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Abstract: We address in this paper the issue of renormalizability for SU (2) Tensorial
Group Field Theories (TGFT) with geometric Boulatov-type conditions in three dimen-
sions. We prove that interactions up to ¢°®-tensorial type are just renormalizable without
any anomaly. Our new models define the renormalizable TGFT version of the Boulatov
model and provide therefore a new approach to quantum gravity in three dimensions.
Among the many new technical results established in this paper are a general classifi-
cation of just renormalizable models with gauge invariance condition, and in particular
concerning properties of melonic graphs, the second order expansion of melonic two
point subgraphs needed for wave-function renormalization.

Introduction

Tensorial group field theories (TGFTs) [1-4] are promising candidates for a background
independent formulation of quantum gravity. They represent the convergence of devel-
opments in loop quantum gravity [5—7], in its covariant, simplicial implementation in
terms of spin foam models [12, 13], and of the extension of the formalism of matrix mod-
els for 2d gravity [8—11] to higher dimensions. Group field theories (GFTs) [1-3] can be
seen as a second quantization of loop quantum gravity, adapted to a discrete setting, such
that spin networks (the quantum states of geometry in LQG) are created/annihilated with
their interaction processes being assigned a Feynman amplitude which corresponds to the
definition of a spin foam model. Accordingly, the data labeling field, states and histories
(Feynman diagrams) of GFTs are group elements, Lie algebra elements or group repre-
sentations. These data are very useful to extract geometric content from GFT structures,
beside their combinatorial aspects and to characterize better their quantum dynamics. In
this context promising models for 4d quantum gravity have been developed, e.g., [14—
18]. These are models based on the group manifold SU (2) or SO (3, 1), constructed
by imposing additional “simplicity”conditions, motivated by simplicial geometry and
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classical continuum gravity, onto GFT models describing topological BF theory, already
characterized by a gauge invariance condition imposed on the GFT fields.

The Feynman diagrams of GFTs are cellular complexes, and the perturbative GFT
dynamics is defined by the sum over them, in principle extended to include arbitrary
topologies. Recently, work on (colored) tensor models [19-23], generalizing matrix
models to define a perturbative sum over cellular complexes of arbitrary dimension,
have led to a detailed understanding of the combinatorial features, statistical properties
and universality aspects of such sums. The progress has been remarkable, leading for
example to: (1) the definition of a large-N expansion [24—-26] (where N is the size of the
tensor index set), and the identification of the dominant configurations in this expansion,
which turn out to be special types of spherical complexes called “melons”; (2) the proof
that random un-symmetric rank-d tensors have natural polynomial interactions based
on U(N)® invariance.! The incorporation of these key insights, coming from simpler
tensor models, into the GFT formalism defines what we call fensorial group field theories
possessing the richer pre-geometric content suggested by loop quantum gravity and spin
foam models, added to the solid mathematical backbone of tensor models.

All these approaches define a fundamental quantum dynamics for degrees of freedom
which are discrete, characterized by algebraic and combinatorial data only, thus pre-
geometric. The key open issue is to extract from this the microscopic quantum dynamics
and effective continuous limit of spacetime and geometry, with an effective dynamics
that has to be related to (some modified form of) General Relativity. This transition to a
continuum, geometric description has been dubbed “geometrogenesis”, and suggested
to be associated to one or several phase transitions of the underlying quantum gravity
system, with the further suggestion that the relevant phase corresponds to a condensate
of the microscopic degrees of freedom [4,29,30]. This picture is even partially realized
in [31]. The problem can be approached in purely statistical terms in tensor models
[32-34], but the extra data of GFTs allow one to make use of the results of loop quantum
gravity [5—7] to read out continuum physics from specific models.

In fact, as non-trivial quantum field theories, TGFTs offer a very convenient setting
to approach this problem. Effective continuum physics can be looked for in their sym-
metries [35-37], or in collective effects to be extracted, for example, via mean field
techniques [38—40], or encoded in simplified models [41]. The most powerful tool they
offer, however, is the renormalization group. It is indeed the renormalization group
that should govern the flow from the microscopic dynamics of few pre-geometric TGFT
degrees of freedom to their effective macroscopic dynamics, involving an infinite number
of them (modulo, of course, further approximation of the resulting continuum theory).

The study of (perturbative) renormalizability of TGFTs has been one of the main
directions of developments in recent years. This includes important, if preliminary calcu-
lations of radiative corrections in TGFTs with a direct interpretation in terms of quantum
gravity, in both 3d [42] and 4d [43], and various steps in a systematic program [44—57]
whose goal is a complete proof of renormalizability of realistic TGFT models for 4d
quantum gravity, including (or reproducing at some effective level) all the ingredients
and data that seem to be relevant for a proper encoding of quantum geometry. The next
step in the same program would be a full characterization of the renormalization group
flow of the same models, as encoded in the RG equations and in particular their beta
functions. Important results on this second point have been obtained in [51,52], where
asymptotic freedom has been established for some simple TGFT models, but also argued

! There have been also interesting applications to statistical physics, in particular dimers [27] and spin
glasses. [28].
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to be a general feature in the TGFT formalism. Indeed wave function renormalization
seems generically stronger in the tensorial context than in the scalar, vector or matrix
case. This feature would make them prime candidates for a geometrogenesis scenario,
as a quantum gravity analog of quark confinement in QCD. The last step would finally
be a detailed study of their constructive aspects.”

Such systematic renormalization analysis requires first of all a clear definition of
the TGFT models one is working with. As field theories, TGFTs involve a choice of a
propagator and of a class of interactions.

Concerning the kinetic term, the usual quantum gravity TGFT models suggested by
loop quantum gravity are ultralocal with trivial kinetic operators (delta functions or
simple projectors). These seem appropriate from the perspective of simplicial gravity
path integrals, but generally do not allow the definition of renormalization group scales.
It is also true that these models are still highly non-trivial due to specific symmetries
and other conditions imposed on the fields and to the peculiar non-local nature of the
interactions, thus it is possible that they can provide an alternative, less direct definition
of such scales. This possibility however has not been explored yet. Such scales are
instead defined in a very straightforward manner in proper dynamical TGFTs (first
considered, with different motivations, in [62—-64]), characterized by kinetic operators
given by differential operators on the group manifold, such as the Laplace-Beltrami
operator. There are even indications [42] that ultralocal models turn into dynamical
models as soon as radiative corrections are considered, since the kinetic terms with
Laplacian operators are required as counter-terms. For these reasons, we consider these
dynamical models in this paper.

As for the interactions, in usual quantum field theories, these are specified by the
requirement of locality, which in turns translates into the simple identification of field
arguments in the interaction terms entering the action. From this formal perspective,
TGFTs are non-local, in that the field arguments in the interaction terms generically
have a combinatorially non-trivial pattern of convolutions. Indeed, they fall into two
classes, each corresponding to a suggested alternative notion of locality. TGFT models
corresponding to spin foam models and inspired by LQG impose simpliciality of the
interactions, whereby the combinatorics of field convolutions describes the gluing of
(d — 1)-simplices across shared (d — 2)-simplices to form d-simplices. This comes from
the wish to have Feynman diagrams corresponding to simplicial complexes and weighted
by a group-theoretic version of a simplicial gravity path integral. In turn, work on tensor
model universality and on TGFT renormalization has suggested the notion of traciality,
in turn coming from the mentioned U (N )d invariance. We detail this notion in the
following, as we are going to work with interactions incorporating it. Once more, these
two notions of locality and the resulting types of interactions are not disconnected, even
though their exact relation is not yet understood: integration of fields in a path integral
for TGFTs based on simpliciality does in fact result in effective interactions (for the
remaining fields) characterized by U (N )¢ invariance [65]. Moreover, the combinatorics
of such tensor invariant can be represented by polytopes with triangular faces (in turn
obtainable by gluing tetrahedra around common vertices) [65].

The first TGFT models in 3d and 4d were shown to be perturbatively renormalizable
at all orders in [49,51]. These were Abelian models with tensor invariance and Laplacian
kinetic term, with no additional constraints on the fields. The next step was to include

2 Indeed constructibility of TGFTs can be assessed via rigorous constructive analysis in their dilute pertur-
bative phase, through the loop vertex expansion [58,59]. This tool has been already applied to tensor models
[23,60] and has indeed a very general range of applicability as far as field theories are concerned [61].
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gauge invariance, which in turns results in the presence of a discrete gauge connection
at the level of the Feynman amplitudes of the theory. This step was taken in [55] where
an Abelian TGFT model in 4d incorporating such condition was shown to be super-
renormalizable, and a general classification of Abelian models in any dimension in terms
of their divergences was defined. The generalization to gauge invariant TGFTs required
several non-trivial adaptations of standard notions from the renormalization of local
quantum field theories to be achieved. We take advantage of such refined, generalized
notions in this paper. Indeed, we take here a further step towards renormalization of
realistic TGFT models for 4d gravity, and study for the first time the renormalizability
of a non-Abelian TGFT model, specializing to the 3d case and to the group manifold
SU (2). Other just renormalizable models of Abelian type in 5 and 6 dimensions have
been shown renormalizable in [57].

We define the models we work with in Sect. 1. We first discuss generic non-Abelian
models, which include a gauge invariance condition under the diagonal action of SU (2)
on this group manifold, use a Laplacian kinetic term and tensor invariant interactions.
In the same section, we define all the generalized QFT notions that are needed for
the renormalization analysis, e.g. face-connectedness and (quasi-)locality, recalling or
further generalizing the definitions given in [55]. We recall as well, in Sect. 2, the Abelian
power counting of divergences, for arbitrary dimension and Abelian group, obtained in
[55]. We analyze further this divergence structure, as it will be relevant for the non-
Abelian case as well, and use this classification to identify just-renormalizable models
in this category.

In Sect. 3 we introduce the non-Abelian model. It is a model in the same class as the
previous Abelian ones, but based on the group manifold SU(2)3. It is a modification
of the Boulatov model [69] in two key aspects. First the interaction is based on tensor-
invariant colored gluings rather than the initial interaction proposed by Boulatov. Second
it has a Laplacian term which changes the amplitudes. This term has not been given yet a
clear geometric interpretation in terms of discrete gravity actions. Without it, the model
would correspond to a quantization of topological BF theory discretized on a cellular
complex described by gluing generalized polytopes with triangular faces.

We introduce all the relevant interactions and the needed counter-terms, and identify
all the divergent subgraphs.

We perform the renormalization of this model in Sect. 4, via rigorous multi-scale
expansion in the style of [70]. The model turns out to be just-renormalizable (in con-
trast to the super-renormalizability of the Abelian case) up to interactions of degree 6.
The renormalizability analysis involves a number of interesting technical discoveries, in
particular about various properties of melonic graphs. Among them, the structure of ex-
ternal faces of melonic diagrams, their inclusion relations, and the central role shown for
the notion of face-connectedness, in particular concerning the expansion of divergences
around their local contributions.

Finally, in Sect. 5, we prove the finiteness of the renormalized series, that is, we
establish a BPHZ theorem for our TGFT model.

1. TGFT Models with Closure Constraint

In this section, we recall general properties of TGFT’s with closure constraint (gauge
invariance) and Laplacian propagator, as defined in [55]. We then review the main con-
clusions of this first study that are relevant to the present paper. These include a refined
notion of connectedness, hence of quasi-locality, as well as an optimal Abelian power-
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counting. We finally discuss the relevance of this Abelian power-counting in a generic
non-Abelian context.

1.1. Definition and Feynman amplitudes. A generic TGFT is a quantum field theory of a
tensorial field, with entries in a Lie group. In this paper we assume G to be compact, and
the field to be a rank-d> complex function ¢ (g1, . .., g4). The statistics is then defined
by a partition function

Z- / duc(p. @) e 56, (1)

where duc (¢, @) is a Gaussian measure characterized by its covariance C (i.e. propaga-
tor), and S is the interaction part of the action. As in any quantum field theory, possible
interactions are determined by a locality principle, while the definition of the dynamics
(including possible constraints on the degrees of freedom of the fields) is completed by
the propagator C, which generically breaks locality.

GFTs used in the context of loop quantum gravity and spin foam models use a
notion of simpliciality, i.e. the requirement that interaction vertices correspond to d-
simplices, obtained by gluing along sub-faces the (d — 1)-simplices associated to each
field. TGFTs propose a new notion of locality, in the form of tensor invariance, initially
proposed in the realm of tensor models (whence the extra characterization of these GFTs
as ‘tensorial’). It can be thought of as alimitofa U (N Y®4 jnvariance, where N is a cut-off
on representation labels (e.g. spins) in the harmonic expansion of the field. In simpler
terms, tensor invariants are convolutions of a certain number of fields ¢ and ¢ such
that any k-th index of a field ¢ is contracted with a k-th index of a conjugate field @.
They are dual to d-colored graphs, built from two types of nodes and d types of colored
edges: each white (resp. black) dot represents a field ¢ (resp. @), while a contraction of
two indices in position k is associated to an edge with color label k. Connected such
graphs, called d-bubbles, generate the set of connected tensor invariants. See Fig. 1 for
examples in dimension d = 3. We assume that the interaction part of the action is a sum
of such connected invariants

S(0.9) = D tylp(¢. 9), 2)

beB

where B is a finite set of d-bubbles, and I}, is the connected invariant dual to the bubble b.
The Gaussian measure duc implements both the dynamics, through a Laplacian
propagator

d -1
=1

4 condition

and the gauge invariance

VYhe G, @hg,...,hga) =981, ... 84)- 3)

3 Throughout this article, we assume d > 3.

4 We use the term ’ gauge invariance’ in accordance with quantum gravity and lattice gauge theory usage.
It refers to the discrete gauge invariance appearing at the level of the Feynman amplitudes, rather than to a
gauge symmetry of the quantum field theory itself.
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Fig. 1. Examples of three-bubbles

The implications of this condition can be understood in two main ways [1-3,5-7,12, 14—
18]. In full generality, it imposes a gauge invariance of the quantum states of the model,
represented as d-valent graphs labeled by group (or conjugate Lie algebra) elements on
their links and located at the vertices of the same graphs; equivalently [18], it implies
that the d Lie algebra elements associated to the d links incident to one such vertex sum
to zero. The same gauge invariance can be seen at the level of the Feynman amplitudes
of the model, which acquire the form of lattice gauge theory amplitudes. Indeed, the
implementation of this constraint also introduces a notion of discrete gauge connection on
the Feynman diagrams of the TGFT model. For models where a geometric interpretation
of the combinatorial (d — 1)-simplices corresponding to the TGFT fields is possible, the
same requirement implies the ‘closure’ of the d faces of such (d — 1)-simplices to form a
closed boundary hypersurface for them. This condition is therefore a necessary ingredient
for the consistent interpretation of these models as encoding simplicial geometry. The
resulting covariance can be expressed as an integral over a Schwinger parameter « of a
product of heat kernels on G at time «:

/duc(wﬁ)fp(gl,..-,gd)a(g{,-.-,gfz) =C(g1 -, 845 81>+ 8y) “4)
+00 ) d

E/ do e /thKa(gghggl).
0 =1

)

This decomposition of the propagator provides an intrinsic notion of scale, parametrized
by «. Divergences result from the UV region (i.e. « — 0), hence the need to introduce
a cut-off (@ > A), and subsequently to remove it via renormalization.

