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The status of quantum cosmologies as testable models of
the early universe is assessed in the context of inflation.
While traditional Wheeler–DeWitt quantization is unable
to produce sizable effects in the cosmic microwave back-
ground, the more recent loop quantum cosmology can gen-
erate potentially detectable departures from the standard
cosmic spectrum. Thus, present observations constrain the
parameter space of the model, which could be made falsifi-
able by near-future experiments.

1 Introduction

During the last years, quantum gravity has been receiv-
ing a great amount of attention from the community of
theoreticians. The driving motivation, familiar to anyone
who has tried his or her fortune at least once in this broad
subject, is to realize a consistent, ultraviolet finite merg-
ing of general relativity with quantum mechanics. The
programme can be carried out in various forms, from
ambitious theories of everything (such as string theory)
where all forces are unified to more minimalistic ap-
proaches aiming to quantize gravity alone. In the latter
category there fall loop quantum gravity (LQG), asymp-
totic safety, spin-foams, causal dynamical triangulations
and many others [1].

A problem endemic to most of these scenarios is
their difficulty in making contact with observations. This
stems from the highly technical nature of the theoretical
frameworks, where the notions of conventional geom-
etry and matter, continuum spacetime, general covari-
ance and physical observables are typically deformed,
modified, or disappear altogether. The lack of exper-
imental feedback makes it quite difficult to discrimi-
nate among different models and, chiefly, to characterize
them as falsifiable.

It is natural to turn to cosmology in an attempt
to bridge this gap and advance our knowledge [2, 3].
The early Universe is an ideal laboratory where extreme
regimes of high energy and high curvature are realized.

Under such conditions, it is expected that quantum grav-
itational effects become sizable. Also, the symmetry re-
duction entailed in cosmological settings decimates the
degrees of freedom of background-independent theories
and allows one to simplify the latter to a technically man-
ageable level. The resulting models retain some (or most)
of the main features of the full theory and can be better
manipulated to extract observables.

Canonical quantum gravity is a popular example of
this mechanism. The present review focusses on two of
its incarnations, namely, the traditional Wheeler–DeWitt
(WDW) model (e.g., [4, 5]) and the more recent loop
quantization [6]. The most ancient phase about which
we have gathered experimental data is inflation, a pe-
riod of accelerated expansion of the universe which left
a relic in the cosmic microwave background (CMB) ra-
diation. A study of the inflationary perturbations and
the associated spectra allows us to track down quantum
corrections and confront them with the observed CMB
power spectrum. Although the outcome of this proce-
dure is a constraint on the free parameters of the models
rather than an actual prediction, time seems ripe for the
very next generation of experiments to exclude notable
portions of parameter space. As a minimal present-day
achievement, we can at least state that quantum cosmol-
ogy models are compatible with observations.

The stark contrast between the type of quantum
corrections arising in these scenarios highlights how
sensitive the physics is of the quantization scheme and
variables. The typical energy scale during inflation is es-
timated to be about the grand-unification scale, H ∼
1015 GeV, corresponding to an energy density ρinfl ∼
H 2/�2

Pl ∼ 1068 GeV4. Here H := ȧ/a is the Hubble pa-
rameter, a is the scale factor of the universe and a dot
denotes differentiation with respect to synchronous
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time. In contrast, classical gravity is believed to break
down at distances shorter than the Planck length �Pl =√

G�, i.e., at energies above 1019 GeV. The ratio between
the inflationary and Planck energy density is very small,

ρinfl

ρPl
∼ (�Pl H )2 ∼ 10−8, (1)

and quantum corrections are expected to be of the same
order of magnitude or lower. Thus, quantum-gravity ef-
fects would be, in fact, well below any reasonable exper-
imental sensitivity threshold, at least as far as inflation is
concerned. WDW quantum cosmology realizes precisely
this type of corrections and endorses the above naive
argument.

On the other hand, the polymeric quantization of
loop quantum cosmology (LQC) [5,7,8] generates correc-
tions which are not of the form (1). To get a rough idea
of how these corrections arise, one begins by observing
that geometry operators representing areas and volumes
acquire a discrete spectrum in this context. This is be-
cause states of loop quantum gravity, spin networks, are
graphs whose edges e are labeled by quantum numbers
je. An area intersected by some of these edges is deter-
mined by these quantum numbers, giving the spectrum
A = γ �2

Pl

∑
e

√
je( je + 1), where γ � O(1) is the Barbero–

Immirzi parameter. One single edge defines an “elemen-
tary plaquette” of area ∝ �2

Pl

√
je( je + 1); the latter features

the Planck area but its actual value depends on the spin
quantum number. Since calculations on realistic graphs
are very hard in the full theory, it is convenient to focus
one’s attention on a simplified phenomenological set-
ting. In particular, a homogeneous quantum inflationary
universe with small inhomogeneous perturbations may
be represented by a quantum semi-classical state � char-
acterized by a length scale L. This scale is thought of as
encoding the discreteness of the geometry. Any region
of volume V = a3V0 (arbitrary, if spatial slices are non-
compact) can be decomposes into discrete patches of
size ∼ L3. The inflationary scale is thus replaced by an ef-
fective quantum-gravity scale

ρqg = 3
8πG L2

. (2)

In general, inverse powers of L cannot be quan-
tized to a densely defined operator because the spec-
trum of the volume contains 0. Inverse volumes appear
in the Hamiltonian constraint (of both gravity and mat-
ter, as in kinetic matter terms) and hence in the dy-
namics, and are an unavoidable consequence of spatial
discreteness in loop quantum gravity. This requires to
reexpress their classical expressions via Poisson brack-

ets, which in turn feature derivatives by L. Quantum
discreteness then replaces classical continuous deriva-
tives by finite-difference quotients. For example, the ex-
pression (2

√
L)−1 = ∂

√
L/∂L would become (

√
L + �Pl −√

L − �Pl)/(2�Pl), strongly differing from (2
√

L)−1 when L
is as small as the Planck length, L ∼ �Pl. For larger L, cor-
rections are perturbative and of the order �Pl/L, so in
general the type of inverse-volume quantum corrections
are expressed by the ratio

ρqg

ρPl
∼

(
�Pl

L

)4

� 1. (3)

In practice, the actual size of LQC effects will lie well be-
low the over-optimistic upper bound (3), but above the
naive estimate (1). It is known that the non-local nature
of loop quantum gravity effects prevents the formation of
singularities one would typically find classically [6, 9, 10].
This can be shown both at the kinematical level (via the
spectra of inverse area and volume operators) and at the
exact and effective dynamical level (by looking, respec-
tively, at the state-space spanned by the Hamiltonian
constraint acting on volume eigenstates and at the effec-
tive dynamics on semi-classical states). The physical in-
terpretation of inverse-volume corrections stems exactly
from the same mechanism: classically divergent quan-
tities such as inverse powers of volumes remain finite
due to intrinsically quantum effects. Loosely speaking,
quanta of geometry cannot be compressed too densely
and they determine the onset of a repulsive force at
Planck scale [10], which then determine the various cor-
rections to the dynamics.

