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The field of background independent quantum gravity is eging fast [1]. Not only
new research directions are being developed, and new iamodevelopments are
taking place in existing approaches, but some of these appes are converging to
one another, leading to further progress. The group fieldrthéormalism [4, 2, 3]
can be understood in several different ways. It is a germtatin matrix models for 2d
quantum gravity/[5]. It is an important part, nowadays, & thop quantum gravity and
spin foam approach to the quantization of 4d gravity [7, 6is b point of convergence
of loop quantum gravity and of simplicial quantum gravitypapaches, like quantum
Regge calculus and dynamical triangulations [2]. Recettbits from non-commutative
geometry have been introduced as well in the formalism, titanks to them, started
to make tentative contact with quantum gravity phenomempolo

In this paper we introduce the general idea behind the GFhdbsm, and some basic
elements of the same (for more detailed introduction, werref 2,/ 3, 4]), then report
briefly on some recent results.

THE GROUP FIELD THEORY FORMALISM

Motivation and key idea

Group field theories are an attempt to define quantum gravigrims ofcombinatorially
non-local quantum field theories on group manifoladated to the Lorentz or rotation
group. Let us motivate briefly the three main elements in¢haracterization.

Quantum field theory is the best formalism we have for deswgilphysics at both
microscopic and mesoscopic scales, from high energy papltysics to many-particle
condensed matter physics.
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But can we still hope for a formulation of quantum gravity aQ&T, after the known
failure of the attempt to formulate a consistent QFT of gi@vs? And a more serious
objection is that a good theory of quantum gravity should &ekground-independent,
as it should explain origin and propertie$ spacetimatself, while we know how to
formulate quantum field theories only on fixed backgroundeeréfore, if an (almost)
ordinary QFT it should be, quantum gravity can only be a QFTsome auxiliary,
internal or “higher-level’space.

We can then look at GR itself and try to identify some backgbnon-dynamical)
structures that we could hope to provide such space. One istirnal, local symmetry
group of the theory, i.e. the Lorentz group. This gives thanpry motivation for
using the Lorentz group (and related) in GFT. Another baglkgd structure is the
configuration space of GR: the (meta-)space of (spatialingtes on a given (spatial)
topology, coined “superspace’by Wheeler. We will see thase two possibilities for the
field domain in GFT actually coincide, because, as we havadeafrom loop quantum
gravity, the set of possible geometries can be charactenzterms of (Lorentz) group
elements.

When suggesting a QFT for the microstructure of space, anathtural question is:
a QFT of which fundamental quanta? Again, we know that thesaat be gravitons.
They have to be quant spacdtself, excitations around a vacuum that corresponds to
theabsence of spac&FT incorporates, in the choice of these quanta, ideas brottn
loop quantum gravity and simplicial quantum gravity, as wegoing to see.

The last ingredient of oucombinatorially non-local quantum field theory on group
manifoldsthat we have to introduce and motivate is tiwn locality,

Consider a point particle in 0+1 dimensions, with actieiX ) = %XZ + %X3. This
action defines a trivial dynamics (for a trivial system), oticse. What interests us here,
however, is the combinatorial structure of its “Feynmargdans”, i.e. the graphs that
can be used. as a convenient book-keeping tool in computengahresponding partition
functionZ=dXe S %) perturbatively im . These are simple 3-valent (because of the
order of the “interaction”) graphs.

FIGURE 1. A Feynman graph for a point particle and the correspondind fieeory

The fact that the Feynman diagrams of the theory are simplehgrlike the above fol-
lows from 1) thepoint-likenature of the particle, and 2) thecality of the corresponding
interaction, encoded in the identificationXfvariables in the interaction term.

The same structure of diagrams is maintained, because ¢hkerature of the interac-
tion and the point-like nature of the corresponding quaméanaaintained, also when
moving to a field theory setting, i.e. going from the abovetipkr dynamics to the
corresponlng field theory (stlll dynamically rather tal), governed by the action:
S(p)= 2 dxex)? + 4 dx@x)®. The associated Feynman amplitudes have integra-
tions over position or momentum variables, but still, thenbinatorics of the diagrams

is the same.



