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ABSTRACT
The stability properties of relativistic stars against gravitational collapse to black holes is a
classical problem in general relativity. In 1988, a sufficient criterion for secular instability was
established by Friedman, Ipser & Sorkin, who proved that a sequence of uniformly rotating
barotropic stars are secularly unstable on one side of a turning point and then argued that a
stronger result should hold: that the sequence should be stable on the opposite side, with the
turning point marking the onset of secular instability. We show here that this expectation is
not met. By computing in full general relativity the F-mode frequency for a large number of
rotating stars, we show that the neutral-stability point, that is, where the frequency becomes
zero, differs from the turning point for rotating stars. Using numerical simulations, we validate
that the new criterion can be used to assess the dynamical stability of relativistic rotating stars.

Key words: black hole physics – relativistic processes – methods: numerical – stars: neutron
– stars: oscillations – stars: rotation.

1 I N T RO D U C T I O N

The stability of a relativistic star against gravitational collapse to
a black hole is one of the most important predictions of general
relativity (GR). While this problem is reasonably well understood
for non-rotating stars (Misner, Thorne & Wheeler 1973), this is not
the case for rotating stars and is particularly obscure when the stars
are rapidly rotating. A milestone in this landscape is the criterion
for secular stability proposed by Friedman, Ipser & Sorkin (1988),
who proved that a sequence of uniformly rotating barotropic stars
are secularly unstable on one side of a turning point (an extremum
of mass along a sequence of constant angular momentum or an
extremum of angular momentum along a sequence of constant rest
mass). They then argued, based on an expectation that viscosity
leads to uniform rotation, that the turning point should identify the
onset of secular instability. While for a non-rotating star, the turn-
ing point coincides with the secular-instability point (and with the
dynamical-instability point for a barotropic star if the perturbation
satisfies the same equation of state of the equilibrium model), for
rotating stars, it is only a sufficient condition for secular instability.
Lacking other guides, the turning point is routinely used to find
dynamical instability in simulations (Baiotti et al. 2005; Radice,
Rezzolla & Kellerman 2010).

Our understanding of the dynamical instability of relativistic stars
in uniform rotation can be improved by determining the neutral-
stability line, that is, the set of stellar models whose frequency
of the fundamental mode of quasi-radial oscillation (F mode)
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is vanishingly small. While this problem is challenging from
a perturbative point of view, especially when the rate of rotation
becomes high, it can be tackled through numerical calculations. We
have therefore simulated in full GR 54 stellar models and calculated
accurately the corresponding F-mode frequency via a novel anal-
ysis of the power spectral density (PSD) of the central rest-mass
density. This new approach has been validated through a compar-
ison with all the available data, showing excellent agreement and,
most importantly, a much smaller variance. By construction, in fact,
simulations cannot evolve models at (or near) the neutral-stability
line, but the accuracy of our F-mode frequencies and their smooth
dependence on the central rest-mass density and dimensionless ro-
tation rate have allowed us to produce an analytic fit of the data
and deduce from this the neutral-stability line. We find in this way
that it coincides with the turning point for spherical stars, but not
for rotating stars, with the difference increasing with the angular
momentum. Although somewhat surprising, this difference is not in
contrast with the predictions of the turning-point criterion, since the
latter is only a sufficient condition for secular instability and not a
necessary condition for secular and dynamical instabilities. Hence,
a stellar model which is stable according to the turning-point crite-
rion can be nevertheless dynamical unstable.

To test the new stability line and validate whether it can be used to
mark the threshold for dynamical stability, we have evolved stellar
models whose properties fall in a small region near the two stability
lines. Special attention has been paid to stellar models that are
predicted to be stable by the turning-point criterion but unstable by
the neutral-stability line. Because these models indeed collapse to
black holes, we conclude that the neutral-stability line can be used
effectively to mark the boundary to dynamical instability.
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The organization of the Letter is as follows. Section 2 describes
the numerical setup and initial data, while Section 3 presents our
approach to extract the eigenfrequency and offers comparisons with
previous work. Section 4 collects our results and a comparison be-
tween the two stability criteria, leaving the conclusions to Section 5.
Unless stated differently, we use units in which c = G = M� = 1.

