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The GNewton ! 0 limit of Euclidean gravity introduced by Smolin is described by a generally covariant

Uð1Þ3 gauge theory. The Poisson-bracket algebra of its Hamiltonian and diffeomorphism constraints is

isomorphic to that of gravity. Motivated by recent results in parametrized field theory and by the search for

an anomaly-free quantum dynamics for loop quantum gravity, the quantum Hamiltonian constraint of

density weight 4=3 for this Uð1Þ3 theory is constructed so as to produce a nontrivial loop quantum gravity

type representation of its Poisson brackets through the following steps. First, the constraint at finite

triangulation and the commutator between a pair of such constraints are constructed as operators on the

‘‘charge’’ network basis. Next, the continuum limit of the commutator is evaluated with respect to an

operator topology defined by a certain space of ‘‘vertex smooth’’ distributions. Finally, the operator

corresponding to the Poisson bracket between a pair of Hamiltonian constraints is constructed at finite

triangulation in such a way as to generate a ‘‘generalized’’ diffeomorphism and its continuum limit is

shown to agree with that of the commutator between a pair of finite-triangulation Hamiltonian constraints.

Our results, in conjunction with the recent work of Henderson, Laddha and Tomlin in a (2þ 1)-

dimensional context, constitute the necessary first steps toward a satisfactory treatment of the quantum

dynamics of this model.
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I. INTRODUCTION

A key open issue in canonical loop quantum gravity
(LQG) relates to the definition of the Hamiltonian con-
straint operator. This operator is constructed as the con-
tinuum limit of its finite-triangulation approximant [1,2].
The latter is the quantum correspondent of a classical
approximant which is uniquely defined only up to terms
which vanish in the classical continuum limit wherein the
triangulation of the spatial manifold is taken to be infinitely
fine. In contrast to the classical continuum limit, the con-
tinuum limit of the quantum operator is not independent of
the choice of finite-triangulation approximant, thus result-
ing in an infinitely manifold choice in the definition of the
quantum dynamics of LQG. On the other hand, a necessary
condition for the very consistency of the quantum theory is
an anomaly-free representation of the constraint algebra.
Therefore, one possible way to restrict the choice of quan-
tum dynamics is to demand that the ensuing algebra of
quantum constraints is free from anomalies. Unfortunately,
irrespective of the specific choice of quantum dynamics
made in the current state of the art in LQG, the quantum
constraint algebra becomes trivial; i.e., the commutator of
a pair of Hamiltonian constraints as well as the operator
corresponding to their classical Poisson bracket vanish in
the continuum limit [3–5]. While it is remarkable that no
obvious inconsistency arises, we believe that the situation
is unsatisfactory for reasons we now elaborate.

We refer to the commutator between two Hamiltonian
constraints as the left-hand side (lhs) and the operator
corresponding to their Poisson bracket as the right-hand
side (rhs). While the lhs and the rhs both vanish in the
continuum limit, they do so for very different reasons.
The lhs vanishes because the second Hamiltonian
constraint acts trivially on spin network deformations
produced by the action of the first Hamiltonian constraint
[3,4]. In contrast, the rhs vanishes because there are too
many powers of the parameter � in its expression at
finite triangulation, the continuum limit being defined
by � ! 0. More in detail, the finite-triangulation approx-
imant to the rhs is built out of the basic operators of LQG
as follows. The curvature is approximated by a small loop
holonomy (divided by its area ��2), the densitized triad
by the electric flux through a small surface (divided by its
coordinate area ��2), and powers of

ffiffiffi
q

p
by small region

volumes (divided by �3 since
ffiffiffi
q

p
�3 � volume operator).

The lower the density of the Hamiltonian constraints
in the lhs, the lower is the power of

ffiffiffi
q

p
in the rhs, and

hence, the higher the overall power of � in the rhs. For
Hamiltonian constraints of density weight 1, it is straight-
forward to see that one obtains an overall power of � in
the rhs which then kills the rhs as � ! 0 irrespective of
its finer details.
Thus one may expect that the consideration of higher

density weight Hamiltonian constraints would yield a non-
vanishing rhs with a lhs which still vanishes because of the
independence of the successive actions of the Hamiltonian
constraint alluded to above. Hence, it could well be
the case that the current definitions of the Hamiltonian
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constraint are anomalous, the anomaly being hidden by the
low density weight.1

Our view that the current set of choices for the quantum
dynamics of LQGmay be physically incorrect, and that the
consideration of higher density constraints is vital to obtain
a nontrivial constraint algebra, is supported by recent work
on parametrized field theory (PFT) [6] and the Husain-
Kuchař (HK) model [7]. In these works the physically
correct finite-triangulation approximants to the constraints
involve choices which are qualitatively different from
those currently used. Indeed the approximants bear a quali-
tative similarity with the physically appropriate ones used
in ‘‘improved’’ LQC [8]. Moreover, the nontriviality of the
quantum constraint algebra in these works is seen to be
directly tied to the kinematically singular nature of the
constraint operators which in turn are a consequence of
the higher density nature of the constraints [6,7].

Given this situation, our aim is to use the insights gained
from the study of PFT and the Husain-Kuchař model to
construct higher density weight constraint operators for
LQG which yield a nontrivial anomaly-free representation
of the classical constraint algebra. While PFT and the
Husain-Kuchař model have proven to be immensely useful,
they suffer from one structural oversimplification vis-à-vis
gravity: their constraint algebras are Lie algebras, unlike
the gravitational constraint algebra, which has structure
functions. Therefore, before attempting LQG with all its
complications, it is advisable to tackle a simpler system
whose constraint algebra bears more of a structural simi-
larity with gravity. Just such a system has been proposed
recently by Laddha and its quantum dynamics have been
studied in a (2þ 1)-dimensional context in Refs. [9,10].
The system is obtained by replacing, in the phase space
description of Euclidean gravity in terms of triads and
connections, the triad rotation group SUð2Þ by the group
Uð1Þ3. The Uð1Þ3 model (in 3þ 1 dimensions) has three
Gauss law constraints, three spatial diffeomorphism con-
straints and a Hamiltonian constraint. The constraint alge-
bra for the Hamiltonian and diffeomorphism constraints is
isomorphic to that of gravity. In fact, it turns out that this
system is exactly the GN ! 0 limit of Euclidean gravity
studied by Smolin in Ref. [11].2

In this work we initiate the investigation of the quantum
dynamics of this Uð1Þ3 model in 3þ 1 dimensions with a
view to obtaining a nontrivial representation of the Poisson
bracket between a pair of Hamiltonian constraints. The
work entails many new techniques and constructions and
for simplicity we shall ignore issues of spatial covariance.
Modifications to our constructions which incorporate spa-
tial covariance will be discussed in a future publication
[12], this work serving as a necessary precursor to that one.

The layout of the paper is as follows. Section II de-
scribes the classical Hamiltonian formulation of the Uð1Þ3
model and provides a brief review of the Uð1Þ3 ‘‘charge’’
network representation which comprises its LQG-type
quantum kinematics. In Sec. III we describe the main steps
in our considerations so as to provide the reader with
overall the logical structure of our work. In Sec. IV
we motivate and define the action of the Hamiltonian
constraint at finite triangulation and compute the action
of its commutator (at finite triangulation) on the charge
network basis.
In the last part of Sec. IV, we compute the continuum

limit of this finite-triangulation commutator. The notion of
continuum limits in LQG is a delicate one. In the literature
two different definitions of the continuum limit exist, one
through the specification of Thiemann’s Uniform Rovelli-
Smolin (URS) topology [3], and one through the specifi-
cation of the Lewandowski-Marolf habitat [3,4]. The
continuum limit we use is, roughly speaking, an intermedi-
ate between the two, and can best be described in analogy
to the case of the URS topology. The URS topology is a
topology on the space of operators on the kinematic Hilbert
space (the finite-triangulation constraint operators belong
to this space) which is defined by a family of seminorms
which, in turn, are specified by diffeomorphism-invariant
distributions. These distributions do not lie in the kine-
matic Hilbert space but in the algebraic dual space.3 The
continuum limit is then specified in terms of Cauchy
sequences of finite-triangulation operators in this topology.
In the present work as well the continuum limit is specified
in term of Cauchy sequences of finite-triangulation
operators. However, the operator topology is defined by a
different subspace of the algebraic dual. As we shall see,
examples of elements of this subspace are provided by
rough analogs of the Lewandowski-Marolf habitat states
[4,6,7] which we call ‘‘vertex smooth algebraic’’ (VSA)
states.4 In Sec. IV, we obtain the continuum limit of the
finite-triangulation commutator in the VSA topology under
certain assumptions about the space of VSA states.
In Sec. V we construct the finite-triangulation operator

which corresponds to the rhs. The construction is based
on a remarkable classical identity which we derive in
Sec. VA. As shown in Appendix B, the identity extends

1A hint that something may be wrong is already seen in the
‘‘scaling by hand’’ calculations of Lewandowski and Marolf [4].

2We thank Miguel Campiglia for pointing this out to us.

3Recall that an element of algebraic dual consists of linear
mappings from the finite span of charge network states to the
complex numbers.

4Just as a diffeomorphism-invariant distribution can be thought
of as a kinematically non-normalizable sum over all diffeomorph-
ically related spin (or charge) network bras, a VSA state is
constructed as a weighted, kinematically non-normalizable sum
over a certain set of charge network bras where the weights are
provided by the evaluation of smooth complex valued functions
on the spatial manifold at certain vertices of the bra. The set of
bras is closed under diffeomorphisms but contains diffeomorph-
ically distinct bras in contrast to the Lewandowski-Marolf habitat
states.
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to the case of internal group SUð2Þ i.e., to the case of
gravity and, hence, is of interest in its own right. To our
knowledge this identity has not been noticed before. As in
Sec. IV, we evaluate the continuum limit of the finite-
triangulation operator for the rhs under certain assumptions
on the space of VSA states. Section VI is devoted to a proof
that there exists a large space of VSA states subject to the
assumptions of Secs. IV and V.

The final conclusion of our work in Secs. IVand V is that
the continuum limits of the lhs and rhs agree in the VSA
topology induced by the space of VSA states constructed in
Sec. VI. This agreement is what we mean by an anomaly-
free representation of the Poisson bracket between a pair of
Hamiltonian constraints.

Section VII is devoted to a discussion of our results as
well as an elaboration of open issues, the two key open
issues being (i) an improvement of our considerations so as
to incorporate diffeomorphism covariance; (ii) the promo-
tion of our VSA-topology-based calculations to the context
of a genuine habitat.

We work with the semianalytic category in this paper
so that the Cauchy slice �, coordinate charts thereon,
its diffeomorphisms and the graphs embedded in it are
semianalytic and Ck, k � 1.

II. THE Uð1Þ3 MODEL

In Sec. II A we obtain the Hamiltonian formulation of
the Uð1Þ3 model from that of Euclidean gravity through
Smolin’s GN ! 0 limit [11]. In Sec. II B we briefly review
its quantum kinematics in the polymer representation.

A. The Hamiltonian formulation

Recall that Euclidean gravity is described, in its
Hamiltonian formulation, by the action

S½E;A� ¼ 1

GN

Z
dt
Z
�
d3x

�
Ea
i
_Ai
a ��iDaE

a
i

� NaðEb
iF

i
ab �Ai

aDbE
b
i Þ

� N�ijkEa
i E

b
jF

k
ab

�
: (2.1)

Here Ea
i ,A

i
a are the canonically conjugate densitized triad

and SUð2Þ connection. The curvature of the connection is

F i
ab

:¼ @aAi
b � @bAi

a þ �ijkA
i
aA

j
b and Da is the

gauge-covariant derivative so that DaE
a
i ¼ @aE

a
i þ

�ijkA
j
aEa

k . N, Na, �i are the (appropriately densitized)

lapse, shift and internal gauge Lagrange multipliers.
We have set the speed of light to be unity so that GN

has dimensions ½length�½mass��1, Ai
a, �i have

dimensions ½length��1 and the triad, lapse, and shift are
dimensionless so that Eq. (2.1) acquires the dimensions of
action. Following Smolin, we define the rescaled
connection Ai

a :¼ G�1
N Ai

a so that the curvature takes

the form F i
ab ¼ GNð@aAi

b � @bA
i
a þ GN�

i
jkA

i
aA

j
bÞ and

DaE
a
i ¼ @aE

a
i þGN�ijkA

j
aEa

k .

Rewriting the action in terms of the scaled connection
and then setting GN ¼ 0, it is easy to obtain

S½E; A� ¼
Z

dt

�Z
d3xEa

i
_Ai
a �G½�� �D½ ~N� �H½N�

�
;

(2.2)

where

G½�� ¼
Z

d3x�i@aE
a
i ; (2.3)

D½ ~N� ¼
Z

d3xNaðEb
i F

i
ab � Ai

a@bE
b
i Þ; (2.4)

H½N� ¼ 1

2

Z
d3xN�ijkEa

i E
b
jF

k
ab (2.5)

are the Gauss law, diffeomorphism, and Hamiltonian con-
straints of the theory, and where Fi

ab
:¼ @aA

i
b � @bA

i
a.

Note that the Gauss law constraints generate three inde-
pendent Uð1Þ3 gauge transformations on the connections
Ai
a; i ¼ 1, 2, 3 with gauge-invariant curvature Fi

ab and that

the three electric fields Ea
i ; i ¼ 1, 2, 3 are gauge invariant.

Thus, the action (2.2) describes a Uð1Þ3 theory as claimed.

The constraints G½��, D½ ~N�, H½N� are first class. Their
Poisson-bracket algebra is

fG½��; G½�0�g ¼ fG½��; H½N�g ¼ 0; (2.6)

fD½ ~N�; G½��g ¼ G½L ~N��; (2.7)

fD½ ~N�; D½ ~M�g ¼ D½L ~N
~M�; (2.8)

fD½ ~N�; H½N�g ¼ H½L ~NN�; (2.9)

fH½N�; H½M�g ¼D½ ~!� þG½A � ~!�;
!a :¼ Ea

i E
b
i ðM@bN � N@bMÞ:

(2.10)

The last Poisson bracket (between the Hamiltonian
constraints) exhibits structure functions just as in gravity.
Working towards a representation of this last Poisson
bracket in quantum theory will occupy the rest of this work.

B. Quantum kinematics

1. The holonomy-flux algebra

Let e be a Ck, k � 1 semianalytic, embedded edge e:
½0; 1� ! �. An edge holonomy in the jth copy of Uð1Þ is
denoted by he;qj with

he;qj ¼ e
i��qj

R
eI
Aj
adx

a

: (2.11)

Here qj is an integer, � is a constant of dimension
½length�½mass��1 and � is a positive real number. For fixed
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�, �, the edge holonomies for all edges and all values of the
‘‘charges’’ qj form a complete set of functions of the

connection Aj
a; i.e., the knowledge of all these holonomies

allows the reconstruction of Aj
a. We fix � once and for all.

We shall see below that � is a Barbero-Immirzi-like pa-
rameter of the theory which labels inequivalent quantum
representations.5 The edge holonomy he; ~q valued in Uð1Þ3
is defined to be the product of edge holonomies over the
three copies of Uð1Þ:

he; ~q ¼ e
i��
P

3
j¼1

qj
R

eI
Aj
adx

a

: (2.12)

Given a closed, oriented graph � with N edges, the graph
holonomy h�;f ~qg :¼ h�;f ~qI jI¼1;...;Ng is just the product of the
edge holonomies over the edges of the graph, so that

h�;f ~qg :¼
YN
I¼1

heI; ~qI : (2.13)

It is easily verified that the graph holonomy h�;f ~qg is

invariant under Uð1Þ3 gauge transformations if and only if,
for every vertex v of the graph � and for each i,X

Iv

�ðIvÞqiIv ¼ 0; (2.14)

where eIv ranges over the edges incident at v and �ðIvÞ
is þ1 if the edge is outgoing at v and �1 if ingoing.
The labels �, f ~qIjI ¼ 1; . . . ; Ng define a colored graph
which we refer to as a charge network. A charge network
c ¼ cð�; f ~qIjI ¼ 1; . . . ; NgÞ is a closed oriented graph
whose edges are ‘‘colored’’ by representation labels of
Uð1Þ3; i.e., each edge eI is colored with the triple of charges
ðq1I ; q2I ; q3I Þ :¼ ~qI. If the charges satisfy Eq. (2.14), we shall
say that the charge network is gauge invariant.6 Thus, graph
holonomies are labeled by charge networks and we may
write h�;f ~qg :¼ hc. For future purposes it is useful to write

the graph holonomy hc in the form

hc ¼ exp

�Z
d3xcai A

i
a

�
; (2.15)

where

cai ðxÞ ¼ cai ðx; feIg; fqIgÞ

¼ XM
I¼1

i��qiI

Z
dtI�

ð3ÞðeIðtIÞ; xÞ _eaI ðtIÞ: (2.16)

Here tI is a parameter which runs along the edge eI.
Adapting the old terminology of Gambini and Pullin [13],
we shall refer to cai ðxÞ as a charge network coordinate.
The gauge-invariant electric flux EiðSÞ through a

two-dimensional oriented surface S is given by integrating
the 2-form �abcE

a
i over S so that

EiðSÞ :¼
Z
S
�abcE

a
i : (2.17)

The only nontrivial Poisson bracket amongst the
holonomy-flux variables is fhc; EiðSÞg, which is readily
computed:

fhc; EiðSÞg ¼ i
��

2

X
�ðeI; SÞqiIhc: (2.18)

Here the graph �ðcÞ underlying c is chosen to be fine
enough that isolated intersection points of the graph with
S are at its vertices and the integer �ðeI; SÞ vanishes unless
eI intersects S transversely in which case �ðeI; SÞ ¼ 1
if eI is outgoing from and above S or incoming to and
below S and �1 otherwise. Unless indicated explicitly
below, we will always assume that charge network
edges are outgoing at vertices or relevant interior edge
points.

2. The polymer representation

An orthonormal basis for the kinematic Hilbert space
is provided by charge network states. To every distinct
charge network label c we assign the unit norm charge
network state jci � j�; f ~qIgi. Two charge network states
are orthogonal if and only if their charge network labels
differ; i.e., if the colored graphs which label them are
inequivalent. We denote this inner product between charge
network states by

hc0jci ¼ �c0;c; (2.19)

where the Kronecker delta �c0;c vanishes unless there is a

choice of colored graph underlying cwhich is identical to a
choice of colored graph underlying c0 in which case c ¼ c0
and �c;c0 ¼ 1.
Let the finite span of the charge network states be D.

The Cauchy completion of D in the inner product (2.19)
yields the kinematic Hilbert space H kin.
The holonomy operators act as follows:

ĥ cjc0i ¼ jcþ c0i: (2.20)

The charge network cþ c0 is defined as follows: Let �
be a fine enough closed, oriented graph which underlies
both c and c0. Add the charge labels of c, c0 edgewise to
obtain new charge labels for �. This newly colored graph
specifies the charge network cþ c0. The flux operators act
as follows:

5We could have chosen three different parameters �i and
obtained a three-parameter family of inequivalent representa-
tions. For simplicity and to maintain similarity with the case of
gravity where there is a single Barbero-Immirzi parameter, we
set �i ¼ �, i ¼ 1, 2, 3.

6More precisely, charge networks are associated with equiva-
lence classes of colored oriented closed graphs; colored graphs
which yield the same graph holonomy via (2.13) define such an
equivalence class.
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Ê iðSÞjci ¼ ℏ��
2

X
�ðeI; SÞqiIjci: (2.21)

It can be verified that the above operator actions provide a
representation of the holonomy-flux Poisson-bracket
algebra on H kin. Finally note that, as in LQG, we may
derive these operator actions by thinking, heuristically, of
the charge network states as wave functions which depend
on smooth connections via jci � cðAÞ ¼ hcðAÞ and by
seeking to represent the holonomy operators by multipli-
cation and the electric field operators by functional
differentiation.

III. SKETCH OF OVERALL LOGICAL
STRUCTURE

Our purpose in this section is to give the reader a rough
global view of the logical structure of our considerations.
In Sec. III A we provide a brief sketch of the main steps
in our work. Section III B contains a precise definition
of the continuum limit in terms of a topology on the space
of operators and indicates the sense in which the imple-
mentation of the steps of Sec. III A establishes the exis-
tence of a nontrivial anomaly-free representation of the
constraint algebra. In Sec. III C we briefly describe the
various choices made in order to implement the steps of
Sec. III A. To avoid unnecessary clutter we shall not worry
about overall factors, both dimensional and numerical
(only in this section).

As in LQG, we are faced with a tension between
the local nature of the constraints of the model
(most importantly the dependence onFi

ab) and the nonlocal

and discontinuous nature of some of the basic operators of
the quantum theory (namely the holonomy operators).
Since there is no way to extract a connection (or curvature)
operator out of the holonomy operators due to their
discontinuous action with respect to any shrinking proce-
dure applied to the loops which label them, one proceeds
in close analogy to Thiemann’s seminal work [1]. We fix a
one-parameter family of triangulations T� of the spatial
manifold�where � labels the fineness of the triangulation,
with � ! 0 being the continuum limit of infinite refine-
ment; construct finite-triangulation approximants to the
classical constraints; construct the corresponding opera-
tors; and then take an appropriate continuum limit, the
hope being that while individual operators may not possess
a continuum limit, the conglomeration of operators which
combine to form the constraint does possess a continuum
limit.

