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InA.Henderson, A. Laddha, andC. Tomlin, preceding article, [Phys. Rev. D 88, 044028 (2013)], we initiated

an approach towards quantizing theHamiltonian constraint in loopquantumgravity by requiring that it generates

ananomaly-free representationof constraint algebraof -shell.We investigated this issue in the caseof a toymodel

of a (2þ 1)-dimensional Uð1Þ3 gauge theory, which can be thought of as a weak coupling limit of Euclidean

three-dimensional gravity. However, in paper I, we only focused on the most nontrivial part of the constraint

algebra that involves the commutator of twoHamiltonian constraints. In this paperwe continuewith our analysis

and obtain a representation of full constraint algebra in a loop quantized framework. We show that there is a

representationof thediffeomorphismgroupwith respect towhich theHamiltonianconstraint quantized in paper I

is diffeomorphism covariant. Our work can be thought of as a potential first step towards resolving some

longstanding issues with the Hamiltonian constraint in canonical loop quantum gravity.

DOI: 10.1103/PhysRevD.88.044029 PACS numbers: 04.60.Pp

I. INTRODUCTION

A satisfactory definition of Hamiltonian constraint in loop
quantumgravity (LQG) [1] remains an open problem.Despite
remarkable progress made in the seminal work of Thiemann
([2–4]), it is clear that the current quantization is not satisfac-
tory due to three interrelated issues: (1) Enormous ambiguity
in the definition of the continuum Hamiltonian constraint,
(2) the absence of a representation of quantum dirac algebra
(referred to as the off-shell closure in [5]), and (3) when the
constraint is used in a symmetry reduced sector of loop
quantum cosmology, the low energy limit of the theory turns
out to be incorrect [6]. Progress in obtaining a satisfactory
definition of quantum dynamics in canonical LQG can be
achieved by analyzing and overcoming the first two obstacles
by takinghints from toymodels like loopquantumcosmology.

In [7,8] a new approach was initiated to quantize the
Hamiltonian constraint in LQG. This approach is based on
the lessons learned in [6,9–11]. The idea in [7] was to look
for higher density constraints whose action at finite trian-
gulation was based upon the geometric action of the clas-
sical constraints on phase space fields. The continuum limit
of finite triangulation constraint is taken not on H kin but
on certain distributional subspaces known as habitats [12].
Instead of working with full LQG, in [7] we considered a
simple toy model of (2þ 1)-dimensional1 Uð1Þ3 gauge

theory which can be thought of as a weak coupling limit
of Euclidean canonical gravity [13]. In [7] we showed that
there exists quantization of (density weight 54 ) Hamiltonian

constraint which satisfied

½Ĥ½N�; Ĥ½M�� ¼ Hdiff½q�1ðNdrM�MrNÞ�: (1)

In this paper we continue the analysis of obtaining a
representation of the constraint algebra in the loop quan-
tized Uð1Þ3 gauge theory. Our goal is to obtain a represen-
tation of the ‘‘Dirac algebra’’ in the following sense2:

Ûð�1ÞÛð�2Þ ¼ Ûð�1 ��2Þ; (2)

Ûð�Þ�1Ĥ½N�Ûð�Þ ¼ Ĥ½��N�; (3)

½Ĥ½N�; Ĥ½M�� ¼ iℏD̂½ ~̂!�: (4)

In this paper we focus on the (spatial) diffeomorphism
covariance of the Hamiltonian constraint. That is, we
want to see if there exists a representation of Diffð�Þ on
V LMI such that (3) is represented without anomaly.
Right at the outset, it appears that the answer will be in

the negative, due to background structure which is required
to define the quantum Hamiltonian constraint in [7].
Diffeomorphism noncovariance of the quantum shift:

The action of the (finite-triangulation) Hamiltonian con-
straint on a charge network c results in a deformation of the
underlying graph �ðcÞ in a neighborhood of vertices of
�ðcÞ in the direction of vectors which are themselves

1As we insisted in [7] and would like to remind the reader again
here, although themodelwe consider is (2þ 1)-dimensional theory,
our analysis to a large extent is independent of dimensionality and
we believe it goes through rather straightforwardly in 3þ 1 dimen-
sions. Infact asweargued in [7], someof the technicalitieswhich are
present in two spatial dimensionswill be absent in three dimensions,
thus simplifying the analysis. This should not be too surprising as
off-shell closure of Dirac algebra probes the local structure of field
theory, even when the theory is topological on shell.

2The quotation marks indicate that strictly speaking we are not
working with the algebra of constraints but with the crossed
product generated by the Hamiltonian constraint and finite
diffeomorphisms.
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defined using data from c. Given a charge network state jci
and its vertex set VðcÞ, the (regularized) expectation value
hcjÊa

i q̂
�1=4ðvÞj�jci at any vertex v 2 VðcÞ plays the role of

this vector, and was referred to as the quantum
shift in [7]. The subscript � indicates that the operator
implicitly depends on regulating structures which are
parametrized by �. As we show below, due to the regu-
larization dependence of the quantum shift vector, it turns
out that, given a state j� � ci (the diffeomorphic image of c

under �), the quantum shift h� � cjÊa
i q̂

�1=4ð�vÞj�j� � ci
defined at �ðvÞ 2 Vð� � cÞ is not the pushforward (via �)

of hcjÊa
i q̂

�1=4ðvÞj�jci. This is the first obstruction
which, unless addressed, will ensure that the Hamiltonian
constraint operator will not commute with finite
diffeomorphisms.

Noncovariant nature of extraordinary (EO) vertices.—
The key feature of the Hamiltonian constraint’s action
on kinematical states3 is the creation of so-called extraor-
dinary (EO) vertices. Essentially the idea is the following:
Starting with any charge network c, around each of its
nondegenerate vertices [vertices at which not all edges
emanating from it are charged only in one copy of U(1)],
we fix, once and for all, a coordinate ballBðv; �Þ of radius �
and consider a sequence of finite-triangulation Hamiltonian

constraint operators ĤTð�Þ½N� with � � �0ð�Þ, where � is

associated to a coordinate size of simplices in T and �0ð�Þ
ensures that these in the neighborhood of a vertex v, sim-

plices lie within Bðv; �Þ. The action of ĤTð�Þ½N� on jci
creates a linear combination of charge network states,
each of which has an EO vertex sitting inside Bðv; �Þ.
These EO vertices have several distinguishing properties:

(1) They are necessarily zero volume.
(2) By construction they are inside Bðv; �Þwith v being

some nondegenerate and have a ‘‘nonzero volume4’’
vertex.

(3) Their ‘‘location’’ (with respect to the fixed coordi-
nate chart around v) is state dependent and dictated
by the so-called quantum shift.

(4) Given any charge network c0 with a vertex vE sat-
isfying the above three properties, one can always
find charge network c with a vertex v such that the

action of ĤTð�ÞðvÞ results in a linear combination of

charge network states including jc0i.

Although the EO vertices are zero volume, the action of
the Hamiltonian constraint on such vertices is required to
be nontrivial and have a specific form in order to obtain an
anomaly-free commutator of two continuum Hamiltonian
constraints (for more details we urge the reader to consult
[7]). The definition of an EO vertex relies on the vertices
lying inside certain prescribed coordinate neighborhoods
of nondegenerate vertices. Whence under an arbitrary
diffeomorphism, an EO vertex could be dragged outside
the the prescribed neighborhood and would no longer be
classified as an EO vertex by our prescription. This means
that the action of a Hamiltonian constraint on a state will
not commute with the action of diffeomorphisms.
Nontrivial density weight of the lapse.—As the

Hamiltonian constraint HðxÞ is a scalar density of weight
5
4 , the lapse function is a scalar density ofweight� 1

4whence

evaluation of lapse at a given point requires an explicit
specification of coordinate chart in the neighborhood of
the point. Whence the pullback of a lapse by a diffeomor-

phism which occurs in Ĥ½��N� involves Jacobian factor
between various coordinate charts and it is not clear how

such factors could arise in Ûð�ÞĤ½N�Ûð��1Þ. This is yet
another potential source of diffeomorphism noncovariance
of the Hamiltonian constraint.
In this paper we show that, despite the apparent back-

ground dependence of the quantum Hamiltonian con-
straint, we obtain an anomaly-free representation of the
Dirac algebra onV LMI by defining a new representation of
the diffeomorphism group on H kin (and whence by dual
action on V LMI) such that the continuum Hamiltonian
constraint turns out to be diffeomorphism covariant.
The purpose of requiring the Hamiltonian constraint to

be diffeomorphism covariant is twofold [2]. On the one
hand, this ensures that the quantum constraint algebra is
first class, and perhaps equally importantly, the vast
amount of ambiguity which persists in the continuum
quantum constraint can be reduced by requiring diffeo-
morphism covariance. This has been explicitly demon-
strated in [2] and as we see below, it remains true even in
our approach.
This paper is organized as follows. In Sec. II we recall

key ideas and results from [7]. That section merely serves
to summarize contents of [7] and we do not claim it to be a
sufficient prerequisite for understanding all the details in
the subsequent sections. We urge the interested reader to
consult [7] for a more detailed understanding of the struc-
tures involved. In Sec. III we do a sample computation
where we take the standard representation of the diffeo-
morphism group on H kin and obtain, via dual action, a
conjugate representation on V LMI. We then check if the

Hamiltonian constraint operator Ĥ½N� is covariant under
this representation of the diffeomorphism group. As

expected, Ĥ½N� is not covariant and the analysis reveals
precisely where the issues mentioned above show up in the
computation. In Sec. IV, we define a new representation of

3By this we mean the Hamiltonian constraint operator at finite
triangulation which is densely defined on H kin.

4In the Uð1Þ3 theory in 2þ 1 dimensions, the notion of
degenerate vertex and zero-volume vertex are not equivalent.
As we have defined above, a degenerate vertex is the one on
which all incident edges are charged only in one copy of U(1).
All such degenerate vertices are necessarily zero volume; how-
ever, one could easily have a zero volume vertex which was not
degenerate. The Hamiltonian constraint action on a charge net-
work generically created vertices which are degenerate, but in
some special cases it creates vertices which are zero volume but
nondegenerate. We labeled them type-B EO vertices in [7].
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diffð�Þ on V LMI which essentially ensures that various
structures required to define the Hamiltonian constraint
operator at finite triangulation behave covariantly with
respect to this representation. In Sec. V, which is the
main section of the paper, we prove the diffeomorphism-
covariance of the continuum Hamiltonian constraint on
V LMI. Together with [7], the results of this section estab-
lish a representation of the Dirac algebra for the Uð1Þ3
gauge theory. In Sec. VI we perform a heuristic check on
the validity of the new representation of Diffð�Þ on V LMI

by computing a subset of physical states that capture the
topological sector in the quantum theory and argue that
the final answer we obtain is the expected one in the sense
that we would have arrived at the same answer had we
worked with the representation of Diffð�Þ commonly used
in LQG.

We end with conclusions where we highlight the
unsatisfactory aspects of our work, which is the use of
several auxiliary structures, and make some remarks
pertaining to the generalization of our work for
Euclidean LQG.