2 N U M E R I C A L S E T U P A N D I N I T I A L DATA

All of our calculations have been performed in full GR using the
Whisky2D code described in detail in Kellerman et al. (2008). This
is a two-dimensional code based on the three-dimensional Whisky
code (Baiotti et al. 2005), and exploiting the condition of axisym-
metry through the ‘cartoon’ method (Alcubierre et al. 2001). In
essence, the evolution of the space–time is obtained using the two-
dimensional version of Ccatie, a finite-differencing code provid-
ing the solution of a conformal traceless formulation of the Einstein
equations (Pollney et al. 2007), while the equations of relativistic
hydrodynamics are solved for a flux-conservative formulation of
the equations, as first discussed in detail in Baiotti et al. (2005).
The Whisky2D code implements a variety of approximate Riemann
solvers and several reconstruction methods and, as discussed in
Giacomazzo, Rezzolla & Baiotti (2009), the use of reconstruction
schemes of order high enough is fundamental for an accurate evo-
lution. In particular, the results presented here have been computed
using the piecewise-parabolic reconstruction method (Colella &
Woodward 1984), the HLLE approximate Riemann solver (Harten,
Lax & van Leer 1983) and a third-order Runge–Kutta method for
the time-evolution.

The initial equilibrium stellar models are built using the rns code
(Stergioulas & Friedman 1995) as isentropic, uniformly rotating,
relativistic, perfect-fluid polytropes with the equation of state

p = Kρ� , e = ρ + p

� − 1
, (1)

where p is the pressure, ρ is the rest-mass density, K is the polytropic
constant, � is the polytropic exponent and e is the energy density.
Although all the results can be rescaled for any choice of K and
�, here, we have set K = 100 and � = 2, which yield stars with
the maximum gravitational mass M = 1.64 M� for a non-rotating
star and M = 1.88 M� for a uniformly rotating one. The rns

code provides an equilibrium solution in spherical polar coordinates
after specifying for each stellar model a central density ρc, and a
equatorial and a polar (coordinate) radius in a ratio rp/re. Once this
solution is found, it is mapped to a Cartesian grid of Whisky2D and
used as initial data for the subsequent evolution. Attention needs
to be paid that the resolution in the calculation of the initial data
matches well the one used in the evolution. We have verified that
a resolution of (nr, nθ ) = (2001, 2601) [(nr, nθ ) = (1001, 1301)],
with (nr, nθ ) the number of points of the radial and angular grids of
the rns code, is needed for an accurate evolution in the high [low]-
resolution setup of the Whisky2D code. Furthermore, because we
are not interested here in extracting gravitational-wave information,
we place the outer boundary at a few stellar radii and use a uniform
grid with spacing �x = �z = h ranging between h = 0.04 M� for
the rapidly rotating models and h = 0.1 M� for the slowly rotating
ones. As done in Kellerman et al. (2008), we stagger the grid in the
x-direction of half a cell. A large number of tests have been carried
out to verify that the results do not depend on the position of the
outer boundary, or on the value of the density in the atmosphere
(see Baiotti et al. 2005), which we set to be 9 orders of magnitude
smaller than the central one.

As discussed by many authors (Font, Stergioulas & Kokkotas
2000; Font et al. 2002; Baiotti et al. 2005), the truncation error
in the initial data is sufficient to trigger perturbations in the star,
which will start to oscillate in a number of eigenmodes. However,
because we need to determine the eigenfrequency of the F mode,
it is important that as much as possible of the initial perturbation
energy goes into exciting that mode. For this reason we introduce an
initial perturbation using the eigenfunction of the F mode for a non-
rotating neutron star with the same central density, and which can be
computed from linear perturbation theory (PT). More specifically,
denoting by ψTOV any fluid quantity of the non-rotating model
with the same central density and with δψTOV(r) the corresponding
eigenfunction with r the radial coordinate in the isotropic coordinate
system, we approximate the equivalent eigenfunction for a rotating
star in a coordinate system (r, θ ) as δψ(r, θ ) = δψTOV[rRTOV/R(θ )],
where RTOV is the radius of the non-rotating star and R(θ ) that of the
rotating star, which will obviously depend on the angle θ . As a result,
the power in the initial perturbation is mostly concentrated in the F
mode, whose corresponding peak in the PSD of any hydrodynamical
quantity is larger by at least a factor of 10 than any other mode. As
an additional validation of the procedure, we have computed the
numerical eigenfunction for some selected models and verified that
it matches very well the guessed one even in the case of rapidly
rotating stars and long-term evolutions.