The perturbative expansion of the theory is captured by Feynman graphs whose
vertices are d-bubbles, and whose propagators are associated to an additional type of
colored edges, of color £ = 0, represented as dashed lines. When seen on the same
footing, these d + 1 types of colored edges form (d + 1)-colored graphs. To a Feynman
graph G, whose elements are d-bubble vertices (V(G)) and color-0 lines (L(G)), is
therefore uniquely associated a (d + 1)-colored graph G, called the colored extension
of G. See Fig. 2 for an example of Feynman graph in d = 3. The connected Schwinger
functions are given by a sum over line-connected Feynman graphs:

1 n
Sy = Z @(H(—fb) b(g))Ag, (6)

G connected, N(G)=N beBB
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Fig. 2. A graph with four vertices, six lines and four external legs in d = 3

where N(G) is the number of external legs of a graph G, ny,(G) its number of vertices
of type b, and s(G) a symmetry factor. The amplitude Ag of G is expressed in terms
of holonomies along its faces, which can be easily defined in the colored extension G,:
a face f of color ¢ is a maximal connected subset of edges of color 0 and €. In G, f
is a set of color-0 lines, from which the holonomies are constructed. We finally use the
following additional notations: a(f) = >, @ is the sum of the Schwinger parameters
appearing in the face f; €.y = &1 or 0 is the adjacency or incidence matrix, encoding
the line content of faces and their relative orientations; the faces are split into closed (F)
and opened ones (Fext); gs(f) and g;(r) denote boundary variables in open faces, with
functions s and  mapping open faces to their “source” and “target” boundary variables.
The amplitude Ag takes the form:

_ —mzw e €ef
Ag=| [] /daee /dhe [T ken [ ]e

ecL(G) fEF(G) ecf
T 1
[T Ker (o | [TR 2 | |- (7
fE€Fex(G) ecf

An important feature of the amplitude of G is a GV9 gauge symmetry:
he > g hegs): ®)

where 7 (e) (resp. s(e)) is the target (resp. source) vertex of an (oriented) edge e, and one
of the two group elements is trivial for open lines. As we have anticipated, it is the gauge
invariance (3) imposed on the TGFT field that is responsible of this gauge invariance
at the level of the Feynman amplitudes, and for their expression (7) as a lattice gauge
theory on G. When G is connected, it is convenient to gauge fix the A variables along a
spanning tree 7 of the graph:

he =1

in the integrand of (7), for every line ¢ € 7. We will use such gauge fixing in the
following.
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1.2. Subgraphs, connectedness and quasi-locality. We collect here a number of defini-
tions and results, firstintroduced in [55], which are key for the analysis of the non-Abelian
model we will perform in the following. Among them, the new notions of subgraph, face-
connectedness, contractiblity, melopoles and traciality already show that TGFTs require
a non-trivial adaptation of standard QFT concepts, in order to unravel the combinatorial
structure of the Feynman diagrams and to study the renormalizability.

Definition 1. A subgraph H of a graph G is a subset of lines of G, hence G has exactly
2L©) subgraphs. H is then completed by first adding the vertices that touch its lines.
The faces closed in G which pass only through lines of H form the set of internal faces
of H. The external faces of H are the maximal open connected pieces of either open or
closed faces of G that pass through lines of H. Finally all the external legs or half-lines
of G \ 'H touching the vertices of H are considered external legs of H.

We denote L(H) and F (H) the set of lines and internal faces of H, and N (H) and
Fext(H) the set of external legs and external faces. When no confusion is possible we
also write L, F etc for the cardinality of the corresponding sets. Moreover, the subgraph
made of the lines /1, .. ., Iy will simply be denoted {/1, ..., Ix}.

Example. InFig.2, H1> = {l1, b} hastwo lines (L (H12) = 2) which touch two vertices,
giving V (H12) = 2. Six additional half-lines are hooked up to these two bubbles, giving
atotal of N (H2) = 6 external legs. Finally, 71, has four faces in total: two of them are
internal, of color 2 and 3 respectively, hence F(H2) = 2; the two others are external
faces of color 1, hence Fex(H12) = 2. Note that the connected pieces of (the colored
extension of) H, which consist of two external legs and a single colored line should
not be considered as external faces.

On top of the usual notion of connectedness of subgraphs, to which we will refer
to as vertex-connectedness in order to avoid any confusion, we will heavily rely on the
similar concept of face-connectedness. While the former focuses on incidence relations
between lines and vertices, the latter puts the emphasis on incidence relations between
lines and faces.

Definition 2. (i) The face-connected components of a subgraph H are defined as the
subsets of lines of the maximal factorized rectangular blocks of its €.y incidence
matrix (with entries in L(H) x F(H)).

(ii) A subgraph 'H is called tace-connected if it has a single face-connected component.

(iii) Let G be a graph. The face-connected subgraphs Hj, ..., Hy C G are said to
be face-disjoint if they form exactly k face-connected components in their union
HiU---UHg.

The notion of face-connectedness is finer than vertex-connectedness, in the sense
that any face-connected subgraph is also vertex-connected. It should also be noted that
with the previous definition, the face-disjoint subgraphs Hi, ..., Hx C G can consist
of strictly less than k face-connected components in G itself. What really matters is that
there exists a subgraph of G into which Hy, . . ., Hy form k face-connected components.

In other words, this is another instance of the importance of the underlying color
structure in TGFT diagrams; it is this color structure that allows to encode fully the
topology of the diagrams and of their dual cellular complexes [66—68].

Examples. In Fig. 2, H12» = {l1, >} and H123 = {l1, [, [3} are both vertex-connected,
while only H 1, is face-connected. H >3 has two face-connected components: {/3} and
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Fig. 4. Contraction of a k-dipole line

{l1,>}. In Fig. 3, H; = {l;} and H, = {l»} are face-disjoint because they are their
own face-connected components in 71 U H, = {/1, [>}. On the other hand, they are not
face-connected components of H 1,3, which is itself face-connected. This illustrates the
subtelty in the definition of face-disjointness we just pointed out.

It is convenient to define elementary operations on TGFT graphs at the level of their
underlying colored graphs. There, dipoles play a central role.

Definition 3. Let G be a graph, and G, its colored extension. For any integer k such that
1 <k <d+1, ak-dipole is a line of G whose image in G, links two nodes n and n
which are connected by exactly k — 1 additional colored lines.

Definition 4. Let G be a graph, and G, its colored extension. The contraction of a k-
dipole dy is an operation in G, that consists in:

(i) deleting the two nodes n and n linked by di, together with the k lines that connect
them;
(ii) reconnecting the resulting d — k + 1 pairs of open legs according to their colors.

We call G./dy the resulting colored graph, and G /dy its pre-image. See Fig. 4.

Definition 5. We call contraction of a subgraph H C G the successive contractions of
all the lines of H. The resulting graph is independent of the order in which the lines of
‘H are contracted, and is noted G /'H.

Proposition 1. Let H be a subgraph of G, and H. its colored extension. The contracted
graph G /'H is obtained by:

(a) deleting all the internal faces of 'H,
(b) replacing all the external faces of H, by single lines of the appropriate color.
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Fig. 5. A melopole with two lines, in d = 3. {/1} and {/,/2}/{l1} are three-dipoles, as illustrated by the
successive contractions of /1 and /o

Contracting a subgraph H C G can heavily modify the connectivity properties of G,
depending on the nature of the dipoles this operation involves.

Proposition 2. (i) For any vertex-connected graph G, if e is a line of G contained in a
d-dipole, then G /e is vertex-connected.

(ii) Forany 1 < q <d — k + 1, there exists a connected graph G and a k-dipole e such
that G /e has exactly q connected components.

The following definition takes this possible loss of connectedness into account, in
order to formulate a notion of quasi-locality adapted to TGFTs with gauge constraint,
which we called traciality.

Definition 6. Let G be a vertex-connected graph, and 'H be one of its face-connected
subgraphs.

(i) If H is a tadpole,® H is contractible if. for any group elements assignment (h),c LH)-

—
Vf e FH), [[he =1 ) = (Ve € L(H), he = 1. ©)

ecf
(ii) In general, H is contractible if it admits a spanning tree T such that H/7T is a

contractible tadpole.
(iii) H is tracial if it is contractible and the contracted graph G/ H is connected.

Finally, we recall the notion of melopole, a special class of tracial tadpole subgraphs
which were responsible for all the divergences in [55].

Definition 7. In a graph G, a melopole is a single-vertex subgraph H (hence H is
made of tadpole lines attached to a single vertex in the ordinary sense), such that
there is at least one ordering (or “Hepp’s sector”) of its k lines as 1, - -- , Iy such
that {ly, ..., L;}/{l1,...,li—1} is a d-dipole for 1 <i < k. See Fig. 5.

Proposition 3. Any face-connected melopole is tracial.

Injust-renormalizable models, a larger class of tracial subgraphs will dominate, which
extend the notion of melopole to an arbitrary number of vertices.

5 In this paper, we call tadpole any graph with a single vertex.
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Fig. 6. Examples of melonic subgraphs in d = 3, with 2, 4 and 6 external legs

Definition 8. In a graph G, a melonic subgraph is a face-connected subgraph H con-
taining at least one maximal tree T such that H/T is a melopole.®

In Fig. 6, we give three simple examples of melonic subgraphs in d = 3, with 2, 4
and 6 external legs respectively.

Proposition 4. Any melonic subgraph is tracial.

1.3. Abelian power-counting. The main general result of [55] is an Abelian power-
counting theorem. Derived in a multi-scale form, it identifies the divergence degree w,
providing a bound on the asymptotic behaviour of the amplitudes when the cut-off A
is removed. As we will show, this bound holds for general group G, not necessarily
Abelian. However, the bound is optimal when the group is Abelian. We call D the
dimension of G.

Definition 9. Let H be a subgraph of G. The degree of divergence of H is defined by
w(H) = —2L(H) + D(F(H) — R(H)), (10)

where R(H) is the rank of the €y incidence matrix of H. H is divergent when w (H) > 0,
and convergent otherwise.

When G is Abelian, the divergences of any graph G are fully captured by its divergent
subgraphs. On the other hand, if G is not Abelian, a twisted degree of divergence is needed
to account for the exact structure of divergences [46—48]. We shall however show that: (a)
the Abelian power-counting still holds as a bound in the non-Abelian case; (b) the degree

6 Remember that the notion of face-connectedness only takes the internal faces into account. The present
definition is chosen so that at least one internal face of G runs through any line of any melonic subgraph. G
itself is considered melonic if it is melonic as a subgraph of itself. This definition will ensure Lemma 3.
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of divergence and its twisted non-Abelian version coincide for contractible subgraphs.
A reasonably detailed proof of these claims will be provided in Sect. 4, in their multi-
scale version, and for the group G = SU(2). But the intuitive reasons behind these
are rather simple. First, thanks to their colored structure, TGFT graphs do not contain
any tadfaces (i.e., faces running several times through the same line), therefore decays
can be successively extracted from the propagators by simple convolutions, in the very
same way as in the Abelian case. Second, in a contractible subgraph H, flat connections
are fully captured by the neighborhood of ., = 1 for any e € L(H), in which case the
Abelianized amplitude is nothing but a saddle point approximation of the full amplitude,
hence correctly capturing its divergences.

2. Abelian Divergence Degree and Just-Renormalizability

2.1. Analysis of the Abelian divergence degree. In this section, we present a detailed
analysis of the degree of divergence [55]

w(H) = —2L + D(F — R). (11)

We consider a face-connected subgraph H C G with V vertices, L lines with d > 3
strands each, F' internal faces, N external legs. R is the rank of the ;¢ incidence matrix,
D is the Lie group dimension, and we denote by vmax the maximal valency of d-bubble
interactions. When F' = 0, face-connectedness imposes L = 1, and one trivially has
w(H) = —2. From now on, we assume F' > 1. Face-connectedness imposes that each
line of H appears in at least one of its internal faces. For 1 < k < vpax/2, nox is the
number of bubbles with valency 2k in G. We are particularly interested in determining
which values of d, D and vy, are likely to support just-renormalizable theories.

Remember that the incidence matrix has entries 0, +1 or —1 since the graphs we
consider have no tadfaces.

Since we are going to make extensive use of contractions of graphs along trees, as
a way to gauge fix the amplitudes,” we first establish the change in divergence degree
under such a contraction.

Lemma 1. Under contraction of a tree T, F and R each do not change so that [F —
RI(H) = [F — RI(H/T).

Proof. That F does not change is easy to show: existing faces can only get shorter under
contraction of a tree line but cannot disappear (this is true also for open faces).

R does not change because of the tree-gauge invariance. This fact can be shown in
very concrete terms. Given a tree 7 with |[7| = T = V — 1 lines we can define the
L x T matrix n; ¢ which has entries 0, +1 or —1 in the following way: for any oriented
line [ = (v, v") we consider the unique path P7(l) in the tree 7 going from vertex v to
v’ and define n; ¢ to be zero if this path does not contain £ and +1 if it does, the sign
taking into account the orientations of the path and of the line £. Remark that ny, = 1
for all £.

Then for each (closed) face f, made of /1, ..., 1), itis easy to check that the induced
loop on 7 made of gluing the paths Pr(l1), ..., Pr(l,), which is contractible, must
take each tree line £ an equal number of times and with opposite signs so that

E(f, ) = Zézﬂ?l,z =0, —ey= —Zélfm,e. (12)
/ /)

7 We use the term gauge fixing in the sense of lattice gauge theory or spin foam models: it is the procedure
by which we eliminate the redundant group variables appearing in the amplitudes.
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Therefore the line ;7 is a combination of the other lines, and the incidence matrix after
contracting £, which has one line less, but one which was a linear combination of the
other ones, maintains the same rank. 0O

We shall consider now a fensorial rosette [50], namely the subgraph /7 obtained
after contraction of a spanning tree; ithas L — (V — 1) lines and a single vertex. The goal
is to gain a better control over its degree of divergence and the various contributions to it.
The key procedure to achieve the goal is to apply k-dipole contractions to the tensorial
rosette, and establish how they affect the divergence degree.

Note that H /7 is not necessarily face-connected, since the contraction of tree lines
affects how faces are connected to one another. Recall also that a line is a k-dipole if it
belongs to exactly (k — 1) faces of length 1.

Under a k-dipole contraction we know that a single line and possibly several faces
disappear, hence the rank of the incidence matrix can either remain the same or go down
by 1 unit. Moreover only the faces of length 1 can eventually disappear; if there exist
such faces the rank must go down by exactly 1, since we delete a column which is not a
combination of the others.

o F>F—(k—-1)andR— R—1,hence F—R—> F—R—(k—2)ifk > 2,
e F— F,andR —~ RorR— R—1,hence F—R—> F—RorF— R — F—R+1
ifk =1.

By definition, a rosette (with external legs) is a melopole if and only if there is an
ordering of its lines such that all contractions are d-dipoles. In that case, we find that
F — R = (d — 2)[L — (V — 1)]. If the rosette is not a melopole, there is at least one
step where F' — R decreases by less than (d — 2), so we expect such a subgraph to be
suppressed with respect to a melopole. However, k-dipole contractions with k < d need
not conserve vertex-connectedness, so we need to refine this argument. To do so, we
write the divergence degree of any rosette in terms of the quantity

p=F—R—({d-2)L, (13)

where L is the number of lines of the rosette. It will be convenient in the following
to consider (vertex)-disjoint unions of rosettes, to which p is extended by linearity.
These disjoint unions of rosettes will simply be called rosettes from now on, and their
single-vertex components will be said to be connected.

Since L = L — V + 1 is the number of lines of any rosette of the graph H, and F — R
does not depend on 7 either, we know that p (/7)) is independent of 7. It is therefore
a function on equivalent classes of rosettes. This way we obtain a nice splitting of w,
between a rosette dependent contribution and additional combinatorial terms capturing
the characteristics of the initial graph:

wH)=D(@d—-2)+[D(d—2)—21L—D(d—2)V+Dp(H/T). (14

The first three terms do not depend on the rank R, and provided that p can be understood,
will give a simple classification of divergences. To establish this central result about the
values of p, one first needs to prove a technical lemma, about 1-dipole contractions.