II. SUMMARY OF [7] AND SOME
NOTATIONAL CHANGES

In this section, we briefly recap the relevant results
and notation of [7], where more details can be found
when desired. There, a proposal was made for a finite-

triangulation Hamiltonian constraint operator ĤTð�Þ on

the vector space D spanned by charge networks c �
ðc1; c2; c3Þ (whose completion is the kinematical Hilbert
spaceH kin of the theory) and its continuum limit (� ! 0)
was evaluated on a vector space V LMI � D� of distribu-
tions spanned by objects of the type

ð�fð1Þ
½c�ð1Þ j :¼

X
ðc0

1
;c2;c3Þ2½c�ð1Þ

fð1Þð �Vðc01 [ c2 [ c3ÞÞhc01; c2; c3j:

(5)

Here fð1Þ: �jVðcÞj ! C is a smooth function that is
symmetric in its arguments,5 and the set of arguments
�Vðc01 [ c2 [ c3Þ is a set of vertices [with the same cardi-
nality as the vertex set VðcÞ of c] in which any WEO pairs
(recalled below) of vertices are replaced by the single
WEO vertex of the pair. In this work we will omit the
parentheses around the Uð1Þi labels to slightly simplify the

notation; i.e., these states will be written �fi

½c�i .½c�ði¼1Þ is a set of charge networks containing a ‘‘parent’’
c ¼ ðc1; c2; c3Þ, as well all other charge networks
ðc01; c2; c3Þ in which c2, c3 are unaltered, but c

0
1 � c1, and

the nonequality is of a special type, namely, each

ðc01; c2; c3Þ has at least one vertex which is ‘‘weakly

extraordinary (WEO) of type i ¼ 1’’ with respect to c.
We digress briefly to explain the notion of extraordinary
and weakly extraordinary vertices.
Roughly speaking, extraordinary vertices of a charge

network c0 are those produced by the action of a finite-
triangulation Hamiltonian constraint operator on a charge
network c, and WEO vertices are EO vertices which have
additionally been moved by diffeomorphisms which are
the identity on c. Given a charge network and the associ-
ated coordinate charts based at its vertices, there is a list of
criteria (found in [7]) which determines whether a vertex is
WEO, EO, or neither. This is largely a topological and
charge label-dependent classification, and given an arbi-
trary charge network c with WEO vertices, it is possible to
reconstruct a unique WEO vertex-free charge network ~c.
This comes about as follows. As shown in Appendix B of
[7], any WEO vertex vE in a charge network c is uniquely
associated to a vertex v 2 VðcÞ. Furthermore all the
(maximal analytic extension of) edges beginning at vE

terminate in a three-valent vertex. By erasing each of these
edges and adding the corresponding charge to the edge
between the above mentioned three-valent vertex and v
one reconstructs a WEO vertex-free charge network that
we will denote by ~c throughout this paper.
If the classification scheme determines that a given

vertex vE is EO, then it is uniquely associated to another
vertex v, namely, that vertex at which a finite-triangulation
Hamiltonian-type operator has acted to produce the pair
ðv; vEÞ. It is helpful to keep in mind a picture of the action

of an operator of the type Êa
i F̂

j
abÊ

b
k for some fixed i � j �

k at a vertex v of some charge network c. In [7] we have
constructed such operators via a ‘‘loop assignment

scheme’’ where, roughly speaking, Êa
i gives the direction

and magnitude of one leg of the loops, F̂j
ab determines that

the charge on the attached loops is only nonzero in Uð1Þj,
and Êb

k determines the magnitude of those Uð1Þj charges
via the Uð1Þk charges on edges of the underlying state. EO
vertices are common apex points of the (charged) loop
collections, and hence come in several flavors, and it is
necessary in what follows to respect their distinction. To
this end, we introduce some additional notation.
Each vE is first classified as type A or type B; type A EO

vertices lie off of the original graph c, and type B vertices
lie on c. This distinction is not important below, so we omit
this information from our notation, and focus the discus-
sion on type A EO vertices vE. Let vE

�ðj; kÞ denote an EO

vertex from which all outgoing edges are charged in
Uð1Þj,6 with the magnitude of those charges being deter-

mined by the Uð1Þk charges in the underlying charge net-
work. The subscript � denotes that vE

�ðj; kÞ is located a

coordinate distance �jhÊa
i ij (with respect to the coordinate

5This assumption was not made in [7]; however, it is invoked
here in the interest of pedagogy. The analysis given in the paper
can be easily seen to hold when we relax this assumption. 6In [7], we denoted this vertex as vE

�ðM; kÞ.
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system based at the vertex v of the underlying charge

network) from v in the direction of hÊa
i i. By the classifi-

cation scheme detailed in [7], the pair ðv; vE
�ðj; kÞÞ is

unique, and we term it an extraordinary pair.
Weakly extraordinary vertices are again detectable via

the classification scheme, and are generated from EO
vertices by applying diffeomorphisms (which do not
move the underlying state) to states containing EO pairs.
That is, these diffeomorphisms only move the loop collec-
tions produced by Hamiltonian-type actions.

In [7], the calculation of the continuum limit action

Ĥ�½c�i (in this work we drop the prime on Ĥ as an operator

on V LMI) was performed by first writing the Hamiltonian
as a sum H ¼ P

iH
i, where i labels the U(1) index

appearing on the curvature Fi
ab, and considering the

various actions Ĥi�½c�j for each i, j. The result is as

follows: Given a density weight � 1
2 lapse function N, it

was found that

Ĥ1½N��f1

½c�1 ¼
X

v2VðcÞ

�
�

f1;1
v;2

½N�
½c�1 ��

f1;1
v;3

½N�
½c�1

�
; (6)

where f1;1v;2½N� is a (generally discontinuous) function

which agrees with f1 at almost all points of �jVðcÞj, except
when its argument is �Vðc01 [ c2 [ c3Þ for some
ðc01; c2; c3Þ 2 ½c�1, and v 2 �Vðc01 [ c2 [ c3Þ, in which
case it takes the value

f1;1v;2½N�ð �Vðc01 [ c2 [ c3ÞÞ
¼ NðvÞ�ð ~ncvÞ

X
ejbðeÞ¼v

n2e _e
að0Þ @

@va f
1ðv; �Vðc01 [ c2 [ c3Þ

� fvgÞ; (7)

where _eð0Þ is the vector tangent to edge e at v ¼ bðeÞ, and
is assumed to be of unit length in a prescribed coordinate
system.

In [7] this function was called �fð1Þð1Þv , where the second

superscripted (1) refers to the action of Ĥ1, and the bar to

the fact that the directional derivative is along hÊa
2ðvÞic

[as opposed to along hÊa
3ðvÞic, which in [7] was denoted by

a double bar]. The expressions for Ĥ2�½c�2 and Ĥ
3�½c�3 can

be obtained by cyclic permutation of the indices in the
above equations.

The action of the mixed-index cases were found to be of
the form

Ĥ2½N��f1

½c�1 ¼
X

v2VðcÞ

�
�

f1;2
v;1

½N�
½c�1 ��

f1;2
v;3

½N�
½c�1

�
; (8)

where again, the functions f1;2v;1½N�, f1;2v;3½N� agree with f1 at
all values of �jVðcÞj, except when those arguments coincide
with �Vðc01 [ c2 [ c3Þ with v 2 VðcÞ, and there is an EO
vertex vE

�ð1; 2Þ 2 suppðNÞ associated with v, in which case
we have

f1;2v;1½N�ð �Vðc01 [ c2 [ c3ÞÞ ¼
� X
e2EðcÞjbðeÞ¼v

n1e _e
að0Þ@aNðvÞ

�
	 f1ð �Vðc01 [ c2 [ c3ÞÞ; (9a)

f1;2v;3½N�ð �Vðc01 [ c2 [ c3ÞÞ ¼
� X
e2EðcÞjbðeÞ¼v

n3e _e
að0Þ@aNðvÞ

�
	 f1ð �Vðc01 [ c2 [ c3ÞÞ: (9b)

Recall that nie are charges on the edge e 2 EðcÞ in Uð1Þi.
Similarly,

Ĥ3½N��f1

½c�1 ¼
X

v2VðcÞ

�
�

f1;3
v;2

½N�
½c�1 ��

f1;3
v;1

½N�
½c�1

�
(10)

with [under analogous conditions as stated above, with
vE
�ð1; 2Þ replaced with vE

�ð1; 3Þ]

f1;3v;2½N�ð �Vðc01 [ c2 [ c3ÞÞ ¼
� X
e2EðcÞjbðeÞ¼v

n2e _e
að0Þ@aNðvÞ

�
	 f1ð �Vðc01 [ c2 [ c3ÞÞ: (11a)

f1;3v;1½N�ð �Vðc01 [ c2 [ c3ÞÞ ¼
� X
e2EðcÞjbðeÞ¼v

n1e _e
að0Þ@aNðvÞ

�
	 f1ð �Vðc01 [ c2 [ c3ÞÞ: (11b)

The expressions for the remaining Ĥi½N��fj

½c�j are cyclic

permutations of these. Given these preliminaries, we now
embark on a first attempt (and failure) to arrive at a state-
ment of diffeomorphism covariance of this Hamiltonian.

III. NAIVE ATTEMPT

We now quantify the worries laid out in the Introduction
regarding why, using the usual representation of the group
of semianalytic diffeomorphisms (denoted in this paper
by diffð�Þ) that is used in loop quantum gravity, the
Hamiltonian constraint constructed in [7] is not diffeomor-
phism covariant. More in detail, in this section we ask the
following question. Consider a representation of Diffð�Þ
on V LMI induced via dual action:

ðÛð�Þ0�fi

½~c�iÞðjciÞ :¼ �fi

½~c�iðÛð�ÞjciÞ; (12)

where the right-hand side of the above equation is given by
using the ‘‘natural’’ unitary representation of Diffð�Þ on
H kin [14]. We now ask if Ûð�Þ0Ĥj½N�Ûð�Þ�10�fi

½~c�i equals

Ĥj½��N��fi

½~c�i for all i, j. As we will see, the answer is no,
and the reasons are precisely those which were given in the
Introduction.
Readers who are convinced by the arguments given in

the Introduction can safely skip this section. However
those who wish to follow details in the subsequent sections
might find it helpful to peruse the computations done here.
Without loss of generality, we restrict attention to i ¼ 1
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and check the diffeomorphism covariance of Ĥj¼1;2½N� in
the domain defined by �f1

½~c�1 .

