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The dissociation/recombination reaction CH4 (+M) ⇔ CH3 + H (+M) is modeled by statistical
unimolecular rate theory completely based on dynamical information using ab initio potentials.
The results are compared with experimental data. Minor discrepancies are removed by fine-tuning
theoretical energy transfer data. The treatment accounts for transitional mode dynamics, adequate
centrifugal barriers, anharmonicity of vibrational densities of states, weak collision and other effects,
thus being “complete” from a theoretical point of view. Equilibrium constants between 300 and
5000 K are expressed as Kc = krec/kdis = exp(52 044 K/T) [10−24.65 (T/300 K)−1.76 + 10−26.38 (T/
300 K)0.67] cm3 molecule−1, high pressure recombination rate constants between 130 and 3000 K as
krec,∞ = 3.34 × 10−10 (T/300 K)0.186 exp(−T/25 200 K) cm3 molecule−1 s−1. Low pressure recom-
bination rate constants for M = Ar are represented by krec,0 = [Ar] 10−26.19 exp[−(T/21.22 K)0.5]
cm6 molecule−2 s−1, for M = N2 by krec,0 = [N2] 10−26.04 exp[−(T/21.91 K)0.5] cm6 molecule−2 s−1

between 100 and 5000 K. Weak collision falloff curves are approximated by asymmetric broadening
factors [J. Troe and V. G. Ushakov, J. Chem. Phys. 135, 054304 (2011)] with center broadening
factors of Fc ≈ 0.262 + [(T − 2950 K)/6100 K]2 for M = Ar. Expressions for other bath gases can
also be obtained. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4717706]

I. INTRODUCTION

The dissociation/recombination reaction

CH4(+M) ⇔ CH3 + H(+M) (1.1)

continues to be chosen as a test system for reaction rate the-
ories. The practical importance of the system needs not to
be emphasized. As a consequence, there is an experimental
database of a certain size, see, e.g., the summaries and eval-
uations in Refs. 1 and 2. However, in spite of the relatively
large number of experimental studies, the database is incom-
plete and the last experimental work published to our knowl-
edge dates back to 2001.3 Particularly scarce are data close
to the limiting low and high pressure ranges which cover a
sufficiently broad part of the falloff curve such that reliable
extrapolations to the limits can be made. In this situation, im-
proved ab initio quantum chemical calculations of intra- and
intermolecular potential energy surfaces are of particular help
to define the properties of the rate constants.4–7 In particu-
lar, the moderate increase of the high pressure recombination
rate constant krec,∞ from values near 3 × 10−10 at 300 K to
3.5 × 10−10 cm3 molecule−1 s−1 at 1500 K could be repro-
duced and the influence on krec,∞ of various calculational ap-
proaches to the potential was demonstrated.4, 5 Calculations
on the CASPT2/aug-cc-pVDZ level of theory apparently were
sufficiently reliable to calculate krec,∞ with “kinetic accuracy.”

Taking advantage of the ab initio potential energy cal-
culations, one may go one step further and employ the re-

a)Author to whom correspondence should be addressed. Electronic mail:
shoff@gwdg.de.

sults for calculations of complete falloff curves of the reac-
tion. This is the aim of the present work, extending the stud-
ies from Refs. 4–7. Different from earlier work,4, 5 we now
calculate classical trajectories for capture of H by CH3. We
then combine the results for the dynamics on the reduced-
dimensionality ab initio potential of the transitional modes
with the contributions from the conserved modes, i.e., we
use the statistical adiabatic channel model/classical trajecto-
ries approach (SACM/CT) outlined in Refs. 8–11. Finally, we
incorporate the results into general expressions for broaden-
ing factors of unimolecular reactions12, 13 and compare the
results with new analytical approximations for the rate con-
stants as proposed in Ref. 14. The described treatment, for
strong collisions, may be considered as approaching a cer-
tain degree of completeness. It treats the transitional mode
dynamics on an intramolecular ab initio potential, accounts
for the radial and anisotropic properties of the potential, ac-
counts for rotational effects and also includes anharmonicity
models for the density of states. By doing this, it goes be-
yond earlier more empirical approaches such as the simplified
SACM modeling of the falloff curves of reaction (1.1) recom-
mended in Ref. 2 on the basis of the analysis from Ref. 15, or
the Rice-Ramsperger-Kassel-Marcus (RRKM)/master equa-
tion modeling from Ref. 16, which both arrived at falloff
curves with different broadening factors than suggested in the
present work, see below.

The modeling of the falloff curves and the limiting low
pressure rate constants for recombination and dissociation,
krec,0 and kdis,0, respectively, generally left the average (total)
energy 〈�E〉 transferred per collision as a fit parameter.
Analyzing experimental values of kdis,0 between 1000 and
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5000 K for M = Ar, e.g., −〈�E〉/hc ≈ 50 (±20) cm−1 was
fitted in Ref. 17 independent of the temperature. Taking into
account that 〈�E〉 is approximately related to the average
energy 〈�Ed〉 transferred per down collision through18 〈�E〉
≈ −〈�Ed〉2/(〈�Ed〉 + FEkT) (with FE being related to the
energy dependence of the density of states, see below), recent
classical trajectory results for 〈�Ed〉 in collisions between
CH4 and M (Refs. 6, 7, 19, and 20) within a factor of about
two agreed with the results from Ref. 17 (the most detailed
work from Ref. 7 led to 〈�Ed〉/hc = 115 cm−1 (T/300 K)0.75

which with21 FE = 1.31 gives −〈�E〉/hc = 99 cm−1 for
T = 2000 K). As there were several relatively uncertain con-
tributions in the analysis of experimental values of kdis,0 from
Ref. 17, see below, this confirms the expectation that 〈�E〉-
values derived from the experiments are accurate within about
a factor of two. The present work allowed us to improve
the analysis of low pressure rate constants and to put the
comparison of theoretical and experimental values of 〈�E〉 or
〈�Ed〉 on a safer basis. In addition to this, we also try to make
predictions for the bath gases M = O2 and H2O not treated in
Ref. 7. Here, we rely on experience obtained in previous
work22 on the reaction H + O2 (+M) → HO2 (+M) with M
= H2O.

