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Interferometer readout noise below the standard quantum limit of a membrane
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Here we report on the realization of a Michelson-Sagnac interferometer whose purpose is the precise
characterization of the motion of, i.e., membranes showing significant light transmission. Our interferometer
has a readout noise spectral density (imprecision) of 3 × 10−16 m/

√
Hz at frequencies around the fundamental

resonance of a SiNx membrane at about 100 kHz, without using optical cavities. The readout noise demonstrated
is more than 16 dB below the peak value of the membrane’s standard quantum limit (SQL). This margin is
significantly bigger than those of previous works with nanowires [Teufel et al., Nature Nano. 4, 820 (2009);
Anetsberger et al., Nature Phys. 5, 909 (2009)]. We discuss the meaning of the SQL for force measurements and
its relation to the readout performance and emphasize that neither our nor previous experiments achieved a total
noise spectral density as low as the SQL due to thermal noise.
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Systems composed of mechanical probes and laser light
are able to perform ultrasensitive measurements of external
forces by monitoring the probes’ displacements. A prominent
example is a gravitational wave detector, which uses laser
light and quasi-free-falling test mass mirrors to search for
changes in the far field of accelerated gravitational sources
[1]. The standard quantum limit (SQL) is a consequence
of Heisenberg’s Uncertainty Principle [2] and sets a limit
to the sensitivity of a continuous measurement (monitoring)
of a quantity that does not commute with itself at different
times [3]. With respect to the internal degrees of freedom of
optomechanical measurement devices, the SQL also defines
a benchmark noise spectral density at which the door is
opened to new quantum experiments such as the generation of
optomechanical entanglement [4] and also purely mechanical
entanglement [5].

So far, a total noise spectral density as low as the SQL of a
force measurement has not yet been achieved, since the thermal
excitation of the mechanical probe is usually far above the
SQL. In general, reaching the SQL requires (i) the acceleration
noise of the mechanical probe being dominated by quantum
back-action due to the (optical) readout, (ii) the readout noise
being dominated by (photon) shot noise, and (iii) the readout
power being optimized such that for uncorrelated quantum
back-action noise and quantum readout noise the two are of
identical size and thus provide one half of the SQL’s noise
power each [6].

In case of quantum correlations between the readout
quadrature amplitude and its orthogonal quadrature, condition
(iii) may vary, even going beyond the SQL is possible [7,8].
Generally, the SQL does not have a white spectrum but
depends on the observation frequency. It also depends on the
probe’s dynamics and on the observable chosen. In particular,
in the case of a harmonic oscillator, the SQL of a position
measurement shows a peak at the mechanical resonance, while
the SQL for a force measurement has a minimum here as seen
in Eqs. (4) and (5).

Recently, a microwave and an optical readout imprecision
were demonstrated below the SQL’s peak value of nanowires
[9,10]. With these achievements it was shown that the number
of photons per second inside the interferometers was in princi-
ple high enough to reach the SQL at sideband frequencies close
to the mechanical resonance. Due to the thermal excitation of
the nanowires and due to an above shot-noise imprecision,
however, the (harmonic oscillator) SQL was not reached.
The mechanical oscillators in Refs. [9,10] were nanowires
of aluminum and SiN, respectively, with effective masses
of a few picograms and resonance frequencies in the MHz
regime.

Here, we report on an optomechanical experiment with
a readout noise below the SQL, similar to Refs. [9,10]. In
contrast to previous works, our setup was composed of an
interferometer without cavities and a commercially available
mechanical probe—a SiNx membrane with an effective mass
of about 100 ng and a resonance frequency of about 100 kHz.
The membrane was used as a partially transmitting mirror
inside a free-space Michelson-Sagnac interferometer [11,12].
The experiment was performed at room temperature and
achieved a total readout noise of 3 × 10−16 m/

√
Hz. The linear

spectral density value was a factor of more than six (the power
spectral density was 16 dB) below the peak value of the SQL.

The quantum readout noise of an interferometer is given
by photon counting noise, also called shot noise (sn). A
rather useful measure is

√
Sx,sn, the linear spectral density

of the shot noise calibrated to an apparent displacement x,
given in m/

√
Hz. Since the shot noise has a white spectrum,

and our interferometer has a white signal transfer function,
the normalized spectral density is frequency independent and
reads [12]

√
Sx,sn =

√
h̄cλ

16πr2P
, (1)

with h̄ the reduced Planck constant, c the speed of light, λ

the laser wavelength, r2 the membrane’s power reflectivity,
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and P the light power inside the interferometer. Note that the
membrane is serving as a common end mirror, thereby
doubling the displacement signal compared to a sin-
gle movable end mirror in an ordinary Michelson
interferometer.

