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Tailoring diffusion in analog spacetimes
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Diffusive transport is characterized by the scaling law (length)® o (time). In this paper we show that this
relationship is significantly altered in curved analog spacetimes. This circumstance provides an opportunity to
tailor diffusion: by a suitable design of the analog metric, it is possible to create materials where diffusion is
either faster or slower than in normal media, as desired. This prediction can, in principle, be tested experimentally
with optical analogs, curved graphene sheets, and so on (indeed with any analog spacetime).
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I. INTRODUCTION

Diffusion phenomena are ubiquitous. They underlie thermal
and electrical conduction, turbidity, osmosis, breathing, but
also sound propagation in rooms [1,2] and streets [3], opinion
spreading in crowded halls [4], and so forth. In these sundry
systems, the characteristic feature of the diffusive behavior
is the diffusion scaling law: the spatial spreading of a local
impulse grows like the square root of time.

Does this scaling still hold in a curved spacetime? At first
sight, this question may seem rather academic, given that
spacetime curvature is strong only in extreme astrophysical
(dense stars) and cosmological (early universe) situations.
We believe it is not. As is now well understood, a variety
of materials effectively behave as analog spacetimes. This
means that, as far as low-energy excitations are concerned,
the effect of microscopic interactions can be accounted for
by a nontrivial Lorentzian metric. Examples of such materials
include corrugated graphene sheets [5], Bose-Einstein conden-
sates [6], metamaterials [7], quantum liquids [8], and so on.
(See [9] for an updated review of analog gravity.) To study
transport phenomena in these systems, it is important to have
a good grasp on the effect of spacetime curvature on diffusion,
and notably on the diffusion scaling law.

One way to address this problem is via Einstein’s stochastic
approach to diffusion, exposed in his 1905 paper on Brownian
motion [10]. Walking in these footsteps, we derived in [11]
the equation governing the probability density of Brownian
motion in the effective geometry

ds®> = —N%(t,x)dt* + qup(t,x)dxdx’, 1)

where (¢,x) are coordinates comoving with the medium, N
is the so-called lapse function, and ¢g,, a D-dimensional
Riemannian metric describing the intrinsic geometry of the
spatial slices. We found that, if g,, = q.»(x) is static, the
generalized diffusion equation reads [11]

9, p =kAy(Np). 2

Here p is the probability density, « the diffusivity, and A,
the Laplace-Beltrami operator associated to the spatial metric
qap (see below for definitions). Using this equation, it is only a
computational matter to obtain the mean squared displacement
(MSD) as a function of time, and therefore to obtain the
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curvature corrections to the diffusion scaling law. It is the
purpose of this paper to present our solution to this problem.

What makes this computation particularly interesting is the
fact that the metric coefficients N and g, are often tunable
in gravitational analogs. For instance, in optical media the
lapse function N is nothing but the inverse refractive index,
which recent techniques (metamaterials, nonlinear Kerr effect)
allow to design very efficiently. This circumstance suggests
that diffusive transport can perhaps be tailored in analog
spacetimes (either enhanced or slowed down) at will. By
analogy with the current research on metamaterials [7], where
the propagation of electromagnetic radiation can be tailored
with an effective spacetime metric, one can perhaps describe
our result as establishing the possibility of “metadiffusion.”

For clarity, we will investigate this issue by considering
separately the possibility of temporal and spatial tailoring of
the MSD, viz. by distinguishing the cases where N and g are
only functions of time (or space). Once these two cases are
understood, it is an easy matter to treat the general situation,
where N and g depend on both time and space.

Among the possible behaviors for the MSD as a function
of time, we will find the following:

(1) a diffusive-to-ballistic crossover in hyperbolic spatial
geometries,

(2) an exponential growth with a parabolic lapse profile
(“Maxwell’s fish eye”),

(3) a finite limit as + — oo in the presence of an analog
event horizon,

(4) any function f(¢) such that f(0) =0 with a time-
dependent lapse function.

At the very least, this variety of behaviors demonstrates
that diffusion in curved spacetimes is an interesting topic in
its own right. We will comment on one possible application in
the conclusion.

II. DEFINITIONS AND ASSUMPTIONS

Consider a diffusion process within an in irrotational fluid
flow. In the instantaneous rest frame (Lagrangian, or comoving
coordinates), the effective spacetime metric can be written as

ds®> = —N?(t,x)dt* + qap(x)dx“dx?, (3)

where N is the lapse function and ¢, a static D-dimensional
Riemannian metric describing the intrinsic geometry of the
constant-¢ spatial slices %;.
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Fix a spatial point xy € X and consider the Green function
(heat kernel) K, (x,xq) of the generalized diffusion equation (2)
viz. the solution with initial condition

lim K (x.x0) = 8(x.x0). 4)
t—

where §(x,x¢) is the Dirac distribution on the + = 0O spatial
slice . Hereafter, we will denote (T',¢), the pairing between
a distribution 7 and a test function ¢ on X, so that for instance
(8,0) = &(1,x0).