Lemma 2. Let G be a face-connected rosette (with F(G) > 1), and £ a 1-dipole line in
G. If G/€ has more vacuum connected components than G, then

R(G/0) = R(G) — 1. 5)



594 S. Carrozza, D. Oriti, V. Rivasseau

Proof. As stated before, such a move either lowers R by 1 or leaves it unchanged. We
just have to show that given our hypothesis, we are in the first situation. We first remark
that lines and faces can be oriented in such a way that ¢, = +1 or 0. We can for
instance positively orient lines from white to black nodes, and faces accordingly. With
this convention, we can exploit the colored structure of the graphs in the following way:
for any color 1 < i < d, each line appears in exactly one face of color i. For vacuum
graphs, all these faces are closed and correspond to entries in the €;7 matrix, implying

> ar=1 (16)

f of color i

for any i and any /. Given the hypothesis on G /¢, we know that up to permutations of
lines and columns, €1 takes the form:

M, 0

1[Tey - €410 ---0
0O M,

where M5 is the €y matrix of a vacuum graph, one of the additional vacuum components
created by the contraction of £. M is the ¢y matrix associated to the complement
(possibly several connected components) in G/£. The additional line corresponds to ¢,
and because G is face-connected, it must contain at least a 1 under M, and a 1 above
M. This leaves up to d — 2 additional non-trivial entries in this line above M, denoted
by the variables ¢; = 0 or 1. Let us call i the color of the face associated to the first
column of M,. Non-zero ¢’s are necessarily associated to different colors: call them iy
up to iy—1. This implies that the remaining color, iy, only appears in faces of M, that do
not intersect with £. Calling C y the columns of M3, and Cy, its first column, one has:

Cf1+ Z Cf= Z Cf.

fofcoloriy; f#f f of coloriy

The operation
Cn—>Cp+ Z Cr— Z Cr
fofcoloriy; f#fi f of coloriy

cancels the first column of M», and when operated on the whole matrix does not change
the line £. We conclude that R(G) = rank(M;) + rank(M») +1 = R(G/¢)+ 1. O

The essential property of the quantity p is that it is bounded from above, and is
extremal for melopoles. More precisely we have:

Proposition 5. Let G be a connected rosette.
(i) If G is a vacuum graph, then
pG) =1
and

p(G) =1 < G is a melopole.
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(it) If G is not a vacuum graph, i.e., has external legs, then
p(G) =0

and
p(G) =0 < G is a melopole.

Proof. 1t is easy to see that p is conserved under d-dipole contractions. In particular a
simple computation shows that p(G) = 1 when G is a vacuum melopole, and p(G) = 0
when G is a non-vacuum melopole. We can prove the general bounds and the two
remaining implications in (i) and (ii) by induction on the number of lines L of the rosette

e If L = 1, G can be both vacuum or non-vacuum. In the first situation, G cannot be
anything else than the fundamental melon with two nodes. It has exactly d faces, a
rank R = 1, sothat p(G) = 1. In the second situation, namely when G is non-vacuum,
the number of faces is strictly smaller than d, as at least one strand running through
the single line of G must correspond to an external face. Since on the other hand the
rank is O when F(G) = 0 and 1 otherwise, we see that p(G) < 0, and p(G) = 0
whenever the number of faces is exactly (d — 1). In this case, the unique line of G is
a d-dipole, therefore G is a melopole.

e Let us now assume that L > 2 and that properties (i) and (ii) hold for a number of
lines L’ < L — 1. If G is not face-connected (and therefore non-vacuum), we can
decompose it into face-connected components Gy, . .., G with k > 2. Each of these
components has a number of lines strictly smaller than L, so by induction hypothesis
p(G) = >;p(Gi)) < 0. Moreover, p(G) = 0 if and only if p(G;) = 0 for any i, in
which case G is a melopole since all the G;’s are themselves melopoles. This being
said, we assume from now on that G is face-connected, and pick up a k-dipole line £
inGg (1 <k<d).

Let us first suppose that & > 2. G/£ has L < L — 1 lines in its rosettes, and
(F —R)(G/6) = (F — R)(G) — (k — 2), which implies p(G/£) > p(G) + (d — k) (with
equality if and only if G/¢ is itself a rosette). Moreover, G /¢ is possibly disconnected
and consists in g vertex-connected components with 1 < g < d — k + 1, yielding ¢
connected rosettes (after possible contractions of tree lines). By the induction hypothesis,
we therefore have p(G) < ¢ — (d — k) < 1, and p(G) = 1 if and only if G/¢ consists
of d — k + 1 connected vacuum melopoles, in which case G itself is a vacuum melopole.
Similarly, p(G) = 0 if and only if G/£ consists of d — k vacuum melopoles and 1
non-vacuum melopole, in which case G is a non-vacuum melopole.

Ifk = 1, we either have R(G/¢) = R(G) — 1 or R(G/¢) = R(G), which respectively
imply p(G) < p(G/€) — (d — 1) or p(G) < p(G/€) — (d — 2). The first situation
is strictly analogous to the k > 2 case, therefore the same conclusions follow. In the
second situation, we resort to Lemma 2. Since G has been assumed face-connected, and
L > 2 implies F(G) > 1, the lemma is applicable: G/£ cannot have more vacuum
connected components than G. In particular, if G is non-vacuum, p(G/€) < 0, therefore
0(G) < —(d —2) < 0. Likewise, p(G) < 0 when G is vacuum.

We conclude that the two properties (i) and (ii) are true at rank L. O

Corollary 1. Let H be a vertex-connected subgraph. If H admits a melopole rosette (in
particular, if H is melonic), then all its rosettes are melopoles.

Proof. The quantity p(H/7T) is independent of the particular spanning tree 7 one is
considering. Therefore, if H/7 is a melopole then this holds for any other spanning
tree 7.
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2.2. Just-renormalizable models. We are now in good position to establish a list of
potentially just-renormalizable theories. Indeed, by simply rewriting L and V as

Umax /2 N Umax /2

L:Z%knz,(—z, V:];ngk, (17)

one obtains the following bound on the degree of non-vacuum face-connected subgraphs:

Umax /2
w<D(@d-2) — WN+ > (DM ~2) ~2)k— D (d—2)]nx.
k=1

(18)

Since we also know this inequality to be saturated (by melonic graphs), it yields a
necessary condition for just-renormalizable theories:

2D(d — 2)
= 19
Umax Dd—2)—2 (19)
and in such cases
max/z_1
D(d—2) —2 "
w=—"" (Umax—N) — Z [D(d—2)—(D(d—2)—2)k]ny + Dp.

k=1
(20)

We immediately deduce that only n-point functions with n < v« can diverge, which
is a necessary condition for renormalization. Equation (19) has exactly five non-trivial
solutions (i.e., vmax > 2), which yields five classes of potentially just-renormalizable
interacting theories. Two of them are ¢® models, the three others being of the ¢* type.
A particularly interesting model from a quantum gravity perspective is the ¢° theory
with d = 3 and D = 3, which can incorporate the essential structures of 3d quantum
gravity (model A).8 We will focus on this case in the following sections, but we already
notice that the same methods could as well be applied to any of the four other types
of candidate theories. Table 1 summarizes the essential properties of these would-be
just-renormalizable theories, called of type A up to E.

Models D and E have been studied and shown renormalizable in [57]. Non-vacuum
divergences of models A and B will only have melonic contributions, while models C,
D and E will also include submelonic terms. There could be: up to p = —1 divergent
2-point graphs in model C; up to p = —2 divergent 2-point graphs and p = —1 divergent
4-point graphs in model D; up to p = —2 divergent 2-point graphs in model C. These
require a (presumably simple) refinement of Proposition 5. As for models A and B, we
do not need any further understanding of p.

8 The relevance of the other cases, in particular the four dimensional case C, for quantum gravity is uncertain.
Current (T)GFT models for 4d quantum gravity [1-3,14—18], in fact, are not given by simple field theories on
a group manifold but, due to the simplicity constraints, either by functions on homogeneous spaces (obtained
by the quotient of the Lorentz group SO (3, 1) or the rotation group SO(4) by an SO (3) subgroup) or by
functions on the full group but subject to the condition that only their value on a submanifold of the same is
dynamically relevant. As it stands, therefore, the above analysis does not apply, and a new analysis should be
performed.



Renormalization of a SU (2) 597

Table 1. Classification of potentially just-renormalizable models

Type d D Umax w

A 3 3 6 3—N/2—-2ny —n4+3p
B 3 4 4 4—N—2ny+4p

C 4 2 4 4—N—2nr+2p

D 5 1 6 3—N/2—=2n)—n4+p
E 6 1 4 4—N—-2nr+p

Finally, one also remarks that face-connectedness did not play any role in the deriva-
tion of expression (20). Indeed, it is as well valid for vertex-connected unions of non-
trivial face-connected subgraphs, which as we will see in the last section of this article,
is also relevant to renormalizability.

2.3. Properties of melonic subgraphs. Since they will play a central role in the remain-
der of this paper, we conclude this section by a set of properties verified by melonic
subgraphs, especially non-vacuum ones.

The first thing one can notice is that by mere definition, any line in a melonic subgraph
'H is part of an internal face in F (). This means in particular that £ cannot be split in
two vertex-connected parts connected by a single 1-dipole line e, since the three faces
running through e would then necessarily be external to . In other words:

Lemma 3. Any melonic subgraph H C G is 1-particle irreducible.

From the point of view of renormalization theory, this is already interesting, as 2-point
divergences in particular will not require any further decomposition into 1-particle irre-
ducible components.

We now turn to specific properties of non-vacuum melonic subgraphs. In order to
understand further their possible structures, it is natural to first focus on their rosettes.
The following proposition shows that they cannot be arbitrary melopoles.

Proposition 6. Let H C G be a non-vacuum melonic subgraph. For any spanning tree
T in H, the rosette H/T is face-connected.

Proof. Let T be a spanning tree in H and let us suppose that /7 has k > 2 face-
connected components. In order to find a contradiction, one first remarks that the con-
traction of a tree conserves the number of faces, and even elementary face connections.
That is to say: if /1, € L(H) \ 7 share a face in H, they also share a face in H/7.
Therefore, the lines of L() \ 7 can be split into k subsets, such that each one of them
does not share any face of H with any other. We give a pictorial representation of what
we mean on the left side of Fig. 7, with & = 4. The internal structure of the vertices
is omitted, the four subsets of lines are marked with different symbols, while the tree
lines are left unmarked. The face-connectedness of 7 is ensured by the tree lines, which
must connect together these k subsets. Incidentally, there must be at least one line/ € 7
which is face-connected to two or more of these subsets. In particular,’ we can find two
faces f1 and f> which are face-disconnected in H /7, and two lines /1, [, € H \ 7 such
that: [ € f1 N f>,1; € f1 and [ € f>. See again the left side of Fig. 7, where f; and f>
are explicitly represented as undashed closed loops.

_ Now, call H the subgraph obtained after contraction of all the tree lines but /, i.e.,
H =H/(T \ {I}). H consists of two vertices, connected by / and a certain number n of

9 At this point we rely on F'(7) = @, which holds because 7 is a tree.
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H H

Fig. 7. Simplified representation of a melonic graph H and its contraction H

H H/T

Fig. 8. Last step of a contraction of a spanning tree in a melonic subgraph

lines from L(H) \ 7 (see the right part of Fig. 7 and the left part of Fig. 8). Through /
run at least two faces, f1 and f5. [ is their single connection, since they are disconnected
in H/{l} = /7. This requires the existence of two 1-dipole lines /{ and [} in H \ {/},
through which f and f> respectively run. In Fig. 7 we see that /; = [, but because />
is a tadpole line in H, we must choose lé # I». Otherwise, fi and J> could not close
without being connected in H /7. The colored extension of H /7 can thus be split into
two groups of nodes, connected by n > 2 lines and d colored lines (created by the
contraction of /, see the right part of Fig. 8). It is easy to understand that such a drawing
cannot correspond to a melopole. Indeed, the number of colored lines connecting the
two groups of nodes would need to be at least n(d — 2) + 1.0Henced > n(d —2) +1,

10 A simple way to understand this last point is the following. Suppose there are p colored lines between
the two groups of nodes. If none of the n lines between the two groups of nodes are elementary melons, an
elementary melon can be contracted in one of them, without affecting the n lines nor the p colored lines
between them. If on the contrary one of the n lines is an elementary melon, it can be contracted. This cancels
d — 1 colored lines connecting the two groups of nodes, and replaces it by a single one. Hence n — n — 1
and p — p — (d —2). By induction, one must therefore have p —n(d — 2) > 1, where the 1 on the right side
isdue to the last stepn =1 — n = 0.
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Fig. 9. Contraction of an elementary melon in a 3-colored rosette with n = 2

from which we deduce:
2n —1

d< .
n—1

ey

When n > 3, this is incompatible withd > 3, and n = 2 is also incompatible withd > 4.
If n = 2 and d = 3, a contradiction also arises, thanks to the colors. In the process of
elementary melon contractions, the first of the two lines to become elementary will delete
two colored lines, say with colors 1 and 2, and replace it by a color-3 line. One therefore
obtains two groups of nodes connected by two color-3 lines and a single color-0 line,
which cannot form an elementary melon. See Fig. 9. O

One immediately notices that this proposition also holds for any forest 7 C 'H, that
is any set of lines without loops, be it a spanning tree or not. Indeed, any such F is
included in a spanning tree 7. The contraction of F on the one hand can only increase
the number of face-connected components, and on the other hand the full contraction of
7T leads to a single face-connected components, hence the contraction of F also leads
to a single face-connected component.

We provide an illustration of this result in Fig. 10, representing a melonic graph and
one of its rosettes, which is face-connected.

A more important consequence of this statement is a restriction on the number of
external faces of the rosettes:

Corollary 2. Let H C G be a non-vacuum melonic subgraph. For any spanning tree T
inH, Fext(H/T) = 1.

Proof. Letus prove that any face-connected melopole Hhasa single external face. H /7
beingitself face-connected thanks to the previous proposition, the result will immediately
follow. We proceed by induction on L(#). The elementary melon has d — 1 internal
faces and 1 external face, hence the property holds when L(H) =1.1f L(H) > 2, we
can contract an elementary d-dipole line / in 7. The subgraph {/} has 1 external face, but
itis internal in H, otherwise the latter would not be face-connected. Hence H and 'H /{l}
have the same number of external faces. By the induction hypothesis, H /{l} (which is a
face-connected melopole) has a single external face, and so do H. O

We illustrate this result again in Fig. 10. Such restrictions on the rosettes constrain
the face structure of the initial melonic graphs themselves.

Proposition 7. Let H C G be a non-vacuum melonic subgraph. All the external faces
of H have the same color:
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Fig. 10. A melonic graph (left) and one of its rosettes (right). The latter is face-connected (Proposition 6) and
has a single external face (Corollary 2), represented as a thin line

Proof. Suppose Fexi(H) > 2. Let us choose two distinct external faces f1 and f7,
and show that they are of the same color. We furthermore select a line /; € f1, and a
spanning tree 7 in H such that [} ¢ 7. This is possible thanks to Lemma 3, and this
guarantees that the unique external face of H/7 is fi. This also means that in H, f>
only runs through 7, otherwise it would constitute a second face in H/7. We can in
particular pick aline [, € f> N7 . See Fig. 11 for an example, in which we use the same
simplified representation as before, except that the external faces we are interested in
have open ends. Similarly to the strategy followed in the proof of Proposition 6, define
H =H/(T \ {l2}). As was already explained, H consists of two vertices, connected by
[ and at most one extra line (see Fig. 8, with n = 1). There cannot be just / connecting
these two vertices, because H is 1-particle irreducible, hence there are exactly two such
lines. Call /3 the second of these lines (it is not necessarily possible to choose I3 = [,
see Fig. 11). They must have at least (¢ — 1) internal faces in common, otherwise
H/{l»} = H /T would not be a melopole. They moreover cannot have d internal faces
in common, otherwise H /7 would be vacuum. This means that both appear in external
faces of the same color. One of them is of course f> (which goes through /), and the
second (which goes through [3) is either fi, again f>, or yet another external face. f5 is
excluded because by construction it had no support on H \ 7. Moreover, H must have
exactly two external faces, since only one is deleted when contracting /; and the resulting
rosette /7 has itself a single external face (by Corollary 2). Hence the external face
running through /3 can only be f], and we conclude that it has the same color than f>.
[}

This property is quite useful in practice because it implies a restrictive bound on the
number of external faces of a melonic subgraph in terms of its number of external legs.