A. Steps

Step 1: The finite-triangulation Hamiltonian constraint
and its continuum limit.—Let the Hamiltonian constraint
at finite triangulation T� be C�½N�. C�½N� is a dis-
crete approximant to the Hamiltonian constraint C½N�
(see, however, the remark after Step 4 below) so that

lim �!0C�½N� ¼ C½N�. Let the corresponding operator

Ĉ�½N� be such that Ĉ�½N�: D ! D where D is the finite
span of charge network states. LetD� be the algebraic dual
to D so that every � 2 D� is a linear map from D to C.
Let jci be a charge network state. Then for every pair
ð�; jciÞ we compute the one-parameter family of complex

numbers �ðĈ�½N�jciÞ. The continuum limit action of

Ĉ�½N� is defined to be

lim
�!0

�ðĈ�½N�jciÞ: (3.1)

Step 2: Finite-triangulation commutator and its
continuum limit.—Let T�0 be a refinement of T� so that
�0 < �. Define a discrete approximant to C½N�C½M� by
C½N��0C½M��. The corresponding operator product is

Ĉ½N��0Ĉ½M��. The commutator at finite triangulation is

then Ĉ½N��0Ĉ½M�� � Ĉ½M��0Ĉ½N�� and its continuum
limit action is

lim
�!0

lim
�0!0

�ð½Ĉ½N��0Ĉ½M�� � Ĉ½M��0Ĉ½N���jciÞ: (3.2)

Step 3: Rhs at finite triangulation and its continuum
limit.—Recall that the rhs, D½ ~!�, is just the diffeomor-
phism constraint smeared with a metric-dependent shift.
One could define it at finite triangulation by some discrete
approximant D�½ ~!�. Note that the lhs at finite triangula-
tion, by virtue of the quadratic dependence of the commu-
tator on the constraint, depends on the pair of parameters
�, �0. Clearly, a better comparison of the lhs and rhs would
result if the rhs could also naturally accommodate a
commutator description. Remarkably, it so happens that
the classical expression for the rhs can be written as the
Poisson bracket between a pair of diffeomorphism con-
straints with triad-dependent shifts. Specifically, we have
that D½ ~!� ¼ P3

i¼1fD½Ni�; D½Mi�g where DðNiÞ is the dif-

feomorphism constraint smeared with the shiftNa
i which is

constructed out of the lapseN and the electric field variable
(see Sec. VA). LetD�½Ni� be a finite-triangulation approx-
imant to D½Ni�. Then the finite-triangulation rhs operator

can be written as
P

i D̂½Ni��0D̂½Mi�� � D̂½Mi��0D̂½Ni�� and
its continuum limit action is defined to be

lim
�!0

lim
�0!0

X3
i¼1

�ð½D̂½Ni��0D̂½Mi�� � D̂½Mi��0D̂½Ni���jciÞ:

(3.3)

Step 4: Existence of the continuum limit for suitable
algebraic dual states.—We look for a large (infinite-
dimensional) subspace D�

cont � D� such that for every
� 2 D�

cont and every charge network state jci, the limits
(3.1), (3.2), and (3.3) exist with (3.2) ¼ (3.3). Further we
require that (3.2) and (3.3) do not vanish identically for
every pair ð�; jciÞ.
Remark: In accordance with Step 1 above we should

first find a classical approximant to the classical con-
straints such that the approximant is built out of small edge
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holonomies and small surface fluxes (where the notion
of smallness is defined by the finite-triangulation parame-
ter �). We should then replace the classical phase space
functions by their quantum counterparts to obtain the con-
straint operator at finite triangulation. Instead, in Sec. IV
we directly motivate, through heuristic considerations,
finite-triangulation quantum constraint operators. It is de-
sirable that it be shown that these operators correspond to
the quantization of classical finite-triangulation approxim-
ants. Based on our experience with PFTand the HK model,
we are fairly sure that this should be easy to do. However
since this is one of the first attempts at obtaining a non-
trivial representation of the constraint algebra we choose to
press on and leave loose ends such as this to be tied up by
future work.

B. A note on the ‘‘topology’’ interpretation
of the continuum limit

Given any operator Ô: D ! D and a pair ð�; jciÞ with
� 2 D�

cont and jci being a charge network state, we may

define the seminorm of the operator Ô to be kÔk�;c ¼
j�ðÔjciÞj. The family of seminorms k k�;c for every pair

ð�; jciÞ defines a topology on the vector space of operators
from D to itself. It is straightforward to check that the
sequences of operators (indexed by �, �0) defined in the
previous section can be interpreted as sequences which are
Cauchy in this topology. Of course there is no guarantee
that the limit of such a Cauchy sequence is also an operator
from D to itself. Indeed, we shall see that the limit is
interpretable as an operator from D�

cont into D�; this
follows straightforwardly from the fact that every operator

Ô fromD to itself defines an operator ðÔyÞ0 onD� by dual
action.

It is straightforward to see that the successful implemen-
tation of Step 4 implies that

(i) The sequence7 of finite-triangulation Hamiltonian
constraint operators is Cauchy and converges to a
nontrivial operator from D�

cont into D�.
(ii) Likewise for the sequences of finite-triangulation

lhs approximants and finite-triangulation rhs
approximants.

(iii) The difference between the rhs and lhs operators at
finite triangulation also forms a Cauchy sequence.
This sequence converges to zero.

The statements (i)–(iii) constitute a precise definition of
what we mean by a nontrivial anomaly-free representation
of the Poisson bracket between a pair of Hamiltonian
constraints. These statements hold in PFT and the
Husain-Kuchař model. However, there, one has the
stronger statement that the finite-triangulation operators
as well as their limits are operators from D�

cont to itself;

the linear vector space D�
cont then acts as a linear repre-

sentation space which supports a representation of the
constraint algebra. Following Lewandowski and Marolf
[4], such a representation space is called a habitat.
We are optimistic that our considerations here admit a

generalization to a habitat-based representation. Indeed, as
we shall see briefly in Sec. III C and in detail later, our
choice of D�

cont closely mimics that of the habitats of PFT
[6] and the Husain-Kuchař model [7].

C. Choices

1. The action of the finite-triangulation
Hamiltonian constraint operator

As in LQG [1], the Hamiltonian constraint acts only at
charge network vertices. Recall, from Sec. I, that the
reason the lhs is trivial in LQG can be traced to the fact
that the second Hamiltonian constraint does not act on
graph deformations generated by the first. As argued in
Ref. [4] this is because the Hamiltonian constraint does not
move the vertex it acts on. Here we define the action of

Ĉ�½N� after a careful study of the Hamiltonian vector field
of C½N�. This study motivates an operator action which
does move the vertices it acts upon. This is the reason we
get a nontrivial lhs with the desired dependence on deriva-
tives of the lapse [see Eq. (4.65)]; the derivative is born of
the fact that the second Hamiltonian constraint acts at the
closely displaced vertex created by the first Hamiltonian
constraint.

2. D�
cont, vertex smooth functions, and density weight

The choice of D�
cont for PFT and the Husain-Kuchař

model is characterized by vertex smooth functions
(see Footnote 4). An element �f of D�

cont is obtained by

summing over an uncountably infinite set of charge network
bras with weights which correspond to the evaluation of a
smooth function f (from copies of the spatial manifold toC)
at points on the spatial manifold given by the vertices of the
bra. In our notation, with jci being an appropriate spin/

charge network state, one typically obtains �fðĈ�½N�jciÞ
to be the difference of the evaluation of the function at points
on the manifold which are � apart divided by an overall
power of �. In the continuum limit this translates to a
derivative of f. If the overall factor of � was absent, one
would get a trivial result by virtue of the smoothness of f.
As discussed in Sec. I, the overall factor of � is tied to
the choice of density weight of the constraint. As has
been known for a long time, density-weight-1 objects
constructed solely out of the phase space variables when
integrated with scalar smearing functions typically lead to
LQG operators with no overall factors of �. This is what
would happen if we used the density-weight-1 constraint.
Hence in order to get an overall factor of ��1, we need to
multiply the density-weight-1 constraint by

ffiffiffi
q

p
1=3 (recall

that
ffiffiffî
q

p
�3� volume operator); i.e., we need to consider a

7Strictly speaking, the statement applies to any appropriately
defined countably infinite subset of the one- (or two-) parameter
set of operators under consideration.
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Hamiltonian constraint of weight 4=3. It is then straightfor-
ward to check that the rhs also acquires an overall factor of
��1 which, as we shall see, also goes into producing a
derivative of f in the continuum limit. Thus the higher
density weight allows on one hand the moving of verti-
ces caused by the Hamiltonian constraint to manifest
nontrivially, thereby giving rise to a nontrivial lhs, and
on the other, compensates for the (hitherto) ‘‘too many
factors of �’’ in the rhs, thereby leaving an overall factor
of ��1 which is responsible for its nontriviality.

IV. THE HAMILTONIAN CONSTRAINT
OPERATOR AT FINITE TRIANGULATION AND

THE CONTINUUM LIMIT OF ITS COMMUTATOR

The Hamiltonian constraint of density weight 4=3
smeared with a lapse N (of density weight �1=3) is

H½N� ¼ 1

2

Z
�
d3x�ijkFk

abE
b
j ðNEa

i q
�1

3Þ: (4.1)

Note that the last piece of the above expression,

Na
i
:¼ NEa

i q
�1

3; (4.2)

defines an electric-field-dependent vector field for each
i. For reasons which will become clear shortly, we shall
refer to Na

i as the electric shift. We refer to its quantum
correspondent as the quantum shift.

In Sec. IVAwe detail our choice of regulating structures.
In Sec. IVB we construct the quantum shift operator. Since
its phase space dependence is solely on the electric field,
the operator is diagonalized in the charge network basis.
Moreover, due to its dependence on the inverse metric, its
action is nontrivial only at vertices.

In Sec. IVC we provide heuristic motivation for the
action of the constraint operator at finite triangulation.
Motivated by previous work in PFT, the Husain-Kuchař
model, and LQC [6–8], as well as by the requirement that
the constraint moves the vertex on which it acts, we assign
a key role to the quantum shift in this action. Specifically,
using the key classical identity,

Na
i F

k
ab ¼ L ~Ni

Ak
b � @bðNc

i A
i
cÞ (4.3)

as motivation, the quantum shift is used to deform the
graph underlying the charge network. While the classical
electric shift is smooth, by virtue of the discrete ‘‘quantum
geometry,’’ the quantum shift is not a smooth vector field
and the choice of the deformations it defines is made on the
basis of intuition gained by the study of PFT and the
Husain-Kuchař model. We detail this choice in Sec. IVD
and conclude with the evaluation of the action of the
Hamiltonian constraint operator at finite triangulation on
the charge network basis. Note that since the quantum
shift only acts at vertices of the charge network, the
Hamiltonian constraint (as in LQG) also acts only on
vertices.

In Sec. IVE, we evaluate the commutator of two
Hamiltonian constraints at finite triangulation on the
charge network basis, and in Sec. IVA we compute the
continuum limit.

A. Choice of triangulation and regulating structures

Scalar densities of nontrivial weight need coordinate
systems (more precisely n-forms in n dimensions) for their
evaluation. Since the lapse is no longer a scalar, it turns
out that we need to fix regulating coordinate systems to
define the finite-triangulation Hamiltonian constraint.
Accordingly, once and for all, around every p 2 � we
fix an open neighborhood Up with coordinate system

fxgp such that p is at the origin of fxgp. When there is no

confusion we shall drop the label p and refer to the
coordinate patch as fxg.
We shall use the regulating coordinate patches to specify

the fineness of the triangulation below, to define the quan-
tum shift in Sec. IVB and to specify the detailed graph
deformations generated by the Hamiltonian constraint in
Sec. IVD. An immediate concern is the interaction of
this choice of coordinate patches with the spatial covari-
ance of the Hamiltonian constraint. While we shall com-
ment on this issue towards the end of this paper, we shall
(as mentioned in Sec. I) defer a comprehensive treatment
of the issue to Ref. [12].
The one-parameter family of triangulations T� is

adapted to the charge network on which the finite-
triangulation approximants act. Specifically, we require
that T� (for sufficiently small �) be such that every vertex
v of the coarsest graph underlying the charge network is
contained in the interior of a cell 4�ðvÞ 2 T�, and every

cell of T� contains at most one such vertex. The size of
4�ðvÞ is restricted to be of Oð�3Þ as measured in the

coordinate system fxgv.

B. The quantum shift

Let q̂�1=3 act nontrivially at a vertex v of the
charge network c. We shall refer to such vertices as
nondegenerate. Let fxg denote the coordinate patch at v.
Fix a coordinate ball B�ðvÞ of radius � centered at v, and
restrict attention to a small enough � in the following
manipulations so that all constructions happen within the

domain of fxg. Let q̂�1=3
� denote the regularization of q̂�1=3

using this coordinate ball. From Appendix A (and from
our general arguments in and prior to Sec. III C), the

eigenvalue of q̂�1=3
� for the eigenstate jci takes the form

�2ðℏ��Þ�1��2=3 where � is a number constructed out of
the charges which label the edges of c at v.

Treating Êa
i as a functional derivative and jci as a

function of the connection, the action of Êa
i at the point

v naturally decomposes into a sum of contributions per

edge [14] Êa
i ¼ P

IÊ
aI
i with
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Ê aI
i ðxðvÞÞjci ¼ ℏ��qiI

Z 1

0
dt _eaI ðtÞ�ð3ÞðeIðtÞ; xðvÞÞjci:

(4.4)

Next, we define the regulated quantum shift, N̂ai
� ,

evaluated at the point v by

N̂ai
� :¼ NðxðvÞÞq̂�1=3

�
1

4	�3

3

Z
B�ðvÞ

d3xÊa
i ðxÞ: (4.5)

From Eq. (4.4) and the form of the eigenvalue of q̂�1=3
� ,

we obtain

N̂ai
� jci ¼

X
I

NaI
i ðvÞfxg;�jci (4.6)

with

NaI
i ðvÞfxg;� ¼ ℏ��NðxðvÞÞ�2ðℏ��Þ�1��2=3qiI

1
4
3	�

3

	
Z
B�ðvÞ

d3x
Z 1

0
dt _eaI ðtÞ�ð3ÞðeIðtÞ; xÞ

¼ NðxðvÞÞ��2=3qiI
1

4
3	�

Z
B�ðvÞ\eI

deaI

¼ 3

4	
NðxðvÞÞ��2=3qiIê

a
I�; (4.7)

where êaI� is a unit vector which pierces B�ðvÞ at the
point where eI intersects it. That is, the point @B�ðvÞ \ eI
has coordinates �êaI� in the coordinate system fxg. The
appearance of fxg, � remind us that these values refer to a
particular choice of coordinates fxg and a parameter �
defining the size of B�ðvÞ.

We may now take the regulating parameter � ! 0 to
obtain

N̂a
i ðvÞjci :¼ Na

i ðvÞjci ¼
X
I

NaI
i ðvÞfxgjci (4.8)

with

NaI
i ðvÞfxg :¼ lim

�!0
NaI

i ðvÞfxg;� ¼ 3

4	
NðxðvÞÞ��2=3qiIê

a
I ;

(4.9)

where êaI is the unit tangent vector at v along the edge eI in
the coordinate system fxg.

C. Heuristic operator action

We motivate a definition for a finite-triangulation
Hamiltonian constraint through the following heuristic

arguments. Using Eq. (4.3) and by parts integration, the
Hamiltonian constraint (4.1) can be written, modulo terms
proportional to the Gauss constraints (recall that these
constraints are Gi ¼ @aE

a
i ), as

C½N� ¼ � 1

2

Z
�
d3x�ijkðL ~Ni

Aj
aÞEa

k;

Na
i
:¼ Nq�1=3Ea

i ;

(4.10)

where Na
i is the electric shift (4.2).

Next, we add a classically vanishing term which leads to
the modified expression:

C0½N� :¼ C½N� þ 1

2

Z
�
d3xNa

i F
i
abE

b
i

¼ 1

2

Z
�
d3xð��ijkðL ~Nj

Ak
bÞEb

i þ
X
i

ðL ~Ni
Ai
bÞEb

i Þ:

(4.11)

While classically trivial, we shall see in Secs. IVD and
IVE that this term ensures that in the quantum theory the
second Hamiltonian constraint acts on a vertex displaced
by the first one; this is why we add it above.
We shall think of gauge-invariant charge network states

jci as wave functions cðAÞ of the connection Ai
a. We write

cðAÞ in the form of a gauge-invariant graph holonomy
(see Sec. II B 1):

cðAÞ ¼ exp

�Z
d3xcai A

i
a

�
; (4.12)

where we recall that the charge network coordinate cai ðxÞ is
given by

cai ðxÞ ¼ cai ðx; feIg; fqIgÞ

¼ XM
I¼1

i��qiI

Z
dtI�

ð3ÞðeIðtIÞ; xÞ _eaI ðtIÞ: (4.13)

We now seek the action of the quantum correspondent of
C0½N� on cðAÞ. Accordingly, we replace the electric shift in
Eq. (4.11) by the eigenvalue of the quantum shift operator
(4.8). The eigenvalue is no longer a smooth field but, as part
of our heuristics, in what follows below, we shall treat it as
a smooth field which is supported only in the cells 4�ðvÞ
which contain the vertices v of c. Next, we shall think of
the remaining electric field operator [corresponding to the
rightmost term in Eq. (4.11)] as ℏ

i
�

�Aj
b

. We are led to the

following heuristic operator action:

Ĉ0½N�cðAÞ ¼ cðAÞ
Z
�
d3xcai ðxÞĈ0½N�Ai

aðxÞ ¼ ℏ
2i
cðAÞ

Z
d3xcai ðxÞ

Z
d3y

 
�ljkðL ~Nl

Ak
bÞ
�Ai

aðxÞ
�Aj

bðyÞ
þ ðL ~Nj

Aj
bÞ
�Ai

aðxÞ
�Aj

bðyÞ

!

¼ ℏ
2i
cðAÞ

Z
�
d3xð�ijkcaiL ~Nk

Aj
a þ caiL ~Ni

Ai
aÞ ¼ � ℏ

2i
cðAÞ

Z
�
d3xAi

að�ijkL ~Nj
cak þL ~Ni

cai Þ: (4.14)

Expanding,
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Ĉ0½N�cðAÞ ¼ � ℏ
2i
cðAÞ

Z
�
d3xððL ~N1

ca2ÞA3
a þ ðL ~N1

�ca3ÞA2
a þ ðL ~N1

ca1ÞA1
a þ ðL ~N2

ca3ÞA1
a þ ðL ~N2

�ca1ÞA3
a

þ ðL ~N2
ca2ÞA2

a þ ðL ~N3
ca1ÞA2

a þ ðL ~N3
�ca2ÞA1

a þ ðL ~N3
ca3ÞA3

aÞ; (4.15)

where we have written �cai � �cai . Since the quantum shifts
~Ni have support only within the cells 4�ðvÞ which contain
vertices of the charge network, the integral in (4.15) gets
contributions only from such cells. If we further decom-
pose the quantum shift Na

i into its edge contributions NaIv
i

[see Eq. (4.8); Iv signifies that the edges emanate from v] at
each vertex v and think of each of these contributions as
being of compact support in4�ðvÞ, the expression (4.15) of
the Lie derivative with respect to Na

i splits into a sum over
edge contributions in each cell 4�ðvÞ. We obtain

Ĉ 0½N�cðAÞ ¼ X
v2VðcÞ

XvalðvÞ
Iv

Ĉ0
v½NIv�cðAÞ; (4.16)

where valðvÞ is the valence of v, and

Ĉ0
v½NIv�cðAÞ¼�ℏ

2i
cðAÞ

Z
4�ðvÞ

d3xAi
að�ijkL ~NIv

j
cakþL ~NIv

i
cai Þ:

(4.17)

Since the kinematics of LQG supports the action of
finite diffeomorphisms rather than infinitesimal ones, we

approximate the Lie derivative with respect to NaIv
i by

small, finite diffeomorphisms,’ð ~NI
i ;�Þ, generated byNaIv

i :

ðL ~NI
i
caj ÞAk

a ¼ �’ð ~NI
i ; �Þ�cajAk

a � cajA
k
a

�
þOð�Þ: (4.18)

Hence

Ĉ 0
v½NIv�cðAÞ ¼ 1

�

ℏ
2i
cðAÞ

Z
4�ðvÞ

d3x½� � ��I þOð�Þ;
(4.19)

where the integrand ½� � ��I is given by

½� � ��I ¼ ½ð’1c
a
2ÞA3

a � ca2A
3
a� þ ½ð’1 �c

a
3ÞA2

a � �ca3A
2
a�

þ ½ð’1c
a
1ÞA1

a � ca1A
1
a� þ ½ð’2c

a
3ÞA1

a � ca3A
1
a�

þ ½ð’2 �c
a
1ÞA3

a � �ca1A
3
a� þ ½ð’2c

a
2ÞA2

a � ca2A
2
a�

þ ½ð’3c
a
1ÞA2

a � ca1A
2
a� þ ½ð’3 �c

a
2ÞA1

a � �ca2A
1
a�

þ ½ð’3c
a
3ÞA3

a � ca3A
3
a�: (4.20)

We have used the shorthand ’ic
a
j � ’ð ~NI

i ; �Þ�caj and

dropped the common I. In the above expression, each
line consists of terms which are deformed along a single
shift minus the undeformed quantity; note also that each
square-bracketed pair of terms is Oð�Þ. Making all sums
explicit, we have, in obvious notation,

Ĉ0½N�cðAÞ ¼ X
v2VðcÞ

X
Iv

Ĉ0
v½NIv�cðAÞ

¼ ℏ
2i
cðAÞ X

v2VðcÞ

X
Iv

X
i

1

�

Z
4�ðvÞ

½� � ��NIv
i
þOð�Þ:

(4.21)

Since the square-bracketed terms are Oð�Þ, we may write

Ĉ 0½N�cðAÞ ¼ ℏ
2i
cðAÞ X

v2VðcÞ

X
Iv;i

e

R
4�ðvÞ

½����
N
Iv
i � 1

�
þOð�Þ:

(4.22)

The reason we exponentiate the square bracket is that
each summand (to the right of the summation signs) is
proportional to a graph holonomy (minus the identity) so
that the right-hand side of the above equation defines a
linear combination of charge network states. For instance
(suppressing some of the v dependence),

e

R
4� ðvÞ

½����
NI
1

¼ e

R
4�ðvÞ

½ð’I
1
ca
2
ÞA3

a�ca
2
A3
a�þ½ð’I

1
�ca
3
ÞA2

a� �ca
3
A2
a�þ½ð’I

1
ca
1
ÞA1

a�ca
1
A1
a�

(4.23)

describes a graph holonomy which lives on a graph defor-
mation of the original graph underlying c multiplied by a
graph holonomy which lives in the undeformed vicinity of
v. The deformation is confined to the vicinity of the vertex
v, moves the vertex v along the Ith edge direction and
‘‘flips’’ the charges on all edges in the vicinity of deforma-
tion by the replacements q2 ! �q3, q3 ! q2, q1 ! q1,
and the undeformed piece has charges with an inverse flip
(see Sec. IVD below).
So far all of these manipulations have been formal and

we only use the result to motivate our definition of the
constraint operator. In the next section we shall discuss
these graph deformations at length as they lie at the heart of
our proposed action of the Hamiltonian constraint.

D. Deformations

In the previous section we persisted in the fiction that the
quantum shift eigenvalue was a smooth function on �. In
actuality, due to the discrete ‘‘quantum geometry’’ (in this
case the discrete electric lines of force along graphs), the
quantum shift vanishes almost everywhere. This contrast
between discrete quantum structures and their smooth
classical correspondents is a characteristic feature of
LQG and the appropriate replacement of the latter by the
former in the quantum theory is more of an art than a
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deductive exercise. Accordingly, we view the manipula-
tions of the last section as motivational heuristics; the
precise graph deformations generated by the quantum
shift are arrived at by the usual ‘‘physicist mixture’’ of
intuition and mathematical precision. While the details of
our choices may suffer from nonuniqueness, we believe
that there is a certain robustness to their main features. As a
final remark, we note that our considerations are guided
by the view that there must be imprints of the graph
deformations which survive the action of diffeomorphisms
and the possibility that the chosen deformations have
analogs in the SUð2Þ case of gravity.