II. TRAJECTORY CALCULATIONS FOR
CAPTURE OF H BY CH3

Our calculation of the recombination rate constants
krec for the reaction H + CH3 (+M) → CH4 (+M) closely
follows the SACM/CT methodology elaborated, e.g., in
Ref. 10. We first consider the dynamics of the transitional
modes which, at large H–CH3 distance, correspond to free
rotations of CH3 relative to H and translation of H towards
CH3. The starting conditions for trajectories are randomly
chosen from uniform phase space distributions over the
quantum numbers j, k, and L (for fixed J and E), obeying all
angular momentum constraints (CH3 is approximately repre-
sented by a planar oblate symmetrical top with the rotational
constants B ≈ C and A ≈ B/2 and the quantum numbers j and
k; as the effective bottleneck of the reaction is at large H–CH3

distances, the use of planar CH3 appears fully justified; L
corresponds to the orbital angular momentum, J to the total
angular momentum, and E to the total energy of the system;
zero energy is put at the rovibrational ground state of CH3).
Trajectories are followed until capture or failure of capture
is obtained. Capture is assumed to be achieved when the
H–CH3 distance is smaller than the minimum of the sum of
the radial and centrifugal potential, being of the order of 3 a.u.
More than 104 trajectories were run for each pair (E, J) such
that the resulting capture probability had less than about 2%
statistical error. By determining capture probabilities w(E, J),
for the number of entrance channels of the transitional modes
W0(E, J), the number of open channels of the transitional
modes Wtr(E, J) for recombination is expressed as

Wtr (E, J ) = w(E, J )W0(E, J ). (2.1)

By convoluting Wtr(E, J) with the number of states of the
conserved modes of CH3, the total number of open channels

W(E, J) for recombination finally is given by

W (E, J ) =
∞∑
i=0

Wtr (E − Ei, J ), (2.2)

where E now corresponds to the total energy of the formed
CH4 and the summation goes over all vibrational states Ei of
CH3 taken as conserved modes. Besides capture probabilities
w(E, J) for the complete anisotropic potential, we also calcu-
late capture probabilities wPST(E, J) for a potential omitting
anisotropy such as assumed in phase space theory (PST). The
comparison gives E- and J-specific rigidity factors

frig(E, J ) = w(E, J )/wPST (E, J ). (2.3)

(The molecular parameters used in our calculations are
summarized in the Appendix.) We used two potential en-
ergy surfaces for our calculations. The first was the ab initio
CASPT2 potential in its ADZ and ATZ versions kindly pro-
vided by L. B. Harding,23 as also employed in Refs. 4 and 5.
The potential is characterized by a Morse-type radial potential
along the H–CH3 bond and it has a relatively weak anisotropy.
We also tested a second potential, where the radial part on the
basis of the full-CI ab initio calculations of Ref. 24 was fitted
to a Morse potential and the anisotropy was taken of simple
model character,

V (r, θ ) = D {exp [−2β (r − re)] − 2 exp [−β (r − re)]}
+C exp [−β (r − re)] sin2 (θ − π/2) (2.4)

with a fitted Morse parameter β, the dissociation energy
D, the H–CH3 distance r, and the angle θ between the
H–CH3 line and the CH3 plane (an influence of the addi-
tional azimuthal angle ϕ was also tested but found unim-
portant). For simplicity, we term this potential the “full-CI
Morse potential.” Figure 1 compares the radial parts of the
“full-CI Morse potential” (with the fitted parameters D/hc
= 39 450 cm−1, β = 1.086 a.u.−1 and re = 2.135 a.u.) and
of the CASPT2(ATZ) potential. The agreement between the
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FIG. 1. Radial potential for H–CH3 (points: full-CI ab initio calculations
from Ref. 24; dashed line: Morse fit to the points with D/hc = 39 450 cm−1,
β = 1.086 a.u.−1, and re = 2.135 a.u.; solid line: CASPT2 (ATZ) potential
from Refs. 4, 5, and 23).
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FIG. 2. Capture probabilities wPST(E, J) for isotropic potentials (PST
= phase space theory; points: “full-CI Morse potential” of Eq. (2.4); lines:
CASPT2 (ATZ) potential; results from right to left for J = 60, 40, 20, 10, 5,
and 0).

variants of the radial potential appears quite satisfactory, al-
though the CASPT2(ATZ) potential has the tendency to be
slightly high at r < 2.5 a.u., see later on. The anisotropy
parameter C of Eq. (2.4) was fitted a posteriori in such a
way that the high pressure recombination rate constant krec,∞
from calculations with the CASPT2 potential was reproduced
(the ratio C/D was found to be close to 2.5, see below;
as before,10 we have used the ratio C/D to characterize the
overall anisotropy of the potential with respect to capture
dynamics).

Illustrating the results of our trajectory calculations, we
first show PST capture probabilities wPST(E, J), obtained by
omitting the anisotropy of the potential. Figure 2 compares re-
sults for the CASPT2(ATZ) potential with results for the “full-
CI Morse potential” of Eq. (2.4). With increasing J, the onset
of the curves at the centrifugal barriers E0(J) is slightly shifted
towards larger energies for the CASPT2 potential. Apart from
these minor differences due to slightly different centrifugal
barriers, the results almost agree.

The centrifugal barriers can very well be represented in
the form25

E0(J ) ≈ Cv[J (J + 1)]v (2.5)

with the parameters Cν /hc = 0.142 cm−1 and ν = 1.258 at J
≤ 44 (Cν /hc = 0.109 cm−1 and ν = 1.292 at J > 44) for the
CASPT2(ATZ) potential, while Cν /hc = 0.0972 cm−1 and ν

= 1.291 at J ≤ 46 (Cν /hc = 0.0604 cm−1 and ν = 1.354 at J
> 46) for the “full-CI Morse potential”. Figure 3 illustrates
the quality of Eq. (2.5). One should note that, because of the
small reduced mass of the H + CH3-system, E0(L) and E0(J)
are not identical (replacing J by L in Eq. (2.5), one has Cν /hc
= 0.112 cm−1 and ν = 1.323 at L ≤ 49, and Cν /hc = 0.0241
and ν = 1.519 at L > 49 for the CASPT2(ATZ) potential,
while Cν /hc = 0.0599 cm−1 and ν = 1.389 at J ≤ 52, and
Cν /hc = 0.00505 cm−1 and ν = 1.701 at L > 52 for the “full-
CI Morse potential”). Having the parameters Cν and ν facil-
itates the analysis of rotational contributions to specific rate
constants k(E, J), high pressure, and low pressure rate con-
stants as shown in Secs. III–VII.
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FIG. 3. Centrifugal barriers E0(J) for the CASPT2 (ATZ) potential (upper
lines) and the “full-CI Morse potential” of Eq. (2.4) (lower lines) (solid lines
= numerical results, dashed lines: representation by Eq. (2.5)).