After introducing the theoretical frameworks in
sections 2.1 and 3.1, CMB observations will be used to
pin down these effects (sections 2.2 and 3.2). For the
Wheeler–DeWitt model, we shall do so in considerably
more detail than can be found in the present literature;
section 2.2 contains original material. Holonomy correc-
tions in LQC are briefly discussed in section 3.3. The
scantly touched topic of non-Gaussianity in quantum
cosmology will be also discussed (section 4). In the fol-
lowing, � = 1 = c.

Before starting, we stress once again the scope of the
present review. Although there are many “minimalistic”
theories of quantum gravity on the market, at present
it is still difficult to do some cosmology with them.
Among the scenarios allowing for some phenomenology
are asymptotic safety [11] and causal dynamical triangu-
lations [12]. These models do admit a cosmological limit,
but either inflationary observables have not been com-
puted yet or there is no unique determination of an effec-
tive inflationary gravitational action. Here, on the other
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hand, we are interested in pitching models based upon
canonical quantization (which conventionally go under
the umbrella term “quantum cosmology”) against obser-
vations. We will leave out string cosmology from the dis-
cussion [13, 14], which is based on altogether different
techniques. The reader can find the details of various and
often interconnected settings in the dedicated literature,
such as KKLT and moduli inflation [15,16], cosmic strings
networks [17, 18], brane and DBI inflation [13, 14], string
gas cosmology [19,20], braneworld cosmology [21], ekpy-
rotic universe [22, 23], non-local cosmology, and others.

2 Wheeler–DeWitt cosmology
and observations

2.1 The model

2.1.1 Homogeneous background

In canonical formalism, symmetry and dynamics are en-
coded in a set of constraint equations valid on dynam-
ical trajectories. For gravity and matter, the total Dirac
Hamiltonian [24] obtained after imposing second-class
constraints and skimming out Lagrange multipliers is

HD =
∫

d3x(NαHα + NH ), (4)

where Nα (α = 1, 2, 3) is the shift vector, N is the lapse
function, Hα is the super-momentum constraint and
H is the super-Hamiltonian constraint (often the pre-
fix “super” is omitted). The super-momentum, corre-
sponding to the 0α components of Einstein’s equations,
encodes invariance under spacetime diffeomorphisms
within the three-dimensional spatial surfaces on which
one integrates. The super-Hamiltonian (the 00 compo-
nent of Einstein’s equations) both encodes invariance
under time reparametrizations and generates the dy-
namics (time evolution) of the system. Symmetry and
dynamics are thus entangled. Canonical quantization
follows by promoting the first-class constraints Hα and
H to operators acting on a Hilbert space of wave-
functionals �. Quantum dynamics is then fully speci-
fied by the equations Ĥα� = 0 and the Wheeler–DeWitt
equation

Ĥ � = 0. (5)

In a fully background-independent theory, both Ĥα

and Ĥ are written in terms of the canonical variables as-
sociated with the fundamental degrees of freedom (met-
ric and matter) of the system. These expressions are non-

linear and, in practice, it is extremely difficult to solve the
constraint equations and construct the physical Hilbert
space. Symmetry reduction (at the classical level) to the
flat, homogeneous and isotropic Friedmann–Lemaı̂tre–
Robertson–Walker (FLRW) metric gμν = (−1, a2(t), a2(t),
a2(t)) greatly simplifies the problem. The momentum
constraint is composed only of spatial derivatives and
it vanishes identically. After integrating over the spatial
volume (formally divergent but regularizable), the super-
Hamiltonian in the presence of a matter scalar field φ

with potential V reads

H = 1
2a3

[
−a2 p2

(a)

6κ2
+ �2

φ

]
+ a3

[
V (φ) − 3

κ2

k
a2

]
, (6)

where p(a) = −6aȧ/N and �φ = a3φ̇/N are the momenta
conjugate to a and φ, respecively, κ2 = 8πG, and k =
0,±1 is the curvature of spatial slices. The constraint
H = 0 is nothing but the first Friedmann equation

H 2 = κ2

3

[
φ̇2

2
+ V (φ)

]
− k

a2
. (7)

The other classical equation of motion is that for the
scalar field,

φ̈ + 3H φ̇ + V,φ(φ) = 0. (8)

Quantizing expression (6) and promoting a and φ

to multiplicative operators and the momenta to deriva-
tive operators p̂(a) := −i∂a and �̂φ := −i∂φ , one obtains
Ĥ �[N , φ] = 0, where

Ĥ = e−3N

2

[
κ2

6
∂2

∂N 2
− ∂2

∂φ2
+ 2e6N V (φ) − 6k

κ2
e4N

]
(9)

and N = ln a is the number of e-foldings. This equation
may not necessarily be regarded as fundamental.1 How-
ever, it gives the correct result in the semi-classical limit,
and one can assume it as an effective description of the
quantum universe in this regime.

During inflation, the scalar field varies very slowly
and its kinetic term is negligible with respect to the po-
tential (slow-roll regime); at the quantum level, it corre-

1 Apart from the issue of symmetry reduction, the actual quantiza-
tion of the putative full theory can lead to an altogether different
expression; LQG is an example. Also, canonical quantum gravity
may be embedded in a more general field-theory approach such as
group field theory [1]. The wave-function � is promoted to a field
and the Wheeler–DeWitt equation (5) receives non-linear correc-
tions. Linearizing, one gets an effective Hamiltonian which can be
considered also at the level of mini-superspace [25].
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sponds to dropping the ∂2
φ term in Eq. (9). Assuming a

quadratic potential V (φ) = 1
2 m2φ2, from the Friedmann

equation (7) it follows that

6H 2

κ2
≈ m2φ2. (10)

Thus, the energy scale of inflation sets what shall later
play the role of quantum correction.

2.1.2 Perturbations

When inhomogeneities are switched on, the FLRW mini-
superspace framework breaks down and one should
consider the full Dirac Hamiltonian (4). Since the
super-momentum and super-Hamiltonian constraints
are non-linear in the canonical variables, the prob-
lem quickly becomes intractable unless one resorts to
some approximations. Inflationary inhomogeneous fluc-
tuations are very small, so linear perturbation theory
is sufficient to obtain the spectra. The matter scalar is
decomposed into a homogeneous background (repre-
senting the vacuum expectation value of the field) and
a fluctuation, φ(t, x) = φ(t) + δφ(t, x). In this section we
ignore the metric backreaction δgμν , in which case the
scalar is regarded as a “test” field. In the standard cos-
mological model, backreaction does not affect the power
spectrum at lowest order in perturbation theory and in
the slow-roll truncation. This suffices for our purposes
also in WDW quantum cosmology. (However, we shall in-
clude backreaction in the LQC case.) The scalar pertur-
bation is decomposed into Fourier modes,

δφ(t, x) =
∑

k

δφk(t) eik·x, (11)

where we assumed spatial slices to be compact (k = 1)
and the Fourier mode depends only on the modulus k =
|k|. Replacing φ(t) with φ(t, x) in the WDW equation (9),
the mini-superspace is extended to include also the in-
finity of modes δφk. The wave-function �[N , φ, {δφk}k]
can be actually factorized as a background part times
the rest, �[N , φ, {δφk}k] = �0[N , φ]

∏
k>0 �k[N , φ, δφk].