The quantum back-action noise of an interferometer is
given by the quantum radiation-pressure noise (rpn) on the
mechanical probe. The susceptibility of a mechanical oscillator
reads

χ (�) = x(�)

F (�)
= −1

m(�2 − i��m/Q − �2
m)

, (2)

with x(�) the spectrum of the probe’s displacement, F (�)
the spectrum of the external force, m the effective mass of
the mechanical probe, Q the mechanical quality factor, and
�m = 2πfm the oscillator eigenfrequency. Far above �m, the
susceptibility is proportional to �−2. For frequencies far below
the resonance, χ is constant, whereas its absolute value on res-
onance is given by |χpeak| = Q/(m�2

m). Due to the frequency
dependence in Eq. (2), the signal normalized spectral density
of the back-action noise is not white. For the membrane in our
Michelson-Sagnac interferometer it is given by [12]

√
Sx,rpn(�) = |χ (�)|

√
16πh̄r2P

cλ
. (3)

The quantum noise spectral densities given in Eqs. (1)
and (3) both set limitations on the precision of a force
measurement: while the shot noise originates from the phase
quadrature uncertainty of the light inside the interferometer,
the radiation-pressure noise originates from its amplitude
quadrature uncertainty [13]. Assuming that the two quadra-
tures are uncorrelated with each other, which is the case
for coherent states, their noise variances simply add up,
Sx,tot = Sx,sn + Sx,rpn. For every frequency �/2π there exists
an optimum laser power PSQL = cλ/[16|χ (�)|πr2] at which
the two spectral densities have the same values. In this case
the uncorrelated sum is minimal defining the standard quantum
limit with a displacement normalized spectral density of√

Sx,SQL(�) =
√

2h̄ |χ (�)| . (4)

Using Eq. (2) the SQL force spectral density can be written as

√
SF,SQL(�) =

√
2h̄

|χ (�)| . (5)

The spectral densities given above need to be reached (at least
at one observation frequency) to achieve a displacement or a
force measurement with sensitivity at the SQL. For instance,
at the mechanical resonance frequency the total noise needs to
be as low as the following SQL (peak) value:

√
Sx,SQL(�m) =

√
2h̄Q

m�2
m

. (6)

The mechanical oscillator used in our work was a 1.5-mm-
sized SiNx membrane for x-ray spectroscopy [14]. These high-
tensile-stress thin films deposited on a Si frame have previously
been used as mechanical oscillators in optomechanical cavity
setups [15,16]. Their low effective mass combined with
their rather high tensile stress results in high-fundamental-
resonance frequencies around 100 kHz. For stoichiometric
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FIG. 1. (Color online) Schematic of the Michelson-Sagnac inter-
ferometer. The SiNx membrane is aligned such that transmitted and
reflected light beams propagate along the same optical axis. The lower
row of plots shows the four possible light paths, which interfere at the
interferometer output. The inset shows a photograph of the membrane
having an area of 1.5 mm2.

Si3N4 membranes, mechanical resonance frequencies are even
higher and lie in the megahertz region [17]. High-tensile-stress
SiN membranes are interesting mechanical oscillators since
their large surface area makes them truly macroscopic objects.
Their surface quality is quite high, i.e., high enough to be able
to place a membrane in the middle of an optical cavity with a
finesse of 15 000 [16], and also high enough to use the mem-
brane in a high-precision interferometer as demonstrated here.

In order to determine the parameters of our membrane,
we measured its power reflectivity to 30.4% at 1064 nm.
The reflectivity is directly linked to the membrane’s index
of refraction of n = 2.2 + i 1.5 × 10−4 at 1064 nm [16]
and to its etalon effect, which we used to determine the
membrane’s thickness to 66 nm. This yields an effective
mass for the fundamental oscillation mode of m = 0.25 ρ V ≈
115 ng, with mass density ρ = 3.1 g/cm3 [18] and volume
V = (1.5 mm)2 × 66 nm. To avoid residual gas damping of
the membrane oscillation, our interferometer was set up in a
vacuum chamber at a pressure of 10−6 mbar. The membrane’s
quality factor Q was measured to ≈106. Residual gas damping
was verified to reduce the measured Q of the membrane by
less than 0.3%.