Figure 4 presents capture probabilities w(E, J) for the
complete anisotropic potential. Results for the CASPT2(ATZ)
and the “full-CI Morse potential” are compared. The general
agreement between the two approaches is quite good although
some differences are noted for small J. Apparently in this de-
tail, the model anisotropy of Eq. (2.4) oversimplifies the real
anisotropy (better represented by the CASPT2 potential), al-
though much of this effect later on is averaged out. Figure 5
continues the illustration of our results by showing the rigid-
ity factors of Eq. (2.3) for the CASPT2(ATZ) potential, i.e.,
by combining Figs. 2 and 4. The values for all J with increas-
ing E approach a common curve, which slowly decays from
unity at small energies to smaller values at larger energies.
Only close to the centrifugal barriers E0(J) more pronounced
anisotropy effects (i.e., smaller rigidity factors) are noticed. It
should be mentioned that the common high energy part of all
curves resembles an expression of the type

frig(E) ≈ exp(−E/c), (2.6)
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FIG. 4. Capture probabilities w(E, J) for the full anisotropic potentials
(points and lines as in Fig. 2).
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FIG. 5. Specific rigidity factors frig(E, J) from Eq. (2.3), obtained by com-
bining Figs. 2 and 4 (points and lines as in Figs. 2 and 4).

which successfully was used in the SSACM (simplified
SACM) representation of specific rate constants k(E, J) of
cation dissociations in Ref. 26. For simple bond fission re-
actions, as a general rule, PST is approached near threshold
and specific rate constants increasingly fall below PST val-
ues with increasing energy until results from rigid activated
complex theory are finally approached.27

III. HIGH PRESSURE RECOMBINATION RATE
CONSTANTS krec,∞ FOR H + CH3 → CH4

A transparent analysis of the limiting high pressure rate
constants for recombination krec,∞ can be performed when
first the PST expression is considered, given by

kPST
rec,∞ =

(
kT

h

)(
h2

2πμkT

)3/2
Qel (CH4) Qcent

Qel (H ) Qel (CH3)
(3.1)

with the centrifugal partition function

Qcent =
∞∑

L=0

(2L + 1) exp[−E0(L)/kT ]. (3.2)

The latter can either be evaluated with numerical values
for E0(L) or, if Eq. (2.5) holds with J replaced by L, in analyt-
ical form25

Qcent = � (1 + 1/ν) [kT /Cν]1/ν . (3.3)

Our numerical calculations of kPST
rec,∞ through capture

probabilities on the potential surfaces omitting anisotropy and
through the analytical form of Eqs. (3.1)–(3.3) fully agreed.
The comparison thus provides a useful test for “dynamical”
vs “statistical” rate constants.

Accounting for the anisotropy of the potential sur-
face reduces krec,∞ relative to the PST results kPST

rec,∞.
One may describe this by the thermal rigidity factor
frig(T),

krec,∞ = frig(T )kPST
rec,∞, (3.4)

which is related to the E- and J-specific rigidity factor frig(E,
J) shown in Fig. 5, see below. The complete rate constant

krec,∞ analogous to Eq. (3.1) is given by

krec,∞ =
(

kT

h

) (
h2

2πμkT

)3/2
Qel (CH4)

Qel (H ) Qel (CH3)
Q∗,

(3.5)
where Q* replaces Qcent. Q* is given by

Q∗ =
∞∑

J=0

(2J + 1)
∫ ∞

E0(J )
Wtr (E, J )

× exp(−E/kT )dE/(kT Q∗
rot (CH3)) (3.6)

and where the number of open channels for the transi-
tional modes Wtr(J) = w(E, J)W0(E, J) is from Sec. II
(see Fig. 4) and Qrot

*(CH3) is the rotational partition
function of CH3 in oblate symmetrical top approximation
(omitting or including symmetry numbers σ = 6 both
in Q∗

rot (CH3) and in Wtr(E, J)). Figure 6 compares the
finally obtained values of krec,∞ with kPST

rec,∞. The “full-CI
Morse” and CASPT2(ATZ) results for kPST

rec,∞, because of
slightly different centrifugal barriers E0(L), are slightly
different. We have, in part, compensated this by the
choice of our fitted “global anisotropy parameter” C/D
= 2.5 in Eq. (2.4) for which k∞

rec is also shown in the figure.
The comparison of krec,∞ and kPST

rec,∞ indicates thermal rigidity
factors of 0.75 at 300 K decreasing to 0.56 at 3000 K. The
reaction thus is characterized by only mild anisotropy of the
potential. This corresponds to the conclusions also drawn
from the specific rigidity factors shown in Fig. 5.

Figure 7 compares a variety of calculations of krec,∞,
i.e., with CASPT2(ADZ), CASPT2(ATZ), and “full-CI
Morse potentials” (with the parameter C/D = 2.5 in Eq.
(2.4) and capture radii rcapt = 2.97 a.u. or rcapt = 3.6 a.u.).
All results agree well up to about 1000 K whereas minor
differences (less than 10%) become apparent at higher
temperatures. These, however, appear irrelevant for practical
applications, because medium to low pressure conditions are
most typical in practice at high temperatures, see below. The
figure also contains transition state theory (TST) result on the
CASPT2(ADZ) potential from Refs. 4 and 5 which accounted
for dynamical recrossing by a factor of 0.9 independent of
the temperature. This factor was obtained by analyzing
trajectories starting at the critical surface. By putting a
limit between recrossing and non-recrossing trajectories at
a H–CH3 distance of 2.8 a.u., a recrossing factor of 0.9 was
obtained. According to Fig. 1, the H–CH3 distance of 2.8
a.u. is in a range where the CASPT2 potential of Refs. 4
and 5 is slightly high. This does not influence the resulting
values of krec,∞ up to 500 K where the present trajectory
and the recrossing-corrected TST results agree very well.
However, for higher temperatures the amount of recrossing
from the CASPT2 potential apparently is overestimated and
the recrossing-corrected TST values fall below our results.

When fitted to a simple power law, the CASPT2(ATZ)
results of Fig. 6 between 100 and 2000 K are well represented
by

krec,∞ ≈ 3.34 × 10−10(T/300K)0.15cm3 molecule−1 s−1

(3.7)
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FIG. 6. Limiting high pressure recombination rate constants krec,∞ (from top to bottom: upper solid line: PST results for isotropic “full-CI Morse potential”
of Eq. (2.4); upper points: PST results for isotropic CASPT2 (ATZ) potential; lower points: anisotropic CASPT2 (ATZ) potential; lower solid line: results for
anisotropic “full-CI Morse potential” of Eq. (2.4) with fitted C/D = 2.5, see text).

(an extension to 130–3000 K is provided by krec,∞ ≈ 3.34
× 10−10 (T/300 K)0.186 exp(−T/25200 K) cm3 molecule−1

s−1). This result later on will be compared with ex-
perimental values obtained by extrapolation of falloff
curves. A temperature independent value of krec,∞ = 3.5
× 10−10 cm3 molecule−1 s−1 over the range 300–2000 K was
recommended in the evaluation of Ref. 2 (with an estimated
accuracy of a factor of two). The present calculations are
essentially in agreement with this recommendation.