In doing so, one drops self-interaction terms which are
consistently negligible in first-order perturbation theory.
Eventually, one obtains [26, 27]

e−3N

2

[
κ2

6
∂2

∂N 2
− ∂2

∂δφ2
k

+ e6N 6H 2

κ2

+ (
e6N m2 + e4N k2) δφ2

k

]
ψk[N , δφk] ≈ 0, (12)

where ψk[N , δφk] = �0[N , φ]�k[N , φ, δφk] and the φ de-
pendence is omitted because we used the slow-roll ap-
proximation (10) to express the background potential in
terms of the Hubble parameter.

Noting that N and δφk correspond, respectively, to
slow- and fast-evolving variables, at this point one can
make a Born–Oppenheimer approximation on the solu-
tion [2, 28]. The latter is written as

ψk[N , δφk] = exp[iS(N , δφk)] (13)

and the functional S is expanded in m2
Pl = 3/(4π�2

Pl) =
6/κ2: S = m2

Pl S0 + S1 + m−2
Pl S2 + . . . . Plugging the Ansatz

(13) into Eq. (12) and expanding, the O(m4
Pl) and O(m2

Pl)
terms imply S0 = ±e3N H/3, while at the next two orders
one finds two equations for the wave-functions

ψ
(0)
k [N , δφk] := A(N ) eiS1(N ,δφk), (14)

ψ
(1)
k [N , δφk] := B(N )ψ (0)

k [N , δφk] eim−2
Pl S2(N ,δφk), (15)

where A and B are chosen to match the amplitudes in the
WKB approximation.

2.1.3 Observables

The wave-functions ψ
(0)
k and ψ

(1)
k have been computed

semi-analytically in [29, 30], to which we refer the reader
for details. From the explicit solutions, one can calculate
the two-point correlation function

P (n)
φ (k) :=

〈
ψ

(n)
k ||δφk|2|ψ (n)

k

〉
(16)

of the scalar perturbation order by order. This quantity
is directly related to the imprint of inhomogeneous fluc-
tuations in the cosmic microwave background. However,
only perturbations which left the comoving Hubble hori-
zon (aH )−1 =: k−1

∗ and later reentered it can be observed
in the sky. Therefore, the actual cosmological observable
is Eq. (16) in the long wave-length limit k � k∗, then eval-
uated at k = k∗. This is the n-th order power spectrum

P (n)
s (k) := k3

2π2
P (n)

φ (k � k∗)|k=k∗ . (17)

The lowest-order result coincides with the standard one,

P (0)
s = κ2

2
1
ε

(
H
2π

)2

, (18)
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where

ε := − Ḣ
H 2

= κ2

2
φ̇2

H 2
(19)

is the first slow-roll parameter. Since both H and ε are
approximately constant during inflation, the spectrum
(which we sometimes call “classical” because of the ab-
sence of quantum-gravity corrections) is almost scale in-
variant.

The next-to-lowest-order expression is the standard
one times a quantum correction [29]:

Ps(k) ≈ P (1)
s (k) = P (0)

s (k)C2
k , (20)

where

C2
k ≈

(
1 − 43.56

k3

H 2

m2
Pl

)−3 (
1 − 189.18

k3

H 2

m2
Pl

)2

(21a)

= 1 − 247.68
k3

H 2

m2
Pl

+ 1
k6

O
(

H 4

m4
Pl

)

≈ 1 − δwdw(k) + O
(
δ2

wdw

)
, (21b)

and we dubbed the leading Wheeler–DeWitt quantum
correction

δwdw(k) := 103

k3
(�Pl H )2. (22)

Ck → 1 in the small-scale limit (k → ∞), while at large
scales (k � k∗) the quantum-corrected power spectrum
acquires a mild scale dependence which makes the sig-
nal suppressed with respect to the standard result. A
similar suppression of the spectrum happens also in
other models where geometry is quantized, such as
non-commutative and string inflation [31–34]. At first, it
might seem counter-intuitive that quantum gravity af-
fects large scales more than small scales. However, large-
scale perturbations left the horizon before (and hence
reentered after) smaller-scale fluctuations, and they were
longer exposed to high-energy and high-curvature ef-
fects. The approximation scheme used to derive Eq. (21a)
breaks down in the limit Ck → 0 and the critical k at
which that happens should not be taken as a physical
threshold.

From the power spectrum, one can compute the
scalar spectral index

ns − 1 := d ln Ps

d ln k
, (23)

which generalizes the definition of an exactly power-law-
type spectrum Ps ∼ kns−1. To calculate this, we notice

that (from aH = k at horizon crossing) d/d ln k ≈
d/(Hdt) and we recall the background relations,
stemming from the equations of motion,

ε̇ = 2H ε(ε − η), η̇ = H (εη − ξ2), (24)

where

η := − φ̈

H φ̇
, ξ2 := 1

H 2

(
φ̈

φ̇

).

=
...
φ

H 2φ̇
− η2, (25)

are the second and third slow-roll parameter, respec-
tively. Since H ≈ const, one gets

dδwdw

d ln k
≈ −3δwdw (26)

and

ns − 1 ≈ 2η − 4ε + 3δwdw, (27)

where we have dropped higher-order terms in the com-
bined δwdw/slow-roll expansion. Positivity of the quan-
tum correction in Eq. (27) ensures suppression of power
at low wavenumbers.

The next slow-roll observable is the running of the
spectral index:

αs := dns

d ln k
. (28)

Combined with Eqs. (26) and (27), it leads to

αs ≈ 2(5εη − 4ε2 − ξ2) − 9δwdw. (29)

The scalar power spectrum expanded to all orders in
the perturbation wavenumber about a pivot scale k0 is

ln Ps(k) = ln Ps(k0) + [ns(k0) − 1]x + αs(k0)
2

x2

+
∞∑

m=3

α(m)
s (k0)

m!
xm, (30)

where x := ln(k/k0). As the order of the observables

α(m)
s := dm−2αs

(d ln k)m−2
≈ O(εm) − (−3)mδwdw (31)

increases, the classical part becomes smaller and smaller
but the leading-order quantum correction survives. At
some order m, the quantum correction will dominate
over the standard part. Taking (31) into account, Eq. (30)
can be recast as

ln Ps(k) ≈ ln P (0)
s (k) + δwdw(k0)

[
1 −

(
k0

k

)3
]

. (32)
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2.2 Experimental bounds

Equation (1) is written in units where k is dimensionless.
In fact, one should make the replacement k → k/kmin,
where kmin ∼ 1.4 × 10−4 Mpc−1 is the largest observable
scale. Here we used the fact that comoving wavenum-
bers and multipoles are approximately related by k ≈
�/τ0, where τ0 ≈ 14.4 Gpc is the comoving particle hori-
zon today, and that the lowest early-universe contribu-
tion to the CMB spectrum is the quadrupole � = 2. One
can reexpress δwdw in terms of spherical multipoles, and
k/kmin = �/�min = �/2. A more generous estimate for the
quantum correction will stem by replacing kmin by the
pivot scale k0 � kmin, which we adopt from now on: k →
k/k0.