Corollary 3. A melonic subgraph with N external legs has at most % external faces.

Proof. In any vertex-connected graph with N external legs, the number of external faces
of a given color is bounded by % O
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Fig. 11. A melonic graph H and its contraction H

Figure 10 provides a good example of a melonic graph having more external faces that
its rosettes: while the rosette on the right side has a single external face (in agreement
with Corollary 2), the graph on the left side has two external faces, and they both have
the same color 3 (in agreement with Proposition 7).

Finally one would like to understand the inclusion and connectivity relations between
all divergent subgraphs of a given non-vacuum graph. This is a very important point to
address in view of the perturbative renormalization of such models, in which divergent
subgraphs are inductively integrated out. As usual, the central notion in this respect
is that of a “Zimmermann” forest, which we will generalize to our situation (where
face-connectedness replaces vertex-connectedness) in Sect. 5. At this stage, we just
elaborate on some properties of melonic subgraphs which will later on help simplifying
the analysis of “Zimmermann” forests of divergent subgraphs.

Proposition 8. Let G be a non-vacuum vertex-connected graph. If H1, Hy C G are two
melonic subgraphs, then:

(i) H1 and H» are line-disjoint, or one is included into the other.
(ii) If H1 U Hy is melonic, then: Hy C Hy or Hy C 'Hj.

Moreover, any Hy, ..., Hy C G melonic are necessarily face-disjoint if their union
Hi U ...UHy is also melonic.

Proof. Let us first focus on (i) and (ii). To this effect, we assume that: (i) H; NHy # @
(and in particular H; and H, are face-connected in their union); (ii) H; and H, are
face-connected in H; U Hjy, and the latter is also melonic. We need to prove that in
these two situations, H; C Hz or H, C Hj. In order to achieve this, we suppose that
both Hy = H1\(H1 N "Hy) and Hy = H\(H1 N Hy) are non-empty, and look for a
contradiction.

Let f] be an arbitrary external face of . Choose aline /| € f1, and a spanning tree
7y in Hy, such that /1 ¢ 7;. Then the unique face of H/7; is fi. We want to argue that
(H1UH2) /Ty = (H1/71) UH; is face-connected. In situation (ii), this is guaranteed by
Proposition 6 (applied to 1 U’H>). In situation (i) on the other hand, one can decompose
it as a disjoint union of subgraphs as follows:

(M1 UH2)/Th = Hi /(T NHy) U (Hy N H2) /(T N Ha) U Ha. (22)
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The key thing to remark is that through each line of H; N H; run at least d — 1 faces
from F(H;), and at least d — 1 from F (H7). Since at most a total of d faces run through
each line (and d > 3), we conclude that each line of H| N H, appears in at least one
face of F'(H1) N F(H>). Therefore (H1 NH) /(71N H>) has at least one face, and is in
particular non-empty. We also know that H /(71 "H1)U(H1NH2) /(T1NH2) = H1 /7T
is face-connected, as well as (H1 N H2)/ (71 N 'H2) U Hy = Ha /(71 N H2). Therefore
(H1U™Hp) /7 is itself face-connected. Finally, since H, # @, this is only possible if an
external face of H; /7 is internal in (H| U Hy)/7;. We conclude that f; is internal to
(H1 U 'H2)/71, hence to H| U Ho.

We have just shown that all the external faces of H; are internal to Hj UH>. Likewise,
all the external faces of H, are internal to | U Hy. Therefore Fexi(H| U Hy) = @,
which implies that 7 U H, = G is vacuum, and contradicts our hypotheses.

We can proceed in a similar way than for (ii) to prove the last statement. Assume
‘Hi1, ..., Hi to be melonic, line-disjoint, and face-connected in their union. The con-
nectedness of H; U - - - U Hj and any of its reduction by a forest implies that all the
external faces of H; are internal in H; U --- U Hy, for any 1 < i < k. Therefore the
latter is vacuum, and this again contradicts the fact that G isnot. O

Example. Figure 15 represents two non-trivial melonic graphs | and H> which are
line-disjoint but face-connected in their union. Accordingly, their union is not melonic,
as can be checked explicitly. 0O

3. The SU(2) Model in Three Dimensions

In this section, the ¢® model based on the group SU (2) of type A in Table 1 is precisely
defined. A detailed proof of its renormalizability will follow in the next two sections.

3.1. Model, regularization and counter-terms. From now on, G = SU(2) and K is
the corresponding heat kernel at time o, which explicitly writes

Ky= D Q2j+ e Uy, (23)
jeN/2

in terms of the characters x ;. We can introduce the cut-off covariance C A

+00 o, 3
Ch (g1, 82, ¢3: &1 85, 85) E/ doe™" /thKa(gzth‘), (24)
A
=1

defined for any A > 0. This allows to define a UV regularized theory, with partition
function

Z) = / dpca(p, @) e 509, (25)

According to our analysis of the Abelian divergence degree, Sp can contain only up
to ¢°® d-bubbles. This gives exactly five possible patterns of contractions (up to color
permutations): one @2 interaction, one ¢* interaction, and three ¢® interactions. They
are represented in Fig. 12.



Renormalization of a SU (2) 603

(6,1) (6,2)

Fig. 12. Possible d-bubble interactions

Among the three types of interactions of order 6, only the first two can constitute
melonic subgraphs. Indeed, an interaction of the type (6, 3) cannot be part of a melonic
subgraph, therefore cannot give any contribution to the renormalization of coupling
constants. Reciprocally, the contraction of a melonic subgraph in a graph built from
vertices of the type (2), (4), (6, 1) and (6, 2) cannot create an effective (6, 3)-vertex.
This is due to the fact that a (6, 3)-bubble is dual to the triangulation of a torus, while
the other four interactions represent spheres, and the topology of d-bubbles is conserved
under contraction of melonic subgraphs [66—68].

Therefore, we can and we shall exclude interactions of the type (6, 3) from S, from
now on. This is a very nice feature of the model, for essentially two reasons. First,
from a discrete geometric perspective, (6, 3) interactions would introduce topological
singularities that would be difficult to interpret in a quantum gravity context, so it is good
that they are not needed for renormalization. Second, contrary to the other interactions,
they are not positive and could therefore induce non-perturbative quantum instabilities.

The 2-point interaction is identical to a mass term, and will therefore be used to
implement the mass renormalization counter-terms. Since the model will also generate
quadratically divergent 2-point functions, we also need to include wave function counter-
terms in Sy . Finally, we require color permutation invariance of the 4- and 6-point
interactions. All in all, this gives

th &
SA=%S4+%SG,1+t61}256,2+CTn11\Sm+CT(;\S¢, (26)

where:

Sa(p, @) = /[dg]ﬁso(gl, 82, 83)9(81, 82, 84)9(8s, 86, 83)9(85, &6, 84)
+ color permutations, 27

Se,1(¢, @) = /[dg]gco(gl, 82, 87)9(81, 82, 89)¢(83, 84, 89)9(83, &4, &3)
x¢ (g5, 86, 88)9 (85, g6, &7) + color permutations, (28)

S6,2(¢, @) = /[dg]ggo(gl, 82, 83)9(81, 82, 84)9(88, 89, 84)9(87, 89, &3)
x¢(87. 85, 86)9 (88, &5, &) + color permutations, (29)
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Su(0.9) = / gl ¢(g1. 82, 83)7(51. 82, 83). (30)

3

Se(9.9) = /[dg]3 (g1, 82, 83) (— > Ae)@(gl, 82, 83)- 31)

=1

Two types of symmetries have to be kept in mind. In (27), we just averaged over
color permutations. This gives a priori six terms for each bubble type, but some of them
are identical. It turns out that for each type of interaction, we have exactly three distinct
bubbles. Similarly, S, is a sum of three term, which we can consider as new bubbles.
With the mass term, we therefore have a total number of 13 different bubbles in the
theory. From now on, B has to be understood in this extended sense. We could as well
work with independent couplings for each bubble b € B, but we decide to consider the
symmetric model only, which seems to us the most relevant situation. However, it is
convenient to work with notations adapted to the more general situations, because this
allows us to write most of the equations in a more condensed fashion. In the following,
we will work with coupling constants t,f for any b € B, which has to be understood as
tj\, té}l, té}z, C T,,‘l\ orC TwA depending on the nature of b.

In (26), we divided each coupling constant by a certain number of permutations
of labels on the external legs of a bubble associated to this coupling. More precisely,
it is the order of the subgroup of the permutations of these labels leaving the labeled
colored graph invariant. Note that a first look at (6, 2) interactions suggests an order
two symmetry, but it is incompatible with any coloring. The role of such rescalings
of the coupling constants is, as usual, to make the symmetry factors appearing in the
perturbative expansions more transparent. The symmetry factor s(G) associated to a
Feynman graph G becomes the number of its automorphisms. All these conventions will
be useful when discussing in detail how divergences can be absorbed into new effective
coupling constants.

Finally, the reader might wonder whether it is appropriate to include the 2-point
function counter-terms in the interaction part of the action, rather than associating flowing
parameters to the covariance itself. This question is particularly pressing for wave-
function counter-terms, since they break the tensorial invariance of the interaction action.
One might worry that the degenerate nature of the covariance could prevent a Laplacian
interaction with no projector from being reabsorbed in a modification of the wave-
function parameter of the covariance. However, it is not difficult to understand that the
situation is identical to that of a non-degenerate covariance. At fixed cut-off, modifying
the covariance is not exactly the same as adding 2-point function counter-terms in the
action, but the two prescriptions coincide in the A — 0 limit. Thus, it is perfectly safe to
work in the second setting. Moreover, this has the main advantage of being compatible
with a fixed slicing of the covariance according to scales, which is the central technical
tool of the work presented in this article.

3.2. List of divergent subgraphs. From the previous sections, and as we will confirm
later on, the Abelian divergence degree of a subgraph H will allow us to classify the
divergences. When H does not contain any wave-function counter-terms, one has:!!

N
o(H)=3— > —2ny —nga+3p(H/T). (32)

11 One also assumes F(H) > 1, as in the previous section.
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Table 2. Classification of non-vacuum divergent graphs for d = D = 3. All of them are melonic

N ny ng P 10}
6 0 0 0 0
4 0 0 0 1
4 0 1 0 0
2 0 0 0 2
2 0 1 0 1
2 0 2 0 0
2 1 0 0 0

We will moreover see in the next section that wave-function counter-terms are neutral
with respect to power-counting arguments. We can therefore extend the definition (32)
of w to arbitrary subgraphs if n; is understood as the number of 2-valent bubbles which
are not of the wave-function counter-term type, and the contraction of a tree is also
understood in a general sense: H /7 is the subgraph obtained by first collapsing all
chains of wave-function counter-terms, and then contracting a tree 7 in the collapsed
graph. Alternatively, w takes the generalized form:

w(H) = —=2(L — W) +3(F — R), (33)

where W is the number of wave-function counter-terms in H. This formula holds also
when F(H) = 0.

Let us focus on non-vacuum connected subgraphs with F > 1, which are the phys-
ically relevant ones. In this case p = 0 for melonic subgraphs and p < —1 otherwise.
Therefore

N

o(H) = -7
if H is not melonic. As a result, divergences are entirely due to melonic subgraphs.
They are in particular tracial, which means their Abelian power-counting is optimal.
We therefore obtain an exact classification of divergent subgraphs, provided in Table 2.
It tells us that 6-point functions have logarithmic divergences, 4-point functions linear
divergences as well as possible logarithmic ones, that will have to be absorbed in the
constants tj\, tél and téz. The full 2-point function will be quadratically divergent,

: A A
generating the constants C7,,* and CT;".

Remark. There are a lot more cases to consider for vacuum divergences, including non-
melonic contributions. However, they are irrelevant to perturbative renormalization.

In light of Corollary 3, we also notice that 2-point divergent subgraphs, hence all
degree two subgraphs, have a single external face. This is a useful point to keep in mind
as far as wave-function renormalization is concerned. As for 4- and 6-point divergent
subgraphs, they have at most 2 and 3 external faces respectively. It is also not difficult
to find examples saturating these two bounds, as shown in Fig. 13a, b.

4. Multi-scale Expansion

In this section, we use a multi-scale expansion [70] to prove the claimed results concern-
ing the applicability of the Abelian power-counting in the SU(2) case. We then show
that divergent high subgraphs generate local counter-terms for the 2-, 4-, and 6-point
functions, supplemented by finite remainders.
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(a) w=1 (b) w =0

Fig. 13. Divergent subgraphs with respectively 2 and 3 external faces

4.1. Multi-scale expansion. The multi-scale expansion relies on a slicing of the prop-
agator in the Schwinger parameter o, according to a geometric progression. We fix an
arbitrary constant M > 1 and for any integer i > 0, we define the slice of covariance C;
as:

3
+00 o,
co(gl,gz,gg;ga,gg,g§)=/ dae " /thKa(gehgz'x (34)
1
=1
M—26=D 2 3
dae o™ /thKa(gghgg').

Vi>1, Ci(gi, 8 83 81, &5 85) =/
=1

M2
(35)

In order to be compatible with the slicing, we choose a UV regulator of the form A =
M2 _In this context, we will use the simpler notation C* for C¥ o [see 24)]:

CP = Z Ci. (36)

O<i<p

We can then decompose the amplitudes themselves, according to scale attributions p© =
{i.} where i, are integers associated to each line, determining the slice attribution of its
propagator. The full amplitude .Ag of G is then reconstructed from the sliced amplitudes
Ag,,. by simply summing over the scale attribution

Ag = ZAW. (37

I
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The idea of the multi-scale analysis is then to bound sliced propagators, and deduce an
optimized bound for each Ag , separately. To this effect, we first need to capture the
peakedness properties of the propagators into Gaussian bounds. They can be deduced
from a general fact about heat kernels on curved manifolds: at small times, they look just
the same as their flat counterparts, and can therefore be bounded by suitable Gaussian
functions. In the case of SU(2), let us denote | X| the norm of a Lie algebra element
X € su(2), and |g| the geodesic distance between a Lie group element g € SU(2) and
the identity 1. We can prove the following bounds on K, and its derivatives.

Lemma 4. There exists a set of constants § > 0 and K,, > 0, such that for anyn € N
the following holds:

Va €10,1], Vg e SU(2),
i _slgl?
VX €su), [XI =1, |(Lx)"Ka(@)| < Ky~ 3 e (38)
Proof. See the Appendix. O

As a consequence, the divergences associated to the propagators and their derivatives
can be captured in the following bounds.

Proposition 9. There exist constants K > 0 and § > 0O, such that for all i € N:

. i 3 ’-
Ci(g1, 82, 83 81, 85, 85) < KM7’/dh ¢ OM Ltz lgehgy !l (39)

Moreover, for any integer k > 1, there exists a constant Ky, such that for any i € N, any
choices of colors £, and Lie algebra elements X, € su(2) of unit norms (1 < p < k):

. _ i 3 -1
[1£x,e, | Citar. 22, 83 81, 85, 85) < KM”*")’/dhe M i leeher’l,

(40)
where £Xp,g(p is the Lie derivative with respect to the variable g, in direction X p. 12

Proof. Fori > 1, the previous lemma immediately shows that:

M0 —*Zz 1|£’£hg P2
Ci(g1, 82, 83; 81, 82, 83) < Kl/ / 7 E— (42)
< K1M72(i71)(M2i)9/2/dh e IMTE T |g4hg2]|2(43)
< KM7i/dh oM P2 Igehgfg‘h (44)

for some strictly positive constants K1, 81, K and §. And similarly for Lie derivatives
of C i

12 We define the Lie derivative of a function f as:

d
Lxf(g) = af(getx)\z:o- 1)
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When i = 0, equations (148), (163) and (169), together with the fact that m # 0
allow to bound the integrand of Cyp by an integrable function of a € [1, +oco]. Cyp is
therefore bounded from above by a constant, and due to the compact nature of SU (2)
we can immediately deduce a bound of the form

_ 3 /-1
Co(g1, 82, 83: 81, 8, &5) < K/dhe 82t lgehgrl, (45)

Again, the same idea allows us to prove a similar bound on the Lie derivatives of Co,
which concludes the proof. 0O

Before stating the multi-scale power-counting theorem, we need an additional tech-
nical tool: the Gallavotti—Nicolo tree. It is the abstract tree encoding the inclusion order
of high subgraphs of a connected graph G.