A. Checking diffeomorphism covariance
of Ĥ1½N� on �f1

½ ~c�1
Given any charge network state jcAi we would like to

see if

ðÛð�Þ0Ĥ1½N�Ûð�Þ�10�f1

½~c�1ÞðjcAiÞ
¼ ðĤ1½��N��f1

½~c�1ÞðjcAiÞ; (13)

where Ûð�Þ0 denotes the natural representation of Diffð�Þ
on V LMI obtained by dualizing the action of Diffð�Þ on
H kin. We can deduce this representation as follows:

ðÛð�Þ0�f1

½~c�1Þðjc0iÞ :¼ �f1

½~c�1ðj� � c0iÞ
¼ X

c002½~c�1
f1ð �Vðc00ÞÞ�c00;��c0

¼
�
�f1��

��1�½~c�1
�
ðjc0iÞ; (14)

where

� � ½~c�1 ¼ f� � ðc01; ~c2; ~c3Þjðc01; ~c2; ~c3Þ 2 ½~c�1g � ½� � ~c�1:
(15)

Whence, the natural representation of Diffð�Þ on V LMI is
given by

Ûð�Þ0�fi

½~c�i ¼ �fi��
��1�½~c�i : (16)

Let us first evaluate the left-hand side (LHS) of (13),

LHS ¼
�
Ûð�Þ0Ĥ1½N�Ûð�Þ�10�f1

½~c�1
�
ðjcAiÞ

¼
�
Ĥ1½N�Ûð�Þ�10�f1

½~c�1
�
ðj� � cAiÞ

¼
�
Ĥ1½N�0�f1���1

½��~c�
�
j� � cAi

¼
�
�

ðf���1Þ1;1
�ðv0Þ;2

½N�
½��~c� ��

ðf���1Þ1;1
�ðv0Þ;3

½N�
½��~c�

�
ðj� � cAiÞ;

(17)

where, in the final line we have assumed (without loss of
generality) that the only vertex in Vð� � ~cÞwhich lies in the
support of N is�ðv0Þwith v0 2 Vð~cÞ. The resulting vertex
functions ðf ���1Þ1;1�ðv0Þ;2½N� and ðf ���1Þ1;1�ðv0Þ;3½N� are
given by

ðf���1Þ1;1�ðv0Þ;2½N�¼
8<:ðf1���1Þð �Vðc0ÞÞ; if� �v0 =2 �Vðc0Þ
�ð ~n��~c

�ðv0ÞÞNð�ðv0ÞÞVa
2 ð�ðv0ÞÞ@�ðv0Þ

a ðf1���1Þð�ðv0Þ; �Vðc0Þ�f�ðv0ÞgÞ; otherwise:
(18)

ðf ���1Þ1;1�ðv0Þ;3½N� is defined similarly with Va
2 replaced by Va

3 .
Whence, assuming � � cA 2 ½� � ~c�1, we have

LHS ¼
(
0 if �ðv0Þ =2 �Vð� � cAÞ
Nð�ðv0ÞÞ½Va

2 ð�ðv0ÞÞ � Va
3 ð�ðv0ÞÞ�@�ðv0Þ

a ðf1 ���1Þð�ðv0Þ; �Vð� � ~cÞ � f�ðv0ÞgÞ if �ðv0Þ 2 �Vð� � cAÞ
(19)

and if � � cA =2 ½� � ~c�1, we have
LHS ¼ 0: (20)

On the other hand, the right hand side (RHS) of (13) is given by

RHS ¼ ðĤ1½��N�0�f1

½~c�1ÞjcAi ¼
�
�

f1;1
v0 ;2

½��N�
½~c�1 ��

f1;1
v0 ;3

½��N�
½~c�1

�
jcAi; (21)

where, following the assumption regarding the support of the lapse with respect to the vertex set of� � ~c, it is clear that the
only vertex in Vð~cÞ which lies inside the support of ��N is v0. As before, we can evaluate the resulting vertex functions,
and find

f1;1v0;2
½��N�ð �Vðc0ÞÞ ¼

(
f1ðVðc0ÞÞ if v0 =2 �Vðc0Þ
ð��NÞðv0Þ�ð ~n~c

v0
ÞVa

2 ðv0Þ@v0
a f1ðv0; �Vðc0Þ � fv0gÞ if v0 2 �Vðc0Þ: (22)

f1;1v0;3
½��N� is defined similarly with Va

2 replaced by Va
3 .

Thus, if cA 2 ½~c�1 we have
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RHS ¼
(
0 if v0 =2 �VðcAÞ
ð��NÞðv0Þ�ð ~n~c

v0
Þ½Va

2 ðv0Þ � Va
3 ðv0Þ�@v0

a f1ðv0; �VðcAÞ � fv0gÞ if v0 2 �VðcAÞ
(23)

and if cA =2 ½~c�1, we have
RHS ¼ 0: (24)

We would now like to see if the LHS and RHS of (13) as
detailed in (19) to (23) are equal for all �f1

½~c�1 , N, and jcAi.

Case 1 cA =2 ½~c�1 ) � � cA =2 ½� � ~c�1. In this case
from (20) and (24) we clearly see that LHS ¼
RHS ¼ 0.

Case 2 cA 2 ½~c�1 but v0 =2 �VðcAÞ ) � � cA 2 ½� � ~c�1
but �ðv0Þ =2 �Vð� � cAÞ. In this case from the first
equation in (19) and in (23) we see that LHS ¼
RHS ¼ 0.

Case 3 cA 2 ½~c�1 and v0 2 �VðcAÞ ) � � cA 2 ½� � ~c�1
and �ðv0Þ 2 �VðcAÞ. In this case the LHS and
RHS are given by the first equations in (19) and
(23), respectively. It is clear that for a generic

choice of the habitat state �f1

½~c�1 , the LHS and

RHS are not equal for two reasons:
(i) The LHS involves Nð�ðv0ÞÞ, whereas RHS

involves ð��NÞðv0Þ ¼ j d�dv0
j16Nð�ðv0ÞÞ;

i.e., the two differ by a Jacobian factor.

(ii) The LHS involves �ð ~n��~c
�ðv0ÞÞ ~Við�ðv0Þ; � �

~cÞwhich is not equal to �ð ~n~c
v0
Þ�� ~Viðv0; ~cÞ.

Thus the nontrivial density weight of the lapse and the
diffeomorphism noncovariance of the quantum shift are the
two reasons why the naive attempt to prove diffeomor-

phism covariance of Ĥ1½N� fails.

B. Checking diffeomorphism covariance: H2½N��f1

½ ~c�1
In the previous section, we analyzed the behaviour of

Ĥ1½N� under conjugation by the natural representation of

Diffð�Þ on �f1

½~c�1 and identified two problems which are

responsible for its spatial noncovariance. In this section,
we continue along the same route and analyze the diffeo-

morphism (non)covariance of Ĥ2½N� on �f1

½~c�1 . At the very
least, we expect the two culprits identified in the last
section to spoil the covariance properties again, but as we
will see in this case there is an additional difficulty. The

action of Ĥ2½N� on charge network states containing EO
vertices (which are by definition zero volume) is different
from its action on non-EO zero-volume vertices. However,
a quick look at the definition of EO vertices reveals that the
entire EO structure is diffeomorphism noncovariant:
A diffeomorphism can map an EO vertex into a WEO
vertex. This transcends into another issue in the continuum

limit, ensuring diffeomorphism noncovariance of Ĥ2½N�
on �f1

½~c�1 . We now turn to a detailed analysis of this issue.

Given �f1

½~c�1 2 V LMI and jcAi 2 H kin, we once again

want to see if�
Ûð�Þ0Ĥ2½N�Ûð��1Þ0�f1

½~c�1
�
ðjcAiÞ

¼
�
Ĥð2Þ½��N��f1

½~c�1
�
ðjcAiÞ (25)

8 � 2 diffð�Þ. We compute

LHS¼
�
Ûð�Þ0Ĥ2½N�Ûð��1Þ0�f1

½~c�1
�
ðjcAiÞ

¼
�
Ûð�Þ0Ĥ2½N��f1���1

��½~c�1
�
ðjcAiÞ

¼
�
Ûð�Þ0

�
�

ðf���1Þ1;2
�ðv0Þ;1

½N�
��½~c�1 ��

ðf���1Þ1;2
�ðv0Þ;3

½N�
��½~c�1

��
ðjcAiÞ

¼
�
�

ðf���1Þ1;2
�ðv0Þ;1

½N�
��½~c�1 ��

ðf���1Þ1;2
�ðv0Þ;3

½N�
��½~c�1

�
ðj� � cAiÞ;

(26)

where in the third line we have used (8) and assumed
(without loss of generality) that 9v0 2 Vð~cÞ such that the
only vertex in Vð� � ~cÞ which falls inside the support of N
is �ðv0Þ. In the fourth line we have used (14). The vertex
functions in the third and fourth lines of (26) are given in
Sec. II, and

ðf ���1Þ1;2�ðv0Þ;3½N�ð �Vðc0ÞÞ ¼ ðf1 ���1Þð �Vðc0ÞÞ; (27a)

ðf ���1Þ1;2�ðv0Þ;1½N�ð �Vðc0ÞÞ ¼ ðf1 ���1Þð �Vðc0ÞÞ (27b)

8c0 such that �Vðc0Þ does not contain an EO vertex
�ðv0ÞE�ð1; 2Þ of type (1, 2).
If on the other hand, �Vðc0Þ contains an EO vertex,

ð� � v0ÞE�ð1; 2Þ (for some �) then,

ðf ���1Þ1;2��v0;3
½N�ð �Vðc0ÞÞ

¼ ðf ���1Þ1;2��v0;3
½N�ðð� � v0ÞE�ð1; 2Þ; . . .Þ

¼ ½�ð ~n��~c
��v0

ÞVa
1 ð� � v0; � � ~cÞðraNÞð� � v0Þ�f1

���1ðð� � v0ÞE�ð1; 3Þ; . . .Þ;
ðf ���1Þ1;2��v0;1

½N�ð �Vðc0ÞÞ
¼ ðf ���1Þ1;2��v0;1

½N�ðð� � v0ÞE�ð1; 2Þ; . . .Þ
¼ ½�ð ~n��~c

��v0
ÞVa

3 ð� � v0; � � ~cÞðraNÞð� � v0Þ�f1
���1ðð� � v0ÞE�ð1; 1Þ; . . .Þ: (28)

Using the last line in (26), it is easy to see that,
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LHS ¼ 0 if � � cA =2 � � ½c�1
¼ ½ðf ���1Þ1;2��v0;1

½N�ð �VðcAÞÞ
� ðf ���1Þ1;2��v0;3

½N�ð �VðcAÞÞ� otherwise. (29)

Whence upon using (28) in (29) we see that if cA does not
contain an EO vertex of type 1, 2 associated to v0 then

LHS ¼ 0: (30)

We now turn our attention to RHS ðĤð2Þ½��N��f1

½~c�1ÞjcAi.

RHS ¼
�
�

f1;2
v0 ;1

½��N�
½~c�1 ��

f1;2
v0 ;3

½��N�
½~c�1

�
jcAi; (31)

where the vertex functions are once again given by

f1;2v0;3
½��N�ð �Vðc0ÞÞ ¼ f1ð �Vðc0ÞÞ

if there is no EO vertex of type-1; 2w:r:tv0 in �Vðc0Þ½�ð ~n~c
v0
Va
1 ð~c; v0Þðrað��NÞÞðv0Þ�f1ððv0ÞE�ð1; 3Þ; . . .Þ

if there is an E:O vertexðv0ÞE�w:r:tv0;

f1;2v0;1
½��N�ð �Vðc0ÞÞ ¼ f1ð �Vðc0ÞÞ

if there is no EO vertex of type-1; 2w:r:tv0 in �Vðc0Þ½�ð ~n~c
v0
Va
3 ð~c; v0Þðrað��NÞÞðv0Þ�f1ððv0ÞE�ð1; 1Þ; . . .Þ

if there is an E:O vertexðv0ÞE�w:r:tv0: (32)

Thus it is straightforward to see that RHS as defined in (31) is given by

RHS ¼ 0 if cA =2 ½~c�1 ¼ f1;2v0;1
½��N�ð �VðcAÞÞ � f1;2v0;3

½��N�ð �VðcAÞÞ otherwise; (33)

which using (32) further implies that

RHS ¼ 0 if there exists noEO vertex of type-I; j inVðcAÞ associated tov0

¼ ��ð ~n~c
v0
Þ½Va

3 ð~c; v0Þf1ððv0ÞE�ð1; 1Þ; . . .Þ � Va
1 ð~c; v0Þf1ððv0ÞE�ð1; 3Þ; . . .Þ�ðrað��NÞÞðv0Þ otherwise: (34)

Comparing (34) with (29) we can easily verify that if
cA =2 ½~c�1 (which is equivalent to � � cA =2 ½� � ~c�1) then

LHS ¼ RHS ¼ 0: (35)

However if cA 2 ½~c�1 then LHS and RHS are only equal
for all diffeomorphisms, if there is no WEO vertex of type
(1, 2) associated to v0 in cA. Otherwise there could exist a
diffeomorphism � such that it would map a WEO vertex
associated to v0 to an EO vertex (of the same type)
associated to � � v0 in which case LHS would be zero
[from (30) but RHS would be given by the second line
in (34)].