The WMAP7 mean for the scalar amplitude in the ab-
sence of tensor signal is Ps(k0) = (2.43 ± 0.11) × 10−9 at
k0 = 0.002 Mpc−1 and 68% confidence level (C.L.) [35],
where the pivot scale k0 corresponds to a CMB multi-
pole �0 ≈ 29. Equation (18) and the inflationary condi-
tion ε < 1 yield the upper bound

(�Pl H ) < 9 × 10−5, (33)

as anticipated in Eq. (1). The bound can be recast for
the Hubble parameter alone, H < 3.2 × 1015 GeV, or, via
the classical equation of motion (7) in the slow-roll
approximation, for the inflaton potential, V 1/4 < 6.8 ×
1016 GeV. In particular, the WDW quantum correction is
constrained to be

δwdw(k0) < 7.9 × 10−6. (34)

With kmin instead of k0 the quantum correction is further
suppressed, δwdw(k0) < 2.6 × 10−9.

Even taking the upper bound �Pl H = 10−4, δwdw =
10−5, quantum corrections are too small to be detected.
Their dependence on the inflationary energy scale is cru-
cial for this result. Another reason is that at large scales
cosmic variance is the leading source of error. The latter
is a manifestation of the failure of the ergodic theorem
for the discrete CMB multipole spectrum. For the power
spectrum Ps(�), cosmic variance is given by [36, 37]

VarPs (�) = 2
2� + 1

P2
s (�). (35)

Quantum-gravity corrections should be compared with
the error bars due to cosmic variance with respect to the

classical spectrum P (0)
s (�). The latter, Eq. (30), is deter-

mined up to the normalization Ps(�0), so that the region
in the (�, Ps(�)/Ps(�0)) plane affected by cosmic vari-
ance is roughly delimited by the two curves

P (0)
s (�) ±

√
VarP(0)

s
(�)

P (0)
s (�0)

=
(

1 ±
√

2
2� + 1

)
P (0)

s (�)

P (0)
s (�0)

, (36)

where we take the classical spectrum as reference.
The WDW-corrected spectrum is given by Eq. (32).
In the absence of tensor modes and running, the
WMAP+BAO+H0 dataset (combination of WMAP7 data
and observations of baryon acoustic oscillations and the
Hubble expansion) yields a scalar spectral index ns(k0) =
0.963 ± 0.012 at k0 = 0.002 Mpc−1 and 68% C.L. [38]. This
number can change depending on the priors, but not
much. Classically, this corresponds to slow-roll parame-
ters at most of order ε ∼ O(10−2). Therefore, the standard
spectrum in Eq. (32) can be approximated by ln P (0)

s (k) ≈
ln Ps(k0) + [ns(k0) − 1]x + 1

2 αs(k0)x2. To plot the WDW
spectrum, we only need to plug in values for the scalar
index and its running. First, we recast the observables in
terms of a set of slow-roll parameters dependent on the
field potential (e.g., [5]):

εV := 1
2κ2

(
V,φ

V

)2

, ηV := 1
κ2

V,φφ

V
, ξ2

V := V,φV,φφφ

κ4V 2
.

(37)

The scalar index (27) and its running (29) become

ns − 1 = −6εV + 2ηV + 3δwdw, (38)

αs = −24ε2
V + 16εVηV − 2ξ2

V − 9δwdw. (39)

For a quadratic potential V (φ) ∝ φ2,

εV = 2
κ2φ2

, ηV = εV, ξ2
V = 0. (40)

This allows one to reduce the slow-roll parameters to just
one. A realistic theoretical value for εV at the pivot scale
is εV(k0) = 0.009.

As shown in Fig. 1, WDW quantum corrections are ex-
tremely small even in the most generous estimate, and
they are completely drowned by cosmic variance.
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Figure 1 Log-linear plot of the Wheeler–DeWitt primordial scalar
spectrum Ps(�) for a quadratic inflaton potential, with εV(k0) =
0.009 and for the pivot wavenumber k0 = 0.002 Mpc−1, corre-
sponding to �0 = 29. The shaded region, delimited by the two
curves (36), is affected by cosmic variance. The inset shows the
negligible difference between the standard “classical” spectrum
(dashed line) and the spectrum with Wheeler–DeWitt quantum
corrections (solid line), at 2 < � < 2.5.

3 Loop quantum cosmology and observations

3.1 The model with inverse-volume corrections

3.1.1 Homogeneous background

Loop quantum gravity is based upon a first-order for-
mulation of gravitational degrees of freedom in terms of
the spatial densitized triad field Eα

i and the Ashtekar–
Barbero connection Ai

α , where i = 1, 2, 3 is an inter-
nal index in the su(2) algebra. While the connection is
not quantized into a well-defined operator, its SU(2)-
valued holonomy along an edge (with representation
defined by the edge spin label je) is a sensible op-
erator. Thus, the basic quantities to be quantized are
fluxes (integrals of the triad on spatial surfaces) and
holonomies. In a (quasi-)FLRW universe, the densitized
triad and connection both reduce to one non-trivial
component, Eα

i = pδα
i and Ai

α = cδi
α , where p = a2, c =

γ ȧ, and elementary edge lengths are all equal to some
common value L = al0. Then, fluxes reduce to F = l2

0 p =
L2 and holonomies along an edge e of comoving length
l0 are he = exp(l0τic) = cos(l0c/2) + 2τi sin(l0c/2), where
τi = iσi/2 are Pauli matrices.

We point out that in an exactly FLRW background the
universe is perfectly homogeneous and there is no mean-
ingful way to subdivide it into small cells of proper size
L. Thus, the comoving scale l0 is actually arbitrary and
corresponds to the size V1/3

0 of the fiducial volume in
which the Hamiltonian constraint is defined. In this con-

text, inverse-volume corrections depend on an unphysi-
cal quantity and should be removed, for instance regard-
ing V0 as a regulator and taking the limit V0 → ∞. This
situation, however, is only a mathematical artifact of the
purely homogeneous background, which is not a realis-
tic model of Nature. The full theory does include these
corrections.

On the other hand, in the presence of inhomo-
geneities the lattice picture makes sense (because sub-
volumes can be distinguished from one another) and
fluxes and holonomies can be defined on each individual
cell, not on the overall fiducial volume. The linear scale L
is related to the quantum state via its labels je and, de-
pending on what spin numbers are realized, it does not
need to be exactly the Planck length. Instead of using the
je and their complicated dynamics (presently not under
full control) it is more convenient to adopt L as a phe-
nomenological parameter. Effective quantum dynamics
is then expected to have the cells vary with time. The free-
dom to choose a global clock in a quasi-homogeneous
scenario allows us to pick, e.g., the scale factor a as the
time variable, and to regard L = L(a) as time dependent.
This is the so-called lattice-refinement picture [8, 39, 40].
However unsatisfactory this picture may be (L still con-
tains a high degree of arbitrariness), it allows one to do
some phenomenology, with the hope to connect it with
the full theory when time is ripe.