When high pressure dissociation rate constants kdis,∞
are needed, the values of Eq. (3.7) have to be combined with

the equilibrium constants Kc = krec/kdis. Uncertainties in Kc,
which mostly arise from differences in the used dissociation
energies of CH4, then may influence the conversion of krec,∞
into kdis,∞ such as emphasized in Ref. 16. (Differences
between the recommended rate constants from Ref. 2 at
1000–2000 K and calculated values from Ref. 6, see Fig. 8
from Ref. 6, evidently were exclusively due to differences in
Kc and did not arise from different modelings of krec). For this
reason, it appears advisable to specify which equilibrium con-
stants Kc are used together with krec, or which dissociation
energy D0

o of methane has been used in modeling kdis
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FIG. 7. Limiting high pressure recombination rate constants krec,∞ (upper points: CASPT2 (ATZ) potential; lower points: CASPT2 (ADZ) potential; solid lines
from top to bottom: “full-CI Morse potential” of Eq. (2.4) with C/D = 2.5, capture radius rcapt = 2.97 a.u.; capture radius rcapt = 3.6 a.u.; TST results with
CASPT2 (ADZ) potential from Refs. 4 and 5 using a dynamical recrossing factor of 0.9, see text).
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(in both cases one may prefer to split off a factor
exp(−D0

o/kT) to allow for modifications of D0
o). At

the present stage, we rely on D0
o(H–CH3) = 432.72 (±0.14)

kJ mol−1 from Ref. 28 (corresponding to D0
o/R = 52 044

(±17) K, or D0
o/hc = 36 173 (±12) cm−1, see the Ap-

pendix). With the molecular constants given in the Appendix,
in rigid rotor/harmonic oscillator approximation, this leads to
equilibrium constants

KC = exp(52044 K/T ) [10−24.65(T/300 K)−1.76

+ 10−26.38(T/300 K)0.67] cm3 molecule−1. (3.8)

(In calculating Kc, anharmonicity in part is taken care of
by employing experimental fundamental rather than harmonic
frequencies; additional anharmonicity effects from higher
order anharmonicity coefficients were found to be negligible
compared to other uncertainties, see below.) The representa-
tion by Eq. (3.8) agrees with the numerical values within bet-
ter than 2% over the range 300–5000 K. The agreement with
the values given in Refs. 3 and 28 over the range 900–4000 K
is better than 5%. The much larger uncertainty between var-
ious equilibrium constants alerted in Ref. 16 thus is reduced.

IV. SPECIFIC RATE CONSTANTS k(E, J)
FOR CH4 → H + CH3

The number of open channels W(E, J) of Eq. (2.2), de-
rived by the trajectory calculations of Sec. II, forms an impor-
tant part of the specific rate constants k(E, J) for dissociation
as given by statistical unimolecular rate theory

k(E, J ) = W (E, J )/hρ(E, J ). (4.1)

It therefore appears appealing to extend our treatment of
W(E, J) towards k(E, J). The calculation of the rovibrational
densities of states ρ(E, J) for spherical top CH4 in rigid rotor-
harmonic oscillator approximation is straightforward and can,
e.g., be done with the Whitten-Rabinovitch approximation
ρWR

vib,h(Evib) leading to

ρ (E, J ) = (2J + 1) ρWR
vib,h (Evib) Fanh (E, J ) (4.2)

(with Evib = E + D0
o − BeJ(J+1) where Be = rotational

constant of CH4 and D0(J = 0)/hc = 36 173 cm−1, see the
Appendix; W(E, J) includes a symmetry number σ = 6 for
CH3 while ρWR

vib,h(Evib) includes a symmetry number σ = 12
for CH4).

A less well understood contribution to ρ(E, J) is the an-
harmonicity factor Fanh(E, J). We have employed the em-
pirical method proposed in Ref. 30 and tested in Ref. 31.
This method takes into account Morse anharmonicities in the
stretching vibrations and empirical models for the coupling
between deformation and stretching vibrations (we have used
the optimum parameters c = 0.5 and n = 0.41 in Eq. (2.4) of
Ref. 30). The resulting anharmonicity factors Fanh(Evib) are
shown in Fig. 8. For the dissociation energy D0

o/hc = 36 173
cm−1, we obtained Fanh = 1.54. This value is close to the val-
ues determined in Refs. 32 and 33. (In comparing the present
anharmonicity factors with those from Nguyen and Barker,32

one should notice that these authors referred their anharmonic
numbers of states to calculations with harmonic frequencies.
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FIG. 8. Anharmonicity corrections Fanh(E) to the vibrational density of
states of CH4 in Eq. (4.2) (for J = 0; empirical results as represented by
Eq. (4.3); ρvib,h calculated with fundamental frequencies, see text).

We prefer to refer to calculations with the experimental funda-
mental frequencies, see the Appendix; in this way, that part of
the anharmonicity which is contained in the zero point energy
is accounted for separately.) Our anharmonicity factor Fanh(E,
J) to be included in Eq. (4.1) then can be approximated by

Fanh(Evib) ≈ exp[(Evib/62 800 cm−1 hc)1.544]. (4.3)

Combining W(E, J), ρWR
vib,h(Evib), and Fanh(Evib) through

Eq. (4.1) leads to k(E, J) as illustrated in Fig. 9. One notices
the usual pattern of energy and angular momentum depen-
dences which is governed by the different contributions of
the centrifugal barriers E0(J), the number of open channels
W(E,J), and the rovibrational densities of states.

V. BROADENING FACTORS IN FALLOFF
REPRESENTATIONS

In the following, we choose the doubly reduced
representation25 of the rate constants k (for recombination or
dissociation) as a function of the reduced pressure scale x
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FIG. 9. Specific rate constants k(E, J) for methane dissociation from
Eq. (4.1) (curves from top to bottom: J = 0, 5, 10, 20, 40, and 60).
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defined by

x = k0/k∞ ∝ [M] (5.1)

(k0 is the pressure-proportional limiting low pressure rate con-
stant). The rate constant k then is expressed as

k/k∞ = [x/ (x + 1)]F (x) (5.2)

with the broadening factor F(x).
We first consider strong collision broadening factors

Fsc(x). According to Refs. 12 and 13, these are related to
W(E, J) and ρ(E, J) by

F sc(x) = (1 + x)
∞∑

J=0

(2J + 1)
∫ ∞

E0(J )
[FρFW/(xFρ + FW )]

× exp(−E/kT )d(E/kT ) (5.3)

with

ρ(E, J )/Fρ =
∞∑

J=0

∫ ∞

E0(J )
(2J + 1)ρ(E, J )

× exp(−E/kT )d(E/kT ) (5.4)

and

W (E, J )/FW =
∞∑

J=0

∫ ∞

E0(J )
(2J + 1)W (E, J )

× exp(−E/kT )d(E/kT ). (5.5)

As we have W(E, J) from Sec. II and ρ(E, J) from
Sec. IV, Fsc(x) can be determined. The results are shown in
Fig. 10. There is only little temperature dependence of the
strong collision broadening factors Fsc(x). One also notices a
considerable amount of asymmetry relative to the “center of
the falloff curve” at x = 1 (denoted by the subscript c).