Definition 10. Let G be a connected graph, with scale attribution .

(i) Given a subgraph H € G, one defines internal and external scales:

in(w) = inf d.(u), ex(u) = sup i.(u), (46)
ecL(H) ¢€Nex (H)

where Nexi(H) are the external legs of H which are hooked to external faces.

(ii) A high subgraph of (G, u) is a connected subgraph H C G such that er (1) <
i (). We label them as follows. For any i, G; is defined as the set of lines of G with
scales higher or equal to i. We call k(i) its number of face-connected components,
and {g}")u < k < k(i)} its face-connected components. The subgraphs gl.(") are
exactly the high subgraphs.

(iii) Two high subgraphs are either included into another or line-disjoint, therefore the
inclusion relations of the subgraphs Qi(k) can be represented as an abstract graph,
whose root is the whole graph G. This is the Gallavotti—Nicolo tree or simply GN
tree.

We can now extend the multi-scale power-counting of [55] to our non-Abelian model.

Proposition 10. There exists a constant K > 0, such that for any connected graph G
with scale attribution u, the following bound holds:

(k)
Agul < KEOTT [ M9, (47)
ieNke[1,k()]

where w is the Abelian degree of divergence

w(R) = =2(L(H) — W(H)) + 3(F(H) — R(H)). (48)
Proof. Let us first assume W(G) = 0. In this case, we follow and adapt the proof of
Abelian power-counting of [55], about which we refer for additional details. We first

integrate the g variables in an optimal way, as was done in [49]. In each face f, a maximal
tree of lines 7'y is chosen to perform g integrations. Optimality is ensured by requiring
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the trees T's to be compatible with the abstract GN tree, in the sense that 7y N G;k) has
to be a tree itself, for any f and Glgk). This yields:

Ag ul < K L@ H H M2LGIWFGD) (49)
ieNke[[1,k@)]
iNOTT plef
y / [an)H@ [T emom T (50)
/

where i (f) = min{i.|le € f}.

The main difference with [55] is that variables are non-commuting, which prevents
us from easily integrating out these variables. We can however rely on the methods
developed in [46—48], which provide an exact power-counting theorem for BF spin
foam models. In particular, one can show that for any 2-complex with E edges and F
faces, the expression

[t exp (- 31T & 51)
foeef

—rk sl

scales as A~ "¢ when A — 0. 8(}) is the twisted boundary map associated to a (non-

singular) flat connection ¢,'> which takes the non-commutativity of the group into
account. Remarkably, this boundary map verifies:

rk 8, > 3rk ey (54)

As a result, the contribution of the closed face of a Qi(k) can be bounded by

(k)
/ [dgel" G exp [~ > T gl | < k(P MmRGT (s5)
feF@G®) €<t

The power-counting (47) is recovered by recursively applying this bound, from the leaves
to the root of the GN tree.

The W(G) # 0 case is an immediate consequence of the W (G) = 0 one. Indeed, one
just needs to understand how the insertion of a wave-function counter-term in a graph
G affects its amplitude .4g. While it adds one line to G, it does not change its number
of faces, nor their connectivity structure, hence the rank R is not modified either. The
line being created is responsible for an additional M ~% factor in the power-counting,
with i its scale. On the other hand, it is acted upon by a Laplace operator, that is two

13 The explicit construction of this map can be found in [46-48]. With the notations of the present paper, it
is defined as

85 E®@su@) - F@su2) (52)
e®X > D e f® Adp g ue,0p)(X) (53)
!

where P (ve, v ) is a path from a reference vertex v, in the edge e to a reference vertex v in the face f.
The adjoint action encodes parallel transport with respect to ¢, and is full rank.
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derivatives, which according to (40) generate an M 2iThe two contributions cancel out,
which shows that wave-function counter-terms are neutral to power-counting. The L
contribution to w has therefore to be compensated by a W term with the opposite sign.

0

Notice that all the steps in the derivation of the bound are optimal, in the sense that we
could find lower bounds with the same structure, except for the last integrations of face
contributions. In this last step we discarded the fine effects of the noncommutative nature
of SU(2), encoded in the rank of § (}, Remark however that no such effect is present for

a contractible g}’” , since the 2-complex formed by its internal faces is simply connected
[46-48]. Indeed, such a subgraph supports a unique flat connection (the trivial one),
which means that the integrand in Eq. (49) can be linearized around s, = 1, showing
the equivalence between Abelian and non-Abelian power-countings in this case. Since
melonic subgraphs are contractible, this confirms our previous claim: the Abelian power-
counting exactly captures the divergences of the set of models studied in this paper.

4.2. Contraction of high melonic subgraphs. We close this section with a discussion of
the key ingredients entering the renormalization of this model, by explaining how local
approximations to high melonic subgraphs are extracted from high slices to lower slices
of the amplitudes. A full account of the renormalization procedure, including rigorous
finiteness results, will be detailed in the next and final section.

Let us consider a non-vacuum graph with scale attribution (G, ), containing a mel-
onic high subgraph M; C G at scale j. For the convenience of the reader, we first
focus on the case Fex((M;) = 1, which encompasses all the 2-point divergent sub-
graphs, therefore all the degree 2 subgraphs. We also first assume that no wave-function
counter-terms is present in M ;.

4.2.1. Divergent subgraphs with a single external face, and no wave-function counter-
terms Since Fexy(M ;) = 1, Next (M) contains two external propagators, labeled by
external variables {g§*',¢ = 1,...,3} and {g{*, ¢ = 1,...,3}, and scales i; < j
and ip < j respectively. We can assume (without loss of generality) that the melonic
subgraph M ; is inserted on a color line of color £ = 1. The amplitude of G, pictured in
Fig. 14, takes the form:

A%fiﬂ@mmgﬂ@?ﬂ%?ﬁ%w@@;@@xm%mﬁﬂ)

ext _ext ext ext)

xCi, (g5, g5, &5 g1, 82, 83)M (g1, 81)Ci, (81, &2 83, 85, 5™, &5
(56)

The idea is then to approximate the value of Ag , by an amplitude associated to the
contracted graph G/M . This can be realized by “moving” one of the two external

propagators towards the other. In practice, we can use the interpolation'

gt =gie G, 1 efo,1] (57)

14 X denotes the Lie algebra element with the smallest norm such that eXe =g,
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Fig. 14. A graph with a high melonic subgraph M ;: in this drawing, the grey bulb labeled M ; represents
the smallest part of the colored extension of M ; which contains all its /ines. The lines labeled by the scales
i1 and iy are the external legs of M

and define:

Ag (1) = / [dge’[dg P [dg PIdg™ P Ag . (g2, g3; &2, &3 (g (85D

ext ext. ~ext ~

xCi, (g7, g5, 85 g1(1), 82, 83)M (g1, 81)Cir (81, &2, &3, 87, 85, 85). (58)

This formula together with a Taylor expansion allows to approximate Ag = Ag(1) by
Ag(0) and its derivatives. The order at which the approximation should be pushed is
determined by the degree of divergence w (M ;) of M ; and the power-counting theorem:
we should use the lowest order ensuring that the remainder in the Taylor expansion has a
convergent power-counting. Roughly speaking each derivative in ¢ decreases the degree
of divergence by 1, therefore the Taylor expansion needs to be performed up to order
w (./\/l j )Z

Ag.u = Ag (D)

3 1« (1 =) M)+
= AQ,M(O) + - E‘A(gs)ﬂ(()) +/0 dt a)(Tj)!Ag’//‘ ! . (59

Before analyzing further the form of each of these terms, we point out a few interesting
properties verified by the function M ;. First, since by definition the variables g; and g;
are boundary variables for a same face (and because the heat-kernel is a central function),
M (g1, &1) can only depend on g;lgl. From now on, we therefore use the notation:

Mi(g1. 81 = M@ g1 (60)
We can then prove the following lemma.
Lemma 5. (i) M is invariant under inversion:
VgeSU®@) . Mg = M;(. (61)
(ii) M is central:
Vg, he SUQ), M,hgh™") = M,;(g). (62)

Proof. We can proceed by induction on the number of lines L of a rosette of M j-
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When L = 1, M ;j can be cast as an integral over a single Schwinger parameter o of
an integrand of the form:

/ dh Ko (37 g1h) (Ka (h))2. 63)

By invariance of the heat kernels and the Haar measure under inversion and conjugation,
the invariance of M ; immediately follows.

Suppose now that L > 2. A rosette of M j can be thought of as an elementary melon

decorated with two melonic insertions of size strictly smaller than L (at least one of
them being non-empty). We therefore have:

Mg = / [dg2d32dgsdgslm® (g5 g2) m™ (g5 g3) / da

X / dh Ko (@ g1h) Ka (37 g2h) Ko (35 g31). 64)

in which we did not specify the integration domain of «, since it does not play any role
here. m® and m® are associated to melonic subgraphs of size strictly smaller than
L, we can therefore assume that they are invariant under conjugation and inversion'.
Using again the invariance of the heat kernels and the Haar measure, we immediately
conclude that M itself is invariant. O

‘We now come back to (59). The degree of divergence being bounded by 2, it contains
terms .A(gk) (0) with k < 2. We now show that Ag , (0) gives mass counter-terms,

A(l) (0) is identically zero, and A(z) (0) implies wave-function counter-terms. This is
stated in the following proposmon

Proposition 11. (i) Ag ,(0) is proportional to the amplitude of the contracted graph
G /M, with the same scale attribution.:

Ag . (0) = (/ dgMj(g)) Ag/M; - (65)
(ii) Due to the symmetries of M j, .A(gl’)u (0) vanishes:
AY) ), (0) =0. (66)

(iii) Ag) M is proportional to an amplitude in which a Laplace operator has been inserted
in place of M ;:

AZ (0) = ( /dgM (@)X, |)

/[dgg] [dge] /[dgext] dg?t] Agﬂ(gz g3 82 83: {82} (25

~ext CX[)

( §1 il(g?XtngXtagg)(ta 81, 82 g3)) Ciz(gl»gz g3 gl agz ag
(67)

15 1f one m@ is an empty melon, then m(i)(g) = 48(g), and is trivially invariant.



Renormalization of a SU (2) 613

Proof. (i) One immediately has:

Ag..(0) = / [dge1P[dge P [dgS™ PIdg™ P Ag (g2, g3; 82, &35 {8 (85D

~ext

XCin(g?X‘,gg’“,ggXt’gl’gz g3)M (gl g1)C,2(g1,g2 23, gl ’gz ’gext)
/[dge] [dge] [dgext] [d~ext]3AgM(g2 g3: 82 g% {ggXt} {~ext})

sext ~ ext )

xCi, (g5, g5, 85 &1, 82, 83)M (g1)Ciy (81, &2. 83, 87, 85,
= (/ dg/\/lj(g)) AG/M; s (68)

where from the first to the second line we made the change of variable g; — g1 g1.
(ii) For A(g} )ﬂ (0), a similar change of variables yields:

A 0) = / [dgeP[dg PIdgd Pl P Ag. . (g2, ¢3: 82, &3: (€5 (85D

(/dg/\/l () Lx,.z Ci (87, 85, &5 ,gl,gz,g3))

xCi, (81, 82, 83, 87", 85, &5°9).

But by invariance of M ;j under inversion, one also has
/dgM,-(g)ﬁxg - —/dgM;(g) Ly, = /dgM,-(g) Ly, =0, (69)

hence .A(l) 0) =0.
(iii) Finally, .A(g )M (0) can be expressed as:

AZ (0) = / [dgeP[dg P 1A Pl P Ag. (g2, ¢3: 82, &3: (€5 (85D

X (/ dg M (g) (Lx,.5)° Ci (g5, g5, g5 g1,g2,ga))

xCiy (81, &2, 83, 87, 85, &5).
We can decompose the operator [ dg M ;(g) (,L'Xg)2 into its diagonal and off-
diagonal parts with respect to an orthonormal basis {tx, k = 1, ..., 3} in su(2).
The off-diagonal part writes

> / dg M;(e) XEX! £ L, (70)
k#l
and can be shown to vanish. Indeed, let us fix k #~ [, and & € SU(2) such that:
k _ vl 1 k
thh*‘ =X thh —Xg. (71)

It follows from the invariance of M ; under conjugation that

/dgMj(g)XiﬁXé =_/dgMj(g)x§x; = /dg/\/lj(g)XgXé =0. (72)
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Hence all off-diagonal terms vanish. One is therefore left with the diagonal ones,
which contribute in the following way:

3
/ dg Mj(g) (Lx)* =D / dg M (g) (X§)*(Ly)*. (73)
k=1

Again, by invariance under conjugation, [ dg M ;(g) (X ’;)2 does not depend on k.
This implies:

3
/ dg M;(g) (Lx,)* = / dg M;(2) (X D (Lq)? (74)
k=1
3
= / dg Mj(g) (X)* D (Ly)? (75)
k=1
1
= (g/dg M (g) (Xg)z) A. (76)
O

4.2.2. Additional external faces and wave-function counter-terms. Let us first say a
word about how the previous results generalize to more external faces, still assuming
the absence of wave-function counter-terms. According to Corollary 3, the only two
possibilities are Fex((M ;) = 2 or Fexe(M ) = 3, and in both cases N > 4. Inciden-
tally, (M) = 0 or 1. Moreover, since all the faces have the same color, we always
have Nex((M ;) = 2Fex (M ;). One defines Ag , (1) by interpolating between the end
variables of the external faces, which consist of Fey (M ) pairs of variables, with one
variable per propagator in Nex¢(M ;). Assuming their color to be 1, for instance, the
amplitude Ag , (¢) can be written as:

~ k y~ext,k ~ k ~ext,k
Ag (1) = / [dghdgt Mdgt™ g 1 g o (gh. g: 35, 25 (620 (354
Fexl(M]
k k k
H Cip (87", g5, 85" gl (1), g5, 5 M (gh. 21D

- k ~ext,k ~extk
i]/((gl,glz‘ L ) (77)
with
tX ko
gy =ghe "7 10,11, (78)

Moreover, we know that under a spanning tree contraction, the external faces of M ; get
disconnected. This means that the function M ; can be factorized as a product

Fexl(Mj)
Midgh. gtn = [T MPek gh. (79)
k=1

such that each ./\/l;k) verifies all the invariances discussed in the previous paragraph.
Thus, the part of the integrand of Ag , (¢) relevant to M is factorized into k terms
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similar to the integrand appearing in the Fex; = 1 case. It is then immediate to conclude
that all the properties which were proven in the previous paragraph hold in general.
Indeed, the Taylor expansions to check are up to order O or 1 at most. The zeroth order
of a product is trivially the product of the zeroth orders. As for the first order, it cancels
out since the derivative of each one of the k terms is 0 at t = 0.

The effect of wave-function counter-terms is even easier to understand. Indeed, they
essentially amount to insertions of Laplace operators. But the heat-kernel at time «
verifies

dK,

AKy = , 80
o= (80)

therefore all the invariances of K, on which the previous demonstrations rely also apply
to AK,.

All in all, the conclusions drawn in the previous paragraph hold for all non-vacuum
high divergent subgraphs M ;.