Now we move up in combinatorial dimension. Instead of poartiples, let us consider
1d objects, that could be represented graphically by a ity two end points. We
label these two end points with two indiceg, and we represent the fundamental 1d
objects by (e.g. orthogonatyatrices M. We want to move up in dimension also in the
corresponding Feynman diagrams. We want diagrams comelépgp to 2-dimensional
structures. For this, we have to drop the assumptidoazlity. We define an action for
M, given byS(M ) = %Mij Mii + %Mij MikMyi. The racing of indices;] ;k in the kinetic
and vertex term represent identification of the points letdddy the same indices. This
graphlcaP! representatlon of the Feynman diagrams usedhina&ing the partition func-
tionZ= M e SM) gives 2-dimensional simplicial complexes of arbitrarydtuy,
because obtained by arbitrary gluing of lines to form tri@sdin the interaction vertex)
and of these triangles to one another along common linesdted by the propagator).

Nl

FIGURE 2. A (piece of) Feynman diagram for a matrix model, of which weegboth direct and dual
(simplicial) representation; the two parallel lines of pagation correspond to the two indices of the
matrix; the extra line on the bottom indicates identificatad the two edges of the triangles.

Matrix models have been quite successful in describing 2eshtyum gravity |[5].

There is no obstruction to keep moving upward in combinatatimension. We can
move from 1d objects represented by matrices, with indiglesling the end points of the
line, to 2d (closed) objects, represented by tensors, wiices labeling the boundary
edges of the same 2d objects. The simplest combinatorigdelwthat of triangles (2d
simplices) and thus of tensofg, with indices (representing the edges of the triangles)
traced out in the interaction term in such a way as to repte3@mbjects, tetrahedra
(3-simplices) bounded by such triangles.

I

FIGURE 3. A (piece of) Feynman diagram for a tensor model, of which wee dioth direct and dual
(simplicial) representation; the three parallel lines aigagation (dual to the three edges in the triangles)
correspond to the three indices of the tensor.

The process of combinatorial generalization can be coatrto tensor models whose
Feynman diagrams are d-dimensional simplicial compleMeseover, while maintain-

ing the combinatorial structure of the theory, we can gdimranatrix and tensor models
in the direction of adding degrees of freedom, i.e. definiogaesponding field theories.



The tensor indices will be replaced by variables taking @alin appropriate domain
spaces. Choosing these spaces to be group manifolds, we gliap field theories.

A prototype GFT generalizing a tensor model i is, for example, the so-called
Boulatov model:
Z Z
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The general formalism

The GFT field is ac-valued function of D group elementg(gs;::;9q4), for a group
G, usually theSO 1;1) Lorentz group (orSO) for Riemannian gravity). It is
interpreted as the fundamental building block of quantumcsp a second quantized
(d-1)-simplex, and each argument corresponds to one obitadhary (d-2)-faces. One

to give closure of the d (d-2)-faces to form a (d-1)-simplEixe mode expansion gives:

@)= ;1« @[O0, @ Cian;

with theJ’s labeling representations &, thek’s being vector indices in the representa-
tion spaces, and th&s being group intertwiners, labeled By The GFT amplitudes will
justify a geometric interpretation of the group variablegarallel transport of the grav-
ity connection along elementary paths dual to the (d-2¢daend of the representations
J as quantum numbers for volume operators for the same (dest

(p(g:L 9, 93) — q]] jzjg) —

FIGURE 4. The 3d example: the field, in group and representation mctand its dual graphical
representations as triangle and as spin network vertex

A simplicial space formed bl (d-1)-simplices is a product df field operators, with
contractions giving identifications of (d-2)-faces. GFatst are then, in representation
variables spin network®f G. The combinatorics of the field arguments in the action
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is constructed so to obtain d-dimensional complexes asrfragrdiagrams. It describes
the interaction of d+1 (d-1)-simplices to form a d-simplgxgbuing them along their (d-
2)-faces (arguments of the fields). The interaction is d@eLby the choice of function
7. The kinetic term involves two fields each representing @mgigd-1)-simplex seen
from one of the two d-simplices (interaction vertices) shguit. Thus the functionz
specifies how the geometric degrees of freedom are proghgatess simplices.