We thus conclude that given a �fi
½c�i in the LMI habitat,

the action of Ĥ½N� ¼ P
3
j¼1 H

ðjÞ½N�0 is not covariant under
action of spatial diffeomorphisms due to three reasons.

(a) The quantum shift is not a covariant object in
any sense: If two charge networks c1 and c2 are
diffeomorphic to each other (which means there
are infinitely many semianalytic diffeomorphisms
which map c1 to c2, there need not exist any diffeo-

morphism whose pushforward maps ~Vjðv; c1Þ to
~Vjð� � v; c2Þ.

(b) The nontrivial density weight of lapse causes extra
Jacobian factors to arise when comparing ��N with
N ��.

(c) The EO structure is a diffeomorphism noncovariant
concept unlike the WEO structure.

C. Our strategy

In this section we briefly outline our approach and
explain the key ideas that are developed in subsequent
sections. As some of the analysis done in later sections is
slightly involved, we hope that a reading of this section will
give the reader an understanding of the concepts.
Our aim is to show that despite the apparent background

dependence of quantum Hamiltonian constraint, we obtain
an anomaly-free representation of the Dirac algebra on
V LMI by defining a new representation of the diffeomor-
phism group on H kin (and whence by dual action
on V LMI). The basic ideas behind our construction are
summarized below.
As shown in [7], and recalled briefly in the Sec. II, the

continuum Hamiltonian constraint on the LMI habitat is a
sum of three operators given by

Ĥ½N��fi

½~c�i ¼ ðĤ1½N� þ Ĥ2½N� þ Ĥ3½N�Þ�fi

½~c�i
8 i 2 f1; 2; 3g;

(36)

where �fi

½~c�i is an arbitrary element in V LMI. We will

restrict our analysis to the i ¼ 1 case (as the analysis for
states in the i ¼ 2, 3 sectors is exactly analogous) and
prove diffeomorphism covariance of H½N� by showing

Ûð�ÞĤ1½N�Ûð��1Þ�f1

½~c�1 ¼ Ĥ1½��N��f1

½~c�1 ;

Ûð�ÞĤj½N�Ûð��1Þ�f1

½~c�1 ¼ Ĥj½��N��f1

½~c�1j 2 f2; 3g:
(37)
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From Eq. (37) it follows that Ĥ½N� is diffeomorphism

covariant on any �f1

½~c�1 2 V LMI. Diffeomorphism covari-

ance of Ĥ½N� on an arbitrary state in V LMI is a trivial
extension of the above claim.

We now describe the main ideas behind the new represen-
tation of Diffð�Þ defined in Sec. IV. As recalled in Sec. II,
given any charge network c, there is a unique ‘‘undeformed’’
~c associated to it such that the action of the finite-triangulation

Hamiltonian constraint on c involves a set of vectors ~Vðv; ~cÞ
associated to each vertex v 2 Vð~cÞ, and a characterization of
which of the vertices vEði; jÞ in c are EO with respect
to vertices in ~c. Whence it is clear that the data set we are
dealing with, as far as the definition of the Hamiltonian

constraint action on c goes, is f ~Vðv; ~cÞ; vEði; jÞjv 2 Vð~cÞ \
VðcÞ; vEði; jÞ 2 VðcÞg. We denote the collection of all such
data sets associated to any diffeomorphism-invariant orbit

of charge networks by Cð½c�diffÞ ¼ [c02½c�diff f ~Vðv; ~c0Þ;
vEði; jÞjv 2 Vð~c0Þ; vEði; jÞ 2 Vðc0Þg. Intuitively we would
like to choose a representation of Diffð�Þ on H kin which
preserves Cð½c�diffÞ; that is, any diffeomorphism should act
in such a way that it maps one element of Cð½c�diffÞ to some
other element of Cð½c�diffÞ). We achieve this objective as
follows:

(i) In each diffeomorphism-invariant orbit ½~c�diff of un-
deformed charge networks, we fix once and for all an
‘‘initial’’ charge network ~c0 2 ½~c�diff � ½~c0�diff , and
a set of diffeomorphisms f�~c0;~c0 g~c02½~c0�diff which maps

~c0 to any ~c0 2 ½~c0�diff .
(ii) We also associate to each such ~c0 an atlasUð~c0Þ on

� such that each vertex v of ~c0 lies in precisely one
open set of Uð~c0Þ and to each ~c0 2 ½~c0�diff we
associate an atlas obtained by pushforward7 of
Uð~c0Þ by �~c0;~c0 .

(iii) We compute the quantum shift vectors

f ~Vðv; ~c0Þjv 2 Vð~c0Þg on the vertices of reference
charge network ~c0 once and for all and define
quantum shift vectors for any ~c0 2 ½~c0�diff as

~Vðv0; ~c0Þ :¼ ð�~c0;~c0 Þ� ~Vð��1
~c0;~c0 ðv0Þ; ~c0Þ: (38)

Thus, given a ½~c�diff with a reference charge network ~c0, the
set Cð½c�diffÞ (such that the unique WEO vertex-free charge
network associated to c is ~c,) is invariant under the action
of diffeomorphisms �~c0;~c. This motivates our new repre-

sentation which essentially amounts to working with
[~c0 [~c02½~c0�diff �~c0;~c0 instead of diffð�Þ.8 We now revisit

the transformation properties of Ĥ½N� on V LMI under
this representation of Diffð�Þ and show that it transforms
covariantly.

D. Preferred diffeomorphisms: � maps

In this section we explain how we assign to each
diffeomorphism-invariant orbit ½~c�diff of WEO vertex-free
charge networks a set of diffeomorphisms which will be a
crucial ingredient in defining a new representation of
Diffð�Þ in the quantum theory.
We start with a trivial observation. ½~c�diff is a category

(in fact a groupoid) with ~c0 2 ½~c�diff being the objects and
all the diffeomorphisms which map say ~c0 to c00 constitute
Homð~c0; ~c00Þ. Our idea is to work with a subcategory (in fact
a subgroupoid) in ½~c�diff in defining a representation of
Diffð�Þ on H kin. Pick a reference charge network ~c0
and for all ~c0 2 ½~c�diff fix once and for all a diffeomorphism
�~c0;~c

0 which map ~c0 to ~c0. (We choose �~c0;~c
0 ¼ Id). Now

given any ~c0, ~c00 2 ½~c�diff we define a diffeomorphism
which maps ~c0 to ~c00 as

�~c0;~c00 :¼ �~c0;~c00 ���1
~c0;~c0 : (39)

It is easy to verify that

�~c1;~c2 ��~c2;~c3 ¼ �~c1;~c3 ; �~c1;~c2 ¼ ��1
~c2;~c1

(40)

8 ~c1, ~c2 2 ½~c�diff .
The categorical notions are not essential in understand-

ing the representation of Diffð�Þ; however, it is a useful
concept to understand the type of structure we are dealing
with when we fix a diffeomorphism once and for all
between any two charge networks.
We will sometimes refer to these select set of diffeo-

morphisms as � maps.

E. A diffeomorphism-covariant regularization scheme

Classically, Va
i ¼ q�1=4Ea

i is a C1 densitized vector
field. In [7] the quantization of Va

i ðvÞ at a given point v 2
� involved a choice of regulating structures such that, at
finite regularization parametrized by �, a densely defined

operator V̂a
i ðvÞj� on H kin was obtained. Although this

operator is explicitly independent of � due to the density
weights of various quantities, it is implicitly dependent on
the chosen regulating structures, which can be most easily
seen through its spectrum. In particular, this dependence
implies that generically, given two charge networks c1 and
c2 that are diffeomorphic to each other,

��ðhcj ~̂ViðvÞj�jc1iÞ � h�cj ~̂Við� � vÞj�jc2i; (41)

8 � which map c1 to c2. This result implies the following.
Consider ½c0�diff which is a diffeomorphism-invariant set

of charge networks that contains c0. The definition of the
quantum shift vectors associated to a given c is essentially

an assignment of vectors f ~Viðv; cÞjvVðcÞ; if1; 2; 3gg.

7By pushforward of the coordinate chart we merely mean the
coordinates of the diffeomorphic image of a point in the pushed-
forward coordinate chart are the same as the coordinates of the
original point in the initial coordinate chart.

8At this point we are only trying to motivate our construction
of new representation. The details are given in Sec. IV. For
example, at this point we have not even shown that the set that
we are working with forms a group.
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Equation (41) implies that, given c1, c2 2 ½c0�diff , there is
no meaningful sense in which we can talk about the
quantum shift vectors associated to c1 being diffeomorph-
ically related to quantum shift vectors associated to c2. We
term this property, diffeomorphism noncovariance of
quantum shift. As we saw in Sec. III, the diffeomorphism
noncovariance of the quantum shift in turn implies that the
Hamiltonian constraint operator as we have defined it will
not be diffeomorphism covariant; i.e., Eq. (3) will not be
satisfied. We cure this problem by first taking a cue from
the construction of rigging a map for finite diffeomor-
phisms [14], then defining an alternative (as opposed to
the representation currently used in LQG) representation of
Diffð�Þ on H kin. We show that this leads to a solution to
the diffeomorphism noncovariance problem of the quan-
tum shift,9 and finally to a diffeomorphism-covariant
Hamiltonian constraint operator.

First let us briefly recall the result of the construction of
the quantum shift in [7]. At each point p 2 �, we fix once
and for all a coordinate system fxpg with origin at p. Let ~c

be aWEO vertex-free charge network with a vertex v 2 �.
The (coordinate-dependent) regularization procedure,
detailed in [7], gives

V̂a
j ðvÞj�j~ci ¼ Êa

j j�ðvÞq̂�1=4
� ðvÞj~ci ¼ �ð ~nv~c Þ

1

�

X
eI\v

êaI n
j
Ij~ci

� �ð ~nv~c ÞhEa
j ðvÞi~cj~ci ¼: Va

j ðv; ~cÞj~ci; (42)

where we have employed the abstract index notation
and the êaI are unit tangent vectors (with respect to the
coordinate system at v with metric �ab) to the edges of ~c
emanating from v. As it stands, Va

j ðv; ~cÞ is computed

separately for each member ~c of the diffeomorphism
equivalence class ½~c�diff of ~c.

To solve the noncovariance problem stated above, we
will modify this construction and compute Va

j ðv; ~c0Þ only
in some reference charge network ~c0 2 ½~c�diff � ½~c0�diff .
The result will be transported to vertices of other charge
nets in the equivalence class by the set of relevant � maps
which were defined in Sec. III D.