3 M E T H O D O L O G Y A N D AC C U R AC Y

As customary, we extract the F-mode frequency by performing a
discrete Fourier transform of the evolution of a representative hy-
drodynamical quantity, such as the central rest-mass density ρc, and
by inspecting the corresponding PSD. Defining as FN the frequency
of the largest peak in the numerical PSD, previous studies deter-
mined the value of the F-mode frequency, F, by fitting the PSD
with a known analytic function (e.g. a Lorentzian, Kellerman et al.
2008) or by taking the derivative of the PSD (Zink et al. 2010). The
frequency obtained in these ways depends sensitively on the fitting
function used, on the shape of the PSD around FN and on the evolu-
tion time τ . We here use a different approach. Because FN will tend
to F as the evolution time τ → ∞, we simply consider the evolution
of FN for increasingly large values of τ . What we find in this way
is that FN(τ ) is an oscillating function around F, whose amplitude
is, however, bounded by two envelopes which have a clear 1/τ de-
pendence. Fitting for these envelopes and extrapolating for τ → ∞,
we obtain a very accurate and possibly optimal value for F. As we
will discuss in the following section, this approach turns out to give
an excellent measure of the F-mode eigenfrequency and we recom-
mend it in all those studies aimed at determining eigenfrequencies
of relativistic stars.

3.1 Comparison with previous works

The F-mode frequency of spherical stars can be computed to
arbitrary precision within a linear perturbative approach (see
Yoshida & Eriguchi 2001, and references therein). Hence, as a
first validation of the accuracy of our procedure, we have es-
timated the F-mode frequency for 14 non-rotating models with
ρc ∈ [3.0 × 10−4, 3.0 × 10−3]; in this range, the F mode first
grows, then reaches a maximum and finally decreases to zero at the
secular-instability point, around ρc ≈ 3.18 × 10−3. Defining the
relative error as σ rel ≡ [(F)2

PT − (F)2
N]/(F)2

PT, where FPT and FN

are, respectively, the frequencies of the F mode from PT and from
our simulation. The relative error is extremely small at low densities
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Figure 1. Comparison of our F-mode frequencies with those of previous
works in either PT, the CFC approximation (Dimmelmeier, Stergioulas &
Font 2006), the Cowling approximation (Gaertig & Kokkotas 2008; Zink
et al. 2010) or in full GR (Zink et al. 2010).

[e.g. σ rel � 0.005 for ρc ≈ (0.3–1.5) × 10−3] and it increases with
the density [e.g. σ rel � 0.05 for ρc ≈ (2.5–3.0) × 10−3], becoming
of the order of about 10 per cent at the edge of the secular insta-
bility. This is obviously due to the fact that as FN ≈ 0, numerical
calculations become increasingly long and inaccurate.

We next compare our numerical estimates for the F-mode fre-
quency with those made in several different approaches and ap-
proximations, using as a reference a central rest-mass density ρc =
1.28 × 10−3, as this is the one most commonly used. We start our
comparison by considering the case of non-rotating stars, for which
results are available from the works of Dimmelmeier et al. (2006)
or of Zink et al. (2010), in either the conformally-flat condition
(CFC) or in full GR, respectively. This is shown in Fig. 1, which
reports the F-mode frequency as a function of the dimensionless
ratio β ≡ T/|W| between the rotational kinetic energy T and the
binding energy W. Note that the frequency is reported in two differ-
ent scales, referring to simulations either in full GR/CFC (left-hand
scale) or in the Cowling approximation (right-hand scale), which
systematically yields larger frequencies. Although the CFC (blue
crosses) for a non-rotating star should give the same frequency in
full GR (magenta filled triangles and red crosses) and in PT (black
filled circle), Fig. 1 shows that this is not quite the case, although the
differences are only of ∼2 per cent. Considerably larger are instead
the differences with the frequencies in the Cowling approximation,
which are larger by a factor of ∼3 (green stars and light-blue filled
squares). Clearly, the difference between the results in full GR and
the perturbative ones is much smaller, and indeed the one with our
new results is the smallest among all the data available. We also
note that our results also report the estimated error bars, which are
much smaller than the size of the symbols.