Before turning to the precise form of the deformations
we are proposing, we modify the heuristic starting point in
two important ways:

(i) As mentioned above, despite the quantum shift being
supported only at isolated points, we have imagined
extending its support smoothly to 4�ðvÞ, the idea

being that as � ! 0, the ‘‘1 point’’ support at v is
formally recovered. We choose to extend the quan-

tum shift to 4�ðvÞ by keeping 3
4	NðxðvÞÞ��2=3

v qiIv as

an overall factor and extending the edge tangent
êIv at v to 4�ðvÞ in some smooth, compactly sup-

ported way. This allows us to pull out the factor
3
4	NðxðvÞÞ��2=3qiI in Eq. (4.18) to obtain

ðL ~NI
i
caj ÞAk

a ¼ � 3

4	
NðxðvÞÞ��2=3

v qiIv

	 ’ð ~̂eI; �Þ�cajAk
a � cajA

k
a

�
þOð�Þ;

(4.24)

so that (4.19) is modified to

Ĉ0
v½NIv�cðAÞ¼ 1

�

ℏ
2i
cðAÞ 3

4	
NðxðvÞÞ��2=3

v

	qiIv

Z
�
d3x½����Iv;i� þOð�Þ; (4.25)

where the integrand ½� � ��Iv;i� is given by

½� � ��Iv;1� ¼ ½ð’ca2ÞA3
a � ca2A

3
a� þ ½ð’ �ca3ÞA2

a � �ca3A
2
a�

þ ½ð’ca1ÞA1
a � ca1A

1
a�

½� � ��Iv;2� ¼ ½ð’ca3ÞA1
a � ca3A

1
a� þ ½ð’ �ca1ÞA3

a � �ca1A
3
a�

þ ½ð’ca2ÞA2
a � ca2A

2
a�

½� � ��Iv;3� ¼ ½ð’ca1ÞA2
a � ca1A

2
a� þ ½ð’ �ca2ÞA1

a � �ca2A
1
a�

þ ½ð’ca3ÞA3
a � ca3A

3
a�; (4.26)

where ’caj � ’ð ~̂eIv ; �Þ�caj , and where we have

replaced the region of integration 4�ðvÞ by � by

virtue of the compact support of ~̂eIvðxÞ. Following a

similar line of argument as before, we are led to the
expression

Ĉ0½N�cðAÞ ¼ X
v2VðcÞ

X
Iv

Ĉ0
v½NIv�cðAÞ

¼ ℏ
2i
cðAÞ 3

4	

X
v2VðcÞ

NðxðvÞÞ��2=3
v

	X
Iv

X
i

qiIv
e
R

�
½����Iv;i

� � 1

�
þOð�Þ:

(4.27)

We use (4.27) as our starting point rather than (4.22)
for the following reasons: The quantum shift
depends on the charge qiI [see (4.9)]. In the SUð2Þ
case this would correspond to an insertion of a Pauli
matrix into the graph holonomy. Exponentiating
such an operation to obtain a linear combination of
charge networks seems difficult to us, so we leave qiI
as an overall factor. Considerations of diffeo-
morphism covariance [12] lead us to leave the lapse
[see (4.9)] as an overall factor as well.

(ii) The vector êaIv is tangent to the edge eIv at v.

This suggests that the vertex v is to be displaced
along the edge eIv by Oð�Þ. However (as the reader
may verify after reading this section), this leads to a
trivial transformation of c. Therefore we will move
the displaced vertex slightly off the edge [where by
‘‘slightly,’’ we mean within a distance ofOð�2Þ]. As
will be apparent towards the end of this paper, much
of the finer details of this choice will be washed
away by the ‘‘diffeomorphism-covariant’’ nature of
the VSA states.

We now proceed to define the graph deformations sug-
gested by (i) and (ii) above. Let us restrict attention to the
vicinity of a vertex v (in what follows we shall on occasion
suppress the subscripts indicative of this specific vertex).

We interpret ’ð ~̂eI; �Þ to be a ‘‘singular diffeomorphism’’
which drags the vertex v (and the edges at v) a distance of
Oð�Þ ‘‘almost’’ [see (ii) above] along the edge eI. We
would like this deformation to have support only at the
vertex v in the continuum limit. The right-hand side of
Eq. (4.27), apart from the ‘‘�1’’ term, is then essentially a
sum over charge networks obtained by multiplying three
different graph holonomies. The first is the original graph
holonomy cðAÞ � hcðAÞ; the second is a graph holonomy
which sits on the deformed graph and has charge flips of
the type mentioned at the end of Sec. IVC; and the third is
a graph holonomy which sits on the original, undeformed
graph but has (the inverse) charge flips. The multiplication
of the second and third graph holonomies results in non-
trivial charges only in the vicinity of the vertex v and
multiplication with the first (original) graph holonomy
results in a charge network state which lives on the union
of the undeformed graph and its deformation with appro-
priate sums and differences of the charges coming from the
three types of terms.
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In Sec. IVD1 we detail the position of the displaced
vertex and in Sec. IVD2 we detail the accompanying
deformation of the edges in the vicinity of v. In
Sec. IVD3 we describe the charge labels of the charge
network alluded to above as arising from the product of
three graph holonomies and, finally, display the action of
the Hamiltonian constraint operator at finite triangulation
on the charge network basis.

1. Placement of the translated vertex

Let _ebIv � _ebI ðvÞ � _ebI be the tangent vector of the Ith

edge at the vertex v. Fix a Euclidean metric adapted to fxg
such that ds2 ¼ �abdx

adxb. Choose some unit (normal)
vector n̂aI such that

�abn̂
a
I _e

b
I ¼ 0: (4.28)

We have a circle’s worth of these. Picking one as detailed
in Appendix C, we use it to single out the point

v0a
I ¼ �êaI þ �pn̂aI (4.29)

which locates the displaced vertex. Here we choose
p > 2 and, as discussed in Appendix C, n̂aI is chosen so
that v0

I does not lie on the undeformed graph �ðcÞ. Also
note that the straight line from v to �êaI can deviate from
the edge eI to Oð�2Þ so that v0

I certainly lies within
a distance of Oð�2Þ from eI. It is in this sense that v0

I

lies almost on eI. Finally, for technical reasons
(see Appendix C) we choose p 
 k (recall that we use
semianalytic, Ck structures in this work).

2. New edges

We imagine the deformed graph to be obtained by
‘‘pulling’’ the original graph in the vicinity of the vertex
v almost along the direction of the edge eI. Thus new edges
f~eKg are obtained as the image of those parts of the old
edges feKg which are in the vicinity of the vertex v. The
new edges connect the displaced vertex to the old edges as
follows (see Fig. 1).

For eI, we introduce a trivial vertex ~vI (on eI), a
coordinate distance 2� from v, and adjoin the new
Ck-semianalytic edge ~eI which connects ~vI and v0

I. Since
we want ~eI to almost overlap with (part of) the edge eI, we
demand that the transition from ~eI to the original edge eI at
~vI be Ck-violating in a strictly C1 manner and that the
tangent _~eaI at v

0
I be proportional to _eaI at v (these vectors are

comparable in the coordinate system fxg), i.e.,
_̂~e a
I jv0

I
¼ _̂eaI jv: (4.30)

We will refer to such vertices ~vI as C1-kink vertices or
simply as C1 kinks.

Next, we introduce a coordinate ball B�qðvÞ of radius �q

about v.
Note:We choose q � 2, q < p. This choice is important

for the technicalities of Appendix C.

For the remaining edges eJ�I, we introduce trivial
vertices ~vJ on all edges eJ where they intersect @B�qðvÞ;
that is, ~vJ ¼ eJ \ @B�qðvÞ. At ~vJ we introduce new
Ck-semianalytic edges ~eJ which split off from each eJ
and head off to meet v0

I. These edges also almost overlap
(part of) the edge eI, reflecting our ‘‘singular pulling’’
along of the vicinity of v along the direction of the edge
eI. As a result we require that the Ck violation at ~vJ be
strictly C0. Such vertices ~vJ will be referred to as C0-kink
vertices or simply as C0 kinks.8

Since we imagine ~eJ to be almost along eI, we require
that the tangents of new edges ~eJ at v0

I be ‘‘bunched’’
around the direction � _~eI at v0

I within a cone with apex
angle of Oð�q�1Þ (q � 2) with respect to fxg; i.e.,

_̂~e a
J jv0

I
¼ � _̂~e

a
I jv0

I
þOð�q�1Þ: (4.31)

Further, since we think of the deformation as some sort
of singular diffeomorphism, we require that some subset of
diffeomorphism-invariant properties of the graph structure
at v be preserved by the new graph structure at the dis-
placed vertex v0

I. In particular we require that if the set of
edge tangents f _eaKg at v are such that no triple lies in a
plane, the same should be true of the set f _~eaKg at v0

I. Vertices
with such properties arise in the study of moduli in knot
classes by Grot and Rovelli [15]. Grot and Rovelli call this
property ‘‘nondegeneracy.’’ Accordingly we term such
vertices as GR vertices. Thus, we require that the graph
deformation preserve the GR nature of its vertices.
Conversely, we also require that non-GR vertices do not
acquire the GR property under graph deformation. We

FIG. 1. A sample deformation produced by a single
Hamiltonian constraint action at a nondegenerate vertex v along
the edge eI. The dashed edges emanating from the original
vertex v are now only charged in two of the three Uð1Þ factors,
but v0

I is expected to be, generically, nondegenerate. With
respect to the coordinate system fixed at v, v0

I is located a
distance � from v along _eI and displaced off of eI a distance
Oð�2Þ. ~eI and eI share a tangent at ~vI , but ~eJ and eJ do not share
a tangent. All of the ~eJ�I have tangents at v

0
I which are bunched

and lie within a cone of apex angle Oð�q�1Þ.

8We note that the C1 or C0 nature of the kink is a
diffeomorphism-invariant imprint of the graph deformation.
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shall see that the GR property plays a key role in our
analysis of diffeomorphism covariance [12].

Since we are thinking of the deformation as a (singular)
diffeomorphism, we also require that no new nontrivial
vertices are formed other than v0

I; i.e., the new edges do not
further intersect each other or the original graph. This may
be explicitly achieved as follows.

Let the valence of v beM. Consider theM new edges in
some order ~eI; ~eJ1 ; ~eJ2 ; . . . ; ~eJM�1

, Jk � I. Let ~eI be a semi-

analytic curve which connects ~vI with v0
I in accordance

with the requirements on its tangents at ~vI, v
0
I. Let the

coordinate plane (in the fxg coordinates) which contains v0
I

and which is normal to the direction _̂~e
a
I jv0

I
be P. We require

that the curve ~eI intersects P only at v0
I so that ~eI is always

‘‘above’’ P. As we show in Appendix C, for small enough
� we can always find such an (almost straight in fxg) curve.
Let ~eJ1 be a straight line in fxg which connects ~vJ with v0

I.

If no unwanted intersections are produced, then we are
done, and _~eJ1 at v

0
I is approximately on the Oð�q�1Þ cone.

If the so-constructed ~eJ1 happens to produce an intersection

at some (isolated because of the semianalyticity of the
edges near v; see Appendix C) point other than ~vJ1 and

v0
I, we can modify it with a bump function9 so that the

intersection is avoided. It is always possible to tune the size
of the bump so as not to produce any new unwanted
intersection, while not disturbing the tangent at v0

I. We
continue in this manner constructing each ~eJK as a straight

line, modifying this line with bumps where necessary.
Since the ‘‘bumping’’ is achieved via semianalytic diffeo-
morphisms, the new edges remain Ck semianalytic. It
remains to be shown that the GR property (or lack thereof)
of v is preserved. First consider the case when v is GR.
Then if v0

I is GR we are done. If not, then as discussed
further in Appendix C, we assume that the above prescrip-
tion can be modified in a small vicinity of v0

I, without
introducing any C0 or C1 kinks, in such a way as to render
v0
I GR while still retaining the properties described by

Eqs. (4.29), (4.30), and (4.31). Indeed just such a prescrip-
tion is constructed in detail in Ref. [12] and we refer the
interested reader to Sec. VB of that work. On the other
hand, if v is not GR, we show in Appendix C 3 that a minor
modification of the prescription of the previous paragraph
ensures that v0

I is also not GR.
Before we conclude this section, we note that the

above prescriptions at triangulation fineness � ¼ �1 and
at � ¼ �2 with �2 < �1 are not necessarily related by a
diffeomorphism. It turns out that for future considerations,

such as the construction of the space of VSA states,
as well as for our study of diffeomorphism covariance in
Ref. [12], it is useful to construct prescriptions which are
related by diffeomorphisms. In the Appendix we show how
this can be done in such a way that Eqs. (4.29), (4.30), and
(4.31) continue to hold.

3. Charges

Since ½� � ��Iv;i� contains the difference between a

deformed (and charge-flipped) charge network coordinate
and its undeformed relative (but still with flipped charges),

e
R
½����Iv;i

� contains the product of the deformed graph hol-
onomy and the inverse of the undeformed relative, and so

all edges of the graph holonomy e
R
½����Iv;i

� away from the
deformation ‘‘erase’’ each other. That is, the (colored)

graph underlying e
R
½����Iv;i

� itself can be described simply
by a gauge-invariant ‘‘pyramid skeleton’’ consisting of the
thin ‘‘star’’ formed by v and (for all original edges except
the Ith) coordinate length �q edge segments from the
original graph that connect v and ~vJ (for eI, the contribu-
tion to the star has coordinate length 2�). The charges
on the star are minus the charge-flipped configuration
charges; e.g., for the i ¼ 1 deformation, the star carries
ð�q1; q3;�q2Þ [with respect to an original coloring
ðq1; q2; q3Þ] on each of its segments. The remaining edges
(which meet v0) carry the flipped charges ðq1;�q3; q2Þ.
This pyramid charge network is multiplied by the original
charge network cðAÞ and, in our example of i ¼ 1, the star
part of the resulting state carries ð0; q2 þ q3; q3 � q2Þ,
which means that v is now a zero-volume vertex (see
Appendix A). A similar conspiration of the charges results

for the other values of i. Our q̂�1=3 will now annihilate this
vertex (so the action of another Hamiltonian vanishes
here).
We change notation slightly and drop from here on the

prime on Ĉ0. Equation (4.27) then reads

Ĉ�½N�cðAÞ ¼ ℏ
2i
cðAÞ X

v2VðcÞ

3

4	
NðxðvÞÞ��2=3

v

	X
Iv;i

qiIv
1

�

�
exp

�Z
½� � ��Iv;i�

�
� 1

�
; (4.32)

where we have made the regulating parameter � explicit
on the left-hand side and dropped the Oð�Þ term.

½� � ��Iv;i� stands for the type of deformation described above

(with charge flips). The charge configurations on the edges

that meet at v0
I for the three quantum shifts ~Ni are

~N 1: ðq1;�q3; q2Þ; ~N2: ðq3; q2;�q1Þ;
~N3: ð�q2; q1; q3Þ:

(4.33)

We can write this compactly as

9By this we mean that we can always apply, only to ~eJ1 , a
semianalytic diffeomorphism which differs from the identity in a
small enough compact set containing the intersection point so as
to ‘‘lift’’ ~eJ1 away from the intersection point. Such a diffeo-
morphism can be generated by a vector field obtained by multi-
plying a semianalytic, appropriately transverse vector field with
a semianalytic function of compact support.
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ðiÞqj ¼ �ijqj �X
k

�ijkqk; (4.34)

where ðiÞ specifies which shift ~NðiÞ acted.
In the next section we evaluate the action of a second

Hamiltonian constraint on the right-hand side of Eq. (4.32).
In doing so it is of advantage to further improve our
notation as follows. Denote the charge network corre-

sponding to e

R
4�ðvÞ

½����Iv;i
� cðAÞ by cði; v0a

Iv;�
¼ �êaIv þ

�pn̂aIvÞ so that Eq. (4.32) is written as

Ĉ�½N�cðAÞ ¼ ℏ
2i

X
v2VðcÞ

3

4	
NðxðvÞÞ��2=3

v

	X
Iv;i

qiIv
1

�
ðcði; v0

Iv;�
Þ � cÞ: (4.35)

The various quantifiers fIv; i; �g in the argument of c
specify the particular edge eIv emanating from v along

which the deformation (of magnitude��) was performed,
and the particular flipping of the charges via i. Finally note
that

P
Iv
qiIv ¼ 0 by gauge invariance (all edges outgoing

at v) so that

Ĉ �½N�cðAÞ ¼ ℏ
2i

X
v2VðcÞ

3

4	
NðxðvÞÞ��2=3

v

X
Iv;i

qiIv
1

�
cði; v0

Iv;�
Þ:

(4.36)

E. Second Hamiltonian

We evaluate the action of a second regularized
Hamiltonian constraint, smeared with a lapse M on the
right-hand side of (4.36). Since we are interested in
the continuum limit of (the action of VSA dual states on)

the commutator, we drop those terms in Ĉ�0 ½M�Ĉ�½N�cðAÞ
which vanish in the continuum limit upon the antisymmet-
rization of N and M and ‘‘contraction’’ with a dual state.

The dropped terms are those in which Ĉ�0 ½M� acts at

vertices notmoved by Ĉ�½N�; that is, the only contributions
to the commutator will be from terms where Ĉ�0 ½M� acts at
a vertex newly created by Ĉ�½N�.10

Consider the term Ĉ�0 ½M�cði; v0
Iv;�

Þ. Since v now

has vanishing inverse volume, the constraint acts at the
displaced vertex v0

Iv;�
as well as on all other vertices

of cði; v0
Iv;�

Þ which have nonvanishing inverse volume.

But these other vertices are precisely the nondegenerate
vertices of c other than v. As mentioned above, the con-
tributions from these nondegenerate vertices vanish in the
continuum limit evaluation of the commutator and so we
do not display them here.

The deformations generated by the action of Ĉ�0 ½M� on
cði; v0

Iv;�
Þ at the vertex v0

Iv;�
are defined in terms of the

coordinate patch around v0
Iv;�

(see Sec. IVD). We denote

this coordinate system by fx0a0 gv0
Iv;�

or simply by fx0a0 g� or

just fx0g when the context is clear.
Note: In this work we require that in their region of

joint validity fx0�g and fxg are related in a nonsingular

fashion as � ! 0 so that lim �!0fx0a0 g� ¼: fx0a0 g�¼0 is a
good coordinate system. Specifically, we require that the

Jacobian matrix J
�0 ðx; x0�Þ :¼ @x
=@x�
0

� is continuous in

� with a nonvanishing and nonsingular determinant.
It follows from the note above that

lim
�!0

J

�0 ðx; x0�Þ ¼ J


�0 ðx; x0�¼0Þ: (4.37)

One possible way to construct such a set of coordinate
patches is as follows: Since� is compact, it can be covered
by finitely many coordinate charts. We pick one such set.
Clearly (at least) one chart fx0g in this set covers a
neighborhood of v with ~x0ðvÞ being the coordinates of v.
Rigidly translate fx0g by ~x0ðvÞ to obtain fxg. For small
enough �, fx0g also covers small enough neighborhoods
of the new vertices v0

Iv;�
with ~x0ðv0

Iv;�
Þ being the coordi-

nates of v0
Iv;�

. Rigidly translate fx0g by ~x0ðv0
Iv;�

Þ to obtain

fx0g�. Clearly, this ensures that the Jacobian for the fxg and
fx0g� charts is unity.11

Recall that the edges feJvg at v are deformed to the edges

f~eJvg at v0
Iv;�

so that the valences of v and v0
Iv;�

are equal

and we may use the same index Jv to enumerate the edges
at v and their counterparts at v0

Iv;�
. In what follows the

primed index a0 denotes components in the fx0g system and
the primed ‘‘hat’’ superscript, ^0, denotes unit norm as
measured in the fx0g coordinate metric.
From Eq. (4.8) the quantum shift eigenvalues at v0

Iv;�
are

defined through

M̂ a0
i0 ðv0

Iv;�
Þjcði; v0

Iv;�
Þi ¼ X

Jv

ðiÞMa0Jv
i0 ðv0

Iv;�
Þjcði; v0

Iv;�
Þi;

(4.38)

and computed, via Eq. (4.9), to be:

ðiÞMa0Jv
i0 ðv0

Iv;�
Þ ¼ 3

4	
Mðx0�ðv0

Iv;�
ÞÞ��2=3

v0
Iv;�

ðiÞqi0Jv ~̂e
0a0
Jv
; (4.39)

where ~̂e0a
0

Jv
is the unit tangent to the edge ~eJv at v0

Iv;�
, and

where we have used the fact that the inverse volume
eigenvalue is independent of the charge flips inherent in
the i dependence of cði; v0

Iv;�
Þ (see Appendix A). The term

that survives the antisymmetrization and continuum
limit is

10The reader may easily verify this fact after the perusal of the
next section.

11This choice turns out to result in a conflict with diffeomor-
phism covariance; we shall comment on this in the concluding
section and attempt to alleviate the problem in Ref. [12].
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Ĉ �0 ½M�cði; v0
Iv;�

Þ ¼ ℏ
2i

3

4	
Mðx0�ðv0

Iv;�
ÞÞ��2=3

v0
Iv;�

X
Jv;i

0

ðiÞqi0Jv
1

�0

	 ðcði; i0; v00
ðIv;�Þ;ðJv;�0ÞÞ � cði; v0

Iv;�
ÞÞ;

(4.40)

where the arguments of c denote the deformation and

charge flips determined by Ĉ�0 ½M�. We detail their form
below.

We distinguish two types of charge network that
appear in the sum: Jv ¼ Iv and Jv � Iv. Let Jv ¼ Iv
(this situation is depicted in Fig. 2) and focus on the
resulting charge network cði; i0; v00

ðIv;�Þ;Iv;�0ÞÞ. Following

the prescription given above, v0
Iv;�

moves to (with respect

to fx0g with origin at v0
Iv;�

)

v00a0
ðIv;�Þ;ðIv;�0Þ ¼ �0 ~̂e0a

0
Iv

þ �0pn̂0a0Iv
(4.41)

for some n̂0 satisfying the conditions spelled out in
Appendix C.

For Jv � Iv, v
0
Iv;�

gets displaced along one of the ‘‘cone

directions’’ ~̂e0a
0

Jv�Iv
:

v00a0
ðIv;�Þ;ðJv;�0Þ ¼ �0 ~̂e0a

0
Jv

þ �0pn̂0a0Jv
: (4.42)

The structure of the deformations are as described
for the first action, but with � replaced by �0. The particular
charge configurations at v00 resulting from each possible
sequence of charge flips is summarized in the following
table:

i¼ 1 i¼ 2 i¼ 3
i0 ¼ 1 ðq1;�q2;�q3Þ ðq3;q1;q2Þ ð�q2;�q3;q1Þ
i0 ¼ 2 ðq2;�q3;�q1Þ ð�q1;q2;�q3Þ ðq3;q1;q2Þ
i0 ¼ 3 ðq3;q1;q2Þ ð�q2;q3;�q1Þ ð�q1;�q2;q3Þ:

(4.43)

Thus

Ĉ�0 ½M�Ĉ�½N�c ¼ ℏ
2i

X
v2VðcÞ

3

4	
NðxðvÞÞ��2=3

v

X
Iv;i

qiIv
1

�
Ĉ�0 ½M�cði; v0

Iv;�
Þ

¼
�
ℏ
2i

3

4	

�
2 X
v2VðcÞ

1

��0 NðxðvÞÞ��2=3
v

X
Iv

��2=3
v0
Iv

X
i

qiIv

X
Jv;i

0
ð�ii0qi

0
Jv
�X

j

�ii
0jqjJvÞMðx0�ðv0

Iv;�
ÞÞcði; i0; v00

ðIv;�Þ;ðJv;�0ÞÞ:

(4.44)

Above, we have used gauge invariance to set
P

Jv
ðiÞqi0Jv¼0.