There are various ways to represent Fsc(x) in analytical
form. We have compared these representations in Ref. 14.
There is first the conventional “symmetric broadening factor”
(i.e., Fsc(x) = Fsc(−x)) from Ref. 25,

F sc(x) ≈ F 1/[1+(log x/Nsc)]2

c (5.6)
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FIG. 10. Strong collision broadening factors Fsc(x) with x = k0/k∞ from
Eqs. (5.3)–(5.5) (curves with minima from bottom to top for T = 2000, 4000,
1000, 500, 150, and 300 K).
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FIG. 11. Representation of strong collision broadening factors Fsc(x) from
Fig. 10 by approximate expressions (T = 2000 K; points: results for the
CASPT2 potential; full lines from bottom to top at the right side: Eq. (5.6),
Eq. (6.1) from Ref. 14, Eqs. (5.8) and (5.9); at the left side: Eq. (6.1) from
Ref. 14, Eqs. (5.6), (5.8) and (5.9)).

with the width

NSC ≈ 0.75 − 1.27 log FSC
C . (5.7)

For the example of T = 2000 K, where Fc
sc is calculated

as 0.42, Fig. 11 compares the calculations from the present
work (for the CASPT2(ATZ) potential) with the representa-
tion by Eq. (5.6). There is fairly good agreement at the low
pressure side x < 1, but Eq. (5.6) gives too broad falloff curves
at the high pressure side x > 1. Figure 11 also includes rep-
resentations with asymmetric broadening factors (i.e., Fsc(x)
�= Fsc(−x)) as proposed in Ref. 14 using Eqs. (6.1)–(6.3) from
that reference. The minimum of Fsc(x) now is shifted from x
= 1 to about x ≈ 0.7. At the low pressure side apparently
Eq. (6.2) from Ref. 14 gives the best agreement with the cal-
culated points. This representation is given by

F sc(x) ≈ F 1/{1+[|log(1.4x)|/(N+�N )]2}
c (5.8)

with N from Eq. (5.7) and �N = −0.65 log Fc for log (1.4
x) < 0). On the other hand, Eq. (6.3) from Ref. 14 accounts
slightly better for the narrowing of the falloff curve at the high
pressure side, see Fig. 11. This representation is given by

F sc(x) ≈ 1 − (1 − Fc) exp{−[log(1.5x)/N]2/N∗} (5.9)

with N from Eq. (5.7), N* = 2 for log (1.5 x) > 0, and N*

= 2[1−0.15 log(1.5 x)] for log(1.5 x) < 0. Comparing the
various representations, one may decide on practical grounds
which representation should be preferred. However, Eq. (5.9)
apparently provides the best representation over the full falloff
curve.

Besides strong collision broadening of the falloff curves,
there is additional broadening by weak collisions. We have
analyzed this in detail in Ref. 14. Weak collision broaden-
ing factors Fwc(x) have a similar form as Fsc(x) such that we
suggest to employ Eq. (5.2) with a common F(x) and center
broadening factors given by

Fc ≈ F sc
c Fwc

c . (5.10)
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FIG. 12. Center broadening factors Fc (open circles: Fc
sc and red line: rep-

resentation by Eq. (5.13); filled circles: Fc = Fc
scFc

wc for M = Ar and black
line: representation by Eq. (5.14); dashed line: simplified SACM model from
Ref. 15; dotted line: RRKM/master equation model from Ref. 16).

Fc
wc depends on the efficiency of collisional energy

transfer, i.e., on the “weakness of the collisions” as expressed
by 〈�E〉 or the related low pressure collision efficiency βc

(see Sec. VI), connected to 〈�E〉 through18

βc

1 − √
βc

≈ −〈�E〉
FEkT

. (5.11)

We found that Fc
wc decreases with decreasing βc according

to14, 25

Fwc
c ≈ max

{
β0.14

c , 0.64 (±0.03)
}

(5.12)

until it levels off at a limiting value near 0.64 (Figs. 12 and 13
of Ref. 14 more precisely describe the transition between β0.14

c

and 0.64). The broadening factors besides the strong collision
broadening thus also depend on the collision efficiency βc of
the bath gas.

We conclude this section by inspecting the tempera-
ture dependence of the center broadening factors Fc from
Eq. (5.10). We first consider the bath gas-independent strong
collision broadening factor Fc

sc. The results in Fig. 12 show
only a weak temperature dependence, with Fc varying be-
tween 0.61 at 150 K and 0.43 at 4000 K. We mention that
the results within about 10% do not change when anharmonic
densities of states are replaced by harmonic values, re and β

in Eq. (2.4) are changed by a factor of 2, or Eq. (2.4) is ex-
changed by the CASPT2 potential. Fc

sc thus is very insensi-
tive to most details of the dynamics. An analytical approxi-
mation to Fc

sc in the form

F sc
c ≈ 0.405 + [(T − 2950 K)/6100 K]2 (5.13)

is included in the figure. On the other hand, the additional
weak collision factors Fc

wc from Eq. (5.12) (or the graph-
ical representation of Figs. 12 and 13 in Ref. 14) are bath
gas-dependent. In order to estimate these, one needs to know
〈�E〉 for energy transfer and FE in Eq. (5.11), see Sec. VI.
For demonstration, we use the value of −〈�E〉/hc ≈ 50 cm−1

such as obtained, for M = Ar, in Ref. 17. This leads to Fc
wc

≈ 0.76, 0.70, and 0.67, for T = 300, 1000, and 2000 K, re-
spectively, such that Fc = Fc

scFc
wc ≈ 0.45, 0.36, and 0.29.

Recommendations of Fc for M = Ar from simpler treat-
ments are included in Fig. 12. The simplified SACM ap-
proach (including weak collision effects) of Ref. 15 led to Fc

≈ exp(−0.45−T/3230 K) between 1000 and 3000 K, i.e., Fc

= 0.47 and 0.34 at 1000 and 2000 K, while the RRKM/master
equation approach of Ref. 16 gave Fc ≈ 0.876 exp(−T/1801
K) + 0.124 exp(−T/33.1 K) between 300 and 2000 K, i.e., Fc

= 0.74, 0.50, and 0.29 for T/K = 300, 1000, and 2000 K, re-
spectively. Up to about 2000 K, the present values of Fc thus
are smaller than the recommendations of Refs. 2, 15, and 16
and have a weaker temperature dependence. The results for M
= Ar (with −〈�E〉/hc ≈ 50 cm−1) in Fig. 12 are well repre-
sented by

Fc ≈ 0.262 + [(T − 2950 K)/6100 K]2. (5.14)

Further elaboration of Fc
wc, and hence the total Fc, re-

quires the detailed analysis of experimental limiting low pres-
sure rate constants krec,0 or kdis,0 with respect to the values of
〈�E〉 such as given in Sec. VI, or reference to the theoretical
determinations of 〈�E〉 from Ref. 7.