Considering next the comparison also for rotating stars, it is
easy to see that our results in two dimensions match well those
in three dimensions of Zink et al. (2010) for the rotation rates
available and obviously have smaller error bars. The very good
match with the results in the CFC (Dimmelmeier et al. 2006), with
differences of a few per cent only for all the values of β, confirms the
conclusions drawn by Dimmelmeier et al. (2006) that the CFC is a

Figure 2. Square of the F-mode frequencies (blue filled circles) as a function
of ρc and β. The dashed green area shows models above the mass-shedding
limit and the red solid line marks the neutral stability (cf. Fig. 3).

very good approximation, at least for the dynamics of isolated stars.
Fig. 1 also shows that the comparison with frequencies computed in
the Cowling approximation (Gaertig & Kokkotas 2008; Zink et al.
2010) is considerably worse. Besides an intrinsic difference between
the two sets of data (the frequencies of Gaertig & Kokkotas 2008
are in agreement only within the error bars of Zink et al. 2010), the
rate of change in the frequencies with β differs from the one found
in full GR, being less rapid for the latter (this is not evident because
the figure has two different vertical scales). This comparison shows
the Cowling approximation to be inaccurate for all rotation rates.

In summary, this comparison validates our approach, highlighting
its accuracy and smoothness when compared to alternative methods.
This will be essential to find the neutral-stability line.

4 RESULTS

As mentioned above, the space of parameters is spanned by the
central rest-mass density and angular momentum of the rotating
models. To cover the largest possible region of parameters, we have
evolved 54 stellar models of relativistic stars with ρc in the range1

[ρmin, ρmax] = [8 × 10−4, 3.18 × 10−3] and the dimensionless
rotation parameter β between zero and the mass-shedding limit for
the corresponding sequence of constant central rest-mass density
(β = 0.095 is the largest value considered). In this way, we computed
stellar models with masses in the range M/M� ∈ [1.1, 1.9].

We show as the blue filled circles in Fig. 2 all of the com-
puted F-mode frequencies, where the squares of the F-mode fre-
quencies (F)2 are reported as a function of ρc and β. Shown as
the solid magenta line is the analytic fitting of the frequency for
non-rotating stars, while the dashed blue lines show sequences
of rotating stars having the same rest-mass density. All models
simulated have non-zero F-mode frequencies and their number di-
minishes for (F)2 ≈ 0. As mentioned above, this is because for
these models the oscillation time-scale tends to become extremely
large (diverging for F = 0), thus becoming intractable in numer-
ical simulations. In addition, models near the neutral point could
also be artificially induced to collapse simply by the accumula-
tion of the truncation error (see also Shibata 2003), thus prevent-
ing any reliable measure. As a result, our analysis has been con-
strained to values of the frequencies F � 2.2 × 10−3 
 0.45 kHz.
Fortunately, however, the quality of the data and the smoothness in
which they appear in Fig. 2 allow us to compute an analytic fit of

1 Note that ρc = 1.0 × 10−3 
 0.62 × 1015 g cm−3 and that ρmax also marks
the secular-stability point for a non-rotating star.
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the function (F)2 = (F)2(ρc, β) and thus determine analytically the
neutral-stability line where (F)2 = 0.