We have also set ��2=3
v0
Iv;�

� ��2=3
v0
Iv

; this follows from the

diffeomorphism invariance of the inverse metric eigen-
value (see Appendix A) together with the fact that the

deformations at different values of � are related by diffeo-
morphisms (see Appendix C 4).

F. Continuum limit

In this section we evaluate the continuum limit of
the commutator between a pair of finite-triangulation
Hamiltonian constraints under certain assumptions with
regard to the properties of the VSA states. In Sec. VI we
shall construct a large class of VSA states which satisfies
these assumptions. As mentioned in Sec. III A, the VSA
states are weighted sums over certain bra states. As we
shall see in Sec. VI, the weights are obtained by the
evaluation of a smooth complex-valued function f on the
nondegenerate12 vertices of the bra it multiplies. More
precisely, all bras in the sum have the same number n of

FIG. 2. Detail of the deformation generated by two successive
Hamiltonian actions, in this case along the same edge J ¼ I.
Here �0 
 �.

12We assume that the deformed vertices created by the
Hamiltonian constraint are nondegenerate (i.e., have nonvanish-
ing inverse volume) in the deformed charge net if their unde-
formed counterparts are nondegenerate in the undeformed
charge net. While we expect this to be generically true, it is
possible that this assumption is violated. However, the assump-
tion is made only for pedagogy. As the interested reader may
verify (after a perusal of Sec. VI), it suffices to replace this
nondegeneracy property by the property that the vertex is GR,
has valence greater than 3 and that there exists no i such that the
ith charge vanishes on all edges emanating from it.

CASEY TOMLIN AND MADHAVAN VARADARAJAN PHYSICAL REVIEW D 87, 044039 (2013)

044039-14



nondegenerate vertices and the evaluation of f: �n ! C,
on the n points corresponding to the n nondegen-
erate vertices of the bra, provides the weight of that bra
in the sum:

ð�f
BVSA

j :¼ X
�c2BVSA

� �cfðVð �cÞÞh �cj: (4.45)

For simplicity we restrict attention to those �c such
that there is no symmetry of �c which interchanges
its nondegenerate vertices. We will sometimes write

�ðcÞ :¼ ð�jci. In (4.45), �f
BVSA

is a VSA state, BVSA is

the set of bras being summed over, Vð �cÞ denotes the set of

nondegenerate vertices of �c, and we have introduced the
�c-dependent real number � �c into the expression. To avoid
notational clutter we have suppressed the � �c dependence in

ð�f
BVSA

j. The continuum limit of the commutator is

lim
�!0

lim
�0!0

�f
BVSA

ððĈ�0 ½M�Ĉ�½N� � Ĉ�0 ½N�Ĉ�½M�ÞcÞ:
(4.46)

Using Eq. (4.40), we first evaluate

lim �0!0�
f
BVSA

ðĈ�0 ½M�cði; v0
Iv;�

ÞÞ. We have that

�BVSA
ðĈ�0 ½M�cði; v0

Iv;�
ÞÞ ¼ ℏ

2i

3

4	
Mðx0�ðv0

Iv;�
ÞÞ��2=3

vIv

X
Jv;i

0

ðiÞqi0Jv
1

�0 ð�BVSA
ðcði; i0; v00

ðIv;�Þ;ðJv;�0ÞÞÞ; (4.47)

where we have set �v0
Iv;�

¼ �vIv
and used gauge invariance

to drop the last term:X
Jv

qiIv ¼ 0 ¼X
Jv

ðiÞqi0Jv : (4.48)

Next, we make the following assumptions which will be
shown to hold in Sec. VI:

(1) For a point v 2 � and a charge network c, either
there exists �0ðcÞ � �0 such that 8� < �0 there
also exists �0

0ð�Þ such that 8�0 < �0
0ð�Þ we have

that

fhcði; i0; v00
ðIv;�Þ;ðJv;�0ÞÞj8i; i0; Iv; Jvg � BVSA; (4.49)

or8�, �0 for which cði; i0; v00
ðIv;�Þ;ðJv;�0ÞÞ is defined we

have that

fhcði; i0; v00
ðIv;�Þ;ðJv;�0ÞÞj8i; i0; Iv; Jvg \ BVSA ¼ ;:

(4.50)

(2) If Eq. (4.49) holds, then

�cði;i0;v00
ðIv;�Þ;ðJv;�0 Þ

Þ ¼ 1; 8i; i0; Iv; Jv: (4.51)

If (4.50) holds, the right-hand side of (4.47) vanishes. We
shall see in Sec. VI that in this case, the corresponding
‘‘matrix element’’ for the rhs also vanishes. We
continue the calculation in the case that (4.49) holds. We
have that

�BVSA
ðĈ�0 ½M�cði; v0

Iv;�
ÞÞ ¼ ℏ

2i

3

4	
Mðx0�ðv0

Iv;�
ÞÞ��2=3

vIv

X
Jv;i

0

ðiÞqi0Jv
1

�0 ðfðv00
ðIv;�Þ;ðJv;�0ÞÞ � fðv0

Iv;�
ÞÞ; (4.52)

where, once again we have used gauge invariance to append the term fðv0
Iv;�

Þ. In addition for notational convenience only,
we displayed the dependence of f on the (doubly and singly) deformed images of v and suppressed its dependence on the
undeformed vertices. Using (4.41) and (4.42) and the smoothness of f, we obtain

lim
�0!0

�BVSA
ðĈ�0 ½M�cði; v0

Iv;�
ÞÞ ¼ ℏ

2i

3

4	
Mðx0�ðv0

Iv;�
ÞÞ��2=3

vIv

X
Jv;i

0

ðiÞqi0Jvð~̂e0JvÞa@afðv0
Iv;�

Þ; (4.53)

where ð~̂e0JvÞa is the component of the unit vector ~̂~e
0
Jv in the fxg coordinate system. Here the vector ~̂~e

0
Jv is obtained by

normalizing the tangent vector to the edge ~eJv at v
0
Iv;�

in the fx0g system [recall, from (4.41) and (4.42) that the components

of this vector in the fx0g system are given by ð~̂e0JvÞa
0
].

It follows from the above equation in conjunction with (4.44) that

lim
�0!0

�BVSA
ðĈ�0 ½M�Ĉ�½N�cÞ¼

�
ℏ
2i

3

4	

�
2 1

�

X
v

��2=3
v NðxðvÞÞX

Iv

Mðx0�ðv0
Iv;�

ÞÞX
i

qiIv�
�2=3
vIv

X
Jv;i

0

ðiÞqi0Jvð~̂e0JvÞa@afðv0
Iv;�

Þ: (4.54)

Since M is of density weight �1=3 we have

Mðx0�ðv0
Iv;�

ÞÞ ¼ Mðxðv0
Iv;�

ÞÞ
�
det

�
@x

@x0

�
v0
Iv;�

��1=3
: (4.55)
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Using this, we obtain

lim
�0!0

�BVSA
ðĈ�0 ½M�Ĉ�½N�cÞ ¼

�
ℏ
2i

3

4	

�
2 1

�

X
v

��2=3
v NðxðvÞÞX

Iv

Mðxðv0
Iv;�

ÞÞ
�
det

�
@x

@x0

�
v0
Iv;�

��1=3f� � �gIv;�; (4.56)

where

f� � �gIv;� :¼ X
i

qiIv�
�2=3
vIv

X
Jv;i

0

ðiÞqi0Jvð~̂e0JvÞa@afðv0
Iv;�

Þ: (4.57)

Next, we use (4.29) to Taylor expand M as

Mðxðv0
I;�ÞÞ ¼ MðxðvÞÞ þ ð�êaIvÞ@aMðxðvÞÞ þOð�2Þ: (4.58)

Using the above Equation in (4.56) to evaluate the commutator, we obtain in ‘‘bra-ket’’ notation

lim
�0!0

ð�BVSA
jðĈ�0 ½M�Ĉ�½N� � ðN $ MÞÞjci ¼

�
ℏ
2i

3

4	

�
2X

v

��2=3
v

X
Iv

fNðxðvÞÞêaIv@aMðxðvÞÞ � ðN $ MÞ

þOð�Þg
�
det

�
@x

@x0

�
v0
Iv;�

��1=3f� � �gIv;�: (4.59)

We now compute the � ! 0 limit of the above equation so
as to obtain the continuum limit of the commutator. By
virtue of the smooth dependence of x on x0� (see the note in
Sec. IVE) the determinant is a continuous function of �. It
remains to compute the � ! 0 limit of f� � �gIv;�.

Since the fxg and fx0g � fx0g� systems are not necessarily

the same, we have that ð~̂e0JvÞa is proportional to ð~̂eJvÞajv0
Iv;�

where now the same tangent vector has been normalized in
the fxg system. From the note and Eq. (4.37) in Sec. IVE, in
conjunction with Eq. (4.31) in Sec. IVD2, we have that at
v0
Iv;�

, for Jv � Iv

~̂e 0a
Jv

¼ �~̂e0aIv þOð�q�1Þ; q � 2: (4.60)

Using this in (4.57) together with the smoothness of @af,
we obtain

f� � �gIv;� ¼ ��2=3
vIv

X
i

qiIv

X
i0

�
ðiÞqi0Iv �

X
Jv�Iv

ðiÞqi0Jv

�

	ð~̂e0IvÞa@afðv0
Iv;�

Þ þOð�Þ: (4.61)

Gauge invariance (4.48) then implies that

f� � �gIv;� :¼ 2��2=3
vIv

X
i

qiIv

X
i0

ðiÞqi0Ivð~̂e0IvÞa@afðv0
Iv;�

Þ þOð�Þ:

(4.62)

Finally, from (4.34) it follows that

lim
�!0

f� � �gIv;� :¼ 2��2=3
vIv

X
i

ðqiIvÞ2ð~̂e0IvÞa@afðvÞ: (4.63)

Up to this point we have refrained from assuming any
particular relation between fx0�¼0g and fxg in order to exhibit
the structure of the calculation as � ! 0. Section IVA
together with Eq. (4.37) implies that the Jacobian between
the two coordinate systems is the identity

@x
0

�¼0

@x�
¼ �



� : (4.64)

Using this together with (4.63) and (4.59) we obtain the
continuum limit of the commutator under the assumption
(4.49) to be

ð�f
BVSA

j½Ĉ½M�; Ĉ½N��jci ¼ lim
�!0

lim
�0!0

ð�f
BVSA

jðĈ�0 ½M�Ĉ�½N� � ðN $ MÞÞjci

¼ 2

�
ℏ
2i

3

4	

�
2 X
v2VðcÞ

X
Iv;i

ðqiIvÞ2��2=3
v ��2=3

vIv
êaIv ê

b
Iv
ðN@aM�M@aNÞðxðvÞÞ@bfðvÞ: (4.65)

V. RHS

In Sec. VA we display a remarkable classical identity
which expresses the rhs as the Poisson bracket between a
pair of diffeomorphism constraints, each smeared with an
electric shift. This implies, that in the quantum theory, we
may identify the rhs with a commutator between two such
constraints. Accordingly, in Sec. VB we construct the

finite-triangulation operator corresponding to a single

diffeomorphism constraint smeared with an electric shift

using arguments which parallel those of Sec. IV. We

compute the finite-triangulation commutator between two

such operators in Sec. VC. We compute the continuum

limit of this commutator in Sec. VD under certain assump-

tions (whose validity is demonstrated in Sec. VI) on the

VSA states.

CASEY TOMLIN AND MADHAVAN VARADARAJAN PHYSICAL REVIEW D 87, 044039 (2013)

044039-16



A. A remarkable identity

It is straightforward to check that for

H½N� ¼ 1

2

Z
d3x

N

q�
�ijkEa

i E
b
jF

k
ab; (5.1)

we have

fH½M�; H½N�g ¼
Z

d3xðN@cM�M@cNÞE
c
i E

b
i

q2�
Fj
baE

a
j

¼: D½ ~!�; (5.2)

where

!a :¼ ðN@bM�M@bNÞq�2�Eb
i E

a
i :

Let the diffeomorphism generator smeared with the
‘‘electric shift’’ (see Sec. IVC), Na

i
:¼ q��NEa

i , be

denoted D½ ~Ni�:

D½ ~Ni� ¼
Z

d3xq��NEa
i F

j
abE

b
j : (5.3)

We shall refer to D½ ~Ni� as an electric diffeomorphism
constraint. The Poisson bracket between a pair of electric
diffeomorphism constraints is (summing over the internal
index i)

fD½ ~Mi�; D½ ~Ni�g ¼
Z

d3x

�
�D½ ~Mi�
�Aj

aðxÞ
�D½ ~Ni�
�Ea

j ðxÞ
� ðN $ MÞ

�

¼ �
Z

d3x2�a
½c@b�

�
MEb

i

q�
Ec
j

��
NEb0

k

q�
�j
iF

k
ab0 �

NEb0
i

q�
Fj
ab0 þ

Z
d3yNEb0

i F
k
b0c0E

c0
k

�q��ðyÞ
�Ea

j ðxÞ
�
� ðN $ MÞ

¼
Z

d3x

�Ea
jE

b
i

q�
Ec
i

q�
Fj
acN@bMþ 2Ea

½iE
b
j�

q�
@bM

Z
d3yNEb0

i F
k
b0c0E

c0
k

�q��ðyÞ
�Ea

j ðxÞ
� ðN $ MÞ

�
(5.4)

¼
Z

d3x

�
Eb
i E

c
i

q2�
Fj
caEa

j � 2�
Eb
i E

b0
i

q2�
Fk
b0c0E

c0
k

�
ðM@bN � N@bMÞ

¼ ð1� 2�Þ
Z

d3xðM@bN � N@bMÞE
b
i E

c
i

q2�
Fj
caEa

j ¼ ð2�� 1ÞD½ ~!�;

in which we have used

�q�ðyÞ
�Ea

i ðxÞ
¼ �q�ðE�1ÞiaðyÞ�ð3Þðx; yÞ; (5.5)

where ðE�1Þia is the ‘‘inverse’’ of Eb
j so that Ei

aE
b
i ¼ �b

a,
Ei
aE

a
j ¼ �i

j. Thus we may write the rhs as

fH½M�; H½N�g ¼ 1

2�� 1

X3
i¼1

fD½ ~Mi�; D½ ~Ni�g: (5.6)

In this work we are interested in � ¼ 1
3 [see Eq. (4.1)].

In Sec. VD we use this identity to express the rhs operator
as the commutator between two finite diffeomorphism
operators. As mentioned in Sec. III A (see Step 3 of that
section), this facilitates the comparison of the lhs and rhs
operators.

Note that the relation (5.6) is not valid in the case
� ¼ 1

2 ; this is the case of Hamiltonian constraints of

density weight 1 considered hitherto in the literature. We
take this fact as further support for the move away from the
density 1 case. We also note that, as shown in Appendix B,
this identity holds for the SUð2Þ case in 2þ 1 and 3þ 1
dimensions and in all cases fails for the density-weight-1
choice.

B. The electric diffeomorphism constraint operator
at finite triangulation

We set � ¼ 1
3 in (5.3). Modulo Gauss law terms we have

that

D½ ~Ni� ¼
Z
�
d3xðL ~Ni

Aj
bÞEb

j ; (5.7)

where ~Ni is the electric shift of Sec. IV. This motivates,
analogous to (4.14), the following heuristic operator
action:

D̂½ ~Ni�cðAÞ ¼ �ℏ
i
cðAÞ

Z
�
d3xðL ~Ni

cai ÞAi
a: (5.8)

Following an argumentation similar to that between
Eqs. (4.14), (4.15), (4.16), (4.17), (4.18), (4.19), (4.20),
(4.21), (4.22), (4.23), and (4.24) leads us to the finite-
triangulation electric diffeomorphism constraint operator
action:

D̂�½ ~Ni�c ¼ ℏ
i

3

4	

X
v

NðxðvÞÞ��2=3
v

X
Iv

qiIv
1

�
ðcðv0

Iv;�
Þ � cÞ

¼ ℏ
i

3

4	

X
v

NðxðvÞÞ��2=3
v

X
Iv

qiIv
1

�
cðv0

Iv;�
Þ; (5.9)

where we have used gauge invariance to drop the ‘‘�c’’
term in the second line and where the charge network
coordinate underlying the state cðv0

Iv;�
Þ is given by
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ðcv0
Iv;�

Þai ðxÞ :¼ ’ð ~̂eI; �Þ�cai ðxÞ; (5.10)

where ’ð ~̂eI; �Þ deforms the graph underlying c in the
manner discussed in Sec. IVD. More in detail, the graph
underlying cðv0

Iv;�
Þ is obtained by removing the segments

of the graph underlying c which connect v to the points ~vJ

and adjoining new edges, ~eJ, which connect ~vJ to the
displaced vertex v0

Iv;�
as explained in Sec. IVD. The

deformed graph is identical to the one shown in Fig. 1,
but with the dashed edges removed. Also note that since

D½ ~Ni� is constructed by smearing the diffeomorphism con-
straint with an electric shift, the edges ~eJ carry the same
charges as eJ; i.e., there are no ‘‘charge flips’’.

C. Second electric diffeomorphism

We evaluate the action of a second electric diffeomor-

phism constraint, smeared with the electric shift ~Mi on
the right-hand side of (5.9). Since we are interested in the
continuum limit of (the action of VSA dual states on) the
commutator between two electric diffeomorphism con-

straints, we drop those terms in D̂�0 ½ ~Mi�D̂�½ ~Ni�cðAÞ which
vanish in the continuum limit upon the antisymmetrization

ofN andM. The dropped terms are those in which D̂�0 ½ ~Mi�
acts at vertices not moved by D̂�½ ~Ni�; that is, the only
contributions to the commutator will be from terms where

D̂�0 ½ ~Mi� acts at a vertex which has been moved by D̂�½ ~Ni�.
Consider the term D̂�0 ½ ~Mi�cðv0

Iv;�
Þ. The constraint acts at

the displaced vertex v0
Iv;�

as well as on all other vertices of

cðv0
Iv;�

Þ which have nonvanishing inverse volume. But

these other vertices are precisely the nondegenerate
vertices of c other than v. As mentioned above, the
contributions from these nondegenerate vertices vanish in
the continuum limit evaluation of the commutator and so
we do not display them here.

The deformations generated by the action of D̂�0 ½ ~Mi� on
cðv0

Iv;�
Þ at the vertex v0

Iv;�
are, as in the case of the

Hamiltonian constraint of Sec. IVD, defined in terms of
the coordinate patch fx0g around v0

Iv;�
. From Eq. (4.8), we

have that

M̂a0
i ðv0

Iv;�
Þjcðv0

Iv;�
Þi ¼ X

Jv

Ma0Jv
i ðv0

Iv;�
Þjcðv0

Iv;�
Þi; (5.11)

with Ma0Jv
i ðv0

Iv;�
Þ given by

Ma0Jv
i ðv0

Iv;�
Þ ¼ 3

4	
Mðx0�ðv0

Iv;�
ÞÞ��2=3

v0
Iv;�

qiJv ~̂e
0a0
Jv
: (5.12)

The term that survives the antisymmetrization and
continuum limit is

D̂ �0 ½ ~Mi�cðv0
Iv;�

Þ ¼ ℏ
i

3

4	
Mðx0�ðv0

Iv;�
ÞÞ��2=3

v0
Iv;�

X
Jv

qiJv
1

�0 ðcðv00
ðIv;�Þ;ðJv;�0ÞÞ � cðv0

Iv;�
ÞÞ

¼ ℏ
i

3

4	
Mðx0�ðv0

Iv;�
ÞÞ��2=3

v0
Iv;�

X
Jv

qiJv
1

�0 cðv00
ðIv;�Þ;ðJv;�0ÞÞ; (5.13)

where we have used gauge invariance to drop the last term
in the second line. Here cðv00

ðIv;�Þ;ðJv;�0ÞÞ denotes the charge
network state obtained by deforming the state cðv0

Iv;�
Þ by

the singular diffeomorphism generated by D̂�0 ½ ~Mi�. The
deformation moves the vertex v0

Iv;�
of cðv0

Iv;�
Þ to its new

position, v00
ðIv;�Þ;ðJv;�0Þ given by Eq. (4.41) when Jv ¼ Iv and

by Eq. (4.42) when Jv � Iv. The structure of the deforma-
tions is as described for the first action in Sec. VB, but with
� ! �0 (see Fig. 3).
Restoring the sum over vertices we have, modulo terms

which vanish upon antisymmetrization in the lapses and
the taking of the continuum limit,

D̂ �0 ½ ~Mi�D̂�½ ~Ni�c ¼
�
ℏ
i

3

4	

�X
v

1

�
NðxðvÞÞ��2=3

v

X
Iv

qiIvD̂�0 ½ ~Mi�cðv0
Iv;�

Þ

¼
�
ℏ
i

3

4	

�
2X

v

1

�
NðxðvÞÞ��2=3

v

X
Iv

qiIv�
�2=3
v0
Iv

X
Jv

qiJv
1

�0 Mðx0�ðv0
Iv;�

ÞÞcðv00
ðIv;�Þ;ðJv;�0ÞÞ: (5.14)

D. Continuum limit

In this section we evaluate the continuum limit of the
commutator between a pair of finite-triangulation electric
diffeomorphism constraints under certain assumptions
with regard to the bra set BVSA which underlies the VSA
states (see Sec. IV F). These assumptions are in addition to

Eqs. (4.49) and (4.50) of Sec. IV F. The assumptions are as
follows:
(1) Given a point v 2 � and a charge network c, either

there exists �0ðcÞ � �0 such that8 � < �0 or there
exists �0

0ð�Þ such that 8 �0 < �0
0ð�Þ; we have that

fhcðv00
ðIv;�Þ;ðJv;�0ÞÞj8 Iv; Jvg � BVSA; (5.15)
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or 8 �, �0 for which cðv00
ðIv;�Þ;ðJv;�0ÞÞ is defined, we

have that

fhcðv00
ðIv;�Þ;ðJv;�0ÞÞj8 Iv; Jvg \ BVSA ¼ ;: (5.16)

(2) If Eq. (5.15) holds, then

�cðv00
ðIv;�Þ;ðJv;�0 Þ

Þ ¼ � 1

12
; 8 Iv; Jv: (5.17)

(3) Equation (5.15) holds if and only if Eq. (4.49)
holds. Equation (5.16) holds if and only if
Eq. (4.50) holds.

If (5.16) holds, it is immediate to see that the continuum
limit of the commutator vanishes; from the assumption
above, it follows that the lhs also vanishes. We continue
the calculation in the case that (5.15) holds [which also
means that by assumption, (4.49) holds as well].