Figure 1 shows the Michelson-Sagnac topology of our
free-space laser interferometer. It was invented to deal with the
rather high light transmission of the membrane. The reflected
as well as the transmitted light from the membrane is kept
inside the same combined Michelson-Sagnac interferometer
mode. First, the input laser beam is split up by a balanced
beam splitter into two counterpropagating paths. Both paths
are folded by highly reflective mirrors such that a shared focus
lies at the membrane’s position. The light fields reflected
off the membrane interfere at the balanced beam splitter,
forming the “Michelson mode” of our interferometer. The light
beams transmitted through the membrane propagate along
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the same optical axis. They also overlap at the beam splitter
and form the “Sagnac mode.” For a perfectly balanced beam
splitter, the fields of a Sagnac mode interfere at the beam
splitter in such a way that all the light goes back to the
laser source. Light leaking out of the other interferometer
port then corresponds to the signal port of the Michelson
mode. Its photoelectric detection provides information about
the membrane’s position. By placing the membrane such that
the two Michelson arms have identical lengths, the signal port
can be made completely dark limited only by the interference
contrast. For a perfect dark port, the interferometer signal port
shows a perfect rejection of laser intensity noise. In the present
setup, however, we placed the membrane such that a small
amount of light power leaked out of the Michelson signal port
in order to be able to detect the interferometer signal with
a single photodiode. Note that in contrast to previous setups
with membranes [16,19] our present setup did not involve
optical cavities; however, the Michelson-Sagnac topology in
principle allows for the implementation of a power-recycling
as well as a signal-recycling resonator for further sensitivity
improvements [12,20,21].

As the light source we used a Mephisto Nd:YAG laser
that provided up to 2 W light power at λ = 1064 nm. The
laser source was equipped with a direct feedback to the pump
diode’s current driver to suppress its relaxation oscillation
(a so-called noise eater). For a further reduction of laser
intensity noise, 10 mW were picked off before the mode
cleaner and detected on a photodiode. The signal derived was
processed by a PID controller and fed back to an acousto-optic
modulator placed into the optical path before the mode cleaner.
The servo’s control bandwidth was about 1 MHz, yielding an
additional noise suppression of 12 dB in the measurement
band around 100 kHz. As a result, technical laser noise did not
influence the membrane displacement measurements reported
here. About 53 mW of the stabilized light did eventually
circulate inside the interferometer. The photoelectric detection
was performed with a single InGaAs photodiode of 500-μm
diameter at the interferometer’s signal port. The membrane
position was piezo controlled such that about 0.55 mW of
light was detected. This light served as a local oscillator for
the sideband fields produced by the membrane’s oscillation
appearing as an amplitude modulation of the local oscillator
beam.

In the following paragraph we derive the Michelson-Sagnac
interferometer’s input-output relation, which is then used to
model the fringe pattern at the signal port, and calibrate the
interferometer’s noise spectral density in m/

√
Hz. Let αin

and αout be the complex amplitudes of the interferometer
input and output fields, respectively, and let rbs (rm) and
tbs (tm) be the amplitude reflectivity and transmissivity of
the interferometer beam splitter (of the membrane); then
the input-normalized output field at the signal port is given
by

αout

αin
= r2

bstm − t2
bstm + rbstbsrm exp (i2φ)

+ tbsrbsrm exp (−i2φ)

= (
r2

bs − t2
bs

)
tm + rbstbsrm2 cos (2φ), (7)

depending on the membrane’s detuning φ = 2π x/λ.
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FIG. 2. (Color online) Comparison of the theoretical fringe
pattern of a Michelson-Sagnac interferometer with measured output
data. The derivative (dashed red line) of the transmitted power serves
as calibration of the interferometer output in Fig. 3.

The input-normalized light power at the photodiode is then
given by

Pout

Pin
=

∣∣∣∣Aout

Ain

∣∣∣∣
2

= c1 + c2 cos (4φ) + c3 cos (2φ), (8)

with constants

c1 = (
r2

bs − t2
bs

)2
t2
m + 2r2

bst
2
bsr

2
m, c2 = 2r2

bst
2
bsr

2
m,

(9)
c3 = 4

(
r2

bs − t2
bs

)
tmrbstbsrm.

The derivative

∂Pout

∂x
= −2c2πPin

λ
sin (4φ) − c3πPin

λ
sin (2φ) (10)

of this fringe equation provides the calibration of the interfer-
ometer output in photoelectric voltage per unit length.

Note that, although the described interferometer can be
thought of as a composition of a Michelson and a Sagnac
mode, their interference provides a distinct fringe pattern. A
pure Sagnac interferometer can be dark at the output only
if tbs = rbs; however, a Michelson-Sagnac interferometer can
have a dark output port even if tbs �= rbs. In the latter case the
Michelson mode needs to be detuned from its own dark fringe
to provide an overall dark fringe [11]. The required differential
phase of the Michelson mode is given by

2φdark = arccos

(
r2

bs − t2
bs

)
trmm

2rbstbsrm
. (11)

Obviously, Eq. (11) is defined only if the unbalancing of the
beam splitter is not too strong. In our experiment the beam
splitter was rather well balanced (rbs/tbs = 0.486/0.514) and
φdark was close to π/4.