It is convenient to use a fitting function (Ffit)2(ρc, β) that is linear
in β and (F)2

fit(ρmax, 0) = 0 by construction:

(F )2
fit(ρc, β) = (F )2

fit(ρc, 0) + β

5∑

n=0

bn(ρc)
n (2)

=
5∑

n=0

an(ρc)
n + β

5∑

n=0

bn(ρc)
n , (3)

where an and bn are constant coefficients, which a least-squares
fitting with the data reveals to be

a5 = 6.978 × 108 , a4 = −7.757 × 106 , a3 = 3.621 × 104 ,

a2 = −9.599 × 10 , a1 = 1.172 × 10−1 , a0 = 2.110 × 10−7 ,

b5 = −5.599 × 1010 , b4 = 4.862 × 108 , b3 = −1.612 × 106 ,

b2 = 2.545 × 103 , b1 = −1.896 , b0 = 3.357 × 10−4 .

A confirmation of the accuracy of the ansatz (3) comes from the
very small variance of a comparison with perturbative results for
non-rotating stars. Considering in fact over 90 stellar models with ρc

∈ [1.0 × 10−5, 3.182 × 10−3], we obtain σ fit ≡ |(F)2
PT − (F)2

fit(ρc,
0)| � 2 × 10−7 
 8 × 10−3 (kHz)2. Similarly, when comparing
over the whole set of numerical data we find a variance that, as
expected, is greater for large values of ρc and β but that, overall, is
σ fit � σ max ≈ 1 × 10−6. Note that these errors are smaller or at most
comparable with the numerical error bar, highlighting the quality
of the fit.

Using expression (3), it is straightforward to compute the neutral-
stability line in a (ρc, β) plane as the one at which (F)2

fit(ρc, β) = 0.
Of course, this line will be ‘thickened’ by the uncertainty associated
to the fit which, to be conservative, we consider to be σ max. (We
note that the thickness is much smaller for β ≈ 0, but it may be
larger at high β as a result of the extrapolation.) While a neutral-
stability line is already very informative in a (ρc, β) plane, its
greatest impact can be appreciated in the more traditional (ρc, M)
diagram. This is shown in Fig. 3, where the two solid black lines
refer to sequences of non-rotating (lower line) and mass-shedding
models (upper line). Drawn as solid red is the neutral-stability line
‘thickened’ by the error bar σ max (black dot–dashed lines). Finally,
shown as a blue dashed line is the turning-point criterion for secular
stability along a sequence of constant angular momentum J, that is,
(∂M/∂ρc)J=constant = 0.

Clearly, the new neutral-stability criterion does coincide with
the turning-point criterion for non-rotating stars (cf. small inset),
but it differs from it as the angular momentum is increased, mov-
ing to smaller central rest-mass densities. While unexpected, this
difference does not point to a conflict between the two criteria.
This is because the turning-point criterion is only a sufficient con-
dition for secular instability of rotating stars; stated differently,
while a rotating stellar model which is at or to the right-hand side
of the turning-point line is expected to be also secular unstable,
the opposite is not true. Hence, the two criteria are compatible as
long as the secular-instability line lies to the left-hand side (i.e.
for smaller central rest-mass densities) of the neutral-stability line.
Determining the secular-stability line requires to consider a dissi-
pative mechanism such as viscosity, which is, however, absent in
our perfect-fluid description and difficult to introduce within a fully
relativistic hyperbolic description. However, because a dynamically
unstable model should also be secularly unstable, we in fact expect
the secular-stability line to coincide or to be on the left-hand side
of the neutral-stability line. In other words, along a J = constant

Figure 3. Stability lines in a (ρc, M) diagram. The two solid black lines
mark sequences with either zero (lower line) or mass-shedding angular
momentum (upper line), with the filled symbols marking the corresponding
maximum masses. The solid red line is the neutral-stability line, ‘thickened’
by the error bar (black dot–dashed lines). The blue dashed line is instead the
turning-point criterion for secular stability. Marked with the empty or filled
circles are representative models with constant angular velocity, O1, O2 and
O3, or constant initial central rest-mass density, R1, R2 and R3.

sequence of stellar models, we expect the following order with in-
creasing rest-mass density: secular instability, dynamical instability
and turning point.