A crucial consequence of lattice refinement is that
inverse-volume corrections are now phenomenologi-
cally meaningful. These quantum corrections arise due
to the presence of inverse-volume expressions in the
super-Hamiltonian constraint, both in the gravity and
matter sector. Inverse volumes (i.e., inverse powers of
the determinant of the densitized triad) are not densely
defined operators and they must be rexpressed by the
so-called “Thiemann’s trick” in terms of holonomies
and positive volume powers, at the classical level before
quantizing.

Therefore, contrary to the WDW model, also the back-
ground equations of motion (and the slow-roll parame-
ters as well) are deformed by quantum corrections. For a
matter scalar field, one has

H 2 = κ2

3
α

[
φ̇2

2ν
+ V (φ)

]
, (41a)

φ̈ + 3H
(

1 − d ln ν

d ln p

)
φ̇ + νV,φ = 0, (41b)

where α(a) and ν(a) are inverse-volume corrections in
the gravity and matter sector, respectively. Later we shall
be interested in the semi-classical limit where quantum

C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 7www.ann-phys.org



Re
vi

ew
Ar

tic
le

G. Calcagni: Observational effects from quantum cosmology

corrections are small, in which case

α(a) = 1 + α0δinv(a), ν(a) = 1 + ν0δinv(a), (42)

where α0 and ν0 are positive constants (calculable in a
pure FLRW case, arbitrary in the lattice refinement pic-
ture) and

δinv :=
[

�Pl

L(a)

]m

∝ a−σ . (43)

Here m is an O(1) constant dependent on the quanti-
zation scheme (e.g., [40, 41]) and σ is determined by a
power-law Ansatz for the function L(a). While a natural
value is σ = 6 in pure FLRW, in lattice refinement the
only constraint is σ ≥ 0. In general, however, the back-
ground inflates only if σ � O(1) [40].

3.1.2 Perturbations

To obtain the dynamics of inhomogeneities, we follow
the effective constraints method (see [42–47] for other
approaches). The strategy of applying perturbation the-
ory in the classical constraints differs from the one
employed in standard cosmology (where the action or
the Einstein equations are perturbed), although it was
considered in the past [48]. Perturbing the Ashtekar–
Barbero variables, Eα

i = pδα
i + δEα

i , Ai
α = cδi

α + δAi
α , and

imposing commutation relations among the perturba-
tion components, one works out the perturbed form of
the seven first-class constraints: the super-Hamiltonian,
the three components of the diffeomorphism constraint,
and the three components of the Gauß constraint gen-
erating infinitesimal su(2) gauge transformations in the
internal space. To capture loop quantum gravity ef-
fects, however, one considers effective constraints Ca

encoding inverse-volume and/or holonomy corrections.
For instance, the effective Hamiltonian constraint with
inverse-volume corrections is assumed to be

C [N] ∼
∫

d3xN[α(E)Hg + ν(E)Hπ + �(E)H∇ + HV ],

(44)

where N is the lapse function, Hg , Hπ , H∇ and HV are
the contributions of, respectively, gravity, the scalar field
momentum, spatial Laplacian and potential, and α, ν

and � are correction functions (which depend only on
the densitized triad [41]). These functions can be taken
to be of the form 1 + O(δinv) in the semi-classical limit.

Closure of the effective constraint algebra must be
imposed for consistency, {Ca, Cb} = f c

ab (A, E)Cc. The ab-

sence of anomalies is guaranteed by introducing coun-
terterms in the algebra (and, hence, in the perturbed
equations of motion). After some early works based on
toy models where the constraint algebra was not closed
explicitly [49–55], the full set of constraints with small
inverse-volume corrections was derived for vector [56],
tensor [57], and scalar modes [58, 59]. The gravitational
wave spectrum has been studied in [60, 61], while the
scalar spectrum and the full set of linear-order cosmo-
logical observables were found in [40]. The observability
of and experimental constraints on the quantum correc-
tions were finally considered in [41, 62, 63].

In the presence of small inverse-volume corrections,
after anomaly cancellation the system of perturbed
equations for scalar and tensor modes (vector modes
are damped during inflation) reduces exactly to two
equations:

u′′ −
(

s2
inv� + z′′

inv

zinv

)
u = 0, (45a)

w′′ −
(

α2� + ã′′
inv

ãinv

)
w = 0, (45b)

where primes denote derivatives with respect to confor-
mal time (′ = ∂τ = a∂t), u = zR is the Mukhanov–Sasaki
variable encoding scalar perturbations,

zinv := φ′

H

[
1 +

(α0

2
− ν0

)
δinv

]
(45c)

is a background function (quantum corrected as well), R

is the gauge-invariant comoving curvature perturbation
(its LQC expression can be found in [40, 59]),

s2
inv := 1 + χ(α0, ν0, σ )δPl,

χ := σν0

3

(σ

6
+ 1

)
+ α0

2

(
5 − σ

3

)
(45d)

is the square propagation speed of the perturbation (dis-
cussed in [40] and positive in all reasonable scenarios), �
is the spatial Laplacian, w = ãinvh is the gauge-invariant
variable associated with both tensor modes, and

ãinv := a
(

1 − α0

2
δinv

)
. (45e)

The parameter space is extended to include the
coefficients appearing in Eqs. (42) and (43). However,
self-consistency of the constraint algebra imposes a con-
dition among α0, ν0 and σ , thus making one of them de-
pendent [40]:

α0

(σ

6
− 1

)
− ν0

(σ

6
+ 1

) (σ

3
− 1

)
= 0. (46)
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The fact that scalar perturbations reduce to just one de-
gree of freedom u obeying a closed equation is related
to conservation of R at large scales [40]. Failure of clos-
ing the algebra exactly would immediately spoil also this
property.

The somewhat unexpected possibility that LQC
quantum corrections be large even during inflation is a
reflection of the way these corrections enter the physics:
The structure of spacetime itself is deformed by quan-
tum effects, via the effective constraints. The theory is
diffeomorphism invariant, but not with respect to the
standard classical transformations. Gauge transforma-
tions belonging to a deformed algebra no longer corre-
spond to ordinary coordinate transformations on a man-
ifold. Thus, in order to take the new gauge structure into
account one should rely only on gauge-invariant pertur-
bations. This philosophy (first quantize the classical sys-
tem, then cast it in gauge-invariant variables) is embod-
ied in the Mukhanov equations (45).

One might wonder whether one would get the same
results by fixing the gauge before quantizing. However,
gauge fixing and quantization do not commute because
the latter deeply affects the very notion of gauge in-
variance. Whenever gauge-ready variables can be con-
structed after quantizing, the gauge-invariant approach
must be preferred. The price to pay in doing otherwise is,
in the least conservative interpretation, to produce un-
physical perturbative modes (this may happen also in
standard cosmology, due to an illegal choice of gauge
[64]) or, more conservatively, to obtain an incomplete
version of the perturbed quantum equations which, at
best, can be interpreted as a physically different quan-
tum system. Also ignoring backreaction of the metric
and considering just a perturbed test scalar is undesir-
able, contrary to the WDW case, because backreaction
contributes to the actual form of quantum gauge trans-
formations and hence of the gauge-invariant variables.
Again, this can lead to an incomplete treatment in partial
disagreement with the full gauge-invariant equations.