To avoid dealing with drift effects, we will assume further-
more that g, is spherically symmetric about x, viz.

qap(p)dx“dx" = a*(p)dp® + p*dQ, ;. (5)

Here the radial coordinate p has the interpretation p =
(A/4m)'/?, where A is the area of the t = const, p =
const. surface, and dQ%_] is the metric on a unit (D — 1)-
sphere centered on xp. Without loss of generality, we take
N(O,x9) = 1.

With these assumptions, the squared distance between x
and x( at time ¢ is given by

p(x)
Lo = [ dp'aeh ©)
0
and we can define the MSD by
(d*) = (K,.d). (7

In a flat spacetime, where N = a = 1, the MSD is well known
to be given by (d?), = 2« Dt: this is the normal diffusion
scaling law. In the more general metric considered in this
paper, however, such a linear behavior is valid only in the
t — 0 asymptotic regime

(d*), ~, 26Dt (8)
At later times, corrections depending on N and a are to be
expected since the Brownian particle then has had enough time
to explore its neighborhood, and felt the effects of its nontrivial
geometry. We call tailoring of diffusion the possibility of
tuning (d?), as a function of ¢ by means of the parameters
N and a.

III. TEMPORAL TAILORING

Let us consider first the possibility of temporal tailoring,
by which we mean that N = N(¢), and a = 1. In this case, the
equation for the Green function simplifies to

8, K, = Nk AK,, 9
where A is the standard (time-independent) Laplace operator.

Defining

s(t)=/ di'N(t") (10)
0

and performing the change of variables ¢ — s() in equa-
tion (9), we get

0K, = kAK;. (11)
This is nothing but the standard diffusion equation, hence

(d*), = 2k Ds(1). (12)
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This result implies that, with a suitably designed N, one can
tailor the MSD to any desired function f(¢) such that f(0) = 0.
Indeed, differentiating (d?), = f(t) with respect to ¢ and using
(12), we obtain
= f/

2kD’
A lapse function satisfying this condition will ensure that the
MSD matches the desired function f(z).

13)

IV. SPATIAL TAILORING

Even more intriguing is the possibility of spatial tailoring
with a static, inhomogeneous spacetime metric

ds* = —N*(p)dt* + a*(p)dp* + p*dQ5,_,. (14)

With this spacetime geometry, we cannot in general compute
the MSD in closed form. However, we can easily obtain its
t — 0 asymptotic expansion, as follows.

From now on, denote £ the differential operator A,(N -),
so that the generalized diffusion equation (2) reads

a,K, :KﬁKt (15)
This equation can be solved formally as
K (x,x0) = ¢F8(x,x0), (16)
or, expanding the exponential in powers of its argument,
o (k)"
Ki(x.x0) = ) ———L"3(x,x0). (17)
n=0 n:

Now, for any test function ¢ we have

(£8,0) = (8,L7¢): = (LTp)(t,x0), (18)

where LT = NA, is the formal adjoint of £. Using this
relationship, we find

oo

(Kt)n u

(@) =y — =D d?]o.xo). (19)
n=0

Explicitly, the order-n coefficient d> of the Taylor expansion

(d?), = Y22 d?t" is therefore

n=0“n

Kn
d>=— | NA,[--- (NA,dD] | (x0,x0). (20)
[71 0
n times

Finally, observe that the asymptotic expansion (19) can be
resummed formally as

(d?), = ("> (x0,x0). 1)

This means that the MSD itself can be computed from a partial
differential equation, namely as u;(xo), where u,(x) is the
solution to the equation

8[”[ = K»Cj-uf (22)

with initial condition uo(x) = d*(x,xo). This last equation is
referred to as the backward Kolmogorov equation associated to
(2) in the mathematical literature. It can be useful to compute
the MSD numerically.
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V. TWO EXAMPLES OF SPATTAL TAILORING

To illustrate these findings, let us consider two cases of
spatial tailoring of direct relevance for applications: a quadratic
lapse profile and a spatial geometry with constant curvature.

A. Parabolic lapse profile

Assume first that the spatial sections are Euclidean (a = 1),
and the lapse function is parabolic
2

N(p) = 1 +e%. (23)

Here € = %1 indexes the convexity or concavity of the profile.
Such a profile is used for instance in graded-index optical
fibers. If € = 1, it is sometimes referred to as Maxwell’s fish-
eye, and has recently attracted a great deal of attention for its
perfect lensing properties [12].

From a computational viewpoint, this example is particu-
larly simple because both Ap? and AN are constant, given by
2D and 2De /02, respectively. Thus for n > 1 we have

. . (2D)n€n—l
(LT p* = Ap*(ANY'"™! = (24)
It follows that
2\ (k1)" (2De\"

d*); = eo? -, 25

(d*); “’;nz@z) (25)
that is,

2keDt
(%), = ea? [exp( K; )—1] (26)

The interpretation of this result is as follows.

(1) If the lapse profile is convex (¢ = 1), diffusion speeds
up in time, with an exponential growth of the MSD with time
scale t* = o2 /2 D. With respect to normal diffusive scaling
such a profile is repulsive.