We define the quantum shift vectors Va
i ðv; ~cÞ 8 v :¼

�~c0;~c � v0jv 2 Vð~cÞ, ~c 2 ½~c0�diff via pushforward with re-

spect to the ’~c0;~c:

~Vjðv; ~cÞ :¼ ð�~c0;~cÞ� ~Vjðv0; ~c0Þ: (43)

IV. REPRESENTATION OF Diffð�Þ
ON THE LMI HABITAT

As we saw in Sec. III A, there is a natural representation
of a diffeomorphism group on V LMI. It is given by

Ûð�Þ0�fi

½c�i ¼ c fi���1

½��c�i : (44)

However as we saw in Sec. III B, this representation is
not the one that will lead us to a nonanomalous Dirac

algebra on V LMI, as Ûð�Þ generically maps an EO vertex
to a WEO vertex. Keeping this in mind, we define a new
representation of Diffð�Þ on H kin which in turn leads
to a novel representation of the diffeomorphism group
on V LMI. We will see that this representation has some
desirable properties.
(1) Given ½~c0�diff , and the collection of vectors

[~c02½~c0�diff f ~Viðv; ~c0Þjv 2 Vð~c0Þg, the new representa-

tion preserves this set. More precisely, ð�~c0;~c
0 Þ�v 	

ð ~Viðv; ~c0ÞÞ ¼ ~Viðv0; ~c0Þ for all v 2 Vð~c0Þ such that
v0 ¼ �~c0;~c

0 ðvÞ 2 Vð~c0Þ.
(2) It preserves the EO structure associated to charge

nets. (As we will see below, this will be achieved by
making coordinate charts around a given vertex
‘‘state dependent.’’)

A. An alternative representation of diffð�Þ
1. Preliminaries

Definitions: Let ~c be a WEO vertex-free (signified
by the tilde) charge network with vertex set Vð~cÞ ¼:

fv1; . . . ; vI; . . .vjVð~cÞjg, and let � < �0ð~cÞ be an admissible

small parameter with respect to each of the coordinate
systems based at the points of Vð~cÞ, as detailed in [7]
[roughly, the bound �0ð~cÞ guarantees that the finite-
triangulation Hamiltonian-type deformations at ‘‘fineness’’
� that are performed on ~c are ‘‘local enough’’ so that one
can actually classify these so-called EO vertices which are
formed by the action of Hamiltonian constraint]. We define
the ith �-cilium at the vertex vI, denoted �I

i ð�; ~cÞ, as a

straight-line arc of coordinate length �jhÊa
i i~cj, directed

along the quantum shift Va
i ðvI; ~cÞ, with one end at vI,

which goes into the definition of the curvature loop appear-
ing in the Hamiltonian action.
The �-ciliated graph determined by ~c, denoted

��ð�;~cÞð~cÞ, is given by the union of the graph �ð~cÞ under-
lying ~c and the set of �-cilia [see Fig. 1]:

��ð�;~cÞð~cÞ :¼ �ð~cÞ [ [3
i¼1

[jVð~cÞj
I¼1

�I
i ð�; ~cÞ: (45)

Now consider the diffeomorphism equivalence class ½~c�diff .
We choose once and for all a preferred element of ~c0 2
½~c�diff � ½~c0�diff to represent the equivalence class, and in
the neighborhood of each v 2 Vð~c0Þ a fixed coordinate
chart fxvg~c0 . For all ~c 2 ½~c0�diff , we choose once and for all
a preferred collection of coordinate charts fxv0 g~c in the
neighborhood of each of its vertices v0 ¼ �~c0;~cðvÞ which
is obtained by a pushforward of fxvg~c0 using �~c0;~c:

9This means that we can in a precise sense talk about a map
between quantum shifts associated to two charge networks
which are diffeomorphic to each other.
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fxv0 g~c ¼ ð�~c0;~cÞ�fxvg~c0 ; 8 v0 2 Vð~cÞ;
v 2 Vð~c0Þ such that v0 ¼ �~c0;~cðvÞ:

(46)

This means that given a v0 2 Vð~c0Þ, �iðv0; �; ~c0Þ which is
a linear curve (in parameter t 2 ½0; ��) with respect to the
coordinate chart fxvg~c0 , beginning at v with its tangent at v

being ~Viðv; ~c0Þ gets mapped to a linear curve �iðv0; �; ~cÞ
(in parameter t 2 ½0; ��) with respect to the coordinate
chart fxv0 g~c, beginning at v with its tangent at v being
~Viðv0; ~cÞ :¼ ð�~c0;~cÞ�½ ~Viðv; ~c0Þ�. Whence, we get

�~c0;~cð��ð�;~c0Þð~c0ÞÞ ¼ �~c0;~c

0@�ð~c0Þ [ [3
i¼1

[jVð~c0Þj
I¼1

�I
i ð�; ~c0Þ

1A
¼ �ð~cÞ [ [3

i¼1

�~c0;~c

0@ [jVð~c0Þj
I¼1

�I
i ð�; ~c0Þ

1A
¼ �ð~cÞ [ [3

i¼1

0@ [jVð~c0Þj
I¼1

�I
i ð�; ~cÞ

1A
¼ ��ð�;~cÞð~cÞ: (47)

Whence by adapting the coordinate charts around vertices
to charge networks, we preserve the EO nature of a vertex.10

Aswewill see, this new ingredient will turn out to be crucial
in obtaining an anomaly-free constraint algebra.

2. A new representation

We are now ready to define a new representation of
diffð�Þ on V LMI via a new representation on H kin. For
charge networks ~c with no WEO vertices, we have that

Ûð�Þj~ci :¼ j�~c;�~c � ~ci:(48)
If a charge network c1 has any WEO vertices, then, as
shown in the Appendix, there is a unique WEO vertex-
free charge network ~cðc1Þ associated to it and ~cðc1Þ can be
recovered from c1 by performing a certain surgery. Using
this fact we then define

Ûð�Þjci :¼ j�~cðcÞ;��~cðcÞ � ci: (49)

Clearly this defines a representation:

Ûð�0ÞÛð�Þjci ¼ j�
�~c;��~c�c



;�0��~c;��~cc

 �~c;��~c � ci

¼ j���~c;�0���~c�~c;��~c � ci
¼ j�~c;ð�0��Þ�~c � ci
¼ Ûð�0 ��Þjci: (50)

The action of the Ûð�Þ on V LMI descends from the action
onH kin via

hcjÛð�Þ0 :¼ ðÛð��1ÞjciÞy ¼ j�~cðcÞ;��1�~cðcÞ � ciy
¼ h�~cðcÞ;��1�~cðcÞ � cj: (51)

It is easy to see that using the above the equation we have

h�f1

½~c�1 jÛð�Þ0 ¼ X
ðc0

1
;c2;c3Þ2½~c�1

f1ð �Vðc01 [ c2 [ c3ÞÞ

	 h�~c;��1�~c � ðc01; c2; c3Þj; (52)

where by ~c we mean the WEO vertex-free charge network
~cðc01; ~c2; ~c3Þ underlying ðc01; ~c2; ~c3Þwhich is exactly ~c for allðc01; ~c2; ~c3Þ 2 ½~c�.
Now note that the vertex set �Vðc01 [ c2 [ c3Þ transforms

equivariantly under diffeomorphisms:

�~c;�~cð �Vðc01 [ ~c2 [ ~c3ÞÞ
¼ �Vð�~c;�~cðc01Þ [�~c;�~c~c2 [�~c;�~c~c3Þ: (53)

We can now define a (dual) representation on V LMI based
on the representation given in (51) as follows:

Ûð�Þ0�fi

½~c�i :¼ �
fi��

��1�~c;~c
�

~c;��1�~c�½~c�i (54)

8 i. The above definition is justified by the following
lemma.

Lemma: �fi

½~c�iðÛð�ÞjcAiÞ ¼ �
fi��

��1�~c;~c
�

~c;��1~c
�½~c�i jcAi for all

jcAi 2 H kin.
Proof: We give the proof for i ¼ 1. Without loss of

generality, we assume that all WEO vertices of cA are of
type 1, as otherwise both sides are trivially zero.
Compute

�f1

½~c�1ðÛð�ÞjcAiÞ ¼
X

c02½~c�1
f1ð �Vðc0ÞÞ�c0;�~cA;��~cA

(55)

FIG. 1. The �-ciliated graph ��ð�;~cÞð~cÞ determined by ~c in the
neighborhood of the vertex vI with respect to the coordinate
system fxvI

g ¼ fx1; x2g.

10We are indebted to Madhavan Varadarajan who explained to
us the use of state-dependent coordinate charts in regularization
of quantum constraints.
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where c0 ¼ ðc01; ~c2; ~c3Þ 2 ½~c�1, and ~cA is the WEO vertex-
free charge network associated to cA. We have that

�~cA;��~cA � cA =2 ½~c1�1 , � � ~cA � ~c; (56)

and in this case,�f1

½~c�1ðÛð�ÞjcAiÞ ¼ 0. On the other hand, if

�~cA;��~cA � cA 2 ½~c�1(, � � ~cA ¼ ~c), then

�f1

½~c�1ðÛð�ÞjcAiÞ ¼ f1ð �Vð�~cA;��~cA � cAÞÞ
¼ f1ð �Vð���1�~c;~c � cAÞÞ; (57)

whereas the RHS is given byX
c02½~c�1

f1ð �Vðc0ÞÞ�c0;�~cA;��~cA

¼ X
c02�

~c;��1�~c�½~c�1
f1 ����1�~c;~cð �Vðc0ÞÞ�c0;cA : (58)

Whence if cA =2 �~c;��1�~c � ½~c�1 ( , ~cA � ��1 � ~c), then the
right-hand side of (55) vanishes. On the other hand if cA 2
�~c;��1�~c � ½~c�1 ( , ~cA ¼ ��1 � ~c), then

RHS ¼ f1 ����1�~c;~cð �VðcAÞÞ ¼ f1ð �Vðð���1�~c;~c � cAÞÞ:
(59)

In the second equality we have used the fact that �V is a
diffeomorphism-equivariant map on the set of vertices.
This proves the lemma.

It is straightforward to verify that (54) defines a
representation:

Ûð�Þ0�fi

½~c�i :¼ �
fi��

��1�~c;~c
�

~c;��1�~c�½~c�i ;

Ûð�1Þ0Ûð�2Þ0�f1

½~c�1 ¼ Ûð�1Þ0�
fi��

��1
2

�~c;~c
�

~c;��1
2

�~c�½~c�i ;
(60)

Ûð�1Þ0Ûð�2Þ0�f1

½~c�1 ¼
�
�

f1���1

~c;��1
1

~c
���1

��1
1

~c;��1
2

��1
1

~c

½��1
2

��1
1

~c�1

��������
¼

�
�

f1���1

~c;ð�1��2Þ�1~c

½ð�1��2Þ�1~c�1

��������
¼

�
�f1

½~c�1 jÛð�1 ��2Þ0; (61)

so that we indeed have a representation.
We now point out a rather interesting property of this

representation. Although V LMI is a subspace of distribu-
tions onH kin, there is a canonical choice of inner product

on this space.11 Given �
fi
1

½~c0�i , �
fj
2

½~c00�j , the inner product is

defined as

�
�

fi
1

½~c0�i ;�
fj
2

½~c00�j
�
:¼ �~c0;~c00 �f

i
1ðVð~c0ÞÞ�fj2ðVð~c00ÞÞ�i;j: (62)

Note that this inner product is not positive definite unless

we restrict ourselves to ‘‘basis’’ states�fi

½~c�i inV LMI which

are such that jfiðVð~cÞÞj2 > 0. In any case, it is clear that the
representation of Diffð�Þ on V LMI is unitary with respect
to (62) as

ðÛð�Þ�fi1
½~c0�i ; Ûð�Þ�fj

2

½~c00�jÞ

¼
�
�

fi1����1~c0 ;~c0
�

~c0 ;��1�~c0 ½~c0�i ;�
fj
2
��

��1~c00 ;�~c00
�

~c00 ;��1�~c00 ½~c00�j

�
¼ ���~c0;��~c00 ðfi1 ����1~c0;~c0 ÞðVð��1~c0ÞÞ�ðfj2 ����1~c00;�~c00 Þ

	 ðVð��1~c00ÞÞ�i;j

¼ ���~c0;��~c00fi1ðVð~c0ÞÞ�fj2ðVð~c00ÞÞ�i;j

¼
�
�

fi
1

½~c0�i ;�
fj
2

½~c00�j
�
; (63)

where we have used the fact that �~c;��~cj~c ¼ �j~c 8 �.