4.2.3. Notations and finiteness of the remainders. In the remainder of this paper, it will
be convenient to use the following notations for the local part of the Taylor expansions
above:

" *)
MAGL = D 4G 0 (81)
k=0

TM; projects the full amplitude Ag.,,, onto effectively local contributions which take
into account the relevant contributions of the subgraph M ; C G. To confirm that this is
indeed the case, one needs to prove that in the remainder

1 w(Mj)
_ 1-1 7 (@Mj)+1)
Raa, g = | a S Ae o, (82)

the (non-local) part associated to M ; is power-counting convergent. According to (58),
we have:

1 ®(M,)
(1 —)®
Ry Ag = dt ——
M7Gu /0 (M)
x[dg P Ag . (g2, 835 82, &3: (€51 (85D

JOMIC (g7, 85 85 81(1). 82, 83)

/ [dge PIdg g

X(Lx, 110

xMj(g1,80Ch (81, &2, 83, 87, 85 85, (83)
and therefore:
[Ra; Ag
< / ldtﬂ / [dgeP’[d2e P [dgf PIdge P Ag (22, g3 &2, 83: {86} {2E™D)
0 ®(M;)!
X|X g1, 12 Ty, gl(w)“(M C (g, 85 85 210, 82, 83)

xM (g1, 81)Ci, (81, &2, &3, g?’“, g5, g5, (84)
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where )~(g~|_|g| is the unit vector of direction Xg]—]g]. We can now analyze how the
power-counting of expression (84) differs from that of the amplitude (G, ). There are
two competing effects. The first is a loss of convergence due to the w (M ;) +1 derivatives
acting on C;,. According to (40), these contributions can be bounded by an additional
M@MPDIL term . This competes with the second effect, according to which the non-
zero contributions of the integrand are concentrated in the region in which ¢g;"'gy is
close to the identity. More precisely, the fact that M ; contains only scales higher than
j imposes that

X g1, | < KM~/ (85)

where the integrand is relevant. The first line of (84) therefore contributes to the power-
counting with a term bounded by M —(@Mp+1)J - And since by definition j > i1, one
concludes that the degree of divergence of the remainder is bounded by:

(M) +(@M;)+ D —j) < —1. (86)

5. Renormalization at all Orders

We conclude this paper by establishing a BPHZ theorem for the renormalized series.
As in other kinds of field theories, this proof relies on forest formulas, and a careful
separation between its high, divergent, and quasi-local parts from additional useless
finite contributions.

We begin with a (standard) discussion about the compared merits of the renormalized
expansion on the one hand, and the effective expansion on the other hand.

So far we have discussed the renormalization of our model in the spirit of the latter,
where each renormalization step (one for each slice) generates effective local couplings
at lower scales. It perfectly fits Wilson’s conception of renormalization: in this setting,
one starts with a theory with UV cut-off A = M2, and tries to understand the physics
in the IR, whose independence from UV physics is ensured by the separation of scales
with respect to the cut-off. In order to compute physical processes involving external
scales ilr < p, one can integrate out all the fluctuations in the shell iig < i < p,
resulting in an effective theory at scale i[Rr.

Because our model is renormalizable, we know that the main contributions in this
integration are associated to quasi-local divergent subgraphs, therefore the effective the-
ory can be approximated by a local theory of the same form as the bare one. According
to Wilson’s renormalization group treatment, in order to better handle the fact that only
the high parts of divergent subgraphs contribute to this approximation, one should pro-
ceed in individual and iterated steps i — i — 1 instead of integrating out the whole
shell ilr < i < p at once. At each step one can absorb the ultimately divergent con-
tributions (when the cut-off will be subsequently removed) into new effective coupling
constants. This procedure, then, naturally generates one effective coupling constant per
renormalizable interaction and per scale, as opposed to a single renormalized coupling
per interaction in the renormalized expansion. This might look like a severe drawback,
but on the other hand a main advantage is that the finiteness of the effective amplitudes
becomes clear: the Taylor expansions of the previous section together with the finite-
ness of the remainder guarantee that all divergences are tamed. In particular, there is no
problem of overlapping divergences since high subgraphs at a given scale cannot overlap.

If one wants to be able to work with single renormalized couplings in the Lagrangian,
one has to resort to a cruder picture in which the whole renormalization trajectory is
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approximated by a unique integration step from p to ijr. The price to pay is that one has no
way anymore to isolate the high (truly divergent) contributions of divergent subgraphs,
which will result in additional finite contributions to the renormalized amplitudes. These
contributions can build up over scales, explaining the appearance of renormalons, i.e.,
amplitudes which grow as a factorial of the number of vertices. This should be contrasted
with the effective approach, in which amplitudes grow at most exponentially in the
number of vertices.

While they are not a big issue in perturbative expansions at low orders, renormalons
are very problematic in non-perturbative approaches to quantum field theory such as the
constructive program. They may be all the more problematic in TGFTs, if one expects
continuum spacetime physics to show up in a regime dominated by large graphs, and
thus to depend on non-perturbative effects.'® And this seems in turn unavoidable if one
interprets the perturbative expansion we deal with here as an expansion around the "no
spacetime’ vacuum (corresponding to the TGFT Fock vacuum).

A second related drawback of the renormalized expansion is the problem of overlap-
ping divergences. Here again, the effective expansion appears to be very helpful. Not
only overlapping divergences do not show up in this framework, but this also elucidates
their treatment in the renormalized expansion. Indeed, at each step in the trajectory of
the renormalization group, divergences are indexed by disconnected subgraphs. When
one iterates the process, from high to lower scales, one finds that the divergent subgraphs
of a given amplitude Ag , which contribute organize themselves into a forest. This is
obvious once we understood that these graphs are high, and therefore correspond to
nodes of the Gallavotti-Nicolo tree of (G, u). In order to pack all these contributions
into renormalized couplings for the whole trajectory of the renormalized group, it is
therefore necessary to index the counter-terms by all the possible forests of divergent
subgraphs (irrespectively of them being high or not), called Zimmermann’s forests. Seen
from this perspective, it is only when unpacking the renormalized amplitudes by appro-
priately decomposing them over scale attributions that one makes transparent why and
how the Zimmermann’s forest formula cures all divergences. Here again, the situation
in TGFTs with respect to usual QFTs would suggest to resort to the effective expan-
sion: due to the finer notion of connectedness which indexes the divergent subgraphs
(face-connectedness), overlapping divergences are enhanced, the internal structure of
the vertices being an additional source of difficulties. This is for instance manifest in
super-renormalizable examples of the type [55], in which overlapping contributions al-
ready enter the renormalization of tadpoles (leading to the notion of ‘melonic Wick
ordering’).

Despite the two generic drawbacks of the renormalized series, we choose a con-
servative approach in the following, and decide to outline in some details the proof of
finiteness of the usual renormalized amplitudes. We will however start with a sketch of
the recursive definition of the effective coupling constants. Since vertex-connectedness
lies at the core of the Wilsonian effective expansion, we cannot take full advantage of
face-connectedness in this context. This is similar to ordinary quantum field theories,
where 1-particle reducible graphs need to be taken into account in the effective expansion
but can be dispensed with in the renormalized expansion. This is the main motivation for
resorting to the renormalized expansion, where counter-terms are indexed by forests of
divergent subgraphs. We will then decompose the amplitudes over scales and check that
all contributions from high divergent subgraphs are correctly cured by the appropriate

16 Here, we only mean non-perturbative in the sense of the perturbative expansion for small coupling
constants, around the TGFT Fock vacuum, that we considered in this paper.
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counter-terms. We will finally perform the sum over scale attributions, showing why the
result is finite, and how useless counter-terms can build up to form renormalons.

5.1. Effective and renormalized expansions. As briefly explained before, the effective
expansion is a reshuffling of the bare theory (with cut-off A = M%), in terms of
recursively defined effective coupling constants. We therefore start from the connected
Schwinger functions decomposed over scale attributions compatible with the cut-off:

Sy= 2 (g)(H< r")"b@)Ag (87)

G.ulp=p beB

In this formula, the sum runs over connected graphs, and b spans all possible interactions,
including mass and wave-function counter-terms. Starting from the highest scale p, we
want to construct a set of p + 1 effective coupling constants per interaction b, called
tl',o with 0 < i < p. They will be formal power series in the bare coupling constants

tb o = tb, such that tb, is obtained from tb ;+1 by adding to it all the counter-terms

associated to high subgraphs at scale i + 1. In order to make this statement more precise,
it is useful to define i, (G, 1) as the scale of a vertex b in a graph (G, ) as:

ip(G, n) = max{i; (Wl € Lp(9)}, (88)

where L;(G) is the set of lines of G which are hooked to b. We aim at a re-writing of
(87) of the form:

1 eff
- 3 LT o) )
G.ulu<p beB(G)

in which the bare coupling constants have been substituted by effective ones at the scale
of the bubbles making a graph (G, n), and the new effective amplitudes are free of
divergences. Thanks to the multiscale analysis, we know exactly which face-connected
subgraphs are responsible for the divergences of a bare amplitude Ag ,,: they are the high
divergent subgraphs, which is a subset of all the quasi-local subgraphs. Unfortunately,
they cannot play the leading role in the effective expansion: the divergences in a slice
i + 1 must be packaged into vertex-connected components, and reabsorbed in effective
vertices with external propagators at scales lower or equal to i. This condition on
the external scales makes it impossible to act on a face-connected divergent subgraph
independently of what it is vertex-connected to. Our language is therefore not adapted to
the effective expansion. In order to make this point clearer, let us assume for the moment
that the divergent subgraphs, the GN tree and the T contraction operators are defined
on the basis of vertex-connectedness. In this provisional acceptation of the terms, let us
moreover call D, (G), the forest of high divergent subgraphs of (G, ). The effective
amplitudes are then deduced from the bare ones by subtracting the local part of each
high divergent subgraph [70]:

AF = ] a-wAg,. (90)
meD,(G)

Finiteness of Aetfﬂ in the limit of infinite cut-off is then guaranteed. In order to make
this prescription consistent, we need to reabsorb contributions of the form

tmAg ©On
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into the effective coupling constants. This can be made more precise by defining an
inductive version of (89):

1

Sy = G %@ 5) hel;!g)( By sup(i.in (Go0))) Aeff, o
with
.Aeffl — H (1= t)Ag., o
meDi, (G)
and
D!, (G) = {m € Du(Q)lim > i}. o

‘We now proceed to prove (92), by induction on i, which at the same time will provide
the recursive relation for the effective coupling constants. Fori = p, (92) coincides with
the bare expansion (87), and therefore holds true. Assuming that it holds at rank i + 1, let

us then see how to prove it at rank i. The difference between Agflf and AL+
to counter-terms in DL(Q)\ijl(Q) ={M € D, (G)liy =i + 1}, hence:

amounts

Aetft Aeff l+1 Z H (—tm) H (1 - Tm)Ag,u- (95)
sco @\piFlg) MeS meDiF(G)
S#0D
Adding and subtracting this quantity to Aeff’”l in the equation (92) at rank i + 1, one

obtains a new equation which now involves .Aefful (thanks to the term added), together

with a sum over subsets S (due to the term subtracted). In condensed notations, this can
be written as:

| ‘
o o eff,i
Sy= 2 50 [T 5 apinrigm) | AGs (%6)
(G, S).u=p beB(G)
scDL@\DiF(9)
where
Agis=—[Tm I ad-mAg, O
MeS meDiF(G)

when S # () and Aeffﬂl g = Aeffﬂl The elements in a set S being vertex-disjoint, we can

contract them independently, and absorb the terms associated to S # ¢ into effective
coupling constants at scale i.

However, in order to correctly take wave function counter-terms into account, one
needs to slightly generalize the notion of contraction previously defined for strictly
tensorial interactions. While tj; extracts amplitudes of contracted graphs times a pre-
factor when w(M) = 0 or 1, it is rather a sum of two terms when w (M) = 2: a zeroth
order term proportional to a contracted amplitude, and a second order term proportional
to a contracted amplitude supplemented with a Laplacian insertion as in (67). In the
latter case, one shall therefore decompose the operators as sums of two operators
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=1 1) (98)

corresponding to the two types of counter-terms.!” Developing these products, one ends
up with a formula akin to (96), provided that sets S are generalized to

S={(M,ky)|M €S, ky € 10,2}, kg < w(M)}, (99)

and that T operators are replaced by 7, = IIE,][‘M ) for M = (M, kpr). Taking the scale
attributions into account, we are lead to define the collapse ¢;, which sends triplets

G, u, S') with § C DL(Q)\DL“(Q) to its contracted version (G', u’, 9). G’ = g/S’

is the graph obtained after the elements of S have been contracted, understood in a
generalized sense: G/(M, k) is equivalent to G/M when ky; = 0 or 1, and is a graph
in which the 2-point divergent subgraph M has been replace by a Laplace operator if
ky = 2. As for u/, it is simply the restriction of w to lines of G’. The bubbles of G’ are
thought of as new effective interactions, obtained from contractions of vertex-connected
graphs . We can therefore factorize the sum in (96) as:

1

14 P eff,i
Sy = z Z s(G) H (_tb,SUP(iH,ib(g,lL))) Ag,u,ﬁ’ (100)
WG S).nsp beB(G)
6i (G, 9)=(G' .1 .9)
with
Aegffus =—[]cmw [] a-mwAg. (101)
MeS meDiF!(G)

when S # @. In this last equation, one can act first with []; _s(—7y;) on Ag . After
reorganizing all the terms in (100), it is easy to understand how the coupling constants
at scale / must be defined. For instance, assuming that G has no quadratic divergences
to avoid overloaded notations, one notices that (100) reduces to (92) provided that:

[T iy = > (g) [T 4 pirringn)

b'eB(G") (G. 1, 8).n=p beB(G)
$i (G, 9)=(G" .1/ . ¥)

[T a—m []EmAu . (102)

meDi|(G) MeS

(g’)

Exploiting the fact that the symmetry factor of a graph g, s(g), is the number of permu-
tations of its external legs leaving its colored structure invariant, we can write

s@=s@) [] s, (103)
MeDi (H\DiF (G)

It is a consequence of the factorization of the symmetry group associated to G into a
product of: the symmetry group associated to G’, and the symmetry groups associated to
all the subgraphs M inserted in G’. We can therefore readily extract a solution for (102),
in the form of a definition of the effective coupling constants at rank i:

17 Similarly, one defines t)y =t (O) ifo(M)=0or 1.
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1
P _ P P
i = Tl T Z S(H) H iy o)
(M, {M}), u<p b'eB(H)
¢ CHL 1 (M) =(b, 1. )
x [T - ) Aup (104)
meDu.(H)\{M}

This concludes the proof of the existence of the effective expansion when vertex-
connectedness is used to organize the counter-terms. Had we relied on face-connectedness
instead, Eq. (102) would have had coupling constants at scale i + 1 also on the left-hand
side, which would have made the whole scheme inconsistent with definition (88).

By construction, {t,f’ 0 b € B} are interpreted as the bare coupling constants.
Accordingly, the renormalized constants are to be found at the other end of the scale
ladder, namely in the last infrared slice, which corresponds to external legs. This is
compatible with a renormalized coupling being defined as the full amputated function
corresponding to the type of interaction considered. It can be checked that the latter
amounts to set

tlf,ren = tlli—l’ (105)

and we could look for yet another reshuffling of the Schwinger functions, this time as
multi-series in {r} . }.