(2) If the lapse profile is concave (¢ = —1), diffusion slows
down in time until it eventually stops at t ~ t* = 0>/2« D,
when the MSD reaches the finite limit o2. With respect to
normal diffusive scaling such a profile is attractive.

From a relativist’s perspective, the stopping of diffusion on
the surface p = o does not come as a surprise: it is an instance
of the “freezing” phenomenon typical of event horizons. We
conjecture that the same behavior would occur in the vicinity
of any infinite redshift surface, where the lapse function N
vanishes.

B. Pure spatial curvature

Another interesting special case is when N = 1, viz. when
the only nontrivial curvature components are spatial. In this
case, already considered in the biophysical context [13,14], the
order-n Taylor coefficient of the MSD as a function of time
(20) reduces to

n

d? = k—A”dz(x ) 27)
n - }’l' q Oa'x(] .

PHYSICAL REVIEW E 85, 041134 (2012)

The quantities AZdz(xo,xo) are well known geometric invari-
ants, tabulated for instance in [15].' The first two read

A, d*(x0,x0) = 2D, (28)
A d*(x0,x0) = —5 Ry(x0), (29)

where R, (x¢) is the spatial Ricci curvature. Hence, to next-
to-leading order, we find that a negative spatial curvature
will enhance the MSD, while a positive spatial curvature will
diminish it. The characteristic time of the diffusive-to-ballistic
crossover in the hyperbolic case is t* = D/« R;(xo).

VI. COMMENTS

Several comments may be useful to clarify the nature of the
results discussed in the preceding sections.

First, let us stress that the main equation of this paper,
namely equation (2), is not merely the standard diffusion
equation written in a nonstandard coordinate system. It is a
different and more general equation, which reduces to the
standard diffusion only when the spacetime curvature and
background acceleration both vanish. In the presence of space-
time curvature, as, for instance, in solids with disclinations or
in gradient-index optical media, it leads to genuinely different
physical predictions. Furthermore, the coordinate system used
to write (1) and (2) is not arbitrary: it is the comoving frame
in which the background medium is locally at rest.

Second, the generalized diffusion equation (2) is actually
well known in general relativity: it is the Eckart heat
equation [17]. (See [11] for more details.) Here, thanks to the
connection with Brownian motion established in [11], it is
applied to any diffusion phenomenon in the presence of an
analog gravitational field, and not just to heat dynamics in
dissipative relativistic fluids.

Third, it is worth emphasizing that the analog gravity
picture of condensed-matter systems underlying this work
is only an effective description, which hides a great deal of
microscopic physics. This approximation is similar to the
one consisting of the description of an optical medium by a
single scalar field, the refractive index. It is valid only when
the relevant excitations, as the photons in the optical case,
have low energy and large wavelength and therefore do
not couple to microscopic inhomogeneities. Thus, we have
assumed in particular that transport can be described as a local
diffusion, involving the Laplace-Beltrami operator in space
A, (rather, for instance, than as a diffusion in phase space, as
in the Kramers kinetic equation). As usual, this implies that
the relevant mean free path is small compared to other length
scales in the problem.

Fourth, the Green function K; of the generalized diffusion
equation (2), unlike its flat-spacetime equivalent, is, in
general, not Gaussian. This implies in particular that K, is not
fully characterized by the associated MSD. For this reason, it
will be necessary to push further the analysis initiated in this
paper to get a comprehensive picture of “diffusion tailoring.”
One way to gather further information about the effect of
analog gravity on diffusion is to compute the time-evolution

I'See also for [16] fast numerical algorithms.
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of the entropy of K, as a function of the effective geometry;
this task will be undertaken in a future publication.

VII. CONCLUSION AND OUTLOOK

In this paper we have computed the MSD for Brownian
motion in a curved, spherically symmetric, analog spacetime.
Depending on the convexity of the lapse function and the sign
of spatial curvature, we have found that the MSD can either
grow faster or slower than in flat spacetime. In the extreme
case where the analog spacetime geometry presents an infinite
redshift surface (N = 0), diffusion actually stops. In principle,
any one of the many condensed-matter systems behaving as
analog spacetimes can be used to test these predictions in the
laboratory.

Diffusion is such a common phenomenon in physics,
chemistry, and so on that it is impossible to list all the possible
applications of “metadiffusion.” Let us simply mention one,
related to Anderson localization?. According to the so-called

21 thank Daniele Faccio for suggesting this example to me.
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scaling theory, the critical point of the localization transition
in a finite sample of size L can be estimated by the criterion
g(L) >~ 1, where g(L) is the ratio of the uncertainty of
the energy levels due to the boundary conditions to the
mean energy spacing. The former is inversely proportional
to the Thouless time Tr: the time needed for a diffusive
carrier to reach the boundaries of the sample. In normal
situations, this time is given by T; = «/L%. In a sample
with curved effective geometry, however, we have found
that this relationship can be modified and actually tailored.
Can this be used to control the localization threshold of
analog spacetimes? This question will be addressed in future
work.

Note added. The concept of “diffusion tailoring”
was also discussed in the context of heat dynamics
in [18].
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