V. DIFFEOMORPHISM COVARIANCE

A. Ĥ1½N�0�f1

½c�1
In this section we revisit the diffeomorphism-covariance

of Ĥ1½N�0 on �f1

½~c�1 in light of the new representation of

Diffð�Þ on V LMI involving �~c0;~c maps.

Whence our aim is to check if

ðÛð�Þ0Ĥ1½N�0Ûð��1Þ0�f1

½~c�1ÞjcAi
¼ ðĤ1½ð�~c;��~cÞ�N�0�f1

½~c�1ÞjcAi (64)

8 �f1

½~c�1 2 V LMI and jcAi 2 H kin.

Note that on the right-hand side, we expect the lapse to
be pulled back by the diffeomorphism �~c;��~c (which given
a ~c and a � is fixed once and for all) and not by � as
warranted by the new representation of the diffeomorphism
group.
Before proceeding with the computation, we outline

our setup which will also help us in clarifying our
(often confusing) notations. We denote the reference
charge network in ½~c�diff by ~c0. The WEO vertex-free state
underlying cA will be denoted by ~cA. Given a vertex vA in
~c, we will denote the corresponding (image under diffeo-
morphism �~c;~c0) vertex in ~c0 as v0

A.

Without loss of generality we assume that the onlyWEO
vertices which belong to VðcAÞ are of type 1, as otherwise
both sides are trivially zero.

11Note that on the Lewandowski Marolf habitat defined in [12]
no such canonical choice exists.
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We first compute the LHS using (51), (54), and (6)

LHS ¼
�
Ûð�Þ0Ĥ1½N�0Ûð��1Þ0�f1

½~c�1
�
jcAi

¼
�
Ĥ1½N�0Ûð��1Þ0Þ�f1

½~c�1
�
j�~cA;��~cA � cAi

¼
�
Ĥ1½N�0�f1����~c;~c

�~c;��~c�½~c1�
�
j�~cA;��~cA � cAi

¼ X
v2Vð~cÞ

�
�

ðf����~c;~cÞ1;1v;2½N�
�~c;��~c�½~c1� ��

ðf����~c;~cÞ1;1v;3½N�
�~c;��~c�½~c1�

�
j�~cA;��~cA � cAi: (65)

Further analysis of the above equation can be divided
into the following two (mutually exclusive and exhaustive)
cases:

Case 1: �~cA;��~cA � cA =2 �~c;��~c � ½~c1� , � � ~cA � � � ~c ,
~cA � ~c. In this case it is clear that LHS ¼ 0.

Case 2: �~cA;��~cA � cA 2 �~c;��~c � ½~c1� , � � ~cA ¼ � � ~c ,
~cA ¼ ~c. In this case,

LHS ¼ X
v2Vð~cÞ

ððf ����~c;~cÞ1;1v;2½N�ð �Vð�~cA;��~cAÞÞ

� ðf ����~c;~cÞ1;1v;3½N�ð �Vð�~cA;��~cAÞÞÞ: (66)

For the sake of pedagogy, we now assume that the only
vertex in Vð� � ~cÞ ¼ Vð� � ~cAÞ which falls inside the sup-
port of N is a vertex vA. As the Hamiltonian constraint
action is linearly distributed over vertices, there is no loss
of generality in this assumption.

In this case Case 2 gets further subdivided into the
following two cases:

Case 2a: vA =2 �Vð�~cA;��~cA � cAÞ, and in this case,

LHS ¼ X
v2Vð~cÞ

ððf ����~c;~cÞ1;1v;2½N�ð �Vð�~cA;��~cA � cAÞÞ

� ðf ����~c;~cÞ1;1v;3½N�ð �Vð�~cA;��~cA � cAÞÞÞ
¼ ððf ����~c;~cÞ1;1vA;2

½N�ð �Vð�~cA;��~cA � vAÞÞ
� ðf ����~c;~cÞ1;1vA;3

½N�ð �Vð�~cA;��~cA � vAÞÞÞ
¼ ðf ����~c;~cÞ1ð �Vð�~cA;��~cA � vAÞÞ � ðf ����~c;~cÞ1

	 ð �Vð�~cA;��~cA � cAÞÞ ¼ 0; (67)

where in the second line we have used the assumption
stated above and in the third line, we have used the defining
property of f1;1 functions,

f1;1v;2½N�ð �Vðc0ÞÞ ¼ f1ð �Vðc0ÞÞ (68)

if v =2 �Vðc0Þ.
The only case where LHS is nontrivial is given by case

2b: vA 2 �Vð�~cA;��~cA � cAÞ. [Recall that vA 2 Vð� � ~cAÞ by
definition.]

In this case, we can start off with the second line in (67)
and evaluate the LHS,

LHS ¼
�
ðf ����~c;~cÞ1;1vA;2

½N�ð �Vð�~cA;��~cA � vAÞÞ
� ðf ����~c;~cÞ1;1vA;3

½N�ð �Vð�~cA;��~cA � vAÞÞ
�

¼ ðf ����~c;~cÞ1;1vA;2
½N�ðvA; �Vðð�~cA;��~cA � vAÞ

� fvAgÞ � ðf ����~c;~cÞ1;1vA;3
½N�

	 ðvA; �Vðð�~cA;��~cA � vAÞ � fvAgÞ: (69)

Here without loss of generality we have assumed that the
first argument of f1 ����~c;~c is vA.

Notice that as �~cA;��~cA � cA 2 �~c;��~c � ½~c�1, the

Lemma (A.1) in the Appendix tells us that ~cA ¼ ~c. We
can now use (7) in the above equation along with the fact
that ~cA ¼ ~c and get

LHS ¼ NðvA; fxvA
g��~cÞ�ð ~n��~c

vA
Þ½Va

2 ðvA; ~cÞ � Va
3 ðvA; ~cÞ�

	 @

@ðx��~c
vA

Þa ð�
�
��~c;~cfÞðvA; f:; :; :gÞ: (70)

Recall that the components of quantum-shift Va
i ðvA; ~cÞ are

evaluated in the coordinate chart fxvA
g��~c which is centered

at vA and is obtained by the pushforward of fxv0
A
g~c0

centered at a vertex v0
A 2 Vð~c0Þ. Thus components of

~VðvA; ~cÞ in fxvA
g~c are equal to the components of

~Vðv0
A; ~c

0Þ in the coordinate system fxv0
A
g~c0 . Using this, the

above equation simplifies to

LHS ¼ NðvA; fxvA
g��~cÞ�ð ~n~c0

v0
A

Þ½Va0
2 ðv0

A; ~c
0Þ � Va0

3 ðv0
A; ~c

0Þ�

	 @

@ðx��~c
v0
A

Þa0 ð�
�
c0;��~c ���

��~c;~cfÞðv0
A; f:; :; :gÞ;

LHS ¼ NðvA; fxvA
g��~cÞ�ð ~n~c0

v0
A

Þ½Va0
2 ðv0

A; ~c
0Þ � Va0

3 ðv0
A; ~c

0Þ�

	 @

@ðx��~c
v0
A

Þa0 ð�
�
c0;~c

fÞðv0
A; f:; :; :gÞ: (71)

In the above equations we have also explicitly displayed
the dependence of a density-weighted lapse on a coordi-
nate system.
We now evaluate the RHS in (64)

RHS ¼
�
Ĥ1½ð�~c;��~cÞ�N��f1

½~c�1
�
jcAi: (72)

As the only vertex in Vð� � ~cAÞ which is inside the support
of N is vA, it implies that the only vertex in Vð~cAÞ which
falls inside the support of ð�~c;��~cÞ�N is ��1 � vA.

As before we analyze two cases (Case 1 and Case 2)
separately.

ADAM HENDERSON, ALOK LADDHA, AND CASEY TOMLIN PHYSICAL REVIEW D 88, 044029 (2013)

044029-12



Case 1 Recall that case 1 corresponds to ~cA � ~c in
which case it is easy to see that

RHS¼ X
v2Vð~cÞ

�
�f1;2v ½��N�

½~c�1 ��f1;3v ½��N�
½~c�1

�
jcAi¼0

¼LHS: (73)

Case 2 This is the complementary case where ~cA ¼ ~c.

While analyzing the LHS in case 2, we specialized to the
situation where the only vertex in Vð� � ~cÞ ¼ Vð� � ~cAÞ
which is inside the support of N is vA. Clearly this
implies that the only vertex in Vð~cAÞ ¼ Vð~cÞ which lies
in the support of ��N is ��1 � vA. In this case, the RHS is
given by

RHS ¼ ðf1;2
��1�vA

ð �VðcAÞÞ � f1;3
��1�vA

ð �VðcAÞÞÞ: (74)

As in the case of the evaluation of the LHS, this case can
be further analyzed by looking at to subcases, case-2a and
case-2b, separately.

Case 2a: vA =2 �Vð�~cA;��~cA � cAÞ.
As �V is a diffeomorphism equivariant map, we have

���~cA;~cA � vA =2 �VðcAÞ ) ��1 � vA =2 �VðcAÞ:

The second line in the above equation needs and
explanation.

As vA 2 Vð�~cA;��~cA � cAÞ but vA =2 �Vð�~cA;��~cA � cAÞ, it is
clear that vA 2 Vð� � ~cAÞ. But on Vð� � ~cAÞ, ���~cA;~cA ¼
��1, which is used in the second line of the above
equation. However, if ��1 � vA =2 �VðcAÞ we have

RHS ¼ ðf1;2
��1�vA

ð �VðcAÞÞ � f1;3
��1�vA

ð �VðcAÞÞÞ
¼ ðfð �VðcAÞÞ � fð �VðcAÞÞÞ ¼ 0: (75)

Whence even in this case we get

LHS ¼ RHS

we are finally left with the final and only nontrivial case,
case 2b.

Case 2b: vA 2 �Vð�~cA;��~cA � cAÞ.
An argument similar to the one given above (75) leads us

to conclude that ��1 � vA 2 �VðcAÞ. Whence in this case,
the RHS is given by

RHS ¼ ðf1;2
��1�vA

ð �VðcAÞÞ � f1;3
��1�vA

ð �VðcAÞÞÞ
¼ ðf1;2

��1�vA
ð��1 � vA; �VðcAÞ � f��1 � vAgÞ

� f1;3
��1�vA

ð��1 � vA; �VðcAÞ � f��1 � vAgÞÞ;
RHS ¼ ð�~c;��~cÞ�Nð��1vA; fx��1�vA

g~cAÞ�
�
~n
~cA
��1vA

�
	 ½Va

2 ð��1vA; ~cÞ � Va
3 ð��1vA; ~cÞ�

	
�

@

@ðx~cA
��1�vA

Þa f
�
ð��1vA; :; :; :Þ: (76)

Once again [in exact analogy with the way we arrived
at (71)] we can use the following three observations to
‘‘pull back’’ the above equation to ðv0

A; ~c
0Þ:

(1) ~V2ð��1 � vA; ~cÞ is obtained by pushforward of
~V2ðv0

A; ~c
0Þ using ð�~c0;~cÞ�, it implies that the (ordered

set of) components Va00 ð��1vA; ~cÞ in the preferred

coordinate system fx��1�vA
g~c :¼ ð�~c0;~cÞ�fxv0

A
g~c0 cen-

tered at ��1 � vA are the same as the components

Vaðv0
A; ~c

0Þ of ~Vðv0
A; ~c

0Þ in the coordinate system

fxv0
A
g~c0 .