However, we follow a different strategy for the renormalized expansion, and close the
vertex-connected parenthesis. Divergent graphs and contraction operators are now again
understood in the face-connected sense we advocate in this paper. The natural induction
with respect to scales (104) is not available anymore, but can be partially encapsulated
into the definition of counter-terms according to an induction with respect to the number
of vertices in a diagram. This is nothing but the well-known Bogoliubov induction, which
provides the infinite set of counter-terms to be added to the bare Lagrangian. In our case,
the induction takes the form:

k

cg= > [T A [ e (106)

{g1,....8k} meS i=1

where G is a vertex-connected graph with all its face-connected components m € S
divergent, cg its associated counter-term, and {g1, . . ., g} runs over all possible families
of disjoint vertex-connected divergent subgraphs of G, for which counter-terms {c, } have
been defined at an earlier stage of the induction. Note also that Ay, (¢} is a short-hand
notation for the part of the amplitude associated to m, once the g;’s it contains have
been contracted. Each of these counter-terms will contribute to the renormalization of a
coupling constant (or several when quadratically divergent subgraphs are present). More
precisely, one has:

+00
P _ P beP yn
t) =t} en + Doty )" (107)

n=1
where c? is the sum of all the counter-terms cg at order n of the type b. '8

18 The same subtlety as in the previous discussion occurs for quadratically divergent contributions: one has
to split the counter-terms c¢g into mass and wave-function contributions. We kept this step implicit here in
order to lighten the notations.
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It is then a well-known fact that a (formal) perturbative expansion in these new vari-
ables generates renormalized amplitudes expressed by Zimmermann’s forest formula.
The forests appearing in this formula can be called inclusion forests, since they are sets of
subgraphs F with specific inclusion properties: for any i1, hy € F, either h1 and h, are
line-disjoint, or one is included into the other. In this model, the relevant forests are in-
clusion forests of vertex-connected subgraphs with all their face-connected components
divergent. Since each of the graphs in the forests is acted upon by a product of con-
traction operators (—1,,), one for each face-connected component, and since in addition
face-connectedness is a finer notion than vertex-connectedness, one can actually work
with inclusion forests of face-connected subgraphs. Moreover, one needs to strengthen
their definition by emphasizing face-disjointness rather than line-disjointness. To avoid
any terminology confusion with the usual notion of inclusion forest, we call this new
type of forests strong inclusion forests.

Definition 11. Let H C G be a subgraph. A strong inclusion forest F of 'H is a set of
non-empty and face-connected subgraphs of H, such that:

(i) for any hy, hy € F, either hi and hy are line-disjoint, or one is included into the
other;
(ii) any line-disjoint hy, . .., hy € F are also face-disjoint.

A few remarks are in order. First, a strong inclusion forest F is always an inclusion
forest (condition (i)), hence the nomenclature. Second, it is important to understand
that the Zimmermann forests relevant to our model are strong inclusion forests. To this
effect, notice for instance thatif gy, ..., gr C G appear in a same term of the Bogoliubov
recursion (106) for some intermediate subgraph H C G, then they form k distinct face-
connected components in . The existence of such a subgraph is equivalent to the face-
disjointness of g1, ..., gk. Third, we point out that this strong notion of inclusion forest
was already hinted at in [55], through the specific case of meloforests, which are forests of
face-connected melopoles. In the wider context of the present paper, we modify slightly
this terminology, and call meloforest any strong inclusion forest of melonic subgraphs.
Finally, we simply call divergent forest a strong inclusion forest of divergent subgraphs,
and note Fp(G) the set of divergent forests of a graph G (including the empty forest).
In the SU(2), d = 3 model, divergent forests are also meloforests, but the converse is
not true.

In this language, the renormalized amplitudes are related to the bare ones through:

Ag = > ] )] Ag (108)
FeFp(G)meF

In order to prove the finiteness of the renormalized amplitudes, one should rely on
the refined understanding of the divergences provided by the multi-scale expansion. To
this effect, we will expand Eq. (108) over scales. For fixed scale attribution, contraction
operators acting on high divergent subgraphs will provide a convergent power-counting.
The sum over scales will finally be achieved thanks to an adapted classification of
divergent forests, which is the purpose of the next section.

5.2. Classification of forests. Before discussing the classification in details, we point out
an intriguing property of this model. In light of Proposition 8, we notice that the melonic
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Fig. 15. Two melonic subgraphs | and H> (H, being even divergent) which are face-connected in their
union

subgraphs of a given non-vacuum graph G organize themselves into an inclusion forest.
It would be therefore tempting to conjecture that they also form a strong inclusion forest
(i.e., a meloforest). However, we can actually find examples of overlapping melonic
subgraphs, showing that this is incorrect (see Fig. 15). Still, and again by Proposition
8, we notice that the union of two melonic subgraphs cannot be itself melonic, hence
cannot be divergent. Therefore, if we restrict our attention to divergent forests, we can
actually prove that the previous conjecture hold.

Proposition 12. Let G be a non-vacuum graph. The set of divergent subgraphs of G is a
strong inclusion forest. We denote it D(G).

Proof. Thanks to Proposition 8, we already know that D(G) is an inclusion forest. To
conclude, we need to show that there exists no subset of line-disjoint subgraphs in D(G)
which are not also face-disjoint. If this would not be the case, we could certainly find
line-disjoint subgraphs Hji, ..., Hx € D(G) which are face-connected in their union.
This face-connectedness is necessarily ensured by external faces of the Hy, ..., Hi
which arrange together into internal faces of H; U- - - U’H.. Because their intersection is
empty, this can only be achieved if some vertices of H; U - - - U H; are shared by several
subgraphs Hi, ..., Hy. Let us call pii (1 <i <3,2 < s < 3)the number of vertices
of valency 2i which are shared by exactly s subgraphs Hy. They can be related to the
valency of Hy, ..., Hy and H; U - - - U Hj by the formula:

k 3 3
NHiU---UH) =D NH) = D> 2i)s — Dps;. (109)
j=1 i=1s=2
This just says that when summing all the individual valencies, one needs to subtract

all the contributions of external legs of the connecting vertices, which have been over
counted, in order to find the valency of the full subgraph. If a connecting vertex v is
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connected to exactly s subgraphs Hy, its external legs have been counted exactly s — 1
too many times. Furthermore, the conditions w () > 0 can be summed to yield: 19

k k k
D INH) <6k =4 np(Hj) — 2> na(H,)). (110)

Remarking that Z?:z spy; < ZI;=1 n2; (H;) for all i, we can finally deduce from the
two previous inequalities that:

3 3 3 3
NHiU---UH) <6k—6> > (s —Dpy =2 py—4> ps. (111
s=2

i=1 s=2 s=2

We immediately notice that whenever

3 3
D D s —Dps =k, (112)

i=1s=2

‘H1 U- - - U H is vacuum, which contradicts the hypothesis that G is not. If the previous
inequality is not verified, one has instead

3 3 3
DD s <k+> > py— 1 (113)

i=1 s=2 i=1s=2

In order to understand the meaning of this inequality, let us introduced an abstract graph
G: its nodes are the subgraphs H, ..., Hy and all the vertices shared by more than one
subgraph; two nodes are linked by one line in G if and only if one of them is a subgraph,
and the other a vertex contained in this subgraph. In Eq. (113), on the left-hand side
one finds the number of links in G, and on the right side its number of nodes minus
1. Therefore, when the inequality is saturated G is a tree, and when the inequality is
strict it is not connected. The latter case is contradictory with our hypotheses. As for
when G is a tree, one can find spanning trees 71 C Hy, ..., 7t C Hj such that there
union 7 = 7; U --- U 7y is a spanning tree of H; U - - - U Hy. But in such a situation,
(H1U---UHp)/T = (H1/71) Y- - -U (Hy /i) would be a melopole, contradicting the
fact that H; U - - - U Hj cannot be melonic (see Proposition 8). O

At this stage, we tend to see this result as a curiosity of the specific model we are
considering, and only a detailed study of other just renormalizable models of this type
could confirm it to have a wider validity. What is sure is that it is by no means essential to
the classification of forests. Still, it allows significant simplifications, which we will take
advantage of in the following, in the notations and proofs, since the divergent forests of
G are exactly the subsets of D(G).

Recall that D, (G) denotes the set of truly divergent subgraphs in G for the scale
attribution . It is a divergent forest, as we already knew from the fact that, modulo G
itself, it consists exactly in the subgraphs appearing in the GN tree of (G, ). Furthermore,
we now know it to be a subforest of D(G). We call its complementary part

1,(9) = D(G\Dp(9) (114)

19 The p contributions are all 0 since H7, ..., H}. are non-vacuum and melonic
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the inoffensive part of D(G) at scale u, since it is the set of divergent subgraphs of
G which do not appear in the GN tree of (G, i), and therefore do not contribute to
divergences at this scale.

In this model, where the disjoint decomposition D(G) = 1,(G) U D, (G) involves
three sets which are themselves divergent forests, the classification of forest is as trivial
as saying that choosing a forest in D(G) amounts to choosing a forest in /,,(G) and a
forest in D, (G), namely:

Fp(@) ={FUR|FiI C 1.9, F>» C D)} (115)
We can use this simple fact in the decomposition of Eq. (108) over scale attributions

A =>" > [ mAg., (116)

n FeFp(G) meF

ZZ Z Z H (=tm)AG i (117)

K F1Cl(G) FoCDu(G) meF1UF
We then exchange the first two sums:
Agr= 2 20 Ilewm 20 [lemdge a1y
F1CD(G) plFi1Cl(G) meF F2CDu(G) heFr

We can finally reorganize the contraction operators associated to graphs of D, (G) to
obtain:

AST = D AR (119)
FcD(G)

gr= > Jlw [ 0-mwAgu (120)
M'FCI;L(Q) meF /’lED,L(g)

This way of splitting the contributions of the different forests according to the scales
is in phase with the multi-scale analysis. We shall explain in the next two paragraphs
why Argef‘j_- is convergent. To this effect, we first use the contraction operators indexed
by elements of D, (G) to show that the renormalized power-counting is improved with
respect to the bare one, in such a way that all divergent subgraphs become power-counting
convergent. In a second step, we will explain how these decays can actually be used to
perform the sum over scale attributions.

5.3. Convergent power-counting for renormalized amplitudes. We fix a divergent forest
F € D(G) and a scale attribution p such that 7 C 1,,(G). We want to find a multi-scale
power-counting bound for

[Tm [T 0-mAg.. (121)

meF heD,(G)

Since contraction operators commute, we are free to firstacton Ag . In order to properly
encode the two possible Taylor orders in 2-point divergences, we should reintroduce the
generalized notations m and 17,;, together with a generalized notion of divergent forest

F. Since the argument we are about to make is insensible to such subtleties, and its



626 S. Carrozza, D. Oriti, V. Rivasseau

clarity would be somewhat affected by the heavy notations, we decide instead to assume
that 7 does not contain any quadratically divergent subgraph. It is easily understood that
the action of the product of contraction operators disconnects parts of the amplitudes,
yielding a product of pieces of the integrand integrated on their internal variables. The
exact formula is

[T wnAg. = Agrar [ vin/Aaz@m), (122)
meF meF

where A r(m) = {g C m|g € F}isthesetof descendants of min F,and v, (m/Ax(m))

is the amputated amplitude® of m contracted by its descendants. The power-counting
of each subgraph appearing on the right-hand side of this formula is known, yielding:

(k)
| H (_Tm)AQ,p,l < KL© H H Melon/AF@m)1 (123)
meF meFU{G} (i,k)

As expected, we see that the contraction operators associated to inoffensive forests does
not improve the power-counting, and are in a sense useless.

On the other hand, we have also seen in Sect. 4.2.3, that (1 — 75,) operators effectively
render subgraphs 7 C D, (G) power-counting convergent. We can use this improved
power-counting in each m /A z(m) to prove the following proposition:

Proposition 13. There exists a constant K, such that for any divergent forest F € D(G):
A" | < KL© Z H H M lm/AFm)OT (124)
wlFCl(G) meFU(G) (i,k)
where
' [m/AFm){1 = min{—1, wl(n/Azm) ) (125)
except when m € F and (m/A]:(m))Ek) = m/Ax(m), in which case o'[m/Axr(m)] =
0.

Proof. If m is compatible with F (i.e., F U {m} is also a strong inclusion forest), we
denote by Br(m) the ancestor of m in F U {m}. This notion allows to decompose the
product of useful contraction operators as

[T a-w= [T I a-w. (126)

heD,(G) meFU{G} heDu(9)
B (h=m

When multiplying this expression by [],,c#(—7x), one obtains

] Em ] G=wAgul =] [] (= targ)lAg/arg .l
meF heD,(G) heDu(9)
Br(h=G
<| TT TI = marm) vuim/Azm)) (127)
meF heDu(9)
BJ:(]Z):m

20 We mean by that that the contributions of external faces are discarded.
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We recognize in this formula all the useful contractions associated to high divergent
subgraphs in each m /A z(m), for which the new degree is at most —1, except possibly
for the roots m = m /A nq(m)>' whenm # G.Butbecause the corresponding amplitudes
are amputated, they contribute to the power-counting with a degree 0. O

5.4. Sum over scale attributions. The improved power-counting (124) allows to decom-
pose renormalized amplitudes into fully convergent®> pieces associated to the contracted
subgraphs m /A r(m). We therefore decompose the task of summing over scale attribut-
ions into two steps: we will first recall how this can be performed maintaining a bound in
K" for a fully convergent graph G; we will then explain how this generalizes to arbitrary
renormalized amplitudes, the price to pay being possible factorial growths in n due to
contraction operators associated to the inoffensive forests 1, (G).

Let G be a fully convergent, vertex-connected, and non-vacuum graph. For any face-
connected subgraph H C G such that F(H) # 0, we have seen that

w(H) < —@. (128)

Moreover, w(H) = —2 and N(H) < 10 when F(H) = 0, therefore one can use a
slower decay in —N (H)/5 and write

Agu < KMO T MY G5 (129)
(i,k)
for any scale attribution p. In order to extract a sufficient decay in w from (129), it is

crucial to focus on the scales associated to the vertices of G. Let us therefore introduce
L3 (G) the set of external lines of a bubble b € B(G), and define:

ip(w) = sup i(w), ep(n) = inf (). (130)
leLy(G) leLp(G)

The main interest of these two scales lies in the two following facts: (a) b touches a
high subgraph gl.(") if and only if i < i;(w); (b) moreover, b is an external vertex of

gl.(") if and only if ep () < i < ip(u). Accordingly, and because b touches at most 6
high subgraphs, one can distribute a fraction of the decay in the number of lines of high
subgraphs to the vertices of G:

(k)
[TMNe5 <] I1 M—130, (131)
@.k) k) peBGH) e () <i <ip ()

Exchanging the two products yields the interesting bound:
ip (1) —ep (1)
Ag,u < KL H H M- pU e . (132)
beB(G) (i,k)lep () <i<ip(n)

21 This root can indeed itself be divergent.
22 We call fully convergent a graph whose face-connected subgraphs all have convergent power-counting.
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Finally, we can distribute the decays among all possible pairs of external legs of each
vertex. Since there are at most 6 x 5/2 = 15 such pairs, we get:

liy () =i ()]
Ag, < KM9 ] I1 M~ (133)
beB(G) (LIELy(G)XLy(G)

This bound implies the finiteness of Ag. To see this, we can choose a total ordering of
the lines L(G) = {1, ..., 1)} such that /1 is hooked to an external vertex of G, and
{l1,...,1,)} is connected for any m < L(G). This allows to construct a map j’ on the
indices 2 < j < L(G), such that 1 < j'(j) < j, and:*

il L(G)
lir (=il iy () —i
H H M- < H g 0= G GO1/450 (134)
beB(G) (L.INeLy(G)x Ly (G) j=1

The sum over u = {i,, ..., i1, g} of such a sum is uniformly bounded by a constant to
the power L(G), which proves the following theorem:

Theorem 1. There exists a constant K > 0 such that, for any fully convergent, vertex-
connected, and non-vacuum graph G:

Ag = KM, (135)

We can apply the same reasoning to the general power-counting (124). Let us fix F
a divergent forest. The only difference is that graphs g/Ar(g) do not have any decay
associated to their external legs. One therefore gets one additional scale index to sum
over per element of F. But we can bound them by the maximal scale iyax (10) in @ and
write:

| < KLY 11 2L/ Az )] (136)
w|FCI(G) meFUGY (i.k)
< KM Giman () im0 (137)
imax (1)

where § > 0 and K| > 0 are some constants, and |F| is the cardinal of F. The last
sum over imax (1) can finally be bounded by |.7-'|!K|7" for some constant K > 0. The
final sum on F C D(G) can be absorbed into a redefinition of the constants, since the
number of divergent forests is simply bounded by 2!” ! This concludes the proof of
the BPHZ theorem.