FIGURE 5. The 3d example: the simplicial representation of the irtboa and of the propagation

Most of the work up to now has focused on the perturbative @spd quantum GFTs,
using the expansion in Feynman diagrams of the partitiontfan:

Z )\N
Z= 9 eSK"]:Z
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whereN is the number of interaction vertices in the Feynman grapkym ]is a
symmetry factor for the graph artiI" ) the corresponding Feynman amplitude.

Each edge of the Feynman graph is madel astrands, one for each argument of the
field, and each one is then re-routed at the interaction xeftdlowing the pairing of
field arguments in the vertex operator. Each strand goesdgiwseveral vertices, coming
back where it started, for closed Feynman graphs, and trerefentifies a 2-cell. Each
Feynman graph is then a cellular complex, that, because of the combiregaf field
arguments in the action, is topologically dual to a d-dimemal simplicial complex.
The resulting complexes/triangulations can have arlyittapology, because each sim-
plicial complex is built up by arbitrary gluings of d-simpés to one another.

In representation space, each Feynman diagram is given pyndaam (a 2-complex
with facesf labeled by representation variables), and each Feynmalitadgby a spin
foam modelZ (") = 3¢5, ,A(fJtg):

These models had been introduced in the loop quantum grapfiyoach to define the
covariant dynamics of states of the quantum gravitatioedd fi.e. spin networks, and
in fact transition amplitudes betwen given spin networkesaon the boundary is ob-
tained in GFT as the expectation value of field operatorsrtpthie same combinatorial
structure of the two spin networks. The same representaadables in loop quantum
gravity, have a geometric interpretation as quantum numbéigeometric operators,
thus each of these Feynman amplitudes defines a sum-overidssfor discrete quan-
tum gravity on the specific triangulation dual to the Feynndgagram. They can be
understood, therefore, as a new implementation of the idesnplicial gravity path
integrals, like quantum Regge calculus and dynamicalgaéations. Actually, the am-
plitudesZ (I ) are usually at least directly motivated, from discretiaasi of classical
gravity theories, and, in some models, take the explicitnfof simplicial gravity path
integrals. At the same time, this sum over geometries is rgéee within a sum over
simplicial topologies corresponding to the perturbativensover Feynman diagrams.

Z();

To summarize: GFT incorporates many ingredients of oth@raarhes to quantum
gravity. Boundary states are spin networks, as in LQG, bey thave a dual description



as simplicial spaces, as in simplicial quantum gravity.iTdgnamics is expressed as
a covariant sum over quantum geometries as in spin foam mooleh discrete gravity

path integral, as in quantum Regge calculus, but involves alsum over inequivalent
triangulations, as in the dynamical triangulations apphoa

As an explicit example, consider the Boulatov GFT model bgBantum gravity:
z
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for a real fieldgp : SU@2)3 ! R invariant under the diagonal right action of SJ:
®(91,92/93) = ¢(919;929/939) 89 2 SU2).
The Feynman diagrams are dual to 3d triangulations. TherRagramplitudes are

Z

Z(N) = dhy 0 ( hr)
[1 dnfpocf] he

f L20f

with a single delta function on the grodn([].,4¢ he ) for each 2-cellf in the Feynman
diagram, dual to a single edgef the simplicial complex, with argument given by the
product of group elementg each associated to a link in the boundary of the 2-cell.

Thesameamplitude can be given in representation space:
|
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where the symbol for the vertex amplitude is the well-knops§mbol from the recou-
pling theory of angular momentum This is the Ponzano-Reggefeam model.