(2) We also have, by construction �ð ~n~cA
��1vA

Þ ¼ �ð ~n~c0

v0
A

Þ.
(3) @

@ðx~c
��1�vA

Þa fð�
�1vA; :; :; :Þ

¼
�
ð�~c0;~cÞ�

@

@ðx~c0
v0
A

Þa
�
fð��1vA; :; :; :Þ

¼ @

@ðx~c0
v0
A

Þa ð�
�
~c0;~c

fÞðv0
A; :; :; :Þ 8 a: (77)

Whence

RHS ¼ ð�~c;��~cÞ�Nð��1vA; fx��1�vA
g~cAÞ�ð ~n~c0

v0
A

Þ

	 ½Va
2 ðv0

A; ~c
0Þ � Va

3 ðv0
A; ~c

0Þ�
�

@

@ðx~c0
v0
A

Þa �
�
~c0;~c

f

�
	 ðv0

A; :; :; :Þ: (78)

We can now compare the above equation with (71) and see
that the only possible source of mismatch arises from the
evaluation of lapse. The dependence of lapse in (71) and
(78) are respectively given by

NðvA; fxvA
g��~cÞ

¼ NðvA; ð�~c0;��~cÞ�Þfxv0
A
g~c0Þ;

ð�~c;��~cÞ�Nð��1vA; fx��1�vA
g~cAÞ

¼ NðvA; ð�~c;��~cÞ�fx��1�vA
g~cAÞ

¼ NðvA;��ð�~c0;~cÞ�fxv0
A
g~c0Þ

¼ NðvA; ð�~c0;��~cÞ�Þfxv0
A
g~c0Þ:
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Thus even for Case 2b we see that the LHS equals the RHS.
Whence we conclude that

ðÛð�ÞĤ1½N�0Ûð��1ÞÞ�f1

½~c�1 ¼ Ĥ1½ð�~c;��~cÞ�N��f1

½~c�1 : (79)

B. Ĥ2½N��f1

½c�1
In this section we would like to show that

ðÛð�Þ0Ĥð2Þ½N�0Ûð��1Þ0�f1

½~c1�1ÞðjcAiÞ
¼ ðĤð2Þ½ð�~c;��~cÞ�N�0�f1

½~c1�1ÞðjcAiÞ (80)

8 jcAi 2 H kin, 8 � 2 Diffð�Þ and 8 N.
Once again without loss of generality we assume that the

only WEO vertices which belong to VðcAÞ are of ’’type 1’’
[i.e. all the edges incident on any WEO vertex is only
charged under Uð1Þ1], as otherwise both sides are trivially
zero.

We first compute the LHS using (51), (54), and (8)

LHS ¼
�
Ûð�Þ0Ĥ2½N�0Ûð��1Þ0�f1

½~c�1
�
jcAi

¼
�
Ĥ2½N�0Ûð��1Þ0Þ�f1

½~c�1
�
j�~cA;��~cA � cAi

¼
�
Ĥ2½N�0�f1����~c;~c

�~c;��~c�½~c1�
�
j�~cA;��~cA � cAi

¼ X
v2Vð~cÞ

�
�

ðf����~c;~cÞ1;2v;1½N�
�~c;��~c�½~c1� ��

ðf����~c;~cÞ1;2v;3½N�
�~c;��~c�½~c1�

�
	 j�~cA;��~cA � cAi: (81)

Further analysis of the above equation can be divided
into the following two (mutually exclusive and exhaustive)
cases exactly as in the previous section.

Case 1: �~cA;��~cA � cA =2 �~c;��~c � ½~c1� , � � ~cA � � � ~c
, ~cA � ~c: (82)

In this case it is clear that LHS ¼ 0.

Case 2: �~cA;��~cA � cA 2 �~c;��~c � ½~c1� , � � ~cA ¼ � � ~c
, ~cA ¼ ~c: (83)

In this case,

LHS ¼ X
v2Vð~cÞ

ððf ����~c;~cÞ1;2v;2½N�ð �Vð�~cA;��~cAÞÞ

� ðf ����~c;~cÞ1;2v;3½N�ð �Vð�~cA;��~cAÞÞÞ: (84)

For the sake of pedagogy, and without any loss in general-
ity, we again assume (this assumption was also made in
the previous section) that the only vertex in Vð� � ~cÞ ¼
Vð� � ~cAÞwhich falls inside the support ofN is a vertex vA.
In this case Case 2 gets further subdivided into the

following two complementary cases:
Case 2a: �~cA;�~cA � cA does not contain an EO vertex

ðvAÞE� of type (1, 2) in the neighborhood of vA.

In this case the vertex functions are unchanged, and

LHS ¼ ðf ����~c;~cÞ1;2vA;2
½N�ð �Vð�~cA;��~cAÞÞ

� ðf ����~c;~cÞ1;2vA;3
½N�ð �Vð�~cA;��~cAÞÞ

¼ ðfð �Vð�~cA;��~cAÞÞ � fð �Vð�~cA;��~cAÞÞÞ
¼ 0: (85)

Case 2b: �~cA;�~cA � cA contains an EO vertex ðvAÞE� of

type (1, 2) in the neighborhood of vA for some �.
In this case we can use (9a) and (9b) to get

LHS ¼ ðf ����~c;~cÞ1;2vA;2
½N�ð �Vð�~cA;��~cAÞÞ � ðf ����~c;~cÞ1;2vA;3

½N�ð �Vð�~cA;��~cAÞÞ
¼

�
�ð ~nvA

~c ÞVa
1 ðvA;� � ~cÞ @

@ðx��~c
vA

Þa NðvA; fxvA
g��~cÞðf ����~c;~cÞððvAÞE�ð1; 3Þ; �Vð�~cA;��~cAÞ

� fðvAÞE�ð1; 2ÞgÞ � �ð ~nvA
~c ÞVa

3 ðvA;� � ~cÞraNðvA; fxvA
g��~cÞðf ����~c;~cÞððvAÞE�ð1; 1Þ; �Vð�~cA;��~cAÞ � fðvAÞE�ð1; 2ÞgÞ

�
;

(86)

LHS ¼
�
�ð ~nvA

~c ÞVa
1 ðvA;� � ~cÞ @

@ðx��~c
vA

Þa NðvA; fxvA
g��~cÞðf ����~c;~cÞððvAÞE�ð1; 3Þ; �Vð�~cA;��~cAÞ

� fðvAÞE�ð1; 2ÞgÞ � �ð ~nvA
~c ÞVa

3 ðvA;� � ~cÞraNðvA; fxvA
g��~cÞfðð��1 � vAÞE�ð1; 1Þ; �VðcAÞ � fð��1 � vAÞE�ð1; 2ÞgÞ

�
;

(87)

where in the last line we have used the key property of our
new representation. If ðvAÞE�ð1; 2Þ is an EO vertex in
Vð�~c;��~c � cAÞ which is associated to vA [which is in turn
a vertex in Vð� � ~cAÞ] then,

���~c;~c � ðvAÞE�ð1; 2Þ ¼ ð��1 � vAÞE�ð1; 2Þ; (88)

that is,���~c;~c maps it to an EO vertex in Vð���~c;~cÞ which is
associated to ��1 � vA 2 Vð~cÞ.
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We now analyze the RHS and show that in all three
cases (case 1, case 2a, case 2b) it matches the LHS answers
given above.

RHS ¼ ðĤ2½ð�~c;��~cÞ�N��f1

½~c�1ÞjcAi: (89)

It is clear that in the first case, case 1, as ~c � ~cA clearly

RHS ¼ 0:

Now consider case 2a.

Case 2a: �~cA;��~cA _cA 2 �~c;��~c � ½~c1� , ~c ¼ ~cA: (90)

But �~cA;�~cA � cA does not contain an EO vertex ðvAÞE� of

type (1, 2) in the neighborhood of vA. Where vA is the only
vertex of � � ~c which lies inside the support of N.
Obviously this implies that the only vertex of ~c which
lies inside the support of ��

~c;��~cN is ��1 � vA.

Now notice that as as the EO structure associated to any
charge network c is preserved under the �~c;��~c for any

diffeomorphism � [as demonstrated in Eq. (47)], cA does
not contain an EO vertex of type (1, 2) in the neighborhood
of ��1 � vA, whence in this case

RHS ¼ f1;2
��1�vA;2

½ð�~c;��~cÞ�N�ð �VðcAÞÞ
� f1;2

��1�vA;3
½ð�~c;��~cÞ�N�ð �VðcAÞÞ ¼ 0: (91)

Recall that even the LHS was trivial in this case.
We now turn to the remaining case, case 2b, for which

the LHS was nontrivial. For the benefit of the reader, we
recall the conditions defining this case again.
Case 2b: �~cA;�~cA � cA contains an EO vertex ðvAÞE� of

type (1, 2) in the neighborhood of vA for some �.
Once again, using Eq. (47) we see that cA contains an

EO vertex ð��1 � vAÞE� of type (1, 2) in the neighborhood of
��1 � vA for the same �. Hence in this case, the RHS is
given by

RHS ¼ f1;2
��1�vA;2

½ð�~c;��~cÞ�N�ð �VðcAÞÞ � f1;2
��1�vA;3

½ð�~c;��~cÞ�N�ð �VðcAÞÞ

¼
�
�ð ~n��1�vA

~c ÞVa
1 ð��1 � vA; ~cÞ

�
@

@ðx~c
��1�vA

Þa
�
ð�~c;��~cÞ�Nð��1 � vA; fx��1�vA

g~cÞf1ðð��1 � vAÞE�ð1; 3Þ; �VðcAÞ

� fð��1 � vAÞE�ð1; 2ÞgÞ � �ð ~n��1�vA
~c ÞVa

3 ð��1 � vA; ~cÞ
�

@

@ðx~c
��1�vA

Þa
�
ð�~c;��~cÞ�Nð��1 � vA; fx��1�vA

g~cÞf1ðð��1 � vAÞE�

	 ð1; 1Þ; �VðcAÞ � fð��1 � vAÞE�ð1; 2ÞgÞ
�
: (92)

We can use

�ð ~n��1�vA
~c Þ¼�ð ~nvA

��~cÞ; Va
i ð��1 �vA;~cÞ¼Va

i ðvA;� �~cÞ 8 a;i;
@

@ðx~c
��1�vA

Þa¼ð���~c;~cÞ� @

@ðx��~c
vA

Þa (93)

to simplify (92)

RHS ¼
�
�ð ~nvA

��~cÞVa
1 ðvA;� � ~cÞ

�
@

@ðx��~c
vA

Þa
�
ð��

��~c;~c�~c;��~cÞ�NðvA; fxvA
g��~cÞf1ðð��1 � vAÞE�ð1; 3Þ; �VðcAÞ

� fð��1 � vAÞE�ð1; 2ÞgÞ � �ð ~nvA

��~cÞVa
3 ðvA;� � ~cÞ

�
@

@ðx��~c
vA

Þa
�
ð��

��~c;~c�~c;��~cÞ�NðvA; fxvA
g��~cÞ;

f1ðð��1 � vAÞE�ð1; 1Þ; �VðcAÞ � fð��1 � vAÞE�ð1; 2ÞgÞ
�

RHS ¼ �ð ~nvA

��~cÞ
�
Va
1 ðvA;� � ~cÞ

�
@

@ðx��~c
vA

Þa
�
NðvA; fxvA

g��~cÞf1ðð��1 � vAÞE�ð1; 3Þ; �VðcAÞ � fð��1 � vAÞE�ð1; 2ÞgÞ

� Va
3 ðvA;� � ~cÞ

�
@

@ðx��~c
vA

Þa
�
NðvA; fxvA

g��~cÞf1ðð��1 � vAÞE�ð1; 1Þ; �VðcAÞ � fð��1 � vAÞE�ð1; 2ÞgÞ
�
: (94)

On comparing (94) with (87) we conclude that even in this
case case 2b

LHS ¼ RHS:

Whence, we finally have

Ûð�Þ0Ĥð2Þ½N�0Ûð��1Þ0�f1

½~c1�1 ¼ Ĥð2Þ½ð�~c;��~cÞ�N�0�f1

½~c1�1
(95)

8 �.
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One can similarly show that

Ûð�Þ0Ĥð3Þ½N�0Ûð��1Þ0�f1

½~c1�1 ¼ Ĥð3Þ½ð�~c;��~cÞ�N�0�f1

½~c1�1
(96)

8 �.
Using (79), (95), and (96) we see that

Ûð�Þ0Ĥ½N�0Ûð��1Þ0�f1

½~c1�1 ¼ Ĥ½ð�~c;��~cÞ�N�0�f1

½~c1�1 (97)

8 �.
It is straightforward to generalize this result to

�fi

½~c�i 8 i.