Theorem 2. For any vertex-connected and non-vacuum graph G, the renormalized am-
plitude .Arge“ has a finite limit when the cut-off A is sent to 0. More precisely, there exists
a constant K > 0 such that the following uniform bound holds:

|AZ" < KE9DDG)|! (138)

While this theorem proves the renormalizability of the model, it does not preclude the ex-
istence of renormalons, since the uniform bound we could find is only factorial. However,
we notice that such an unreasonable growth can only exist because of the contractions
operators associated to subforest of /,,(G). On the contrary, if we were to focus on the ef-
fective expansion, where no unnecessary counter-terms enter the definitions, one would
find instead a uniform bound like the one for fully convergent graphs.

23 By convention, one also defines ilj/(l) = —
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Conclusion

Let us summarize the main achievements of this article. We focused our attention on a
particular class of group field theories, named tensorial group field theories which are
characterized by: (a) an infinite set of interactions, labeled by colored bubbles, based on
a tensorial symmetry principle; (b) non-trivial propagators implementing a gauge invari-
ance condition on the fields, supplemented with a Laplace operator which softly breaks
the tensorial invariance of the interaction. The first ingredient is suggested by recent work
on tensor models and characterizes also the effective theory obtained by integrating out
fields in colored group field theories based on simplicial interactions. The gauge invari-
ance condition turns the Feynman amplitudes into lattice gauge theories and is one of the
two main ingredients of group field theories for gravity (the other being, in 4d, the so-
called simplicity constraints). The Laplace operator launches the renormalization group
flow as seems also to be produced by quantum corrections in simpler topological models
with ultralocal propagators. The rank d of the tensors, as well as the dimension D of the
compact group indexing the tensors, were in a first stage kept arbitrary. A detailed analy-
sis of the power-counting of such models allowed to derive stringent restrictions on d and
D in order to achieve renormalizability. In particular, it was shown that only five com-
binations of such parameters can potentially support (interacting) just-renormalizable
models. Among these, only (d, D) = (3, 3) can be directly related to a spacetime the-
ory, namely topological BF theory or 3d quantum gravity, with G the symmetry group
for Lorentzian or Riemannian spaces of dimension d. In particular, the case (4, 6), that
would correspond to the 4d topological BF theory from which one obtains gravitational
models by imposing simplicity constraints, is found to be non-renormalizable. We then
went on to study in detail this particular model, in the Riemannian case G = SU(2).
In order to classify the divergences, proven to be all melonic, we used multi-scale tech-
niques. The tensorial interactions were shown to be renormalizable up to order 6, and
to generate up to quadratically divergent subgraphs. The same multi-scale techniques
could then be used to reabsorb divergences into tensorial effective coupling constants, as
well as wave-function counter-terms, thus defining renormalized amplitudes. Computed
as sums over particular types of Zimmermann forests, they could finally be proven finite
at all orders of perturbation, which is the main result of this paper. Along the way, many
useful technical results could be gathered about melonic subgraphs, which will certainly
be relevant to future works such as B-functions calculations. Additionally, divergent
forests were found to be unexpectedly rigid in their structure, which helped to simplify
some aspects of the proof of renormalizability.

The present study provides a few lessons which in our opinion will have to be kept in
mind in the construction and renormalization analysis of more elaborate models, in par-
ticular models for 4d quantum gravity. First, concerning TGFTSs per se, the message we
would like to convey is that, in order to efficiently index the divergences, the most appro-
priate notion of connectedness is face-connectedness rather than vertex-connectedness.
This is particularly true in models implementing the gauge invariance condition, in which
the amplitudes are functions of holonomies around faces. The natural coarse-graining
procedure in this situation is indeed to erase “high energy” faces rather than internal
lines, and this can be consistently implemented in what we called tracial subgraphs.
Face-connectedness also crucially enters the power-counting theorem of such models,
through the rank of the incidence matrix between faces and lines of a given graph. While
a proof of renormalizability can certainly be achieved with a notion of vertex-connected
high divergent subgraphs only, the face-connected high divergent subgraphs we relied
on in this paper capture the fine structure of the divergences, and henceforth avoid many
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redundancies in the renormalization. This is exemplified by the fact that divergent sub-
graphs in the sense of face-connectedness do not overlap (in non-vacuum graphs), but
rather organize themselves into a strong inclusion forest. Had we worked in the coarser
vertex-connectedness picture, overlapping divergences would have been generic, and re-
dundant counter-terms would have been introduced. An intriguing question to ask, in this
respect, is whether face-connectedness might prove more fundamental in simpler TGFTs
as well, for example in the original model [49], where no connection degrees of freedom
are introduced. On the other hand, we also remarked that the usual vertex-connected
divergent graphs remain at the root of the effective expansion, hence we cannot take full
advantage of face-connectedness in this Wilsonian context. This suggests an interesting
analogy between face-connected graphs in TGFTs and 1-particle irreducible graphs in
ordinary quantum field theory, which deserves further investigation.

Let us now turn to the hard question of the renormalizability of quantum gravity
models in four dimensions. While we do not have any definitive statement to make on
this issue, since, as we explained earlier, the analysis presented here does not immediately
generalize to models involving simplicity constraints, as the latter GFTs, beside the fact
that they are notin the class of models considered in this paper, are also not based on group
manifolds as such, but rather submanifolds of the Lorentz group. Still, it seems to us
that the three dimensional SU (2) model studied in this paper suggests to reconsider and
improve the current spin foam models for quantum gravity in two essential ways, before
attempting any complete study of renormalizability. The first concerns the much debated
nature of scales in such models, and the definition of non-trivial propagators which decay
in the UV. In particular, we think that the results of the present paper suggest that, in
general, semi-classical reasoning interpreting the large-j limit of spin foam models (the
Feynman amplitudes of GFTs) as the IR general relativistic limit should be taken with
care. Indeed, perturbative divergences being associated to the same large-j sector (or
equivalently small Schwinger parameter «), it actually plays the role of the UV in our
TGFT setting. In the Wilsonian point of view, it is therefore only for boundary states
with scales much lower than the cut-off that the theory retains some predictive power.
This points in the direction of large boundary geometries having to be constructed as
collections of many small cells rather than a few big ones. And in practice, this means
that one will have to address the question of approximate effective schemes, in order to
control such regimes with large numbers of particles. An intriguing possibility would be
the occurrence of one or several phase transitions along the renormalization flow. This
scenario might already start to be tested in the three dimensional case, the first step being
the computation of B-functions. In any case, we need to understand how to choose non-
trivial kernels for propagators in four dimensional models. While there are some hints
[42] that the Laplace—Beltrami operator is naturally generated by the quantum dynamics,
when no simplicity constraints are imposed, whether the same is true in the presence of
simplicity constraints is unclear at present. We believe this is the first open question to
address as far as the renormalizabilty of TGFTs for four dimensional quantum gravity is
concerned. The second point which deserves similar attention is the possible interplay
between tensorial invariance and simplicity constraints, as it is not immediately clear
whether the geometric meaning and motivations for such constraints, as well as the
details of their implementation, straightforwardly generalize to bubble interactions. If
these two important questions can be elucidated, one might try to apply the techniques
used in this paper to determine whether four dimensional TGFT models for quantum
gravity with such simplicity constraints are renormalizable or not, and up to which order
of interactions.
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Appendix
A. Heat Kernel

Consider the S3 representation of SU (2), the identity 1 being at the north pole, Hy = S»
being the equator and —1 being the south pole. The north and south open hemispheres
are noted respectively as Hy and Hs.

The heat kernel between two points g and g’ is:

iGeneSin(2j + DY (g'g™H
siny(g'g™")

Ku(g.8)= D @2j+1De : (139)

jeN/2

where ¥ (g) € [0, ] is the class angle of g € SU(2), whichis O at 1 and 7 at —1. Itis
also the sum over Brownian paths in SU(2) from g to g’

Ky(g,8) = /dPa(g, gHlw]

where d P, (g, g')[w] is the Wiener measure over Brownian paths w going from g to g’
in time «.

The northern heat kernel with Dirichlet boundary conditions, called K ({[V Dg, g is
the same integral, but in which the Brownian paths are constrained to lie entirely in Hy,
except possibly their end points g and g’, which are allowed to belong to the closed
hemisphere Hy . Obviously:

KNP(g, g) < Kulg. g) (140)

since there are less paths in the left hand side than in the right hand side.

From the Markovian character of the heat kernel K, we have a convolution equation
for with ¢ € Hy, in terms of the first hitting point g’ where the path visits the equatorial
boundary:

o
Ko(l.g) = / do’ / dg'KN P 1. g Ka-w (8. 9). (141)
0 g'eHy

B. Proof of Heat Kernel Bounds

In order to prove Lemma 4, we first re-express the heat kernel on SU (2) in terms of the
third Jacobi 6-function

+00
03z 1) = 142> & cos(2mnz), (142)
n=1
defined for any (z, 1) € C x R. We note 6 its derivative with respect to z:

+00
05z, 1) = —4m > ne™" sin(2mnz). (143)

n=1
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From Eq. (139), we deduce that:
—e%/4 V(g) ia
Ko(g) = —— o; (522, 12). (144)
47 sinyr(g) 2x 4w

The main interest of this expression is that 63 transforms nicely under the modular group,
and in particular:>*

—1 i7zz2
93(? —) = /=ire o), (145)

Differentiation with respect to z yields:

_ imz2

e ¢ z —1 z —1
0i(z, 1) = —— 05 =, — ) — 2miz63 | =, — , 146
3(z, 1) tJ—_U(3(t t) mz3(t t)) (146)

and allows to express the heat kernel as

w(g)?
e (4m)12iex/* (  (2iy(g) 4im
Kel&) =257 sin ¥ (g) (93( o a)
—iY(g)0s (M, 4&)) . (147)
o o

Using the explicit expressions of 63 and 65, we finally obtain:

Ku(g) = Kg(g)MFa(w(g)), (148)
sin ¥/ (g)
where
_v@?
Kal®) = e0[3/062 ’ (149)
Fulg) = 1+§e—4ﬂ2'12/a (ZCosh (4””;”(@) S (471”5@))) |

(150)

This formula is suitable for investigating the behavior of K, away from —1. In
particular, simple integral bounds on F, allow to prove that:

v(g?

e o ATy (g)
Ka(g)aﬁo a3/2 siny(g)

(151)

uniformly on any compact H such that —1 ¢ H. We shall therefore first study the
behavior of K, and its derivatives on the fixed compact H = {g e SUDQ) Y (g) < 3T”}.
Relying on convolution properties of the heat kernel, we will then extend these results
to all of SU (2).

24 Thisis a consequence of the Poisson summation formula, so one might as well directly use this theorem
instead of introducing 6.
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Bounds on H3,
4

Kg is easy to analyze, as it is nothing but the flat version of K,. The function

v sir‘f’ffé) is analytic on H3r , therefore its contributions to K, and its derivatives
will be uniformly bounded. The non trivial point of the proof consists in proving that Fy
and all its derivatives are also uniformly bounded, by constants independentof « € [0, 1].
By expanding the hyperbolic functions, we can first write:

+00 o0
Fap) = 14 > e 70 0 n, )y, (152)
n=1 p:()
2 (4nn\¥ 16720
apma)= — (2) |1- =2, (153)
2p)! o 2p+ D
We can fix 0 < € < 1, and find a constant K, such that:
2p
e*4ﬂ2n2/()l|a (n,ot)| S Keef‘lnznz(l*é)/ol 2 47T"l . (]54)
P ep)!\ «

This implies the following bounds, for any k € N:

ak toe 2.2 47'[n1ﬂ
1FO W)l < W(l +2K Y eTtmmimaj cosh( )) (155)

o
n=1

When n > 1, we can use the fact that

9% 4m 4rn\F 4r
O cosh (Y < (F) cosn (V) (156)
Ik o o o
and the exponential decay in n?/« to deduce bounds without derivatives. All in all, we
see that for any €, we can find constants K é(k) such that:

+00 4
Fu(§)] < 1+ KO > e 47 1-0/2 cogh (ﬂ) , (157)
n=1 o
+00
FER )] < KPa? S e 4 (1-0/e coqn (4”:‘”) . (158)

n=1

Following [49], let us assume that € < %’, in order to ensure that the function

x > e d1-omi e ooy (47{)(1,0)
o

decreases on [1, +oo[ for any ¢ € [0, %’]. This provides us with the following integral
bound:

+00

26—4(1—5)712;12/0[ cosh (47”“ﬁ) < /+°° e—d—om e (47”“//) dr.
o 1 o

n=1

(159)
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Putting the latter in Gaussian form yields an expression in terms of the error function
2 2
erfe(x) = [[e " dt <e ™

/ e—d(—em’e o cosh(4m“/f)dx
o
1 w2 Jra
_ el /rra [1—e€ v
= —Snm |:erfc (271 o T+ m)
[1—e€ 4
+ erfc (27t - T — M)} (160)

‘//2
T-oa _ 1—€ v N2 _ l—e ¥ 2
_e T |:e @y Geme ln)? | e - ) :| (161)

81l —€
< E i [N e . (162)
81 —¢

The last expression is bounded by a constant independent of & and ¥ € [0, 3 provided
that e < A—l‘, which is an admissible choice. This concludes the proof of the existence of
constants K ® such that:

IFa)] < 1+ KO Va, (163)
IFP @) < KWa'7 (164)
on H}Tn. Using Eq. (148), it is then easy to prove that when « € [0, 1], K, verifies the
same type of bounds as K 2 on H 3, therefore concluding the proof of Lemma 4 on this
subset.
Extension to SU (2)

Suppose that g € SU(2)\ H3z /4. We can use formula (141) and (140) to write:
o
K@= [ 0o [ agKule)Kamate o), (165)
0 g'€Hy

This upper bound involves only heat kernels evaluated in H3, /4. Moreover, K/ ( g’) does
not depend on the particular value of g’ € Hy, the squared distance to 1 of the latter and
of g'~!¢ being bounded from below by a constant ¢ > 0.

From the discussion above, we know that there exists constants §; and K such that:

[ e dilgPle g=bilg T g @)
Ko(g) <K d dor : 166
«(8) = l/g/eﬁ0 8 /0 o3/2 (o —a')3/2 (166)

To take care of the singularities in o’ = 0 and o’ = @, we can decompose the integral
over &’ into two components: from 0 to /2, and from «/2 to «. Each of these integrals
can then be bounded independently, for instance:
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@/2  o=bilg P/ g=bilg " g/ (@—a') @/2  g=dic/a g=dic/a
! /

o < o ————= (167)

0 o’3/2 (o — O5/)3/2 0 o’3/2 (0[/2)3/2

e—Blc/a
2 (168)
We can bound the second integral in the same way, and therefore conclude that:
—8/a e—dlgl*/a

Ka(®) = K—z7 = K—7p3 (169)

for some constants K > 0 and § > 0.

We can proceed in a similar way for the derivatives of K,. We fix k > 1, and a

normalized Lie algebra element X. From (141), we deduce

I(Lx)"Ka(g)] = | /0 do’ /H dg' KNP (L) Kow (87 9 (170)
0

< / do/ / dg' Ko (gL Koo (g 9)] (171)
0 Hy

, o /e*5I|g,|2/0¢/ e*S]\g/*lgP/(afa/)
< Kl /g/GHO dg A da C(/3/2 (CY _ Ol/)(3+k)/2 5 (172)

for some constants K| and §;.

The same method as before allows to show that

edlsl/va

k
[(Lx) Ka ()] < KW’

(173)

for some constants K > 0 and § > 0.
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