From Eq. (5.13), we have that

�f
BVSA

ðD̂�0 ½ ~Mi�cðv0
Iv;�

ÞÞ ¼ � 1

12

ℏ
i

3

4	
Mðx0�ðv0

Iv;�
ÞÞ��2=3

v0
Iv;�

X
Jv

qiJv
1

�0 ðfðv00
ðIv;�Þ;ðJv;�0ÞÞ � fðv0

Iv;�
ÞÞ; (5.18)

where, once again, we have used gauge invariance to append the last term. It follows that

lim
�0!0

�f
BVSA

ðD̂�0 ½ ~Mi�cðv0
Iv;�

ÞÞ ¼ � 1

12

ℏ
i

3

4	
Mðx0�ðv0

Iv;�
ÞÞ��2=3

v0
Iv;�

X
Jv

qiJvð~̂e0JvÞa@afðv0
Iv;�

Þ: (5.19)

It follows from Eq. (5.14) that

lim
�0!0

�BVSA
ðD̂�0 ½ ~Mi�D̂�½ ~Ni�cÞ¼� 1

12

�
ℏ
i

3

4	

�
2 1

�

X
v

��2=3
v NðxðvÞÞX

Iv

Mðx0�ðv0
Iv;�

ÞÞqiIv��2=3
vIv

X
Jv

qiJvð~̂e0JvÞa@afðv0
Iv;�

Þ: (5.20)

Using (4.55) in the above equation we have

lim
�0!0

�BVSA
ðD̂�0 ½ ~Mi�D̂�½ ~Ni�cÞ ¼ � 1

12

�
ℏ
i

3

4	

�
2 1

�

X
v

��2=3
v NðxðvÞÞX

Iv

Mðxðv0
Iv;�

ÞÞ
�
det

�
@x

@x0

�
v0
Iv;�

��1
3f� � �gi;Iv;�; (5.21)

where

f� � �gi;Iv;� :¼ qiIv�
�2=3
vIv

X
Jv

qiJvð~̂e0JvÞa@afðv0
Iv;�

Þ: (5.22)

Using (4.58) in (5.21) and antisymmetrizing in the lapses, one obtains (in bra-ket notation):

lim
�0!0

ð�BVSA
jðD̂�0 ½ ~Mi�D̂�½ ~Ni� � ðN $ MÞÞjci

¼ � 1

12

�
ℏ
i

3

4	

�
2X

v

��2=3
v

X
Iv

fNðxðvÞÞêaIv@aMðxðvÞÞ �MðxðvÞÞêaIv@aNðxðvÞÞ þOð�Þg
�
det

�
@x

@x0

�
v0
Iv;�

��1
3
��2=3
vIv

f� � �gi;Iv;�:

(5.23)

As in Sec. IV F, the determinant is a continuous function of �. It remains to evaluate the � ! 0 limit of f� � �gi;Iv;�. Using
Eq. (4.60) in (5.22) together with gauge invariance, one obtains

f� � �gi;Iv;� ¼ 2ðqiIvÞ2��2=3
vIv

ð~̂e0IvÞa@afðv0
Iv;�

Þ þOð�Þ: (5.24)

Using this together with Eqs. (4.64), (5.23), and (5.6), we obtain the continuum limit of the rhs, in the case where (5.15)
holds, to be

FIG. 3. Sample deformation produced by two successive sin-
gular diffeomorphisms along the edge eI. Here the dotted lines
indicate the position of the graph before the deformations; these
are not part of the resulting graph. The structure of the deforma-
tions is similar to that produced by the action of two successive
Hamiltonian-type deformations, except that now the original
vertices v and v0

I are charged in no copies of Uð1Þ; the dotted
edges are not actually there. Note that the kink structure is the
same as for the Hamiltonian deformations: the edge eI is C

1 at ~vI

and ~v0
I;J¼I, but all other edges are C

0 at the various ~vK and ~v0
I;K .
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ð�f
BVSA

jD̂½ ~!�jci ¼ �3ð�f
BVSA

jX3
i¼1

½D̂½ ~Mi�; D̂½ ~Ni��jci ¼ �3
X3
i¼1

lim
�!0

lim
�0!0

ð�f
BVSA

jðD̂�0 ½ ~Mi�D̂�½ ~Ni� � ðN $ MÞÞjci

¼ 2

�
ℏ
2i

3

4	

�
2 X
v2VðcÞ

X
Iv;i

ðqiIvÞ2��2=3
v ��2=3

vIv
êaIv ê

b
Iv
ðNðxðvÞÞ@aMðxðvÞÞ �MðxðvÞÞ@aNðxðvÞÞÞ@bfðvÞ; (5.25)

which agrees with Eq. (4.65).

VI. EXISTENCE OF A LARGE SPACE
OF VSA STATES

In this section we show the existence of VSA states
which satisfy the assumptions (1)–(2) of Sec. IV and
(1)–(3) of Sec. V. As mentioned in Secs. IV and V, the
VSA states are weighted sums over a set of bras, the
weights being vertex smooth functions. In Sec. VIA, we
provide a qualitative discussion of the issues which arise in
the construction of an appropriate set of VSA states. In
Sec. VI B we construct sets of bras and vertex smooth
functions which specify the VSA states of interest. In
Sec. VI C we show that these states satisfy the assumptions
of Secs. V and VI. While the states we construct span an
infinite-dimensional vector space, they are still of a
restricted variety. Specifically, all elements of the sets of
bras under consideration have only one nondegenerate13

vertex. While a generalization to the case of multiple
nondegenerate vertices should not be too difficult, we shall
leave this for the future.

In what follows it is pertinent to recall that in this
paper we consider diffeomorphisms which are semiana-
lytic and Ck, k � 1, k � p. Such diffeomorphisms send a
semianalytic edge into a semianalytic edge which is Ck.
This implies that the first k derivatives along the edge are
continuous everywhere and at worst, in any semianalytic
chart, there are a finite number of points pi at which
the kith derivative along the edge is discontinuous for
some ki > k.

A. Discussion of our strategy

While we do ignore issues of diffeomorphism covari-
ance in this paper, we would like to set things up in such a
way that issues of diffeomorphism covariance can be po-
tentially addressed. As a result, we require that the set of
bras, BVSA, be closed under the action of diffeomorphisms.
This, together with a careful study of the assumptions
of Secs. IV and V, implies that the set of bras should
be such that whenever it contains any doubly deformed
charge network obtained by two successive Hamiltonian
constraint-type deformations, on some charge network
jci, it should also contain (a) all other doubly deformed
charge networks obtained by the action of any two succes-
sive Hamiltonian constraint-type deformations on jci, and

(b) all doubly deformed charge networks obtained by the
action of any two successive singular diffeomorphism-type
deformations which occur on the rhs.
Conversely, if the set contains any doubly deformed

charge network obtained by two successive singular
diffeomorphism-type deformations on some charge
network jci, it should also contain (a) all other doubly
deformed charge networks obtained by the action of any
two successive singular diffeomorphism-type deforma-
tions, and (b) all doubly deformed charge networks ob-
tained by the action of any two successive Hamiltonian
constraint-type deformations on jci.
In suggestive language we call jci the parent, the single

deformations of jci its children, and its double deforma-
tions its grandchildren. Our problem then is to ensure that
if any grandchild is present in the bra set, all grand-
children should be present. This in turn implies that one
should be able to infer all possible parent charge net-
works which could yield a given grandchild. This sort of
backward inference is direct for the case of Hamiltonian
constraint grandchildren because the parent charge
network graph is embedded in that of any grandchild,
and the charge flips (4.34) are invertible. However, this
embedding of parent into grandchild is not available for
singular diffeomorphism-type grandchildren, and the bra
set needs to be generated via double (Hamiltonian and)
singular diffeomorphism deformations of all possible
parent charge networks which could produce a specific
grandchild. This is what we do.
In order to do this we start out with a set of parents from

which the output of grandchildren is well controlled.
Specifically, our starting point is a parent which is an
nth-generation child of a primordial charge network
(by ‘‘primordial’’ we mean the charge network is itself
not generated by the action of any Hamiltonian constraint/
singular diffeomorphism type of deformations on some
other charge network). This nth-generation parent is
chosen (for concreteness and simplicity) to be obtained
from the primordial charge network by n Hamiltonian
constraint-type deformations. Our discussion indicates
that the charge networks under consideration encode a
sort of ‘‘chronological heredity.’’ As a result, we introduce
a suggestive ‘‘causal’’ nomenclature for certain graph
structures of interest in Sec. VI B which go into the
construction of BVSA.
As mentioned above, in this paper, we restrict attention

to primordial charge networks with a singular nondegen-
erate GR vertex. While there seems to be no barrier to the
consideration of multivertex primordial charge networks,13See Footnote 12 in Sec. IV F.
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we shall leave a generalization of our constructions to such
charge networks for future work.

B. Construction of the VSA states

Let jc0i be a charge network with a single nondegenerate
GR vertex of valence M, and let jn; ~�; c0i be the state
obtained by n successive finite-triangulation Hamiltonian
constraint type of deformations applied to jc0i. Here,
~� :¼ f�iji ¼ 1; . . . ; ng, and each �i is a collection of
labels corresponding to the internal charge, vertex, edge,
and deformation parameter which go into specification
of the Hamiltonian constraint-type deformations. For ex-
ample, for the state cði; i0; v00

ðIv;�Þ;ðJv;�0ÞÞ in Eq. (4.40), we

have that n ¼ 2, �1 ¼ ði; v; Iv; �Þ, �2 ¼ ði0; v0
Iv;�

; Jv; �
0Þ

and c ¼ c0. Let the set of all distinct diffeomorphic images
of hn; ~�; c0j be B½n; ~�;c0�. For every element of this set, we

generate a new family of charge networks. In order to do
so, for every hcj 2 B½n; ~�;c0� we now define some graph

structures of interest.
Note that every hcj 2 B½n; ~�;c0� has a unique ‘‘final’’ non-

degenerate vertex vðcÞ of valenceM which is connected to
one C1-kink vertex and to M� 1 C0-kink vertices. Let the
Ith edge from v, eI, connect v to the C1-kink vertex. Let
eJ�I connect v to the C0 kinks.

Definition: The 1-past of �ðcÞ14.—The 1-past of �ðcÞ,
denoted by �1-pðcÞ, is the (closed) graph obtained by

removing the edges eK, K ¼ 1; . . . ;M from �ðcÞ, i.e.,

�1-pðcÞ :¼ �ðcÞ � [M
K¼1

eK: (6.1)

Let eK intersect �1-pðcÞ at ~vK;1-p on the edge eK;1-p
of �1-pðcÞ so that ~vI;1-p, ~vJ�I;1-p are the C1, C0 kinks

mentioned above. Since jci is diffeomorphic to jn; ~�; c0i,
it follows that the edges eK;1-p intersect at a GR vertex

which we denote by v1-pðcÞ. The following definitions are

illustrated in Figs. 4–8.
Definition: The future graph of �1-pðcÞ in c.—The future

graph of �1-pðcÞ in c, denoted by �f0
1-p, is defined by

�
f0
1-p :¼ [M

K¼1eK ¼ �ðcÞ � �1-pðcÞ: (6.2)

Thus, modulo the action of diffeomorphisms, �f0
1-p is just

the nested graph structure produced by the action of a
particular Hamiltonian constraint-type deformation which
acts on the parent vertex v1-pðcÞ of the parent charge net-
work based on the graph �1-pðcÞ.

Next, we define a graph structure which is similar to �
f0
1-p

in terms of its causal properties.

Definition: A future graph of �1-pðcÞ with respect to c.—
A graph �f

1-p;c is a future graph of �1-pðcÞ with respect to c
if and only if it has the following properties:

(i) �f
1-p;c ¼ [M

K¼1e
f
K where efK for each K is a semi-

analytic Ck edge such that efK \ �1-pðcÞ ¼ ~vK;1-p

and such that the edges efK do not intersect each
other except at the GR vertex vf 2 � from which
they are outgoing.

(ii) If we color each efK with the same charge as eK
carries in c [with respect to the orientation in (i)],
then vf is nondegenerate.

(iii) Define �f
c as

�f
c :¼ �1-pðcÞ [ �f

1-p;c: (6.3)

Then with respect to �f
c , the point ~vI;1-p is a triva-

lent C1-kink vertex and the points ~vJ�I;1-p are

trivalent C0-kink vertices.
Note that the future graph of �1-pðcÞ in c is a future graph

of �1-pðcÞ with respect to c but the converse is not neces-

sarily true. In particular the set of tangent vectors at the
nondegenerate vertex vf [of a future graph of �1-pðcÞ with
respect to c] need not be obtained through the action of a
diffeomorphism from the set of tangent vectors at the
nondegenerate vertex v of c; i.e., the two sets may have
different moduli [15].
Next, we define a charge network which is identical to c

in terms of its causal properties and colorings.
Definition: A causal completion of the 1-past of c.—A

causal completion of the 1-past of c, denoted by cfðcÞ, is
the charge network based on the graph �f

c [see Eq. (6.3)]
with charges on �1-pðcÞ being the same as those coming

from c, and on fefKg being the same as those on feKg in c.

FIG. 4. The original graph �ðcÞ.

14Recall that �ðcÞ is the graph underlying c.
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Note that the definition of the 1-past in terms of the
removal of immediate edges from a final nondegenerate
vertex to trivalent kink vertices extends naturally to such
causal completions and we shall assume that the definition
has been so extended.

We now use the above definitions to construct BVSA

as follows. Consider all distinct causal completions,
hcfðcÞj for every c 2 B½n; ~�;c0�. Let the resulting set of

bras be Bhn; ~�;c0i. Consider all possible single Hamiltonian

constraint-type deformations (i.e., for all values of �) of
elements of Bhn; ~�;c0i and take all distinct diffeomorphic

images of the resulting set of charge networks. Call the
resulting set B½Hhn; ~�;c0i�. Repeat this procedure again. That
is, once again consider all Hamiltonian constraint-type
deformations of the elements of this set and then take
distinct diffeomorphic images of such deformed charge
networks. Call this set B½H½Hhn; ~�;c0i��.

Next, we consider deformations of the type encountered
in the rhs. Accordingly, denote a double singular diffeo-

morphism type of deformation of any state jci by D̂2ð�Þjci.
Here � is a label which specifies the vertex at which the
deformation takes place, the two edge labels along which
the deformations take place and the parameters �, �0 which
quantify the amount of deformation. For example, for the
state cðv00

ðIv;�Þ;ðJv;�0ÞÞ in Eq. (5.13), we have that

jcðv00
ðIv;�Þ;ðJv;�0ÞÞi ¼ D̂2ð�Þjci with

� ¼ ðv; Iv; Jv; �; �0Þ:
(6.4)

Act by D̂2ð�Þ for all � on elements of Bhn; ~�;c0i and then

take all distinct diffeomorphic images thereof to form the
set B½D2hn; ~�;c0i�.

FIG. 7. A future graph �f
1-p;c of �1-pðcÞ with respect to c.

FIG. 8. The graph underlying a causal completion of the 1-past
of c.FIG. 6. The future graph �

f0
1-p of �1-pðcÞ in c.

FIG. 5. The 1-past �1-pðcÞ.
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Finally define BVSA as

BVSA :¼ B½H½Hhn; ~�;c0i�� [ B½D2hn; ~�;c0i�: (6.5)

Note that every element of BVSA has a single final
nondegenerate GR vertex of valence M.

In terms of our discussion in Sec. VIA, jc0i is a primor-
dial charge network, jn; ~�; c0i is the parent in the nth
generation, B½n; ~�;c0� is the set of all diffeomorphic images

of this parent. The role of Bhn; ~�;c0i is as follows. Recall from
Sec. VIA that if a grandchild is present in BVSA, we need to
ensure that all possible related grandchildren are present as
well. This necessitates the identification of a set of (grand)
parents which give birth to all these grandchildren. Since
the specific (grand)parent which gives rise to a double
singular diffeomorphism grandchild is not embedded in
the grandchild, it is difficult (and perhaps impossible) to
infer the identity of the specific (grand)parent which gave
birth to such a grandchild. The solution is then to accom-
modate all possible (grand)parents which could conceiv-
ably have given birth to the grandchild in question. The set
of all possible such (grand)parents is Bhn; ~�;c0i.

Before we proceed to the next section, we prove a lemma
which will be of use below.

Lemma: The set Bhn; ~�;c0i is closed under the action of

diffeomorphisms; i.e., in the notation we have used above,
we have that Bhn; ~�;c0i ¼ B½hn; ~�;c0i�.

Proof: Let hĉj 2 Bhn; ~�;c0i. This means that ĉ is the causal

completion of the 1-past of some charge network c such
that hcj 2 B½n; ~�;c0�. Consider the charge network � � c

obtained by the action of the diffeomorphism � on c.
It is then straightforward to check that � � ĉ is a
causal completion of the 1-past of � � c. This implies
that h� � ĉj 2 Bhn; ~�;c0i which completes the proof.

C. Demonstration of assumed properties of VSA states

The VSA states are constructed as in Secs. IV and V by
summing over all bras in the set BVSA defined by Eq. (6.5),
with each bra weighted by the evaluation of a vertex
smooth function f: � ! C on the single nondegenerate
vertex of the bra it multiplies.

Let j �ci be a charge network state. Then the following
cases are of interest:

(a) �c is such that some double Hamiltonian constraint
deformation of �c is in BVSA; i.e., in the notation
of the previous section, j ��1; ��2; �ci 2 BVSA for
some ��1, ��2 which specify the two successive
Hamiltonian constraint-type deformations, the ��2

deformation occurring after the ��1 deformation.
(b) �c is such that some double singular diffeomorphism

deformation �c is in BVSA; i.e., in the notation
of the previous section, j ��; �ci 2 BVSA for some
�� which specifies the two successive singular
diffeomorphism-type deformations.

(c) �c is such that some single Hamiltonian constraint
deformation of �c is in BVSA; i.e., in the notation of
the previous section, j ��; �ci 2 BVSA for some ��
which specifies a Hamiltonian constraint type of
deformation.

We now consider each of them in turn.
Case (a): First note that j �ci can be reconstructed from

j ��1; ��2; �ci as follows. Let �ð ��1; ��2; �cÞ be the graph under-
lying j ��1; ��2; �ci. Clearly its 1-past is the graph �ð ��1; �cÞ
which underlies the state j ��1; �ci. The colors of j ��1; �ci can
be obtained as follows. Retain the colors from j ��1; ��2; �ci
on those edges in its 1-past which do not emanate from the
final vertex v1-pð ��1; ��2; �cÞ of this 1-past. Note that the

edges eK;1-p,K ¼ 1; . . . ;M emanating from the final vertex

v1-pð ��1; ��2; �cÞ of this 1-past each acquire kink vertices,

~vK;1-p, in j ��1; ��2; �ci. The part of eK;1-p which connects

~vK;1-p to v1-pð ��1; ��2; �cÞ suffers changes of its colors rela-
tive to its coloring in j ��1; �ci, but the remaining part retains
its charges from j ��1; �ci. Hence we can read off the coloring
of each eK;1-p in j ��1; �ci from this remaining part and

hence reconstruct j ��1; �ci. The same procedure can then
be applied to j ��1; �ci to obtain j �ci.
At this stage it is useful to introduce ‘‘deformation’’

operators as follows. Let us indicate the action of a
Hamiltonian constraint-type deformation labeled by � on

a state jci (with a single nondegenerate vertex) by Ĉ�jci.
So in this notation we have, for example, that

j ��1; ��2; �ci ¼: Ĉ ��2
Ĉ ��1

j �ci: (6.6)

Next, note that the final vertex of j ��1; ��2; �ci is connected
to its 1-past by edges which end on trivalent kinks. It is
immediate to see that the edges from the final vertex of any
state in B½D2hn; ~�;c0i� end in bivalent kinks. Hence, it must be

the case that j ��1; ��2; �ci 2 B½H½Hhn; ~�;c0i��. In the ‘‘deforma-

tion operator’’ notation we have, this may be written as

j ��1; ��2; �ci ¼ Û�2
Ĉ�0

2
Û�1

Ĉ�0
1
jci; (6.7)

for some hcj 2 Bhn; ~�;c0i, appropriate deformation labels�0
1,

�0
2 and diffeomorphisms �1, �2 with Û�i

, i ¼ 1, 2

being the unitary operators which implement these
diffeomorphisms.
Since the definition of the 1-past and the process of

‘‘unflipping charges’’ are diffeomorphism invariant, it is
straightforward to see in what follows that the above
equation implies that

j �ci ¼ Û�2
Û�1

jci: (6.8)

From the lemma at the end of Sec. VIB, it follows
that h �cj 2 Bhn; ~�;c0i. Hence all its double Hamiltonian

constraint-type deformations and all its double singular
diffeomorphism-type deformations are in BVSA. This im-
mediately implies that the assumptions of Secs. IV and V
are satisfied in this case.
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Case (b): In terms of the double singular diffeomor-
phism operators of Eq. (6.4) we have that

j ��; �ci ¼ D̂2ð ��Þj �ci: (6.9)

Since j ��; �ci is in BVSA, it has only one nondegenerate
vertex of valence M which we denote by v00ð �cÞ, and this
vertex is GR. Therefore �c also has a single nondegenerate
M-valent vertex, which we denote by vð �cÞ and, from
Sec. IVD 2, this vertex must also be GR. In what follows
we denote the graphs underlying j ��; �ci, j �ci by �ð ��; �cÞ,
�ð �cÞ.

The last part of Sec. IVD2 implies that the graph
structure of �ð ��; �cÞ in the vicinity of v00ð �cÞ is as follows.
Each of the M semianalytic Ck edges emanating from
v00ð �cÞ ends in a bivalent Cr-kink vertex where r ¼ 0 or 1.
The remaining semianalytic Ck edge from each such kink
when followed ‘‘into the past’’ also ends in a bivalent
Cr-kink vertex with r ¼ 0 or 1. The remaining semiana-
lytic Ck edge at this kink is part of the graph �ð �cÞ and each
of these remaining edges when followed to the past con-
nects to the rest of �ð �cÞ. We denote the part of �ð �cÞ which
connects to the past endpoints of these edges by �restð �cÞ.