To validate that the neutral-stability line should be used in place of
the turning-point line to distinguish stellar models that are dynami-
cally unstable from those that are instead stable, we have considered
six representative models whose properties fall in a small region near
the two stability lines. More specifically, we consider two different
sequences having either constant angular velocity, that is, models
O1, O2 and O3 in Fig. 4, or constant ρc, that is, models R1, R2
and R3. The predictions for these models are different according to
which a criterion is used for stability. In fact, while models O1 and
R1 are expected to be stable for both criteria and models O3 and R3
are expected to be unstable for both criteria, models O2 and R2 are
predicted to be stable on a dynamical time-scale by the turning-point
criterion but unstable by the neutral-stability criterion.

To test these predictions, we have evolved these configurations
maintaining the same computational setup (but without an initial
perturbation) and collected the corresponding evolution of the cen-
tral rest-mass density in Fig. 3. As expected, models O1 and R1
are found to be stable over about 7 ms as indicated by the central
rest-mass density that remains constant (modulo the F-mode os-
cillations), while models O3 and R3 are found to collapse to black
holes in less than 2 ms as indicated by the exponential increase in the
rest-mass density (see also Baiotti et al. 2005; Radice et al. 2010).
Similarly, models O2 and R2 are also found to collapse to black
holes over a time-scale which is only slightly larger than that of
models O3 and R3. After validating that these results do not depend
on the specific numerical setup used (e.g. placement of outer bound-
aries, resolution or density in the atmosphere), we conclude that the
neutral-stability line can indeed be used to mark the boundary of a
dynamically unstable region.
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Figure 4. Evolution of ρc for models with constant angular velocity (up-
per panel) or constant initial central rest-mass density (lower panel). An
exponential growth signals the collapse to a black hole (cf. Fig. 3).

5 C O N C L U S I O N S

The stability of rotating relativistic stars against gravitational col-
lapse to black holes is an old problem in GR, impacting all those
astrophysical problems where a neutron star may be produced and
induced to collapse as a result of mass accretion. Despite the im-
portance of this problem, no analytic criterion is known for the
dynamical stability of rotating stars. Important progress was made
about 20 years ago, when a criterion for secular stability was pro-
posed by Friedman et al. (1988), who suggested that a turning point
along a sequence of stellar models with constant angular momen-
tum can be associated with the onset of secular instability. Although
this criterion is only a sufficient condition for the development of a
secular instability, it has been systematically used to limit the region
of dynamical instability in simulations of relativistic stars (Baiotti
et al. 2005; Radice et al. 2010).

To improve our understanding of the dynamical instability of
relativistic stars in uniform rotation, we have computed the neutral-
stability point for a large class of stellar models, that is, the set of
stellar models whose F-mode frequency is vanishingly small (in a
non-rotating star, this point marks the dynamical stability limit).
More specifically, we have evolved in full GR 54 stellar models
and calculated the corresponding F-mode frequency via a novel
analysis of the PSD of the central rest-mass density. Although our
simulations cannot evolve models near the neutral-stability line, the
high accuracy of our estimates for the eigenfrequencies (which have
been validated through a comparison with all the available data) and
their regular dependence on the central rest-mass density and di-
mensionless rotation rate has allowed us to produce an analytic fit
of the data and deduce from this the neutral-stability line. The latter
coincides with the turning-point line of Friedman et al. (1988) for

non-rotating stars, but differs from it as the angular momentum is
increased, being located at smaller central rest-mass densities as the
angular momentum is increased. This difference does not contra-
dict the turning-point criterion since the latter is only a sufficient
condition for secular instability.

To test this result, we have evolved stellar models whose prop-
erties fall in a small region near the two stability lines, paying
special attention to those stellar models that are predicted to be
stable on a dynamical time-scale by the turning-point criterion but
unstable by the neutral-stability line. Numerical evidence that these
models do collapse to black holes allows us to conclude that the
neutral-stability line can be used effectively to mark the boundary
to dynamical instability. Besides improving our understanding of
the stability of relativistic stars, these results show that producing
black holes via the gravitational collapse of a neutron star is sim-
pler than expected. Furthermore, they can serve as a guide when
determining the neutral-stability line via perturbative techniques or
when extending it to differentially rotating stars.
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