3.1.3 Observables

The scalar spectrum is the expectation value of R over a
momentum ensemble at large scales, evaluated at hori-
zon crossing:

Ps ≡ k3

2π2z2
inv

〈|uk�k∗ |2〉
∣∣∣

k=k∗
. (47)

Solving the Mukhanov equation (45a) asymptotically and
plugging the solution in the above formula, one obtains

the LQC version of Eq. (20) with

C2
k ≈ 1 + γsδinv, γs := ν0

(σ

6
+ 1

)
+ σα0

2ε
− χ

σ + 1
.

(48)

In the limit case σ → 0, the quantum correction is con-
stant and the only change with respect to the classical
case is the normalization of the spectrum. Then, γs =
ν0 − 5α0/2 could be of either sign. If σ �= 0, there is a
large-scale enhancement of power because δinv ∼ k−σ at
horizon crossing and γs > 0 due to the dominating term
∝ ε−1. Similarly, the scalar index is

ns − 1 ≈ 2η − 4ε + σγnsδinv, γns := α0 − 2ν0 + χ

σ + 1
,

(49)

while the scalar running reads

αs ≈ 2(5εη − 4ε2 − ξ2) + σ (4ε̃ − σγns )δinv, (50)

where ε̃ := α0(σ/2 + 2ε − η) + ν0(σ/6 − 1)ε.
Due to the possibly large size of the quantum correc-

tions, it will be useful to complete the set of first-order
observables and include also the tensor sector. The grav-
itational spectrum is

Pt := 32G
π

k3

ã2
inv

〈|wk�k∗ |2〉∣∣k=k∗
, (51)

leading to [40, 61]

Pt ≈ 64πG
(

H
2π

)2

(1 + γtδinv), γt := σ − 1
σ + 1

α0. (52)

The tensor index is

nt := d ln Pt

d ln k
≈ −2ε − σγtδinv. (53)

Finally, the tensor-to-scalar ratio is

r := Pt

Ps
≈ 16ε[1 + (γt − γs)δinv], (54)

which yields the consistency relation

r = −8{nt + [nt(γt − γs) + σγt]δinv}, (55)

to be plugged into numerical codes in the place of the
classical one r = −8nt.
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3.2 Experimental bounds

Because of the delicate interplay between quantum cor-
rections and the requirement of intersecting the allowed
windows in the parameter space in a common consis-
tent region, the possibility clearly arises that this model
of loop quantum cosmology be falsifiable by near-future
observations. The present status at least provides strin-
gent bounds on quantum corrections.

As in section 2.2, one rewrites the observables in
terms of the potential-dependent slow-roll parameters
(37); the resulting lengthy expressions can be found in
[41]. Since

α(m)
s (k0) ≈ (−1)mσ m−1 fsδinv(k0), (56)

where

fs := σ [3α0(13σ − 3) + ν0σ (6 + 11σ )]
18(σ + 1)

, (57)

the scalar spectrum (30) becomes

Ps(k) ≈ Ps(k0) exp
{

[ns(k0) − 1]x + αs(k0)
2

x2

+ fsδinv(k0)
[

x
(

1 − 1
2
σ x

)
+ 1

σ
(e−σ x − 1)

]}
. (58)

This is the expression to be used in numerical analy-
ses and when comparing the LQC signal with cosmic
variance.

Before doing so, we notice the existence of a theo-
retical upper bound on the quantum correction δlqc :=
α0δinv. (Equation (46) allows to remove ν0 from parame-
ter space, except in the case σ = 3 which can be treated
separately.) For the validity of the linear expansion of the
perturbation formulæ where the O(δinv) truncation has
been systematically implemented, we require that

δlqc(k) = δlqc(k0)
(

k0

k

)σ

= δlqc(k0)
(

�0

�

)σ

< 1 (59)

for all wavenumbers relevant to the CMB anisotropies.
For the pivot scale �0 = 29, the quadrupole � = 2 gives
the bound δlqc(k0) < δmax

lqc = 14.5−σ , shown in Table 1 for
some choices of σ .

To illustrate some of the possibilities CMB data
manipulations can offer to constrain quantum gravity
models with free parameters, we recall the likelihood
analysis carried out in [41, 62] for the quadratic po-
tential (among others). The Cosmological Monte Carlo
(CosmoMC) code [65] was run with the data of WMAP7
[38] combined with large-scale structure (LSS) [66] (in-
cluding BAO), HST [67], Supernovae type Ia (SN Ia) [68],

Figure 2 Two-dimensional marginalized distribution for the
inverse-volume LQC quantum correction δLQC(k0) and the slow-roll
parameter εV(k0) with the pivot k0 = 0.002 Mpc−1 for σ = 1.5
and a quadratic potential, constrained by the joint data analysis of
WMAP7, LSS (including BAO), HST, SN Ia, and BBN. The internal and
external lines correspond to the 68% and 95% confidence level,
respectively [41].

and Big Bang Nucleosynthesis (BBN) [69], assuming a
�CDM model. Figure 2 shows an example of likelihood
profile for σ = 3/2 in the plane (εV, δlqc). Both param-
eters are evaluated at the pivot scale k0 = 0.002 Mpc−1.
Obviously, negligible or exactly vanishing quantum cor-
rections are compatible with observations. On the other
hand, from the 95% confidence-level contour one sees
that quantum corrections above δlqc(k0) � 1.7 × 10−3 can
be excluded. This and the upper bounds for various σ ’s
are reported in Table 1. Except for extreme values σ �
1, the observational upper bounds are consistent with
the theoretical prior, thus verifying an important internal
check of the model.

Comparing the table entries with the upper bound for
the WDW quantum correction, Eq. (34), we see that LQC
inverse-volume corrections can be orders of magnitude
larger when σ � 2. The scalar power spectrum for vari-
ous values of σ is shown in Fig. 3 against cosmic variance.
When σ � 1, quantum corrections are strong enough to
overcome the error from cosmic variance. Whether these
parameter values are realistic in a more complete theory
remains, however, to be seen.
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Table 1 Theoretical priors on the upper bound δmax
LQC and 95% C.L. upper limits of δLQC = α0δinv constrained by observations for a

quadratic potential with different values of σ and at the pivot scale k0 = 0.002 Mpc−1 [41]. The likelihood analysis is omitted for
σ = 6 since the signal is below the cosmic variance threshold already when σ = 2. For σ = 3, the parameter δLQC = ν0δinv has
been used.

σ 0.5 1 1.5 2 3 6

δmax
LQC 0.26 6.9 × 10−2 1.8 × 10−2 4.7 × 10−3 3.2 × 10−4 1.0 × 10−7

δLQC 0.27 3.5 × 10−2 1.7 × 10−3 6.8 × 10−5 4.3 × 10−7 –

Figure 3 Log-linear plot of the LQC primordial scalar spec-
trum Ps(�) with inverse-volume quantum corrections for a
quadratic inflaton potential, with εV(k0) = 0.009 and for the pivot
wavenumber k0 = 0.002 Mpc−1, corresponding to �0 = 29. The
classical case is represented by the dotted line, while solid curves
correspond to σ = 1, 1.5, 2 (decreasing thickness). The shaded re-
gion is affected by cosmic variance.