To summarize, we have that (see Fig. 9)

�ð ��; �cÞ ¼ �restð �cÞ [ �D2ð ��Þ
rest ð �cÞ; (6.10)

where

�D2ð ��Þ
rest ð �cÞ ¼ [Ke

v00ð �cÞ;kink
K � ekink;kinkK � ekink;restK ; (6.11)

where ev
00ð �cÞ;kink

K connects v00ð �cÞ to the first Cr (r ¼ 0 or 1)

kink to its past, ekink;kinkK connects this kink to the second

one and ekink;restK 2 �ð �cÞ connects this second kink to
�restð �cÞ.
Next, note that by virtue of the connection of its

nondegenerate vertex to two successive bivalent kinks, it
must be the case that j ��; �ci 2 B½D2hn; ~�;c0i� so that

j ��; �ci ¼ Ûð�ÞD̂2ð�Þjci ¼: Ûð�Þj�; ci; (6.12)

for some appropriate diffeomorphism � with deformation
label � and state hcj 2 Bhn; ~�;c0i.
Next, note that it is possible to reconstruct the 1-past

of jci from j�; ci by following exactly the same procedure
which resulted in obtaining �restð �cÞ from �ð ��; �cÞ. Thus any
edge emanating from the final (nondegenerate, GR,
M-valent) vertex of j�; ci followed ‘‘back in time’’ con-
nects to a bivalent C1 or C0 kink which, in turn, connects to
another bivalent C1 or C0 kink, which is then connected to
�1-pðcÞ by an edge which lies in �ðcÞ. Removing theM sets

of such triplets of successive edges which connect the
final vertex of j�; ci to �1-pðcÞ yields �1-pðcÞ. Since this

procedure (of removing the triplets of successive
Ck-semianalytic edges which emanate from the final non-
degenerate vertex) is diffeomorphism invariant, the same

procedure applied to Ûð�ÞD2ð�Þjci yields the 1-past of

Ûð�Þjci. But, using Eq. (6.12), this very same procedure
resulted in the graph �restð �cÞ. Hence we have that

�restð �cÞ ¼ �1-pðc�Þ; (6.13)

where jc�i :¼ Ûð�Þjci. Moreover, from Eqs. (6.12) and

(6.11) and the nature of double singular diffeomorphisms,

it follows that the edges ekink;restK , K ¼ 1; . . . ;M of
Eq. (6.11) are a part of �ð �cÞ as well as �ðc�Þ. This, together
with (6.13) and (6.12) and the last definition of Sec. VI B,
implies that �c is the causal completion of the 1- past of c�.

Since hc�j 2 Bhn; ~�;c0i by virtue of the lemma of Sec. VI B,

this means that h �cj is in Bhn; ~�;c0i. Hence, once again all

double Hamiltonian constraints as well as singular
diffeomorphism-type deformations of h �cj are in BVSA in
accord with the assumptions of Secs. IV and V.
Case (c): Since j ��; �ci is obtained by the action of

a single Hamiltonian constraint, each of the M
(Ck-semianalytic) edges emanating from its final vertex
is connected to a trivalent kink. This, together with
h ��; �cj 2 BVSA implies that h ��; �cj 2 B½H½Hhn; ~�;c0i�� which

means that for some hcj 2 B½Hhn; ~�;c0i�, some Hamiltonian

constraint deformation �1 and some diffeomorphism� we
have that

j ��; �ci ¼ Ûð�Þj�1; ci: (6.14)

Using argumentation similar to that for case (a), it follows
that �ð �cÞ ¼ �1-pð ��; �cÞ; that �c can be reconstructed by

appropriately coloring �ð �cÞ through the procedure of
retaining the colors of j ��; �ci away from the vicinity of
its final degenerate vertex and coloring those edges
which emanate from this vertex with the colors of their

FIG. 9. The result of a double singular diffeomorphism action
on �c labeled corresponding to definitions used in this section.
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continuations past the immediate kinks they connect
to; and that all this, together with the diffeomorphism
invariance of the reconstruction procedure and Eq. (6.14),
implies that

j �ci ¼ Ûð�Þjci: (6.15)

Since B½Hhn; ~�;c0i� is closed under the action of semianalytic

Ck diffeomorphisms, it follows that h �cj 2 B½Hhn; ~�;c0i� and,
hence, that B½H½Hhn; ~�;c0i�� contains all single Hamiltonian

constraint deformations of h �cj. It is then easy to see that
the considerations of Secs. IVA and IV F imply that
the continuum limit of the matrix element of a single
finite-triangulation Hamiltonian constraint operator is

well defined and nontrivial i.e., lim �!0�
f
BVSA

ðĈ�ðNÞj �ciÞ
is well defined and nonvanishing for suitable f, N (by
suitable we mean that N and the first derivative of f do
not vanish at the final nondegenerate GR vertex of �c).

Note that Eq. (6.14) implies that �c has nþ 1 degenerate
GR vertices and that if either of cases (a) or (b) hold, �c
must have n degenerate GR vertices which means that the
matrix element for the single Hamiltonian constraint action
vanishes for cases (a) and (b).

Cases (a)–(c) exhaust all possibilities of interest and
imply that for any VSA state and any charge network state

(i) The continuum limits of the finite-triangulation op-
erators corresponding to the single Hamiltonian con-
straint, the commutator between two Hamiltonian
constraints (i.e., the lhs) and the operator corre-
sponding to the rhs are all well defined.

(ii) For appropriate choices of lapses, vertex smooth
functions and charge networks, these limits are
nontrivial.

(iii) These limits agree for the lhs and rhs operators.
(iv) Whenever they are nontrivial for the lhs and rhs

the continuum limit vanishes for the single
Hamiltonian constraint.

It is straightforward to see that (i)–(iii) above imply that
(i)–(iii) of Sec. III B hold. In particular point (iii) shows
that, as stated towards the end of Sec. I, our considerations
yield a nontrivial anomaly-free representation of the
Poisson bracket between a pair Hamiltonian constraints.

VII. DISCUSSION

In any gauge theory, anomalies in the algebra of quan-
tum constraints typically point to a reduction of the number
of true degrees of freedom in the quantum theory. The
quantization is then unphysical and, depending on the
severity of the anomalies, inconsistent. Hence, typically,
the viability of a quantum gauge theory is dependent on its
support of an anomaly-free representation of the classical
constraint algebra. If the gauge arises from general covari-
ance, the constraint algebra has an additional role to play
[16]: it encodes spacetime covariance in the Hamiltonian
formulation. We elaborate on this additional role below.

Any Hamiltonian formulation splits spacetime into
space and time. As a result, spacetime symmetries which
are manifest in the Lagrangian description are not explicit
in the Hamiltonian formulation. For theories in flat space-
time, the availability of preferred inertial times allows the
straightforward recovery of spacetime fields from spatial
ones. However, in theories of spacetime, such as general
relativity (or even in generally covariant reformulations of
field theories on a fixed spacetime, such as PFT), the
absence of a preferred time, with respect to which the
Hamiltonian theory is to be defined, makes this loss of
manifest spacetime covariance more acute. One may then
ask the following question: Which structure in the
Hamiltonian description of a generally covariant theory
encodes spacetime covariance? The answer to this question
is provided by the seminal work of Hojman, Kuchař, and
Teitelboim (HKT) [16]. In the Hamiltonian description of a
generally covariant theory of spacetime, initial data are
prescribed on a spatial slice embedded in spacetime, the
spacetime itself emerging out of the dynamics of the
theory. HKT note that this dynamics pushes the spatial
slice ‘‘forward’’ in spacetime to the next one. In order
that the spatial slices so generated stack up in a suitably
consistent manner so as to yield a spacetime, HKT show
that the Poisson-bracket algebra of the generators of dy-
namics must be isomorphic to the commutator algebra of
deformations of the spatial slice within the (emergent)
spacetime. These deformations may be separated into
those which are tangential and those which are normal to
the slice. Their algebra has the characteristic structure that
the commutator between two tangential deformations is a
tangential one, that the commutator between a tangent and
normal deformation is normal and, most nontrivially, that
the commutator of two normal deformations is a tangential
deformation which depends on the spatial metric on the
slice. This is, of course, exactly the structure of the
constraint algebra generated by the diffeomorphism
and Hamiltonian constraints of general relativity.15 In
particular, the Hamiltonian constraint generates normal
deformations and the Poisson bracket between a pair of
Hamiltonian constraints is proportional to a diffeomor-
phism constraint, the proportionality involving a spatial
metric-dependent structure function. The generality and
robustness of the arguments of HKT lead one to believe
that in the quantum theory, any notion of spacetime co-
variance is predicated on the commutator algebra of the
quantum constraints exactly mirroring the classical
Poisson-bracket algebra, thus providing a deep physical
reason for the requirement of anomaly freedom.
In this work we studied a generally covariant model with

the same constraint algebra as gravity. We concentrated on
the most nontrivial aspect of this algebra, namely the

15Recall that in any generally covariant theory, dynamics is
generated by the constraints.
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Poisson bracket between two Hamiltonian constraints, and
attempted to define the Hamiltonian constraint operator in
a LQG-like quantization in such a way that this Poisson
bracket was represented in an anomaly-free manner. Note
that at a mathematical level, it would be enough to provide
a quantization of the rhs such that it agrees with the lhs.
However, the simple geometrical picture of spacetime
deformations provided by HKT suggests that, in addition,
the rhs operator should generate a deformation akin to
a spatial diffeomorphism. The presence of quantum-
geometry-dependent operator correspondents of the struc-
ture functions on the rhs, together with the fact that the
quantum geometry is excited along sets of zero measure,
unlike the classical ones, suggests that the deformation
should be some sort of singular, quantum version of a
smooth diffeomorphism rather than a typical smooth dif-
feomorphism. As seen in Secs. IV and V, the choices we
have made in the construction of the Hamiltonian con-
straint and the rhs incorporate this suggestion.

The physical viability of these choices can only be
determined once a complete quantization of the system is
available. Specifically the work here needs to be completed
so as to provide

(i) A large enough [by which we mean large enough to
proceed to a nontrivial implementation of (ii) below]
space of solutions to the constraints.

(ii) A complete set of Dirac observables which preserve
the space in (i) and an inner product on (i) which
implements the adjointness properties of the Dirac
observables.

First consider issue (i). The VSA states of Sec. VI
provide off-shell closure of the commutator between a
pair of Hamiltonian constraints. Since BVSA contains entire
diffeomorphism classes, it is straightforward to check [4,7]
that the commutator between two diffeomorphism con-
straints closes without anomalies as well. It is also straight-
forward to check that the continuum limit actions of the
Hamiltonian and diffeomorphism constraints on a VSA
state yield derivatives of its vertex smooth function so
that off-shell VSA states obtained from a specific choice
of BVSA can be ‘‘moved’’ on shell by setting the vertex
smooth functions to be a constant. Since we have infinitely
many inequivalent choices of the parameters c0, ~�, n
which go into the construction of BVSA, this procedure
yields a large class of solutions to the constraints.16

These solutions may, of course, prove to be unphysical
once we attempt the incorporation of issue (ii). However, it
seems plausible that the chances of their physical relevance
would be enhanced if it could be shown that their off-shell
deformations support the closure of the commutator be-
tween the Hamiltonian and the diffeomorphism constraint,

this being the only remaining part of the constraint algebra.
Clearly, showing this is equivalent to the condition that the
Hamiltonian constraint is diffeomorphism covariant; i.e.,

that Ûð�ÞĤ½N�Ûyð�Þ ¼ Ĥ½��N� for all (semianalyticCk)
diffeomorphisms � and all (density � 1

3 ) lapses N.

As mentioned in Sec. I, we have ignored precisely this
issue of diffeomorphism covariance in our constructions.
While the issue will be studied in a future publication
[12], we briefly comment on the problems inherent in
generalizing our constructions here to incorporate diffeo-
morphism covariance. The primary noncovariant struc-
ture we use is the regulating coordinate patches. These
patches are chosen once and for all in some arbitrary
manner. It turns out (as is eminently plausible) that
diffeomorphism covariance requires that coordinate
patches associated with diffeomorphic vertex structures
[by which we mean the graph structure of a charge
network in the vicinity of its (GR, nondegenerate17) vertex]
should be related by diffeomorphisms. The ensuing prob-
lems are twofold:
(a) There are infinitely many diffeomorphisms which

map one vertex structure to another.
(b) The vertex structure at a ‘‘daughter’’ vertex created

by the Hamiltonian constraint Ĉ�1
½N� at triangu-

lation T�1
is mapped to the corresponding structure

created by Ĉ�2
½N� at T�2

, with �2 < �1, by a

diffeomorphism which ‘‘scrunches’’ the edges at
the vertex together along the axis of the cone as
described in Sec. III and Appendix C 4. This fact,
together with the necessity of relating the corre-
sponding coordinate patches through diffeo-
morphisms, implies that in the calculation of

commutators the coordinate patch fx0a0 g� (see the
second paragraph of Sec. IVE) goes bad as � ! 0.
This in turn implies that the continuum limit of the
commutator between two Hamiltonian constraints
blows up due to the x0 dependence of the calcu-
lation [for example, the Jacobian in Eq. (4.59)
blows up].

A solution to both of these problems can be found [12].
It turns out that progress on problem (a) is related to the GR
property of the nondegenerate vertices of the VSA states
and that a possible way out of problem (b) is to enlarge the
dependence of the vertex smooth functions to certain addi-
tional vertices of the graph and require some additional
regularity properties of the ensuing functional dependence
[12]. This concludes our comments on the problem of
diffeomorphism covariance and its relation to issue (i).
Another key open problem with regard to issue (i) has to

do with the very definition of the continuum limit we use
(see Sec. III B). This definition, while in the spirit of
Thiemann’s considerations involving the URS topology,
is far from conventional [17]. Notwithstanding the fact that

16As mentioned in Sec. VI, while these states are built from
single-vertex primordial states, we expect our considerations to
easily generalize to a very large family of multivertex primordial
states. 17See Footnote 12, Sec. IV F.
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it is extremely nontrivial to obtain an anomaly-free repre-
sentation in the context of this definition of the continuum
limit, we believe that a proper resolution of the problem of
an anomaly-free off-shell closure of the constraint algebra
requires a representation of the latter on some suitable
vector space, which, as mentioned towards the end of
Sec. III B, we call a ‘‘habitat.’’ In the case of the Husain-
Kuchař model [4,7] as well as PFT [6], the habitat is
spanned by vertex smooth algebraic states of the type
considered here. It is our hope that these states can be
suitably generalized (say, to accommodate not only a
dependence of the vertex smooth functions on vertices
but, perhaps, on other properties of the state at the vertex
such as its edge tangents and their charges) so that our
calculations are supported on a genuine habitat. An im-
portant aspect of such a generalization would be to ensure
that not only the commutator, but also the product of
two Hamiltonian constraints has a well-defined action.18

Preliminary calculations suggest that ensuring this (not
only in the context of a habitat but also in the VSA
topology considerations of this work) requires a slight
modification in the definition of the Hamiltonian constraint
operator at finite triangulation from the �� 1 form of
Eq. (4.22) to a 2�� � form.

Next, we turn to issue (ii). The first step towards the
construction of Dirac observables is a detailed analysis of
the equations of motion of the classical theory.19 Such an
analysis has been initiated by Barbero and Villaseñor [18]
and we hope that their work will stimulate further progress
on issue (ii). As a side remark, we note that a detailed
understanding of the classical dynamics of the model
would also stimulate progress on Smolin’s original idea
[11] of approaching Euclidean gravity via an expansion in
powers of Newton’s constant.

Besides the open issues (i) and (ii), our work can also
be improved upon in the following aspects. We have re-
quired that the singular diffeomorphism-type deformations
of Secs. IVandV preserve the GR (or non-GR) nature of the
nondegenerate vertex. This is a rather coarse requirement
and it would be good to further restrict the deformation so
that it preserves a larger subset of diffeomorphism-invariant
properties. This would also lead to a tighter and better-
motivated prescription for connecting the original graph
to the displaced vertex. A tighter prescription would pre-
sumably lead to a smaller bra set BVSA. One may even
envisage that the current BVSA can be split into ‘‘minimal’’
subsets.

We now turn to a discussion of various novel features

of our constructions and considerations. Our exposition

will consist of a series of scattered remarks. First, inde-

pendent of any ramifications for quantum theory, it

would be good to understand if there is a deeper reason

behind the existence of the remarkable classical identity

of Sec. V and Appendix B. Next, as discussed in Sec. VI,

we note a beautiful feature of repeated actions of our

Hamiltonian constraint on an ‘‘initial state,’’ namely that

the resulting ‘‘final’’ state encodes its own ‘‘chronologi-

cal history’’ dating back to the initial state. Finally, we

note that while there does seem to be a significant free-

dom in the details of the choices we have made, the class

of choices suggested by our considerations of Sec. IVA

are qualitatively different from those considered in the

standard treatments of the Hamiltonian constraint [1,2,4].

Our considerations here rest on a number of new ideas

suggested by earlier studies of toy models [6,7]. A few of

them are as follows: the consideration of higher density

weight constraints, a continuum limit defined by VSA

states, deformations of charge networks which depend on

their charge labels, and a Hamiltonian constraint action

which is such that a second such action acts on deforma-

tions produced by the first.
In summary, while there are many open problems and

obstructions to be overcome, we believe that there is room
for cautious optimism that the considerations of this work
and of the recent work [9,10] present the first necessary
steps to define the correct quantum dynamics of this model,
and, perhaps, offer hope that the lessons learned from this
and subsequent studies of the model will provide inputs for
the much harder context of gravity.
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APPENDIX A: A q�1=3 OPERATOR

In this appendix we derive some Thiemann-like classical
identities for negative powers of the metric determinant
that we then quantize on H kin. These identities involve a
volume operator, which we take to be the Ashtekar-

Lewandowski volume operator V̂, with SUð2Þ replaced

by Uð1Þ3. The construction of V̂ in the case of Uð1Þ3
proceeds just as for SUð2Þ, so we direct the reader to
Ref. [19] for details. Here we merely cite the result in the
Uð1Þ3 case. Given a region R � �, the volume operator

V̂ðRÞ associated to that region, acting on the charge net-
work state jci is given by

V̂ðRÞjci ¼ "ð
Þ
X

v2c\R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq̂ALðvÞj

q
jci: (A1)

Here, "ð
Þ is a constant which depends on the choice

of an integration measure 
 on a finite-dimensional
‘‘background structure-averaging’’ space (if one subscribes
to a consistency check in the sense of Ref. [20], then this
factor can be fixed to be equal to 1); the sum extends over
all vertices v of c contained in the region R. q̂ALðvÞ is
diagonal in the charge network basis and acts at vertices v
of jci by

q̂ALðvÞjci ¼ 1

48
ðℏ��Þ3X

IJK

�IJK�ijkq
i
Iq

j
Jq

k
Kjci; (A2)

where each of the three sums (over I, J,K) extends over the
valence of v, with I, J, K labeling (outgoing) edges eI, eJ,
eK emanating from v. �IJK ¼ 0, þ1, �1, depending on
whether the tangents of eI, eJ, eK are linearly dependent,
define a right-handed frame (with respect to the orientation
of the underlying manifold), or define a left-handed frame,
respectively. As in the main text, qiI is the Uð1Þi charge on
the edge eI. Before moving to inverse metric operators, we

note two properties of V̂ that are shared with the SUð2Þ
theory:

(i) Trivalent gauge-invariant vertices are annihilated

by V̂. This follows immediately by using the
gauge-invariance property

P
I�Jq

i
I ¼ �qiJ in (A2).

(ii) ‘‘Planar’’ vertices (those for which the set of edge

tangents spans at most a plane) are annihilated by V̂,
since each orientation factor �IJK in this case
vanishes.

We now turn to the construction of negative powers of
the spatial metric determinant at any point in�. LetU � �
be an open set with coordinate system fxg. Let any p 2 U
have coordinates ~xðpÞ ¼ fx1; x2; x3g. Since the analysis
below is expressed in the fxg coordinates, we use the
notation p � ~xðpÞ � x. The first step is to express negative
powers of the classical volume in terms of Poisson-bracket
identities involving quantities which have unambiguous
quantum analogs. Classically, the volume VðRÞ of a region
R � � is given by

VðRÞ ¼
Z
R

ffiffiffi
q

p �
Z
R
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEj

p

:¼
Z
R
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�������� 1

3!
�abc�

ijkEa
i E

b
jE

c
k

��������
s

: (A3)

Let B�ðxÞ � � be a coordinate ball of radius �, centered at
x. Its volume V�ðxÞ is then

V�ðxÞ :¼
Z
B�ðxÞ

d3y
ffiffiffiffiffiffiffiffiffi
qðyÞ

q
: (A4)

It follows that for smooth qðyÞ and some � 2 R,

V�ðxÞ2��
4
3	�

3
�
2�

¼ qðxÞ� þOð�Þ: (A5)

Now it is straightforward to verify that

�abc�ijkfAi
aðxÞ; V�ðxÞ�gfAj

bðxÞ; V�ðxÞ�gfAk
cðxÞ; V�ðxÞ�g

¼ 3

4

�3V�ðxÞ3ð��1Þ

ffiffiffiffiffiffiffiffiffi
qðxÞ

q
; (A6)

where we have defined 
 :¼ sgnðdetEÞ, and neglected
terms such as �


�Ea
i
. Using (A5) we may then write

qðxÞ�p¼�3ð2pþ1Þ ð43	Þ2pþ1�abc�ijk
3
4ð23ð1�pÞÞ3 
fAi

aðxÞ;V�ðxÞ23ð1�pÞg

	fAj
bðxÞ;V�ðxÞ23ð1�pÞgfAk

cðxÞ;V�ðxÞ23ð1�pÞgþOð�3Þ;
(A7)

where the first term isOð1Þ. With an eye on quantizing this
expression as an operator on H kin, we replace A

i
aðxÞ with

holonomy approximants as follows: Let eI, I ¼ 1, 2, 3 be a
triplet of edges, each of coordinate length BI�, emanating
from the point x (here BI are a triple of dimensionless
�-independent numbers). Let their unit tangents, normal-
ized with respect to the coordinate metric be êaI and let eI
be such that the triple of their edge tangents at x is linearly
independent. It is easy to check the following identity:

�abc ¼ �IJKêaI ê
b
J ê

c
K

�ð ~eÞ ; (A8)

where �ð ~eÞ is given by

�ð ~eÞ ¼ 1

6
�fgh�

LMNêfLê
g
Mê

h
N: (A9)

Here �IJK is antisymmetric with respect to the interchange
of its indices with �123 ¼ 1 and the argument ~e :¼
fe1; e2; e3g signifies the dependence of � on the triplet of
edges. Using Eq. (A8) and approximating Ai

aê
a
I in terms of

the edge holonomies hiI along eI, we obtain
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qðxÞ�p ¼ �3ð2pþ1Þ 9�
IJK�ijkð43	Þ2pþ1

2ð1� pÞ3�ð ~eÞ 

hðiÞI

�i��BI�
fðhiIÞ�1; V�ðxÞ23ð1�pÞg hðjÞJ

�i��BJ�
fðhjJÞ�1; V�ðxÞ23ð1�pÞg

	 hðkÞK

�i��BK�
fðhkKÞ�1; V�ðxÞ23ð1�pÞg þOð�Þ: (A10)

Setting p ¼ 1
3 we arrive at

qðxÞ�1=3 ¼ �2
9ð43	Þ5=3

2ð�i 23��Þ3�ð ~eÞBIBJBK


�IJK�ijkh
ðiÞ
I fðhiIÞ�1; V4=9ghðjÞJ fðhjJÞ�1; V4=9ghðkÞK fðhkKÞ�1; V4=9g þOð�Þ: (A11)

Now we define an �-regularized operator on H kin by taking all quantities to their operator correspondents,
f�; �g ! ðiℏÞ�1½�; ��, and dropping the classical Oð�Þ contribution:

q̂ 0ðxÞ�1=3
� :¼ �2

9ð43	Þ5=3
2ð23ℏ��Þ3�ð ~eÞBIJK

�IJK�ijk
̂h
ðiÞ
I ½ðhiIÞ�1; V̂4=9�hðjÞJ ½ðhjJÞ�1; V̂4=9�hðkÞK ½ðhkKÞ�1; V̂4=9�; (A12)

with BIJK :¼ BIBJBK (the prime in q̂0 appears because
this operator is not the final one we will employ in the
main body). As it stands, this operator is tied to the
coordinate system fxg, which should come as no surprise,
since the classical quantity is a scalar density with den-
sity weight not equal to 1. In keeping with the general
philosophy of this work, in which operators on H kin are
tailored to the underlying charge networks that they act
on, we will choose the holonomy segments of q̂0�1=3 to
partially overlap edges of charge networks (when this is
possible).