VI. LOW PRESSURE DISSOCIATION RATE
CONSTANTS kdis,0

According to unimolecular rate theory, the limiting low
pressure rate constant for dissociation kdis,0 can be split into
two parts,

kdis,0 = [M]Zβcf
∗ (6.1)

with a statistical factor f* given by the equilibrium population
of dissociative states. In detail, f* writes

f ∗ =
∞∑

J=0

(2J + 1)
∫ ∞

E0(J )
dEf (E, J ). (6.2)

The collision energy transfer part [M] Z βc, with a colli-
sion frequency Z and a collision efficiency βc, has to be de-
termined by master equation solution,18 see below.

The statistical factor can approximately be further factor-
ized in the form

f ∗ ≈ ρvib,h(E0)kT FEFanhFrot exp(−E0/kT )/Qvib

(6.3)

(for the meaning of the factors, see Refs. 21 and 25). After
the present determination of the centrifugal barriers E0(J) for
the relevant potential energy surface, see Eq. (2.5), the rota-
tional factor Frot can be determined following Eqs. (14)–(19)
of Ref. 25. In addition, our treatment of the anharmonicity
factor Fanh(Evib) from Eq. (4.3) allows us to specify Fanh

≈ Fanh(E0) (the energy dependence of the effective Fanh can
be included in the factor FE,, see below). With these refine-
ments in the calculation of the statistical factor, an improved
analysis (compared to Refs. 15 and 17) of experimental kdis,0

with respect to the product [M]Z βc in Eq. (6.1) can be
made. We, therefore, have reevaluated f* which leads to the
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TABLE I. Falloff corrections and energy transfer parameters from low pressure dissociation experiments in M = Ar (〈�E〉 and α: experimental values from
analysis of experimental kdis,0; αth : theoretical value from Ref. 7, see text).

References T (K) [Ar] (1018 molecule cm−3) kdis/kdis,0 FE −〈�E〉 (hc cm−1) α (cm−1) αth (cm−1)

This work 2200 2–800 0.8–0.2 1.41 59 388 512
Reference 45 2200 ∼2 ∼0.8 1.41 ∼60 ∼390 512
Reference 46 3000 2 0.9 1.63 74 540 647
Reference 46 4000 1 0.97 2.00 82 719 802

following result:

f ∗ exp(−E0/kT ) = F (T ), (6.4)

where log[F/T)/F(300 K)] ≈ −a[log (T/300 K)]n with F(300
K) = 2.245 × 107, a = 2.105, and n = 2.62 for T = 300–3000
K (n = 2.35 applies for T = 300–5000 K). (More accu-
rate numbers of f* than fitted by Eq. (6.4) are given in the
Appendix.) As f* most sensitively depends on the bond en-
ergy E0, the equilibrium constant Kc from Eq. (3.8) has to be
determined with the same E0 to avoid internal inconsisten-
cies. It appears, therefore, useful like in Eq. (3.8) to split off
the factor exp(−E0/kT) in Eq. (6.4).

Having specified f* and identifying Z with the Lennard-
Jones collision frequency ZLJ, the relation between the col-
lision efficiency βc and kdis,0 can be analyzed. Through
Eq. (5.12), this leads to the average total energy transferred
per collision 〈�E〉. For an exponential collision model, 〈�E〉
is approximately related to 〈�Ed〉, the average energy trans-
ferred in down collisions, through18

〈�E〉 ≈ − 〈
�E2

d

〉
/(〈�Ed〉 + FEkT ) (6.5)

such that

βc ≈ [〈�Ed〉 /(〈�Ed〉 + FEkT )]2. (6.6)

The factor FE, forcing up- and down-transitions near E0

into detailed balance, is approximately given by

FE ≈
s−1∑
i=0

(s − 1)!

(s − 1 − i)!

[
kT

E0 + a (E0) Ez

]i

(6.7)

with the Whitten-Rabinovitch correction factor a(E0) and the
vibrational zero point energy Ez of CH4, see Ref. 25. Imple-
menting the energy dependence of the anharmonicity factor
Fanh(E) from Eq. (4.3) into the derivation of FE, accidentally,
in this case can be accounted for by increasing s in Eq. (6.7)
by unity. FE then has the values 1.04, 1.16, 1.36, 1.63, 1.99,
and 2.49, for T/K = 300, 1000, 2000, 3000, 4000, and 5000,
respectively. For fundamental reasons, it is preferable to work
with 〈�E〉 and not with 〈�Ed〉, because the solution of the
present type of master equations only depends18, 34, 35 on the
first and second moments of energy transfer, 〈�E〉 and 〈�E2〉,
respectively. For numerical reasons, one may prefer 〈�Ed〉
and link the results through Eqs. (6.5) and (6.6). These rela-
tionships will be used in the following if either βc is predicted
on the basis of theoretical values for 〈�Ed〉 from Refs. 6 and
7 or experimental values for βc are further analyzed with re-
spect to 〈�E〉 and 〈�Ed〉.

Before we analyze experimental kdis,0, we take advantage
of the detailed calculations of 〈�Ed〉 from Ref. 7 for M = He,
Ne, Ar, Kr, H2, N2, CO, and CH4. Here, down-step sizes were
expressed in the form

α(T ) = α300(T/300 K)n. (6.8)

It should be emphasized that 〈�Ed〉 and α are not iden-
tical for a number of reasons (energy and rotational de-
pendences, truncation of the energy scale at the vibrational
ground state of CH4, average account for detailed balancing
near E0, see Ref. 36). However, the differences are probably
not larger than the calculational or experimental uncertain-
ties. Identifying α(T) with 〈�Ed〉 and using Eqs. (6.5)–(6.8),
therefore, we obtain theoretical values of 〈�E〉 summarized
in Table I. At the same time, with f* from Eq. (6.4), we ob-
tain fully theoretical values of kdis,0. The combination with
Eq. (3.8) gives the corresponding krec,0.

The values of kdis,0 and krec,0 cannot immediately be com-
pared with experimental values. The analysis of experimental
data shows that none of the experiments were conducted close
enough to the low pressure limit that substantial falloff cor-
rections were not required. Therefore, a careful analysis of
the full falloff curves for all experimental studies has to be
done. This is the issue of Sec. VII where we compare fully
theoretical values of kdis,0 and krec,0 with experimental falloff-
corrected values. Agreement finally is achieved when α300 or
〈�Ed〉 are slightly modified which results in “experimental
values” of these quantities.

VII. COMPARISON OF EXPERIMENTAL AND
THEORETICAL LOW PRESSURE RATE CONSTANTS

The results of the theoretical work summarized in
Secs. II–VI, which was nearly completely based on ab initio
potentials and the intra- and intermolecular dynamics on such
potentials, may serve for a complete theoretical modeling of
the rate constants as function of temperature, pressure, and na-
ture of the bath gas. The comparison with experimental results
then becomes interesting in many ways. On the one hand, the
extent of falloff corrections of the measured rate constants can
be specified much better than by extrapolation of experimen-
tal data. On the other hand, the least certain theoretical details
can be identified and a fine-tuning of the theoretical results
can be made. This in turn leads to refinements of previously
recommended rate constants such as those given in Ref. 2.