The above result, in conjunction with (61) and the result
of [7] shows that we have a representation of Dirac algebra
on V LMI in the loop quantized (2þ 1)-dimensional Uð1Þ3
theory.

VI. SPECTRUM OF THE THEORY

The new representation of Diffð�Þ on V LMI which was
a crucial ingredient in establishing the diffeomorphism
covariance of H½N� required us to introduce certain
auxiliary structures. The two key ingredients were (1) ref-
erence charge networks for each gauge orbit ½~c�diff and
(2) reference diffeomorphisms.

In this section we analyze the spectrum of the theory in
order to probe the viability of new representation for
Diffð�Þ. Let us try to find the simplest class of states in

V LMI which are solutions to Ĥ½N�. Consider a class of
states of the form

j�i ¼ XN
I¼1

X3
m¼1

h
aðmÞ
I �ðfIÞm

½~cI�m
i
; (98)

where 1 � N <1. This is a fairly large class of states in
which we look for states which satisfy

X3
i¼1

Ĥi½N�j�i ¼ 0 (99)

8 N. The resulting equation can be written in a condensed
form as

X3
i¼1

Ĥi½N�j�i ¼ XN
I¼1

X
v2Vð~cIÞ

X3
i;j;k¼1

aiI

�
�ijk�

ðfIÞi;iv;j½N�
½~cI�i

þ �ijkð�ðfIÞi;jv;k½N�
½~cI�i ��

ðfIÞi;jv;i½N�
½~cI�i Þ

�
: (100)

From here it is easy to see that, in the class of states given
in (98) there is a subset obtained by choosing fI ¼
constant and a1I ¼ a2I ¼ a3I 8 I which lie in the kernel
of the Hamiltonian constraint. This result is not com-

pletely expected a priori as action of Hj½N� on �fk

½~c�k is

not trivial even when the vertex function fk is taken to be
constant when j � k. The antisymmetry in the internal

indices in the Hamiltonian constraint (which is rather
neatly encoded in this expression) is responsible for the

fact that
P3

i¼1 �
fi¼const
½~c�i lie in the kernel of the Hamiltonian

constraint.
As the set ½~c�i is diffeomorphism (intact homeomor-

phism) invariant, we can see that (formally) identifying
all the Habitat states which are related by diffeomorphisms
will yield distributions on H kin of the type

j½��i ¼ X3
i¼1

X
½~c0�ij~c0¼��~c

�fi¼const
½~c0�i ¼ X3

i¼1

X
~c0¼��~c

�fi¼const
½~c0�i

¼ X3
i¼1

X
~c0¼�~c;��~c�~c

�fi¼const
½~c0�i : (101)

Whence the sum over diffeomorphisms reduces to sum-
ming over the�maps as each ½~c�i has a unique vertex-free
state ~c associated to it. We see this as a hint that as far as the
spectrum of the theory is concerned, summing over all
diffeomorphisms might be equivalent to summing over
the selected set of diffeomorphisms as dictated by the
new representation.

VII. CONCLUSION AND OUTLOOK

In this paper, we continued our construction of a repre-
sentation of Dirac algebra in quantum Uð1Þ3 gauge theory
which was initiated in [7]. We considered the Hamiltonian

constraint Ĥ½N� defined in [7] and constructed a represen-
tation of the diffeomorphism group on the LMI habitat

V LMI such that Ûð�Þ, Ĥ½N� satisfy the off-shell closure
condition. In contrast to the original Hamiltonian con-
straint of Thiemann (constructed remarkably for the case
of four-dimensional LQG) where diffeomorphism covari-
ance followed as a result of (i) a diffeomorphism-covariant
choice of (state-dependent) triangulation, and (ii) by as-
signing state-dependent neighborhoods to each vertex of
the spin network such that this assignment was diffeomor-
phism invariant, we had to introduce several new ingre-
dients not the least of which was a new representation of
the diffeomorphism group. From the point of view ofH kin

this representation is completely ad hoc (and not even
unitary); however, this is no longer relevant to us as in
our scheme, the ‘‘kinematical’’ arena (the space on which
quantum constraints are defined) is played out byV LMI. It
is here where this representation is unitary with respect to
the canonical inner product. In addition to the new
representation for Diffð�Þ we also introduced a notion of
state-dependent atlas on �. Roughly speaking the idea
is to fix an atlas Uð�; ~c0Þ for each reference charge nett
~c0 (one reference charge network associated to each
diffeomorphism-invariant orbit ½~c�diff of WEO vertex-free
charge networks) and then for any ~c0 2 ½~c�diff we defined
an atlas Uð�; ~c0Þ associated to ~c0 by pushing forward
Uð�; ~c0Þ using �~c0;~c

0 . The new representation together
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with the state dependence of coordinate charts ensured that
extraordinariness of a vertex is a diffeomorphism-invariant
notion. This was crucial in establishing diffeomorphism
covariance of the Hamiltonian constraint.

The use of new representation of the diffeomorphism
group may seem worrisome as the canonical representation
used so far in LQG has been analyzed in great detail and
whose solution lead to generalized knot classes. In order to
analyze the validity of the new representation we consid-
ered solving the Hamiltonian constraint inV LMI and ask if
the states obtained by ‘‘formally’’ averaging over all
diffeomorphisms would agree with states obtained by aver-
aging over the preferred set. As we saw, for the (2þ 1)-
dimensional theory, these results do in fact match for a
subspace of kernel that we computed in Sec. VI. This
merely represents a small check on the validity of the
new representation of Diffð�Þ on V LMI. The issue how-
ever needs further investigation. As we have seen, the
requirement that a Hamiltonian constraint be diffeomor-
phism covariant on V LMI is quite a stringent requirement
and certainly reduces the vast amount of ambiguity which

was present in quantization of Ĥ½N� presented in [7]. The

main source of ambiguity in the definition of Ĥ½N� was
in the determination of quantum shift vectors. As the
definition of quantum shift is regularization dependent, in
principle one can associate to each WEO vertex-free
charge network ~c a different regularization scheme for
computing the quantum shift. However, as we saw above,

diffeomorphism covariance of Ĥ½N� requires determina-
tion of quantum shift only on reference charge nets in each
diffeomorphism-invariant orbit. For any other charge net
the quantum shift vectors are uniquely determined via
pushforwards.

Perhaps the most unsatisfactory part of our construction
is that our final definition of quantum constraints (or finite
transformations generated by them) depends on various
auxiliary structures. We list them below.

(1) The choice of reference charge network ~c0 in each
orbit of WEO vertex-free charge nets.

(2) The choice of the subcategory in ½~c�diff or equiva-
lently choice of set of diffemorphisms �~c0;~c

0 asso-

ciated to each diffeomorphism-invariant orbit.
(3) The choice of coordinate atlasUð�; ~c0Þ for each ~c0.

These structures can also be thought of as the data parame-
trizing quantization ambiguities which are input in the
definition of quantum constraints.

A key open question is if the use of this auxiliary
structures is viable. The final answer to this question can
only be obtained by looking at expectation value of
observables in the physical Hilbert space which should
not depend on any ad hoc intermediate structures.

We believe that the work we have done here admits a
possibility of generalization to Euclidean quantum gravity.
An extremely important aspect to keep in mind here is that
the geometric action of Hamiltonian constraint in a SUð2Þ

case can also be understood in terms of phase-space-
dependent diffeomorphism on the dynamical fields [15].
In light of this result one could seek a quantization of
Hamiltonian constraint in SUð2Þ theory with the key lesson
being provided by Eq. (100). The structure of internal
indices shows a tempting possibility of how the extension
to SUð2Þ may be possible.
In any event we believe that some of the lessons we

have learnt here as well as in [7] together with the lessons
learned in [8,16] will have implications in defining quan-
tum dynamics in canonical loop quantum gravity.
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APPENDIX

In this appendix we prove a lemma which is used
crucially in Sec. VA.
Lemma A.1: Let ~cA, ~c be WEO vertex-free states and let

cA 2 ½~cA�i, c 2 ½~c�i. If for any diffeomorphism �

�~cA;��~cA � cA 2 �~c;��~c � ½~c�i (A1)

then ~cA ¼ ~c.
Proof: Without loss of generality we assume that i ¼ 1.

Wewill also assume that ~c has only oneWE vertex. That is,
9 a v0 2 Vð~cÞ such that ðv0; v

0
0Þ is the WEO pair in c with

v0
0 being a WEO vertex of type 1.

We also recall some notations from Sec. II.
(1) As cA 2 ½~cA�1

cA ¼ ðcA1; ~cA2; ~cA3Þ: (A2)

(2) Any c0 2 �~c;��~c � ½~c�1 is of the form
c0 ¼ ð�~c;��~c � c01; � � ~c2; � � ~c3Þ: (A3)

Hence we have

~cAi ¼ ~ci for i ¼ 2; 3: (A4)

Thus we have the following:

�~cA;��~cAðcA1; ~c2; ~c3Þ ¼ �~c;��~cðc1; ~c2; ~c3Þ;
ð~cA1; ~c2; ~c3Þ 2 ½~c�diff ; ~cA1 � ~c1:

(A5)
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As �ð~cA1[ ~c2[ ~c3Þ��ðcA1[ ~c2[ ~c3Þ, 9 a ð �c1;~c2;~c3Þj
�ð �c1[ ~c2[ ~c3Þj��ðc1[ ~c2[ ~c3Þ such that

�~cA;��~cAð~cA1; cA2; cA3Þ ¼ � � ð~c1; ~c2; ~c3Þ
¼ �~c;��~cð �c1; ~c2; ~c3Þ; (A6)

where (as a trivial consequence of the above equation)
we have

(1) ð �c1; ~c2; ~c3Þ is gauge invariant.
(2) ð �c1; ~c2; ~c3Þ has no WEO vertex.

But from the above lemma we know that there is a unique
charge network contained associated to ðc1; ~c2; ~c3Þ which

satisfies the above two conditions, and that is ~c. Whence
we have

�~cA;��~cAð~cA1; ~c2; ~c3Þ ¼ � � ð~cA1; ~c2; ~c3Þ ¼ �~c;��~cð �c1; ~c2; ~c3Þ
¼ �~c;��~c � ~c ¼ � � ~c: (A7)

Hence

~cA ¼ ~c (A8)

QED.
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