Let us first consider charge network vertices v 2 c
whose edge tangents span at most a plane [we deem these
planar (or linear) vertices]; this includes interior points of

edges. Since there are not three linearly independent direc-
tions defined by the edge tangents of c at v, we should have

to choose the extra segment(s) needed for q̂0ðxÞ�1=3
� by

hand, but this choice is arbitrary, since for the ordering

shown in (A12), there will be some factor ½ðhiIÞ�1; V̂4=9�
acting on jci, where ðhiIÞ�1 overlaps an existing edge of c,

and since V̂4=9 acts trivially at planar (and linear) vertices,

½ðhiIÞ�1; V̂4=9� annihilates jci (perhaps even more simply,
since planar vertices have zero volume, 
̂ is the zero
operator). We henceforth restrict the discussion to charge
network vertices with at least one linearly independent
triple of edge tangents.
We write Eq. (A12) as

q̂0ðvÞ�1=3
� jci ¼ B0 �2

ðℏ��Þ3
X3

I;J;K¼1

�IJK�ijk
̂h
ðiÞ
ðIÞ½ðhiIÞ�1; V̂4=9�hðjÞðJÞ½ðhjJÞ�1; V̂4=9�hðkÞðKÞ½ðhkKÞ�1; V̂4=9�jci; (A13)

where B123�ð ~eÞ has absorbed some dimensionless constants and become B0. Note that �ð ~eÞ depends on the charge network
c through its dependence on the edge triplet ~e. It also depends on the choice of regulating coordinate patch fxg through its
dependence on the unit edge tangents which are normalized with respect to the coordinate metric defined by fxg.

Next, define Q to be the dimensionless rescaled eigenvalue of q̂ALðvÞ
q̂ ALðvÞjci ¼ 1

48
ðℏ��Þ3X

IJK

�IJK�ijkq
i
Iq

j
Jq

k
Kjci ¼:

1

48
ðℏ��Þ3Qjci; (A14)

so that

V̂ðvÞjci ¼ "ð
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j 1
48

ðℏ��Þ3Qj
s

jci; (A15)

and letQi
I be the rescaled eigenvalue of q̂ALðvÞwhen the regulating holonomy hiI is first laid on the edge eI [andQ

�i
I when

ðhiIÞ�1 is laid]. Let 
 be the eigenvalue of 
̂ (which is also the sign operator of detE). Then (A13) acts on jci by

q̂0ðvÞ�1=3
� jci ¼ B0 �2

ðℏ��Þ3
�
"4=9ð
Þ

�
1

48
ðℏ��Þ3

�
2=9
�
3
�IJK�ijk
ðjQj2=9 � jQ�i

I j2=9ÞðjQj2=9 � jQ�j
J j2=9ÞðjQj2=9 � jQ�k

K j2=9Þjci

¼ B
�2

ℏ��
�IJK�ijk
ðjQj2=9 � jQ�i

I j2=9ÞðjQj2=9 � jQ�j
J j2=9ÞðjQj2=9 � jQ�k

K j2=9Þjci; (A16)

where we have absorbed some numerical factors into B0 to obtain B.
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We could stop here, but it turns out that this particular

form of q̂0�1=3 is not quitewhat wewant, as it is not invariant
under the charge flips produced by the Hamiltonian con-
straint, a property that we require in the main body of the
paper. However, we can modify the preceding construction

slightly to obtain another q�1=3 operator which is insensi-
tive to the charge flips. Consider the classical expression
(A11). Instead of using inverse holonomies inside the
Poisson brackets, suppose we average over combinations
in other representations; specifically qiI ¼ 
1 for each i, I.
Making this change and following the remaining steps to
arrive at the operator action, we find

q̂ðvÞ�1=3
� jci

¼ �B
�2

8ℏ��
�IJK�ijk
ðOi

IO
j
JO

k
K � 3O�i

I Oj
JO

k
K

þ 3O�i
I O�j

J Ok
K �O�i

I O�j
J O�k

K Þjci; (A17)

where

O
i
I

:¼ jQj2=9 � jQ
i
I j2=9: (A18)

The overall factor of 18 comes from averaging over the eight

different combinations of O
i
I , and the relative signs arise

from the classical Poisson-bracket identity, depending on
whether we choose to put a fundamental representation
holonomy, or its inverse, inside the bracket (an odd number
of negative superscripts yields a minus sign). Wewill see in
the next section that these eigenvalues are invariant under
charge flips. If there is a choice of edge triplets of c atv such

that q̂ðvÞ�1=3
� jci � 0, we term the vertex v as nondegener-

ate. Henceforth, we restrict attention to charge networks
with a single nondegenerate vertex. For the purposes of this
paper, this restriction suffices because the continuum limit
action of the quantumHamiltonian constraint and the quan-
tum electric diffeomorphism vanish on all other charge
networks, which in turn stems from the fact that BVSA has
states with (at most) only a single nondegenerate vertex.We
leave a generalization of our considerations to the multi-
vertex case for future work.

Note that the inverse metric eigenvalue ��2
3 in Sec. IVB

is defined through the equation

q̂ðvÞ�1=3
� jci ¼ �2

ℏ��
��2

3jci: (A19)

We now show how to choose the triplet of edge holonomies
in (A12) in such a way that this inverse metric eigenvalue
is (a) diffeomorphism invariant, and (b) the same for
the (single nondegenerate vertex) charge networks
cði; v0

Iv;�
Þ; cðv0

Iv;�
Þ of Secs. IV and V.

In each diffeomorphism class of charge networks ½ �c� we
pick a reference charge network c0 and a set of diffeo-
morphismsD½ �c� such that for any element c � c0, c 2 ½ �c�
there is a unique diffeomorphism inD½ �c� which maps c0 to
c. Our choice of reference charge networks is further

restricted as follows. Let ½ �ci�, i ¼ 1, 2, 3, ½ �̂c�, be such
that there exist ci 2 ½ �ci�, ĉ 2 ½ �̂c�, and a charge network
c with nondegenerate vertex v such that for some Iv, � we
have that

ci ¼ cði; v0
Iv;�

Þ; ĉ ¼ cðv0
Iv;�

Þ; (A20)

where cði; v0
Iv;�

Þ, cðv0
Iv;�

Þ are the deformations of c as

defined in Secs. IV and V. If Eq. (A20) holds, we require
that the reference charge networks ci0, ĉ0 for ½ �ci�, ½ �̂c� be
chosen such that there exists a charge network c with a
single nondegenerate vertex v0 and some parameter value
� for which it holds that

ci0 ¼ cði; v0
Iv0 ;�

Þ; ĉ0 ¼ cðv0
Iv0 ;�

Þ: (A21)

Next, we choose a triplet of edges for each reference
charge network and define the triplet of edges for any c 2
½c0� as the image of these edges by that diffeomorphism in
D½c0� which maps c0 to c. We restrict our choice of edge

triplets as follows. Consider the diffeomorphism classes
½ �ci�, i ¼ 1, 2, 3, ½ �̂c� and the charge networks ci0, i ¼ 1, 2,
3, ĉ0, c, subject to Eqs. (A20) and (A21). The structure of
the deformations sketched in Secs. IV and V (and further
elaborated upon in Appendix C) permits the identification
of the Jv0

th edge emanating from v0
Iv;�

in cð1; v0
Iv;�

Þ with
the Jv0

th edges emanating from v0
Iv0 ;�

in cð2; v0
Iv0 ;�

Þ,
cð3; v0

Iv0 ;�
Þ and cðv0

Iv0 ;�
Þ; this edge is uniquely identified,

in the notation of Secs. IV and V, as the deformed counter-
part of the Jv0

th edge emanating from the vertex v0 of c.

We choose a triplet of edge labels JKv0
, K ¼ 1, 2, 3 and

choose the triplet of edge holonomies for c10 to be along
the JKv0

th edges emanating from v0
Iv0 ;�

. Our choice for the

triplet of edge holonomies for the reference charge net-
works c20, c30, ĉ0 is then restricted to also be along the
Jv0

Kth edges emanating from v0
Iv0 ;�

in c20, c30, ĉ0. We do

not, however, restrict the choice of the sets of the reference
diffeomorphisms in any way.
Once we have made choices subject to the above

restrictions, let us, for convenience, once again number
our edges in such a way that the triplet of (positively
oriented) edges for any charge network c is fe1; e2; e3g so
that the action of the inverse metric operator is as denoted
in Eq. (A17). Recall that the parameter B in that equation
is, apart from an overall numerical factor, equal to
B123�ð ~eÞ. Recall, from Eq. (A9) that �ð ~eÞ depends on the
triplet of unit edge tangents normalized in the coordinate
metric associated with the coordinate patch around the
vertex v of the charge network c being acted upon.
Hence �ð ~eÞ varies as the charge network varies over its
diffeomorphism class. We choose B123 so that B123�ð ~eÞ
is constant over each diffeomorphism class. Thus, depend-
ing on the charge network c 2 ½c�, we obtain some
�ð ~eÞ and ‘‘compensate’’ for this �ð ~eÞ by appropriately
varying the edge length parameters B1, B2, B3 so that
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B123�ð ~eÞ ¼ B1B2B3�ð ~eÞ is constant over ½c�. Hence the
parameter B in Eq. (A17) also depends only on ½c�, or,
equivalently, on the reference charge network c0 2 ½c�.
Finally, require that the choice of B123 be identical for
the reference charge networks related by (A21). As we
shall see now, these choices ensure that the inverse volume
eigenvalue has the properties referred to above.

From Eq. (A19) we have that

��2
3 ¼ �8B�IJK�ijk
ðOi

IO
j
JO

k
K � 3O�i

I Oj
JO

k
K

þ 3O�i
I O�j

J Ok
K �O�i

I O�j
J O�k

K Þ: (A22)

The factor 
 is equal to the sign of the eigenvalue Q in
Eq. (A14). From Eq. (A14), it is easy to check that Q is
diffeomorphism invariant. Moreover, it is straightforward
to check that Q is also invariant under the charge flips of
Eq. (4.34). This shows that 
 is invariant under diffeo-
morphisms and charge flips. As we showed above, the
factor B is invariant under diffeomorphisms. The rest of
the expression consists of various combinations of charge
labels of c, and as a result of our choice of regulating edge
holonomies, is equal to its evaluation on the reference
charge network c0 2 ½c� irrespective of the choice of the

set of reference diffeomorphisms,D½c�. Thus ��2
3 is diffeo-

morphism invariant. In addition, by construction, B is the
same for the quadruple of charge networks cði; v0

Iv;�
Þ,

cðv0
Iv;�

Þ which arise from the action of the Hamiltonian

constraint and the action of the electric diffeomorphisms
on any charge network c. It follows that, since the charges
in Eq. (A22) for the charge networks of Eq. (A20) and
(A21) are related by charge flips, the next section also

establishes that, as assumed in Secs. IV and V, ��2
3 is also

the same for the diffeomorphism classes of the charge
networks of Eqs. (A20) and (A21).

1. Symmetries

We are interested in the eigenvalues of q̂�1=3 for a vertex
deformed by the Hamiltonian. There is one important
property we are looking for: for the lhs and rhs to match
in the main calculation, a charge-flipped vertex produced

by the Hamiltonian must have the same q̂�1=3 eigenvalue
as the unflipped configuration. Recall the structure of the
charge flips: depending on the value of i appearing in the
quantum shift, edges charged in ðq1; q2; q3Þ go to

i ¼ 1: ðq1;�q3; q2Þ; i ¼ 2: ðq3; q2;�q1Þ;
i ¼ 3: ð�q2; q1; q3Þ: (A23)

First note that the sign eigenvalue 
 of 
̂ is unchanged;
each flipped configuration differs in sign in one entry, and
there is a transposition of two charges. Also note that jQj
itself is unchanged by similar arguments. Let us now
consider Qi

I for some fixed I ¼ �I and i ¼ �{:

Q
�{
�I

¼ Q
 3�
�IJK��{jkq

j
Jq

k
K: (A24)

Here the unbarred indices are summed only over unbarred
values. What happens to this value under charge flips? We
have argued thatQ is unchanged under flips, so focusing on
the remainder under

qjJ ! ð~{ÞqjJ ¼ �~{jqðjÞJ � �~{jk
0
qk

0
J ; (A25)

we find

3�
�IJK�ð~{Þ�{jkq

jð~{Þ
J qkK ¼ 6�

�IJKq�{
Jq

~{
K þ 3�~{�{�

�IJK��{jkq
j
Jq

k
K;

(A26)

hence

ð~{ÞQ
�{
�I

¼ Q
 ð3�~{�{� �IJK��{jkq
j
Jq

k
K þ 6�

�IJKq�{
Jq

~{
KÞ: (A27)

Notice that for~{ ¼ �{, ð~{ÞQ
�{
�I

¼ Q
�{
�I
, so at least one factor in

each term in (A17) is invariant. ð~{ÞQ
�{�~{
�I

changes, but it

transforms into one of the other Q
�{
�I

such that the eigen-

value of q̂�1=3 is invariant. In particular, it is immediate to
check that

ðiÞQ
j
I ¼ Q�k

I ; for �ijk ¼ þ1;

ðiÞQ
j
I ¼ Q
k

I ; for �ijk ¼ �1:

The O
i
I also obey these flip rules, so armed with these

properties, it is straightforward to expand

ð~{Þq̂�1=3jci ¼ �B
�2

8�ℏ
�IJK�ijk
ðð~{ÞOi

I
ð~{ÞOj

J
ð~{ÞOk

K

� 3ð~{ÞO�i
I

ð~{ÞOj
J
ð~{ÞOk

K þ 3ð~{ÞO�i
I

ð~{ÞO�j
J

ð~{ÞOk
K

� ð~{ÞO�i
I

ð~{ÞO�j
J

ð~{ÞO�k
K Þjci; (A28)

and verify that it is in fact equal to q̂�1=3jci, and we

conclude that q̂�1=3 has the symmetry property we need.
We close this subsection by noting that the eigenvalues

of (the symmetrized) q̂�1=3 at zero-volume vertices vanish.
Indeed, in the zero-volume case Q ¼ 0, we have that the
Q
i

I and O
i
I eigenvalues defined above evaluate to

Q
i
I ¼
3�IJK�ijkq

j
Jq

k
K;

) O
i
I ¼�jQ
i

I j2=9¼�jQi
Ij2=9¼�j3�IJK�ijkqjJqkKj2=9:

(A29)

In particular, Oþi
I ¼ O�i

I , and since q�1=3 goes as

q�1=3 � �IJK�ijk
ðOi
IO

j
JO

k
K � 3O�i

I Oj
JO

k
K

þ 3O�i
I O�j

J Ok
K �O�i

I O�j
J O�k

K Þ; (A30)

we see that the insensitivity of O
i
I to the sign of the

representation of the regulating holonomy leads to the
vanishing of this quantity.

a. Nontriviality

The eigenvalues q�1=3 are rather complicated functions
of the charges, and it is not clear a priori whether the
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symmetrization procedure followed above perhaps leads to
an operator action which is trivially zero through some
cancellations. Here we attempt to quell this apprehension
somewhat by exhibiting a class of states20 with large

nonzero volume, and small but nonzero q�1=3.
Let v be a vertex of c from which emanate N þ 3 edges,

three of which, e1, e2, e3, define the (positively oriented)

coordinate axes of the system we evaluate q̂�1=3 with
respect to, and let these edges have charges q11 ¼ q22 ¼
q33 ¼ N � 1. Let the other charges on these edges

be zero and let the remaining N edges be charged as
~q ¼ ð�1;�1;�1Þ (so that the state is gauge invariant).
Then we can compute

Q ¼ �IJK�ijkq
i
Iq

j
Jq

k
K

¼ 6�ijk

 
�123qi1q

j
2q

k
3 þ

X
K0�1;2;3

�
�12K

0
qi1q

j
2q

k
K0

þ �23K
0
qi2q

j
3q

k
K0 þ �31K

0
qi3q

j
1q

k
K0
�!

¼ 6ðN3 � N2
X

K0�1;2;3

ð�12K0 þ �23K
0 þ �31K

0 ÞÞ; (A31)

where the terms quadratic and cubic in the remaining
edge charges have vanished as they all have identical
charges. We notice that as long as the sum over orientation
factors is not negative and OðNÞ, then indeed Q� N3.
One way to ensure this is to demand that the remaining
edges be distributed roughly evenly throughout the octants
defined by the tangents to e1, e2, e3 at v. In this case the
sum over K0 of each orientation factor is Oð1Þ (or perhaps
vanishing).

For the sake of calculation, let us suppose that N is in
fact divisible by 8, and consider the case in which N=8 of
the small-charge edges lie in each octant. Then the sum
over orientation factors in (A31) in fact vanishes, and we

have Q ¼ 6N3. We now wish to compute q�1=3 for this
configuration. We have, for example

Q
i
1 �Q

¼ 
3�1JK�ijkq
j
Jq

k
K

¼ 
6

 
�i23N

2 þ N
X

K0�1;2;3

X
j

ð�12K0
�ij2 þ �13K

0
�ij3Þ

!
;

(A32)

so that

Q
i¼1
1 �Q¼
6

 
N2þN

X
K0�1;2;3

ð�13K0 ��12K
0 Þ
!
¼
6N2;

Q
i�1
1 �Q¼0; (A33)

with analogous results for I ¼ 2, 3. Then

jQj2=9�jQ
i
I j2=9¼j6N3j2=9�j6N3
6N2j2=9

¼ð6N3Þ2=9
�
1�

�
1
 1

N

�
2=9
�

¼ð6N3Þ2=9
�
� 2

9N
þOðN�2Þ

�
; (A34)

for I ¼ i, and zero otherwise. Thus

O
i
I O
j

J O
k
K ¼ 236

2
3

36
ð�Þijk 1N þOðN�2Þ;

where ð�Þijk denotes the product of the (negative of the)

signs in the O superscripts, hence

q�1=3 ¼ B
�2

ℏ��

�
246

2
3

35
1

N
þOðN�2Þ

�
; (A35)

and we conclude that q̂�1=3 constructed above is not
trivially vanishing.
In fact, if one allows (an N-independent) tuning of the

parameter B, this class of states may be considered as
satisfying a crude notion of semiclassicality (to leading
order in N), in the sense that

q�1=3 ’
�
4

3
	�3

�
2=3

V�2=3 ¼ 481=3

"2=3ð
Þ

�
4

3
	

�
2=3 �2

ℏ��
jQj�1=3

(A36)

if one chooses

B ¼
�
311

27

�
1=3
�
	

"ð
Þ

�
2=3

: (A37)

APPENDIX B: RHS IDENTITY: SUð2Þ
Consider the diffeomorphism generator (modulo the

Gauss constraint) of the SUð2Þ theory smeared with the
electric shift Na

i
:¼ q��NEa

i , where N has density weight
ð2�� 1Þ:

D½ ~Ni� :¼
Z

d3xq��NEa
i F

j
abE

b
j : (B1)

Here Fi
ab

:¼ 2@½aAi
b� þGN�

ijkAj
aAk

b and the connection

again has units of ½length	GN��1. It is straightforward
to compute the Poisson bracket of two such objects, sum-
ming over the SUð2Þ index:20We thank Alok Laddha for this example.
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fD½ ~Ni�; D½ ~Mi�g ¼
Z

d3x

�
�D½ ~Ni�
�Aj

aðxÞ
�D½ ~Mi�
�Ea

j ðxÞ
� ðN $ MÞ

�

¼ 2
Z

d3x

��
@d

�NE½a
i E

d�
j

q�

�
þGN�

jmlAm
d

NE½a
i E

d�
l

q�

�
M

q�
ð�j

iF
k
abE

b
k þ Fj

baE
b
i � �Ec

i E
j
aFk

cbE
b
kÞ � ðN $ MÞ

�

¼ 2
Z

d3x

�
1

q2�
ðE½a

i E
d�
j �

j
iF

k
abE

b
k þ E½a

i E
d�
j F

j
baE

b
i � �E½a

i E
d�
j E

c
i E

j
aFk

cbE
b
kÞM@dN � ðN $ MÞ

�

¼ ð2�� 1Þ
Z

d3xq�2�Ea
i E

c
i F

j
cbE

b
j ðM@aN � N@aMÞ

¼ ð2�� 1ÞfH½N�; H½M�g; (B2)

where we have used �q=�Ea
i ¼ qðE�1Þia, with ðE�1Þia the matrix inverse of Ea

i . The Uð1Þ3 case results by taking GN ! 0.
In 2þ 1 dimensions, this identity also holds in SUð2Þ and Uð1Þ3:

fD½ ~Ni�;D½ ~Mi�g¼
Z
d2x

�
�D½ ~Ni�
�Aj

aðxÞ
�D½ ~Mi�
�Ea

j ðxÞ
�ðN$MÞ

�

¼2
Z
d3xðq��E½a

i E
d�
j ðq���j

iF
k
abE

b
kþq��Fj

baE
b
i þ2�q���1�ab0�

jj0k0Ej0Eb0
k0E

c
i F

k
cbE

b
kÞM@dN�ðN$MÞÞ

¼ ð2��1Þ
Z
d3xðM@cN�N@cMÞq�2�Ec

i E
b
i F

j
baE

a
j ; (B3)

where we have used q ¼ EiEi, Ei :¼ 1
2�ab�

ijkEa
jE

b
k and

Ei�ab ¼ �ijkEa
jE

b
k (see Ref. [21]).

APPENDIX C: DEFORMATIONS:
FURTHER TECHNICAL DETAILS

1. Preliminary remarks

We use the notation of Sec. IV. Let B4�ðvÞ be the ball
of coordinate radius 4�, with respect to the metric �ab

associated with the coordinates fxg, centered at v. Our
considerations are confined to the interior of this ball for
sufficiently small �. We shall choose � to be small enough
that the boundary of B4�ðvÞ intersects the interior of every
edge emanating from v once and only once.

Let the edge eI be parametrized by the parameter tI
such that eIðtI ¼ 0Þ ¼ v. Let the interior of the edge be
eintI . Let the coordinates of the point eIðtIÞ be denoted
by x
ðtIÞ in the coordinate system fxg. Then for small
enough � it follows from the semianalyticity of the edges
that the parametrization tI can be chosen in such a way
that x
ðtIÞ8 I are analytic functions on eintI \ B4�ðvÞ.
Accordingly we choose � small enough that the edges
within B4�ðvÞ are analytic in the coordinate system fxg
except perhaps at v.