Previous evaluations of experimental results for kdis and
krec (see Refs. 2, 6, 7, 15, and 16) all demonstrated more
or less good agreement between measured and modeled
rate constants. However, most of the representations left
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something to desire. Sometimes the results were only shown
in graphical form without giving details about the limiting
rate constants or the underlying equilibrium constants, such
that extrapolations to general conditions were difficult to do.
Sometimes simplified falloff treatments were employed such
that considerable differences of the falloff parameters were
obtained, see Fig. 12; the effects of these simplifications then
were compensated by choosing different energy transfer pa-
rameters. Also, the sensitivity of the modeling with respect to
the different input parameters and their uncertainties was not
analyzed in particular. Nevertheless, the previously recom-
mended rate constants were of considerable practical value,
allowing for inter- and extrapolations of measured results to
conditions not studied before. With the results of the present
work one can arrive at refinements both on the theoretical and
on the experimental side of the analysis of the reaction.

By comparing experimental and theoretical falloff
curves, we first realize that all experiments needed falloff
extrapolations to the limiting rate constants, most of the
falloff corrections being more substantial then assumed. For
instance, it will be shown in the following that all of the
available high temperature dissociation experiments, which
were considered as limiting low pressure studies, require non-
negligible falloff corrections. Analyzing experimental results,
we further have to identify the least certain modeling param-
eters. Although this involves some guesswork, one may be
relatively certain for most of the parameters. For example, we
think that the equilibrium constants Kc from Eq. (3.8) over
the range 300–5000 K are accurate to within better than 5%.
High pressure recombination rate constants krec,∞ from
Eq. (3.7) over the range 130–3000 K are believed to be accu-
rate within about 10%. Considering the individual uncertain-
ties of the factors contributing to f* exp(E0/kT) from Eq. (6.4),
we estimate an accuracy of this quantity of better than 5%.
Figures 10 and 11 demonstrate variations of the strong colli-
sion falloff broadening factors Fsc(x) and possible uncertain-
ties of the chosen falloff representations which also are in the
percent range. Weak collision broadening effects have similar
uncertainties. By combining these effects, cumulated uncer-
tainties for F(x) of the order of 10% appear probable. Ten-
tatively at this stage, we attribute the remaining differences
between experimental and theoretical rate constants to uncer-
tainties in the theoretical energy transfer parameters which
are believed to be of the order of 10%–20%. The agreement
within about 10%–30% between calculated average energies
transferred per collision from Ref. 7 and values obtained by
our analysis of experimental data, see below, then appears
most encouraging.

In comparing experiments and theory, we first demon-
strate the non-uniqueness of the modeling of falloff curves.
We have chosen dissociation experiments near 2200 K in the
bath gas Ar, see Fig. 13. There is one group of experiments
at lower pressures ([Ar] in the range 2 × 1018–2 × 1019

molecule cm−3) from Refs. 37–43 which often were assumed
to correspond to the low pressure limit of the reaction. Only
few experiments reached further up towards the high pres-
sure range ([Ar] up to 1021 molecule cm−3, data from Ref. 15
reevaluating experiments from Ref. 44). Figure 13 compares
two possibilities to fit the experimental data to a falloff curve

1018 1019 1020 1021 1022

103

104
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106

k di
s /

 s
-1

[Ar] / molecule cm-3

FIG. 13. Falloff curves for CH4 (+ Ar) → CH3 + H (+ Ar) at T = 2200
K (experimental points: full circles from Ref. 15 reevaluating Ref. 44, open
squares: Ref. 37, open triangle: Ref. 38, diamonds: Ref. 43, filled triangle:
Ref. 39, filled inverted triangle: Ref. 40, open circles: Ref. 40, open inverted
triangle: Ref. 41, solid lines: fitted falloff curve with limiting rate constants
for fixed kdis,∞ = 1.05 × 106 s−1, and dashed lines: fitted falloff curve for
freely varied kdis,∞ = 3.3 × 106 s−1, see text).

where the center broadening factor Fc was fixed to the theo-
retical value of Fc = 0.28 from Eq. (5.14). By fixing kdis,∞ to
1.05 × 106 s−1 (as obtained from krec,∞ from Eq. (3.7) and Kc

from Eq. (3.8)), kdis,0 ≈ [Ar] 5.8 × 10−16 cm3 molecule−1 s−1

is fitted by least mean-squares fit to all experimental points
shown in Fig. 13, see solid lines in Fig. 13. Leaving krec,∞
as a second fit parameter, would have given kdis,∞ = 3.3
× 106 s−1 and kdis,0 = [Ar] 3.7 × 10−16 cm3 molecule−1 s−1,
see dashed lines in Fig. 13. As the former fit leads to energy
transfer parameters in much closer agreement with theory, see
below, and consistency with the high pressure recombination
rate constants has been forced, clearly the former fit is prefer-
able and the non-uniqueness is removed.

Except for Fig. 13, we renounce on further comparisons
of measured and modeled falloff curves. Instead, in Table I we
analyze representative experimental data for M = Ar with re-
spect to falloff corrections to low pressure rate constants and
the derived energy transfer parameters in comparison to the
theoretical values from Ref. 7. A number of observations are
made: (i) Falloff corrections are needed everywhere, even at
the highest temperatures where the experiments are closest to
the low pressure limit. (ii) The derived total energies 〈�E〉
transferred per collision are only weakly dependent on the
temperature (at least for M = Ar where a sufficiently broad
temperature range has been studied). This conclusion con-
firms the results from Ref. 17 where a similar value of 〈�E〉
was derived. The only weak T-dependence of 〈�E〉 is con-
sistent with the magnitude of the T-dependence of α(T) from
the theoretical work of Ref. 7, see Eq. (6.8). (iii) The values
of α(T) from the theoretical work are about 20(±10)% larger
than the values deduced in the present work from the analysis
of the experimental low pressure rate constants. This is cer-
tainly within the uncertainty of either approach and should be
considered as very good agreement. (iv) Relying on the
temperature dependence of the theoretical α, but reducing
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TABLE II. Recommended rate parameters for falloff curves of CH4 (+Ar) ⇔ CH3 + H (+Ar) (ranges 130–3000 K for krec,∞, 100–5000 for krec,0, 100–4000
K for Fc, 300–5000 K for Kc, see text).

krec,∞ = 3.34 × 10−10 (T/300 K)0.186 exp(−T/25 200 K) cm3 molecule−1 s−1.
krec,0 = [Ar] 10−26.19 exp[−(T/21.22 K)0.5] cm6 molecule−2 s−1.
Fc = 0.262 + [(T−2950 K)/6100 K]2.
Kc = exp(52 044 K/T) [10−24.65 (T/300 K)−1.76 + 10−26.38 (T/300 K)0.67] cm3 molecule1 s−1.
k/k∞ = xF(x)/(1+x) with x = k0/k∞.
F(x) ≈ 1−(1−Fc) exp {−[log(1.5x)/N]2/N*} with N = 0.75–1.27 log Fc, N* = 2 for log (1.5x) > 0, and N* = 2[1−0.15 log (1.5 x)] for log (1.5 x) < 0.