At this stage the connection with simplicial path integralsather indirect, but still very
clear. Consider the continuum 3d gravity action:
Z

SEe;w) = tr " F(w));
M

with variables the triad 1-forne' (x) 2 su(2) and the 1-form connectio@’ (x) 2 su(2),
with curvatureF (w). Introducing the simplicial comple& and its topological dual
cellular complex, we discretize the triad in terms gf Lieetlga elements associated
to the edges of the simplicial complex Bs = Ef = eX)= E'J 2 su@2), arlld the
connection in terms of parallel transports along links efdlmal complex ag. = eL 2
SU(2). The discrete curvature is given b@s = Ge = [0 = et 2 SUR), and a
discrete counterpart of the continuum action SIE;g) = S, tr Ef Gy .

The path integral for this discrete theory on the simplicdaimplexA is equalto the
previously computed GFT Feynman amplitu€l¢ for the diagrani” dual toA:
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which, as we have seen, can be also expressed as a functimupfrgpresentationg.
From all this, we also learn that spin foam models can be seannay of re-writing
simplicial gravity path integrals expressed in connec{gnoup) variables.

SOME RECENT RESULTS

New GFT (spin foam) models for 4d gravity

The first task for a candidate approach to quantum gravitgigsconstruction of inter-
esting models for the microscopic quantum dynamics of spadalimensions.
The starting point of all recent model building has been tRkelfanski) formulation
of 4d gravity as a constrained BF theory, in termssof4) Lie algebra-valued 1-form
connectionw and 2-formB:

z

1
S(w;B;p)= BY *Fjw) Z@u B<-~B"Y
4 2

Variations with respect to the Lagrange multipligr in fact, give constraints on the
B variables, whose solution|[6] forcB to be a function of a tetrad field: BY =
$eMy K ~ €. On these solutions, the action becomes the Palatini afctiggravity.

We know how to discretize and quantize BF theories in any dsiwa, and in particular
we know how to construct the corresponding spin foam modelsaFT action, and we
also know how to discretize the Plebanski constraint on bitrary simplicial complex.
The idea is then to start from such GFT action for BF:

Z z
A
dg [©(01;02:93:04)F + Bl dgj @ (91:92;93;94)¢ (94795 ;96 ;97)

(97793798 /99 )¢ (J9 ;96 /92 ;910 )¢ (91098 /95 ;01) 1; (2)

for a real field: ¢(g1;:::04) 1 SO@) 4 ' R, symmetric under (local Lorentz):
¥ (019;020;:::;040) = @(01;:::;04), or from the corresponding known quantum bound-
ary states (S@) spin networks) or Feynman (spin foam) amplitudes:
Z

ZO) =] da[]o([Qo= 5 []@i-+D@i + D] 15 | 15 *; (3)
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(we used the selfdual/anti-selfdual splitting of @Qrepresentations, and the vertex
amplitude is the 15symbol from the recoupling theory of angular momentum)iclth
we know how to contruct from the same quantum states, andsenpuaitable restriction
on its variables to impose the discrete Plebanski conssrain



Now we are faced with two possible strategies:

1. define a GFT model with Feynman amplitudes being manyfessthplicial path
integrals for BF with gravity constraints; then re-writeeth as spin foam models;

2. find a quantum version of Plebanski constraints, imposetbn quantum BF spin
network states to get gravity spin network states, then taoctsspin foam/GFT
amplitudes from these states; finally, check that they ema@mdrectly simplicial
geometry.

The first strategy is made more difficult by the fact that we dohmave a formulation
of GFT reproducing a BF simplicial path integral with bdhandg variables, and the
gravity constraints should be imposedBwrariables.