We assume for simplicity that v resides at the origin of
the coordinate patch fxg. We shall often denote the coor-
dinates fxg of a point by the vector ~x from the origin to that
point. Since the coordinates range in some open subset of
R3, we freely use the ensuing R3 structures, such as con-
stant vectors, vectors connecting a pair of points, straight

lines, planes, etc. Recall that _eaI ðvÞ ¼: ~_eIðvÞ is the tangent
vector of the Ith edge at v. If ~a is a vector we denote its

component perpendicular to ~_eIðvÞ by ~a?. The vector con-
necting a point P1 to the point P2 is denoted as ~lP1P2

.

2. GR-preserving deformation

(1) The GR condition.—The set of tangent vectors ~_eK at
v is GR if and only if no triplet lies in a plane. It is
easy to verify that this condition implies the pair of
conditions

(a) ~_eJ? � 0, J � I.

(b) No pair ð~_eJ1?; ~_eJ2?Þ, J1 � J2 � I exists such

that ~_eJ1?, ~_eJ2? are linearly dependent.

(2) Choice of ~̂nI in Eq. (4.29).—We choose ~̂nI in a
direction such that v0

I is not on �ðcÞ. Clearly, this
is possible because there are a finite number of
edges at v and for small enough � these edges are
almost straight lines. In Sec. C 4 we shall need to

specify ~̂nI more precisely; for this section, it is
enough that v0

I is not on �ðcÞ.
(3) Connecting v0

I to �ðcÞ.—Let v0
I be connected to ~vJ,

J ¼ 1; . . . ;M in accordance with the prescription of
Sec. IVD2. In more detail, we have, from
Sec. IVD 2, that for J � I, f~vJg ¼ B�qðvÞ \ eJ and

that v0
I is connected to ~vJ by the straight lines ~lv~vJ

.

The Ck, k � 1 nature of eJ�I near v implies that

�q ~̂_eJ ¼ ~lv~vJ
þOð�2qÞ; (C1)

where the hat ,̂ as usual, denotes the unit vector in

the direction of ~_eJ. Equation (4.29) implies that for
J � I,
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~l v0
I ~vJ? ¼ ��p ~̂nI þ ~lv~vJ?

¼ ��p ~̂nI þ �qð ~̂_eJÞ? þOð�2qÞ
¼ �qð ~̂_eJÞ? þOð�2qÞ þOð�pÞ: (C2)

Here ð ~̂_eJÞ? is the perpendicular component of the

unit vector ~̂_eJ and we have used (C1) in the second
line. Note that p > q in the last line so that the first
term is the leading order term.

As asserted in Sec. IVD2, the lines ~lv0
I ~vJ

, J � I,

intersect the graph � underlying the (undeformed)
charge network c at most only at a finite number of
points. This can be seen from the following argu-
ment. If this was not the case, the analyticity of the
edges feKg (see (C1)) and the analyticity of the lines
f~lv0

I ~vJ
g in the chart fxg imply that a segment of some

line ~lv0
I ~vJ

must overlap with a segment of some edge

eK in B4�ðvÞ. Equation (C2) together with the GR
property of v implies that if this overlap happens it

must be forK ¼ J � I. But, whereas k~_eJ?k=k~_eJk is
ofOð1Þ, Eq. (C2) implies that k~l~vJv

0
I?k=k~l~vJv

0
I
k, is of

Oð�q�1Þ (here k ~ak refers to the norm of the
vector ~a).

We also note that the lines ~lv0
I ~vJ

, J � I cannot

intersect each other (except at v0
I) since

Eq. (C2) implies that they have different slopes.

Moreover, since k~l~vJv
0
I?k=k~l~vJv

0
I
k is of Oð�q�1Þ it

follows that these lines (and any bumps thereof can
be chosen so that they) are always below the plane P
(see Sec. IVD2). Hence these lines cannot intersect
the curve ~eI of Sec. IVD2. Finally, it is easy to see
that ~eI can indeed be constructed in accordance with
the requirements of Sec. IVD2. To do so, we join ~vI

to v0
I by a straight line and apply appropriate semi-

analytic diffeomorphisms of compact support in the
vicinity of ~vI, v

0
I only to this line so as to bring its

tangents at these points in line with ~̂eIðvÞ, as re-
quired by Eq. (4.30) and the requirement that ~vI be a
C1 kink. It is straightforward to see that this can be
achieved in such a way that ~eI remains above P.

(4) GR property of v0
I.—It remains to be shown that v0

I

is GR. Since we are unable to ascertain if v0
I is GR

when connected to �ðcÞ as in point 3 above, we seek
a suitable modification of point 3 which ensures that
v0
I is GR while preserving the key equations (4.29),

(4.30), and (4.31). Since the GR property is generic
(as opposed to its negation which requires the con-
dition of coplanarity of some triplet to be enforced)
we expect that there should be several ways to do
this. However, we do not analyze the issue here and
point the reader to Ref. [12] wherein we present a
detailed resolution of the issue, the particular choice

of which is motivated by our considerations in
that work. Here, we only note that Ref. [12] applies
semianalytic diffeomorphisms supported away from
an identity in a small vicinity of v0

I (only) to each

edge in turn which renders the edge tangent con-
figuration ‘‘conical’’ and hence GR [12]. Each such
diffeomorphism is of the type encountered in
Appendix C 3 below.

3. Non-GR case

As in the previous section we choose ~̂nI in a direction
such that v0

I is not on �ðcÞ and follow the prescription of

Sec. IVD 2 to join v0
I to ~vJ, J � I by straight lines. Note

that, as asserted in Sec. IVD2, any such line ~lv0
I ~vJ

, J � I

can intersect any edge eK at most in a finite number of
points. To see this assume the contrary. Analyticity of the
lines and edges (see (C1)) in the fxg coordinates implies

that the line ~lv0
I ~vJ

overlaps with the edge eK. If ~_eKjv is

proportional to ~_eIjv, analyticity of eK, ~lv0
I ~vJ

implies that

~lv0
I ~vJ

is contained in the line which joins v to v0
I along the

direction ~_eIðvÞ. From (4.29), no such line exists. If
~_eK?ðvÞ � 0 then k~_eK?k=k~_eKk is of Oð1Þ, while Eq. (C2)

implies that k~l~vJv
0
I?k=k~l~vJv

0
I
k, is of Oð�q�1Þ, which, once

again, rules out overlap.

Next, any possible overlap between the lines f~lv0
I ~vJ

;

J� Ig can be removed by slightly altering the positions

of their vertices ~vJ as follows. Suppose that ~lv0
I ~vJ1

, ~lv0
I ~vJ2

overlap. Their analyticity and the existence of a common
end point v0

I imply that one must be contained in the other.

Accordingly, assume that ~lv0
I ~vJ1

is contained in ~lv0
I ~vJ2

so that

~lv0
I ~vJ2

passes through ~vJ1 . Since ~vJ�I 2 @B�qðvÞ, it follows
that this pair of lines cannot overlap with any other line.
If we now move ~vJ1 slightly along eJ1 , this overlap is

necessarily removed. For, if it were not, then ~lv0
I ~vJ2

would

overlap with eJ1 which is ruled out by the arguments of the

previous paragraph. Thus, with this modification, the lines

f~lv0
I ~vJ

; J � Ig intersect each other as well as �ðcÞ at most at

a finite number of points and these intersections can be
removed by appropriate bumping such that the bumps are
all below the plane P of Sec. IVD 2.
Next, we show that ~eI may be chosen so as to satisfy

the requirements of Sec. IVD2 on its tangents at its end
points while intersecting �ðcÞ at most at a finite number of
points and while being positioned above the plane P of

Sec. IVD2. Connect ~vI to v0
I by the straight line ~lv0

I ~vI
.

Analyticity implies either a finite number of intersections

with �ðcÞ or overlap. Let ~lv0
I ~vI

overlap some edge eK. As

above, if ~_eKjv is proportional to ~_eIjv, analyticity of eK, ~lv0
I ~vI

implies that ~lv0
I ~vI

is contained in the line which joins v to v0
I
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along the direction ~_eIðvÞ. From (4.29), no such line exists.

If ~_eK?ðvÞ � 0 then k~_eK?k=k~_eKk is of Oð1Þ. On the other
hand a Taylor series expansion along the edge eI locates
~vI toOð�2Þ from the line passing through v in the direction

of ~_eIjv, which, together with Eq. (C2) implies that

k~l~vIv
0
I?k=k~l~vIv

0
I
k, is of Oð�Þ, which, once again, rules out

overlap. The finite number of intersections with �ðcÞ can
be removed by appropriate bumping which preserves the

location of ~lv0
I ~vI

above the plane P of Sec. 4.4.2. Finally, the

edge tangents at the end point v0
I can be aligned with ~_eIjv,

and the end point ~vI transformed into a C1-kink by appro-
priate semianalytic diffeomorphisms which are compactly
supported in the vicinity of these end points and which are

applied only to ~lv0
I ~vI
.

Next, suppose that the above prescription leads to v0
I

being a non-GR vertex. Then we are done. If not, then
proceed as follows. First note that since the bumping is
supported away from v0

I, it follows that in a small enough
neighborhood of v0

I, the edges ~eJ�I which connect v
0
I to ~vJ

are straight lines. Next, pick some J � I. Then it follows
from the above discussion, in conjunction with the GR
property of v0

I, that in a small enough neighborhood of
v0
I, the plane which contains ~eJ and which is tangent to

the direction ~_eIðvÞ does not intersect any other edge ~eK�J�I.
Now consider the vector field which generates rotations
about the axis passing through v0

I in a direction normal to
this plane. Multiplying this vector field with a semianalytic
function of small enough support about v0

I yields a vector
field of compact support which generates a diffeomorphism

that rotates the tangent ~_~eJðv0
IÞ to the edge ~eJ at v0

I into a

direction exactly antiparallel to that of ~_eIðvÞ. We apply this
diffeomorphism only to the edge ~eJ. As a result the vertexv

0
I

loses its GR property since, now, any triplet of tangent
vectors containing the tangents to the Ith and Jth edges at
v0
I lie in a plane by virtue of the anticollinearity of the

(outward-pointing) tangents to the Ith and the Jth edges.

4. Relating deformations by diffeomorphisms

(1) Introductory remarks.—For small enough � ¼ �0

let the vertex v0
I be placed and joined to the unde-

formed graph �ðcÞ as described in Sec. IVD2 and
the first two sections of this appendix. This specifies
the deformation at triangulation fineness �0. In the
subsequent sections we generate deformations for
all � such that 0< �< �0 by the application of
semianalytic diffeomorphisms to the deformation
at �0. Clearly, we need these diffeomorphisms to
do the following:
(a) leave the undeformed graph �ðcÞ invariant;
(b) move the points ~vJ down the edges eJ to a

distance of �q from v for J � I and to a distance
of 2� for J ¼ I;

(c) move the immediate vicinity of the vertex v0
I to

a distance of approximately � from v in such a
way that the tangents at the new position, v0

Ið�Þ,
satisfy Eqs. (4.30) and (4.31).

In order to implement (c) simultaneously with (a) and
(b), we need to ensure that the diffeomorphism which
implements (c) is an identity in the vicinity of �ðcÞ. We
find it simplest to proceed as follows. First we define the
position of the displaced vertex at parameter � through
Eq. (4.29). Thus the set of points v0

I � v0
Ið�Þ (for all

positive � less than �0) are contained in a plane tangent

to ~_eIðvÞ, ~̂nI. Our strategy is to choose ~̂nI such that this plane
does not intersect �ðcÞ except at v [and, at most, in a small
vicinity of the straight line passing through v in the direc-

tion of ~_eIðvÞ]. More precisely, we show that this plane is
contained in a small angle ‘‘wedge’’ with an axis along the

straight line passing through v in the direction of ~_eIðvÞ, and
that this wedge intersects �ðcÞ at most along (a very small
neighborhood of) its axis. This enables the construction of
an appropriate diffeomorphism which is an identity outside
this wedge and which implements (c).

In order to show the existence of ~̂nI which allows the
construction of such a wedge, it is necessary to confine the
edges which are in the vicinity of the straight line passing

through v in the direction of ~_eIðvÞ to manageable neigh-

borhoods so that ~̂nI can be chosen to point away from them.
In the GR case only the Ith edge is of this type, whereas in
the non-GR case there may be several edges with a tangent

at v along ~_eIðvÞ. It turns out that in both cases these
edges can themselves be confined to appropriately small
neighborhoods.
Given the importance of the ‘‘wedge neighborhoods,’’ it

is useful to develop some nomenclature to refer to their
construction. We do so in point 2 below. In point 3, we

show how to choose ~̂nI when v is GR and in point 4, when

v is not GR. Having chosen ~̂nI appropriately, we construct,
in point 5, a diffeomorphism which implements (c) while
respecting (a). In point 6 we construct diffeomorphisms
which implement (b) while respecting (a) in such a way
that they are an identity in the vicinity of v0

Ið�Þ so as not to
affect the (prior) implementation of (c).
In points 3 and 4 we do not fix � ¼ �0. Rather the

considerations in these parts assure us of the existence
of a small enough � which can be set equal to �0 in
points 5 and 6. Accordingly, from (C1), our considerations
in points 3, 4 are restricted to the ball B4�ðvÞ and, in
points 5, 6, to B4�0

ðvÞ.
(2) Some useful nomenclature.— Consider a pair of

linearly independent vectors ~a, ~b. Consider the set
of points

~x ¼ � ~aþ � ~b (C3)

for all � 2 R and all � � 0 such that ~x 2 B4�ðvÞ.
Clearly, the set of these points comprises a
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‘‘half plane’’ which is bounded by the line passing
through v in the direction of ~a. We refer to this set of

points as the half plane tangent to ð ~a; ~bÞ with bound-
ary through v along ~a. Let us denote this half plane
as P. Rotate P about its boundary through v along ~a
by
� to obtain a pair of half planes which bound a
wedge of angle 2�. We shall refer to this wedge as
the wedge of angle 2� associated with P.

(3) Detailed choice of ~̂nI for the GR case.—Let the
coordinates of the edge eI at parameter value t
be ~xIðtÞ. Since eI is Ck, we may use the Taylor
expansion:

~xIðtÞ ¼
Xk�1

n¼1

~vI
nt

n þOðtkÞ; (C4)

with ~vI
1 ¼ ~_eIðvÞ. For simplicity we rescale the

parameter t so that ~vI
1 ¼ ~̂eIðvÞ, whereas in the

main text, ~̂eIðvÞ is a unit in the fxg coordinate metric.
Let m be the smallest integer less than k such that
the pair ~vI

m, ~v
I
1 are not linearly dependent. If no such

m exists then we set m ¼ k� 1 so that ~vI
m? ¼ 0.

If ~vI
m? � 0 then we proceed as follows. Let PI

m be

the half plane tangent to ð ~vI
1; ~v

I
mÞ with boundary

through v along ~vI
1. Then Eq. (C4) implies that for

small enough �, the edge eI is confined to the wedge
WI

mð�Þ with � of Oð�Þ. Hence there is ‘‘2	� 2�’’

worth of possible choices for ~̂nI such that v0
I does

not lie on eI. We choose ~̂nI such that it lies an angle
of Oð1Þ away from the set of vectors f ~vI

m?; ~eJ?g,
J � I. Clearly, for small enough �, v0

I also does not
lie on the undeformed graph �ðcÞ.
If ~vI

m¼k�1? ¼ 0 then we have that all ~vI
m? ¼ 0

for m such that 1<m � k� 1. It follows that the
edge eI is confined to a very small neighborhood Sk
of the line through v along the direction _eIðvÞ.
To define Sk, it is useful to rotate the coordinates
fxg ¼ ðx; y; zÞ so that the z axis points along _eIðvÞ, v
being at the origin. Then we define Sk through

Sk¼fðx;y;zÞg such that x2þy2� z2k�2; z�0:

(C5)

Since p 
 k, it follows from (4.29) that for small

enough �, v0
I lies outside Sk for any choice of

~̂nI. We

choose ~̂nI so that it lies at an angle of Oð1Þ away
from the set of vectors f ~eJ?g, J � I.

(4) Detailed choice of ~̂nI for the non-GR case.—If there
are no edges at v other than eI with tangent propor-

tional to ~_eIðvÞ, we place v0
I as for the GR case by

choosing ~̂nI to be at an angular separation of Oð1Þ
from the set f ~vI

m?; ~_eJ?g for the case that ~vI
m? � 0

and from the set f~_eJ?gwhenm ¼ k� 1, ~vk�1? ¼ 0.
If there are s edges eJi�I, i ¼ 1; . . . ; s such that

~_eJiðvÞ is proportional to ~_eIðvÞ, then using the Ck

nature of these edges, we expand the coordinates
~xJiðtiÞ of eJi as a Taylor series in the parameter ti
so that

~x JiðtiÞ ¼
Xk�1

n¼1

~vJi
n ðtiÞn þOðtki Þ; (C6)

with ~vJi
1 proportional to ~_eIðvÞ. As in point 3, for

simplicity we rescale the parameters ti so that

~vJi
1 ¼ ~̂eIðvÞ For each i, letmi be the smallest integer

less than k such that ~vJi
mi

is not proportional to
~_eIðvÞ. If ~vJi

mi? ¼ 08mi ¼ 1; 2; . . . ; k� 1 then set

mi ¼ k� 1 so that ~vJi
mi? ¼ 0.

If ~vJi
mi? � 0, let PJi be the half plane tangent to

ð~_eIðvÞ; ~vJi
mi
Þ with boundary through v along ~_eIðvÞ.

Let WJið�iÞ be the wedge of angle 2�i associated to
this half plane. Using Eq. (C6), we choose �i of
Oð�Þ such that the edge eJi is confined to the wedge
WJið�iÞ. We choose ~̂nI to be such that its angular
separation is of Oð1Þ from the wedges WJið�iÞ,
i ¼ 1; . . . ; k as well as from the directions along

the vectors ~_eJ?ðvÞ, J =2 fI; J1; . . . ; Jkg [recall that
~_eJ?ðvÞ, J =2 fI; J1; . . . ; Jkg are the perpendicular
components of the tangents to the remaining edges
eJ, J =2 fI; J1; . . . ; Jkg at v]. Clearly, this, together
with p 
 k, ensures that for small enough �, v0

I

does not lie on �ðcÞ.
(5) Moving the displaced vertex and its vicinity.—Let

PI be the half plane tangent to ð~_eIðvÞ; ~̂nIÞ with

boundary through v along ~_eIðvÞ. For the purposes
of this part, we rotate the coordinate system fxg ¼
fx; y; zg so that ~_eIðvÞ is along the z direction and ~̂nI is
along the y direction. Thus PI is a part of the y-z

plane. The choice of ~̂nI implies that there exist small
enough � ¼ �0 and � ¼ �0 such that the wedge
of angle 2�0 associated with PI does not intersect
�ðcÞ except, at most, inside Sk. Denote this wedge
by WIð�0Þ.

Clearly, at deformation parameter �0, the point
v0
I � v0

Ið�0Þ has coordinates ðy; zÞ ¼ ð�p
0 ; �0Þ. Let

the displaced vertex at parameter � < �0 be denoted
by v0

Ið�Þ. We place v0
Ið�Þ on PI with coordinates

ðyð�Þ; zð�ÞÞ given by

yð�Þ ¼ �p; zð�Þ ¼ �: (C7)

Let the straight line joining v0
Ið�0Þ to v0

Ið�Þ be l�0;�.

By virtue of the existence ofWIð�0Þ and the fact that
p << k, there exists a neighborhood of this line
which lies within WIð�0Þ but outside Sk, and hence
does not intersect �ðcÞ. Hence, by multiplying
the translational vector field along the direction
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~lv0
Ið�0Þ;v0

Ið�Þ by a suitable function of compact support,

a vector field can be constructed that generates a
diffeomorphism which rigidly translates a small
enough neighborhood of v0

Ið�0Þ to a corresponding
neighborhood of v0

Ið�Þ while being an identity in a
small enough neighborhood of �ðcÞ.
The rigid translation property ensures that the

edge tangents at v0
Ið�0Þ and v0

Ið�Þ are identical. It
remains to scrunch the edge tangents of all edges
except the Ith together. Let the coordinates of v0

Ið�Þ
be ðxðv0

Ið�ÞÞ; yðv0
Ið�ÞÞ; zðv0

Ið�ÞÞÞ and consider the
following linear ‘‘anisotropic’’ scaling transforma-
tion G near v0

Ið�Þ:
Gðx� xðv0

Ið�ÞÞÞ ¼ �q�1ðx� xðv0
Ið�ÞÞÞ;

Gðy� yðv0
Ið�ÞÞÞ ¼ �q�1ðy� yðv0

Ið�ÞÞÞ;
Gðz� zðv0

Ið�ÞÞÞ ¼ ðz� zðv0
Ið�ÞÞÞ:

(C8)

It can easily be verified that this transformation
scrunches together the tangent vectors at v0

Ið�Þ as
required. The transformation G is generated by
the vector field va

G ¼ xð @@xÞa þ yð @@yÞa. Once again,

multiplying ~vG by a semianalytic function of com-
pact support yields a vector field which generates a
diffeomorphism that generates the transformation
(C8) at v0

Ið�Þ and is an identity in a small enough
neighborhood of �ðcÞ.

(6) Moving the points ~vJ.—Since the edges eJ are semi-
analytic the points ~vJ can be independently

translated along eJ to their desired position by ap-
propriate semianalytic diffeomorphisms as follows.
At parameter value �0 the point ~vJ � ~vJð�0Þ is at a
distance of �q

0 from v for J � I and at a distance of

2�0 from v for J ¼ I. We seek to move ~vJð�0Þ to
~vJð�Þ along eJ where ~vJð�Þ is at a distance of �q

from v for J � I and at a distance of 2� from v for
J ¼ I.

Fix some edge eJ. Let the part of the edge eJ
between ~vJð�0Þ and ~vJð�Þ be eJð�0; �Þ. Let UeJð�0;�Þ
be a small enough neighborhood of eJð�0; �Þ
such that UeJð�0;�Þ \ �ðcÞ ¼ eJð�0; �Þ and such

that there exists a small enough neighborhood of
v0ð�Þ which does not intersect UeJð�0;�Þ. Let FJ be a

semianalytic function which vanishes outside
UeJð�0;�Þ and which is unity on eJð�0; �Þ. Let ~gJ
be a semianalytic vector field which, when re-
stricted to eJ, coincides with the tangent vector to
eJ. Then, clearly, the semianalytic vector field FJgJ
generates a diffeomorphism which moves ~vJð�0Þ
to ~vJð�Þ while preserving �ðcÞ and the vicinity
of v0ð�Þ.

We note that the generation of deformations at
� < �0 as described above preserves the following
properties and/or equations which are sufficient for
the analysis of Secs. IV, V, and VI:
(a) Equations (4.29), (4.30), and (4.31);
(b) The C1 or C0 nature of kinks;
(c) The GR or non-GR nature of the displaced

vertex.
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