the absolute value of α300 in Eq. (6.8) by a factor of 1.2
to 96 cm−1 (a compromise between the present analysis of
Fig. 13 and the high temperature data from Ref. 46), one ob-
tains modeled low pressure recombination rate constants krec,0

in M = Ar which between 100 and 5000 K can be represented
by

krec,0 = [Ar]10−26.14

× exp[−(T/21.38 K)0.5] cm6molecule−2 s−1. (7.1)

Reducing α300 to 87 cm−1, which corresponds to the low
pressure limit of Fig. 13, would lead to the alternative

krec,0 = [Ar]10−26.19

× exp[−(T/21.22K)0.5] cm6molecule−2 s−1. (7.2)

VIII. CONCLUSIONS AND RECOMMENDED
RATE CONSTANTS

The present SACM/CT modeling of the limiting high
pressure recombination rate constants krec,∞ led to values rep-
resented by Eq. (3.7) and Fig. 7. The values obtained are con-
sistent with the falloff extrapolation of Fig. 13 and similar
extrapolations of data from Refs. 47 and 48, such as docu-
mented in Refs. 6, 7, 15, and 16, although the databases were
more limited. Only the low temperature recombination exper-
iment at 300 K from Ref. 49, being conducted in M = CH4

far up into the high pressure range, could be safely extrapo-
lated to krec,∞ and led to a value very close to our calculated
result. Measurements from Ref. 50 over the range 300–600 K
showed a number of inconsistencies such that falloff extrap-
olations towards krec,∞ were difficult to do. As our calculated
values are also perfectly consistent with isotope exchange
data in the CHxD4−x-system, see Refs. 51 and 52, Eq. (3.7)
is recommended for practical applications. Together with the
equilibrium constant Kc from Eq. (3.8), krec,∞ can also safely
be converted to kdis,∞.

Low pressure rate constants krec,0 and kdis,0 are slightly
less well characterized, because theoretical modeling of en-
ergy transfer parameters as well as their extraction from ex-
trapolated experimental falloff curves leads to some differ-
ences, e.g., a factor of 1.6 in kdis,0 at 2200 K. Relying on the
extrapolated low pressure value from Fig. 13 and the temper-
ature dependence of the energy transfer parameters from the
calculations of Ref. 7, leads to krec,0 as given in Eq. (7.2) for
the bath gas Ar.

The present work provided falloff center broadening
factors Fc such as given for M = Ar by Eq. (5.14), see
Fig. 12. This expression is also recommended for other

bath gases as long as their energy transfer parameters are
not known well enough to deserve a treatment combining
Eqs. (5.12) and (5.13). Figure 11 compares symmetric broad-
ening factors Fsc(x) in the “standard form” of Eq. (5.6) with
asymmetric broadening factors like Eqs. (5.8) and (5.9) from
Ref. 14. Equation (5.9) is recommended because it provides
the best approach of either the low and the high pressure lim-
its. Table II summarizes the recommended rate constants for
M = Ar.

The present combination of experimental and theoretical
results concludes a long history of studies which all contained
fitted parameters, mostly for energy transfer.15–17, 21, 44, 55, 56

With the work of Ref. 7 this gap in a fully theoretical anal-
ysis is closed and the methane system has reached maturity.

One finally may ask for low pressure rate constants in
other bath gases than M = Ar. The experimental database
at this stage is very limited, because, except for Ar and Kr,
falloff curves were not extended down to sufficiently low
pressures to allow for reliable falloff extrapolations on the ba-
sis of the broadening factors from the present calculations.
We, therefore, have tentatively used the calculated energy
transfer parameters from Ref. 7, reducing the given α300 for
all bath gases by a factor of 1.2 such as discussed for
M = Ar. This leads to values of krec,0 for M = N2 and CH4

such as represented by

krec,0 = [N2]10−26.04

× exp[−(T/21.91K)0.5] cm6molecule−2 s−1,

(8.1)

krec,0 = [CH4]10−25.44

× exp[−(T/21.71 K)0.5] cm6 molecule−2 s−1.

(8.2)

No such information is available for M = O2 and H2O
such that only guesses can be made at this stage. We recom-
mend to use Eq. (8.1) also for M = O2. On the other hand, M
= H2O is much closer to a strong collider. By analogy to our
work on H + O2 (+ H2O) → HO2 (+H2O), we have modeled
krec,0 with a Lennard-Jones collision frequency and a collision
efficiency corresponding to −〈�E〉/hc ≈ 300 cm−1 (indepen-
dent of T, corresponding to α300 ≈ 420 cm−1 and n ≈ 0.45)
in Eq. (6.8) which leads to

krec,0 = [H2O]10−25.31

× exp[−(T/19.52 K)0.5] cm6 molecule−2 s−1.

(8.3)
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The use of the Lennard-Jones collision frequency here
does not give much different results from using a colli-
sion frequency given by a dipole-quadrupole capture rate
constant.55, 56 The chosen value for 〈�E〉 is that found for
H + O2 (+H2O). Clearly, more experimental and theoretical
work on this aspect of the reaction is needed.
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APPENDIX: MOLECULAR PARAMETERS

CH4: ν i/hc cm−1 = 2916.5, 1534.0 (2), 3018.7
(3), 1306 (3); A = B = C = 5.269 cm−1,
σ = 12; taken from Ref. 29.

CH3: ν i/hc cm−1 = 3004.42, 606.453,
3160.821 (2), 1396 (2); A = B = 9.578
cm−1, C = 4.742 cm−1, σ = 6; taken
from Ref. 28.

CH4 → H+CH3: D0
o = 432.72 (±0.14) kJ mol−1 from

Ref. 28, corresponding to D0
o/R = 52

044 (±17) K; D0
o/hc = 36 173 (±12)

cm−1, ρvib (E0) = 1.050 × 103/cm−1.

Equilibrium population of excited states from Eq. (6.4):
F(T) = f* exp(E0/kT) = (1.849, 2.178, 2.245, 2.029, 1.584,
0.9349, 0.3316, 0.1163, 0.04348, 0.01765, 0.003698, and
0.001018) × 107 for T = 100, 200, 300, 500, 700, 1000, 1500,
2000, 2500, 3000, 4000, and 5000 K, respectively.

Lennard-Jones parameters: σ /nm = 0.3746, 0.3330,
0.3681, and 0.2641; ε/k K = 141.4, 136.5, 97.68, and 809.1;
for M = CH4, Ar, N2, and H2O, respectively, from Ref. 7 (for
M = H2O as used in Ref. 22).
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