3.3 The model with holonomy corrections

Another type of quantum effect in the dynamics, holon-
omy corrections, is realized in a highly non-linear fash-
ion (by construction, from the exponentiation he of cur-
vature components) and it becomes important when the
Hubble radius is about the size of the lattice scale, H −1 ∼
L. From the classical Friedmann equation H 2 = 8πGρ/3,
this regime heuristically defines the critical energy den-
sity (2) and the holonomy correction

δhol := ρ

ρqg
. (60)

The homogeneous background is modified accordingly.
While Eq. (41b) remains the same, the Friedmann
equation (41a) is further corrected as

H 2 = κ2

3
ρ(α − δhol). (61)

Crucially, the Hubble parameter is not simply H = ȧ/a
but the “polymeric” expression

H = sin(2Lc/γ )
2La

. (62)

Even in a perfectly homogeneous background, ρqg is not
constant except for a specific choice of quantum am-
biguity parameters, such that the elementary closed-
holonomy area coincides with the Planck area L2 ∝ �2

pl
(“improved dynamics” [5, 7, 8]). For this choice, and ig-
noring or removing inverse-volume corrections (α = 1),
the right-hand side of Eq. (61) vanishes at ρ = ρqg, where
the Hubble parameter H → 0 and the big-bang singular-
ity of classical cosmology is replaced by a bounce.

There are indications that holonomy corrections are
not significant in the energy regime of inflation, but
only at near-Planckian densities [70]. This is suggested
by effective equations for certain matter contents with a
dominating kinetic energy [71, 72]. Another argument is
the following [41]. Inverse-volume and holonomy correc-
tions are related to each other by

δinv =
(

8πG
3

ρqg�2
Pl

) m
2

∝
(

ρqg

ρPl

) m
2

=
(

ρ

ρPl
δ−1

hol

) m
2

. (63)

Inverse-volume corrections are sizable when the
quantum-gravity density (not the inflationary one)
is close to the Planck density. They can be still large
at small energy densities, where however holonomy
corrections are small. Thus, as the energy density de-
creases in an expanding universe there is a competition
of the relative size of inverse-volume and holonomy
corrections, the latter falling to small values when the
former can be still large. For instance, in the inflationary
regime (1) and for the typical value m = 4 Eq. (63) yields
δhol ∼ 10−8/

√
δinv, and having small holonomy correc-

tions of size δhol < 10−6 would require inverse-volume
corrections larger than δinv > 10−4.

This argument is only heuristic and a full cosmolog-
ical analysis is required to settle the issue. This is now
at hand because perturbation theory has been worked
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out already. In fact, the closure of the constraint alge-
bra has been verified also in the presence of holonomy
corrections for vector and tensor modes [56, 57, 73], as
well as in the scalar sector [74–76]. Just as in the case
of inverse-volume corrections, the constraint algebra is
deformed by quantum effects and gauge transforma-
tions do not correspond to standard diffeomorphisms.
Notice that the lattice refinement interpretation also af-
fects holonomy corrections, since they feature the same
phenomenological parameter L as inverse-volume cor-
rections. The Mukhanov equations for scalar and tensor
modes are [57, 74, 76]

u′′ −
(

s2
hol� + z′′

hol

zhol

)
u = 0, (64a)

w′′ −
(

s2
hol� + ã′′

hol

ãhol

)
w = 0, (64b)

where the effective propagation speed and background
funcion zhol and ãhol read

s2
hol := cos(2Lc/γ ) = 1 − 2δhol, (64c)

zhol := φ′

H
, ãhol := a

|shol| , (64d)

and H is given by Eq. (62). These expressions should be
compared with their inverse-volume counterparts (45).
The propagation speed is never super-luminal (|s2

hol| ≤
1), but it does change sign near the bounce. This marks
a possible instability, or even a change of effective space-
time signature at near-Planckian scales [77], in a super-
inflationary early era. The physical significance of these
features is still under inspection.

Cosmological observational signatures of holonomy
effects have been studied for the tensor sector alone
[60, 78–81]. For this reason, we do not yet have a de-
tailed comparison with experiments as in the WDW and
inverse-volume LQC cases. With respect to the inverse-
volume case, the analysis of the spectra is complicated
by the analytic form of holonomy corrections. In general,
tensor modes are amplified during the bounce. However,
after the bounce these modes are enhanced by inflation-
ary expansion later than in the classical case, and the
spectrum is thus suppressed at low multipoles, as [80, 81]

Pt ∝ k2 k → 0, (65)

on a de Sitter background. It also shows an oscilla-
tory pattern, progressively damped towards small scales.

The gravitational spectrum is notoriously difficult to
detect by itself, and information from the scalar spec-
trum (which, from Eq. (64), is expected to behave sim-
ilarly to the tensor one) will be needed, also to deter-
mine whether the large-scale suppression is beyond the
cosmic-variance noise and therefore observable.

4 Non-Gaussianity

The effect of quantum corrections goes beyond linear
perturbation theory and higher-order observables can be
calculated. As the perturbative level increases, the statis-
tics of inhomogeneous fluctuations deviates from the
Gaussian one and odd-order correlation functions ac-
quire non-vanishing values. In particular, the bispectrum
(three-point correlation function of the curvature pertur-
bation) can be constrained by observations.

To the best of our knowledge, there is only one
work on inflationary non-Gaussianity in loop quantum
cosmology with inverse-volume corrections [82], and
none in the WDW case. A detailed calculation of the
momentum-dependent bispectrum shows that no ap-
preciable LQC signal can be detected. We can in fact
reach the same conclusion here by a model-independent
shortcut, valid only in the so-called squeezed limit (con-
stant non-linear parameter) but beyond perturbation
theory and both for LQC and WDW quantum cosmology.

Let ζ be the curvature perturbation on uniform den-
sity hypersurfaces. The latter is a gauge-invariant quan-
tity proportional to the comoving curvature perturbation
R in standard inflation; their relation in the presence of
inverse-volume corrections has not been studied yet, but
what follows is fairly independent on this detail. In mo-
mentum space, the three-point correlation function of ζ

is

〈
ζk1ζk2ζk3

〉 =: (2π)3δ(k1 + k2 + k3)Bζ (k1, k2, k3), (66)

where Bζ , called bispectrum, is defined by

Bζ (k1, k2, k3) = 6
5

fNL(k1, k2, k3)
∑
α<β

Pζ (kα)Pζ (kβ), (67)

where α, β = 1, 2, 3, fNL is called non-linear parameter
and is momentum dependent in general, and Pζ is the
spectrum of ζ . The form of the non-linear parameter de-
pends on the model of primordial perturbations. In the
simplest case [83–85], one decomposes the non-linear
curvature perturbation ζNL(x) into a Gaussian linear part
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ζ and a non-linear part:

ζNL = ζ + ζ N = ζ + 3
5

f local
NL (ζ 2 − 〈ζ 2〉), (68)

where the non-linear parameter f local
NL is constant. By def-

inition, 〈ζNL〉 = 〈ζ 〉 = 0. Then, a direct calculation of the
bispectrum shows that

fNL(k1, k2, k3) = f local
NL . (69)