Figure 2 shows a measured fringe pattern of the Michelson-
Sagnac interferometer (bold, green line). For the calibration of
the x axis we fitted a second-order polynomial function to
the response function of the piezo that drove the membrane
along the optical axis. The different heights of neighboring
maxima are due to the slight unbalancing of the interferometer
beam splitter. For comparison the theoretical fringe pattern
according to Eq. (8) is also given. The dashed curve in Fig. 2
shows its derivative according to Eq. (10). It was used for the
absolute calibration of the interferometer’s sensitivity. For a
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FIG. 3. (Color) Measured (green) and modeled (yellow) noise
spectrum of the Michelson-Sagnac laser interferometer containing
a SiNx membrane at room temperature. The total readout noise
(imprecision) has a level of slightly above 3 × 10−16 m/

√
Hz and

is given by the sum of electronic dark noise and shot noise. It lies
well below the peak value of the SQL of 2 × 10−15 m/

√
Hz at the

membrane’s resonance frequency fm. For our modeling we assumed
all noise sources to be uncorrelated.

fixed input power, the fringe pattern and the dc output power
directly provide the (dc) membrane position, i.e., the operating
point of the interferometer, and the corresponding fringe
derivative. The measured power spectrum of the high-pass
filtered photocurrent was first divided by the independently
measured ac gain of the photodiode electronics and by the
resolution bandwidth of the measurement in order to obtain the
power spectral density of the photoelectric voltage in V2/Hz.
The result was then converted into a linear spectral density by
taking the square root. Finally the calibration from Fig. 2 was
used to convert to a linear displacement noise spectral density.

Figure 3 shows the measured and modeled linear noise
spectral densities of the membrane’s displacement inside
the Michelson-Sagnac interferometer. The spectral densities
include technical and quantum noise of the interferometer’s
readout (shot noise) and the room-temperature thermal noise
of the membrane. The shot noise has a spectral density of
2 × 10−16 m/

√
Hz and was derived from a noise measure-

ment of the 0.55-mW output field using the interferometer
calibration described above. It was found in accordance with
Eq. (1) for an intrainterferometer light power of 53 mW.
The thermal noise was calculated following Ref. [12]. Its
absolute values agreed with the independent calibration of
the interferometer’s sensitivity described above. The spectral
density of the membrane’s SQL was calculated according to
Eq. (4). The peak value of the SQL is highlighted as a dashed
horizontal line at a level of 2 × 10−15 m/

√
Hz. At off-resonant

frequencies the measured noise spectral density corresponds
to the readout noise (imprecision) being more than a factor√

40 below the peak of the SQL. The broad peaks around
the membrane resonance were due to beat signals with the
mechanical resonances of the membrane mounting.

To conclude, the Michelson-Sagnac interferometer of the
present work shows a readout noise power spectral density (in
m2/Hz) being a factor of more than 40 (16 dB) below the peak
value of a SiNx membrane’s SQL. This factor is considerably
higher than that achieved in previous works with nanowires,
in which factors of about 1.25 (1 dB) [9] and 2 (3 dB) [10,22]
were achieved, respectively. The absolute calibration of the
interferometer’s sensitivity was based on the measurements of
the absolute light power and its noise at the interferometer’s
signal port. It was found in very good agreement with
the modeled thermal excitation of our room-temperature
membrane. We emphasize that, just like all previous works,
our optomechanical arrangement did not reach its SQL of a
force measurement, leaving this an all-time goal. In order to
reach the SQL at the membrane’s resonance frequency we
don’t need to further reduce the absolute value of the readout
noise, but rather the relative contribution of detector dark noise
has to be lowered. But first of all, the membrane needs to be
cooled to temperatures below h̄�m/2kB ≈ 2.5 μK, with kB

the Boltzmann constant. This rather low temperature is related
to the rather low resonance frequency of the membrane. We
note that the regime of quantum radiation-pressure coupling
should be possible at significantly higher temperatures around
1 K [12]. In principle our interferometer can be enhanced by
adding a mirror to the output port. In this configuration, the
interferometer might enable the demonstration of dissipative
cooling [23]. The same configuration could also be used
to establish a signal-recycling cavity [12,20]. In this case
the quantum readout noise is reduced without increasing the
laser power at the membrane. However, the interferometer’s
broadband signal bandwidth would be reduced down to the
signal-recycling cavity bandwidth. A lowered readout noise in
our setup would certainly be valuable in order to enable the
observation of the membrane’s thermal noise spectrum below
its resonance frequency. This might allow the identification of
the underlaying loss channel in this kind of high-Q oscillator,
giving insight in solid-state physics.
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