. This is depicted in Fig. 5(a).

Considering ~φ1 ¼ Rðα1Þ · φ1
, fromEq. (13)weobtain

DC1 ¼ A · φ
1
¼ A · Rðα1Þ · ~φ1

¼
�

K11 cos α1 K11 sin α1
−K12 sin α1 K12 cos α1

�
·
�
~ϕ1

~η1

�
≠ Rðα1Þ · A · ~φ

1
: ð15Þ

Note that the rotation matrix Rðα1Þ and the coupling
matrix A do not commute unless the rotation angle is
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zero (α1 ¼ 0) or the beam symmetry is circular and
not elliptic (K11 ¼ K12). If the two commute, we find
that the DC signals in the new reference frame are
simply rotated the same way as the test mass angles.

Equation (15) implies that there is always residual
coupling into thevertical directionwhen the testmass
ismoved horizontally (in the optical bench frame) and
vice versa. However, this does not really change the
steady state of the test mass that is directed toward
DC ¼ 0 (analogously for DWS ¼ 0) by the drag-free
attitude-control system (DFACS). The error in the
DC control signal, which is induced by a (small) mis-
alignment between quadrant and bench frame, is pro-
portional to the test mass angles ~φ

1
and therefore

vanishes when the test mass approaches DC ¼ 0
(analogously forDWS), i.e., ~φ

1
→ 0. The error as a per-

centage of the overall signal for a misalignment of
α1 ¼ 3 deg is given by e ≈ α1 ¼ 0:05, i.e., it is of the
order of 5%.

Proceeding in a similar way as for interferometer
x1 and considering a relative rotation by the angle α2
between the quadrant frame of diode PD12A and the
optical bench frame, we find an expression for the DC
signals in interferometer x1 − x2 from Eq. (13):

DC2 ¼ B · φ
1
þ C · φ

2
¼ B · Rðα2Þ · ~φ1

þ C · Rðα2Þ · ~φ2
:

ð16Þ

Equations (15) and (16) can be solved for the test
mass angles in the bench frame, which are the actual
quantities fed back to the DFACS:

~φ
1
¼ R−1ðα1Þ · A−1 · DC1;

~φ
2
¼ R−1ðα2Þ · C−1ðDC2 − B · Rðα2 − α1Þ
· A−1 · DC1Þ: ð17Þ

We observe in Eq. (17) that the test mass angles in
the optical bench frame are obtained from the test
mass angles in the quadrant frames through ortho-
gonal transformations R−1ðα1Þ and R−1ðα2Þ, respec-
tively. However, there is one additional step: the
angles of test mass 1 and φ

1
¼ A−1 · DC1 must be “ad-

justed” by the relative angle α2 − α1 between diode
frames PD1A and PD12A through application of
the orthogonal matrix Rðα2 − α1Þ.

As long as the diode quadrant frame mis-
alignments (relative to the optical bench as well as
relative to one another) are sufficiently small, the
couplings introduced by the orthogonal matrices
Rðα1Þ, Rðα2Þ, and Rðα1 − α2Þ are weak and these
terms may be neglected. Even if α1 and α2 were pre-
cisely known, the application software does not cur-
rently have the capability to compensate the
rotations as described in Eq. (17). However, this is
not too problematic, as we conclude that the test
mass angles converge toward DC ¼ 0, considering
that the error introduced by neglecting the aforemen-
tioned couplings also converges to zero.

D. Tracking Accuracy of the Longitudinal Test Mass
Position

We also test the ability of the interferometers x1 and
x1 − x2 to continuously track longitudinal move-
ments of the dummy mirrors over distances of sev-
eral hundred micrometers and investigate how
well the individual movements of TM1 and TM2
decouple from another.

The two interferometers record the average phase
of all four quadrants of their respective diodes and
subtract the reference phase ΨR to obtain the “long-
itudinal phases” Ψ1 and Ψ12. These relate to the
longitudinal displacement dx as follows:

dx ¼
λ

4π cos δ ψ ; ð18Þ

where δ ¼ 4:5 deg is the angle at which the beam is
incident on the test mass at nominal configuration.

Fig. 5. (a) Three main reference frames are depicted. The quad-
rant reference frame is rotated by an angle β with respect to the
beam frame. The optical bench frame is rotated by an angle α with
respect to the quadrant frame. (b) A simplified schematic of the
measurement beam path. The incidence angles δ on test mass 1
and test mass 2 are designed to be equal under nominal conditions.

10 October 2010 / Vol. 49, No. 29 / APPLIED OPTICS 5675



We find that the two interferometers track perfectly
well a sinusoidal motion of dummy mirror 1 of am-
plitude∼100 μm. Note that the expected longitudinal
tracking range (not measured) is ∼2mm, beyond
which a degradation of the measurements is ex-
pected due to a drop in interference contrast. In ad-
ditional measurements at successively higher piezo
modulation frequencies, we also determine a maxi-
mal tracking speed of the test mass position of
∼30 μm=s, limited by the finite sampling rate of
the test mass position at 100Hz.

As the longitudinal phase Ψ12 of interferometer
x1 − x2 is proportional to the relative displacement
between TM1 and TM2, Ψ12 should equal Ψ1 (except
for a constant term), if only dummy mirror 1 is
moved. However, this holds only if the two incidence
angles δ1 and δ2 are exactly identical, otherwise, the
motion of TM1 and TM2 cannot be fully separated.
The cross-coupling term Clong is determined by
the ratio of the two incidence angles: Clong ¼
ðδ2 − δ1Þ=δ1. Subtracting Ψ1 from Ψ12, we find some
residual noise, but no visible remaining oscillation
that could be an indication for cross coupling. From
the ratio of the standard deviation of the phase dif-
ference to the standard deviation of the phase, we
find an upper threshold for the cross-coupling term
Clong < 3 × 10−4, which implies ðδ2 − δ1Þ < 25 μrad.

6. Conclusions and Outlook

We successfully operated and investigated the com-
plete engineering model of the optical metrology sys-
tem for the LISA Pathfinder mission for the first
time. We measured and analyzed the channel noise
in detail and derived an upper limit for the expected
system performance in the absence of laser frequency
fluctuations. While cross correlations between chan-
nel noise sources were shown to be negligible, the
measured interchannel phase differences were suc-
cessfully compensated.

The coupling constants relating test mass attitude
to differential phase and DC signals were theoreti-
cally derived and compared to the measurements.
The three principal interferometer frames (diode
quadrant frame, optical bench frame, and beam ani-
sotropy frame) were introduced, and the impact of a
general misalignment between them was discussed.
In addition to the capability of accurately determin-
ing the test mass attitude, we also demonstrated the
capability of the system to track the test mass posi-
tion over long distances. The cross coupling of signals
describing test mass 1 motion to signals describing
test mass 2 motion was investigated, and an upper
limit found.

The measurements described in this article refer
to the engineering model of the optical metrology sys-
tem. We already found compliance of the engineering
model with all the relevant system and mission re-
quirements as far as applicable. The actual flight
model is currently being built and should improve
significantly on several deficiencies found in the en-
gineering model, specifically on general noise charac-

teristics, utilization of ADC dynamic range, beam
isotropy, and relative misalignment between diode
and optical bench frame.
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