In fact, the Fourier transform of the non-linear part is

ζ N
k = 3

5
f local

NL

[
−(2π)3δ(k)〈ζ 2〉 +

∫
d3p

(2π)3
ζpζp−k

]
. (70)

The first term stems from the fact that the auto-correlat-
ion function is x independent. Since all momenta must
not vanish at the same time, this piece can be thrown
away. The second term enters into the three-point func-
tion, which at lowest order is (e.g., [5])

〈
ζ NL

k1
ζ NL

k2
ζ NL

k3

〉 ≈ 〈
ζk1ζk2ζ

N
k3

〉 + (k3 ↔ k2) + (k3 ↔ k1)

= (2π)3δ(k1 + k2 − k3)
3
5

f local
NL 2Pζ (k1)Pζ (k2)

+ (k3 ↔ k2) + (k3 ↔ k1), (71)

which yields Eq. (69) after comparing Eqs. (66) and (67).
The decomposition (68) is pointwise in configuration
space and for this reason it is called local model. For a
power-law scalar spectrum Ps ∝ kns−1, the local bispec-
trum reads

Blocal
ζ (k1, k2, k3) = 6

5
f local

NL A2
ζ

∑
α<β

1
(kαkβ)4−ns

, (72)

where Aζ is a constant amplitude. This expression can be
converted into one with spherical multipoles.

The expression (72) peaks at the squeezed limit where
one of the edges of the triangle (k1, k2, k3) collapses [86,
87]:

k1 ≈ k2 � k3, k3 ≈ 0. (73)

Sending, e.g., k3 → 0, by conservation of momenta one
has k1 ∼ −k2 and

Blocal
ζ (k1, k1, k3 → 0) = 12

5
f local

NL Pζ (k1)Pζ (k3). (74)

Measuring the bispectrum in this configuration, one can
obtain an estimate of f local

NL . In the local bispectrum,
small- and large-scale modes are coupled together.

The squeezed limit can be understood in a fairly intu-
itive way in all models where the curvature perturbation

ζ is constant at large scales [86, 88]. Split ζ into a corse-
grained and a fine-grained perturbation,

ζ (τ, x) =
∫

k<k∗

d3k
(2π)3

ζk(τ )eik·x +
∫

k>k∗

d3k
(2π)3

ζk(τ )eik·x

=: ζc(τ, x) + ζq(τ, x). (75)

In the limit (73), ζk3 is larger than the Hubble horizon and
can be treated as constant in time. Then ζ (x3) ∼ ζc(x3)
defines a new coordinate background x′ ≈ [1 + ζc(x3)]x
inside the horizon. In the new coordinates and up to lin-
ear order,

ζq(x′) ≈ ζq(x) + (x′ − x) · d
dx

ζq(x)

≈ ζq(x) + ζc(x3) x · d
dx

ζq(x). (76)

If the linear perturbation ζq(x) is Gaussian, in the
squeezed limit we have

〈ζ (x1)ζ (x2)ζ (x3)〉 ∼ 〈
ζq(x′

1)ζq(x′
1)ζc(x3)

〉
≈

〈
ζ 2

c (x3)x1 · d
dx1

[
ζq(x1)ζq(x2)

]〉

≈ 〈
ζ 2

c (x3)
〉
c x1 · d

dx1

〈
ζq(x1)ζq(x2)

〉
q

= ξ
(ζ )
2 (0)

d
d ln �

ξ
(ζ )
2 (�), (77)

where in the second line we exploited translation invari-
ance, in the last line we used � = |x1 − x2| and ∂�/∂x1 =
x1/�, and we denoted with ξ

(ζ )
2 the two-point correlation

functions of ζ . Since the latter goes as ξ
(ζ )
2 ∝ �−(ns−1), one

gets

〈ζ (x1)ζ (x2)ζ (x3)〉 ≈ −(ns − 1)ξ (ζ )
2 (0)ξ (ζ )

2 (�). (78)

Comparing this expression with Eq. (74), we finally
obtain

f local
NL ≈ 5

12
(1 − ns). (79)

For spectra which are almost scale-invariant (ns − 1
small) at large scales, the level of non-Gaussianity is
very low, fNL � 1. Tensor modes produce an even lower
signal. This result [86, 88] is general enough to be ap-
plied both to WDW and loop quantum cosmology, which
we have seen to be compatible with almost scale in-
variance. Therefore, considering the current 95% C.L.
bound on the local non-linear parameter coming from
combined CMB and large-scale structure [89] observa-
tions, −5 < f local

NL < 59 [38], the non-linear parameter in
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the squeezed limit is small and the quantum correc-
tions considered here have no appreciable impact on the
bispectrum.

5 Outlook

Quantum gravitational effects modify the spectra of cos-
mological perturbations and their imprint in the cos-
mic microwave background. In this paper, we compared
two canonical approaches, the one based on the usual
Wheeler–DeWitt quantization and loop quantum cos-
mology. Wheeler–DeWitt quantum corrections are too
small to be detected, even in the most optimistic upper
bound, Eq. (34). The model therefore is not falsifiable,
at least under the assumptions made in the derivation
of the results, but at least it is compatible with what we
observe.

In contrast, LQC inverse-volume corrections can be of
much greater size and produce an enhancement, rather
than suppression, of the large-scale spectra. While in
the WDW case quantum corrections change the inhomo-
geneous dynamics but leave homogeneous background
equations unmodified, in LQC the latter are deformed,
too. However, this is not the reason why LQC effects are
potentially several orders of magnitude larger than the
WDW quantization. Rather, the key ingredient is the scale
compared with the Planck energy density ρPl in the ratio
defining the quantum correction: for WDW it is the infla-
tionary scale ρinfl, for LQC it is determined by the char-
acteristic discreteness scale of the semi-classical state
describing the quantum universe. This effective energy
density can be as large as the Planck density, ρinfl � ρqg �
ρPl.

This also highlights the different origin of the ob-
servational bounds presented above. While the WDW
quantum correction (34) is constrained somewhat in-
directly via the usual bounds on the inflationary en-
ergy scale, in LQC we have some free parameters on
which we have little control theoretically, due to the
formidable (and yet unsurmounted) difficulties in ex-
plicit constructions of cosmological semi-classical states
in the full theory. LQC inverse-volume corrections de-
pend on a phenomenological quantum-gravity scale as
well as on partly heuristic, partly quantitative arguments
indicating how to implement discrete quantum geom-
etry in a quasi-homogeneous cosmological setting. A
multi-variate likelihood analysis involving all the cosmo-
logical parameters, including LQC ones, is thus more ad-
equate to the task.

Observations constrain LQC inverse-volume quan-
tum corrections below their theoretical upper bound,
but in some instances the signal is above the threshold of
cosmic variance. Experiments such as PLANCK or of the
next generations should then be able to reach the sen-
sitivity to detect a quantum gravity signal or, in its ab-
sence, place yet more stringent constraints. In turn, pres-
sure from actual data will stimulate the quest for a bet-
ter understanding of the fundamental properties of the
states of the full theory, and a greater control over pa-
rameters which, as the discreteness scale L, are presently
phenomenological.
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