The second strategy is based on geometric quantizatiortams rom the identification
of the B variables, at the quantum level, with generaf®ls of the so(4) Lie algebra,
which then act as operators on the @Pspin network states labelled by representation
of the same group. The classical constraints, functionse®'s are then also turned into
operators and imposed at the quantum level on such spin fetwo give restrictions
on both the representation attached to their links and omntlegtwiners associated to
their verticesl[9, 10]. The resulting restricted spin netygoare identified as gravity spin
networks and used to construct new spin foam vertex amggud

O .
Ayt jie)=Y 15j(japia ) 15] (gpida)  fi% 7
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wherej,, = 1—2" k are selfdual/anti-selfdual S@) representations, associated to the 2-
cells of the Feynman diagrarky, are representations of the diagonal @ygroup sitting
inside SQ4), yis an arbitrary constant (Immirzi parametay) are selfdual/anti-selfdual
intertwiners associated to the links of the same diagrangre SUZ2) intertwiners
associated to the same links, and the functibrase appropriate mapping coefficients
from SO@)to SU(2). This is the EPR(L) spin foam model, currently the source ahyn
new developments|[9, 110,/1#]. This model has two very nice properties: 1) its boundary
spin networks match exactly those of canonical loop quarguewity, with the same
spectra for geometric operators; 2) the vertex amplitudeices to the (cosine of) the
Regge action in some semi-classical limit, confirming thatrnodel correctly captures
simplicial geometry at least for a single 4-simplex and asten such approximation.

In order to follow the first strategy, it would be necessarh&we a GFT depending on
Lie algebra variables representing tBevariables of BF theory. It turns out that this
requires a whole new representation of the GFT formalisnj, [A€ng tools from non-
commutative geometry [14].

1 A third strategy, closely related to the second, is basecheruse of group coherent states and leads
depending on how it is done, to the EPR(L) or to the so-calkeitlel-Krasnovi[8] model.



Consider the non-commutatiee (2) Lie algebra, which is isomorphic ®°2 as a vector
space. On such non-commutative space, one can considgiofisionr 3 endowed
with a star product “*reflecting the non-commutativity ofidé underlying algebra.
This is done first introducing non-commutative plane wavwegethding on a group ele-
mentg 2 SU(2) and a Lie algebra elemert2 su(2), as:gg(x): su2) SU@2)! C:
x;9) ! d2Trx9) This leads to the definition of a non-commutative Fouriansform:
CSUR)) ! C R3) C(suR))

Z Z "

PX) = dge(@)eg (X) = dgg @))€z’ *9;

SuU@) SU@)
with *-product defined on plane waves to respect the grouptipigition, as:
(€, @,)(X) = zTroadsTrow) _ diTrxae) - g, . (x)and by linearity on generic

R

functions. The same NC Fourier transform can be invergad) =  dx ¢ g1 (X),

modulo some technical subtleties. The extension of this-awnmutative Fourier
transform to SU2)P and to arbitrary compact groups, including 8Q is immediate.

The idea is then to use this transform to turn GFTs mdo-local and non-commutative
field theories on Lie algebras

Let’s first see what this gives in the 3d case. Using the Fotraasform:
z

Px1X2iX3) = doh =:d03P(91;92/93)€y, (X1)€g, (X2)€g; (X3) ; (4)
we can re-write the whole actionl (1) for the Boulatov modehiese newx variables.

For the Feynman amplitudes in this new representation, wde fin
Z z

B i3Tr Gt ) .
Z(r)= D dexf|:| SU(Z)dhLméz B & 16, K1) (5)

with Gt = L2401 i, i.€. we obtain exactly the BF (3d gravity) simplicial patitegral,
by identification of the Lie algebra variablgswith the discrete triad associated to each
edgex; Bg, with an additional constrairﬁGf 18,G; (Bt ), whose commutative analogue

would impose that the holonon@s lies in the plane orthogonal to the edge to which
B¢ is associated (the implications of the non-commutativestramt, on the other hand,
are still being investigated).

The same construction goes through with the same resultialsbe 4d case, for

BF theory. It is then clear that this new non-commutativeespntation of GFT is a

representation in terms of metric variables (as opposedraection variables, and that
it gives Feynman amplitudes which have directly the formiof@icial path integrals.

To construct a corresponding gravity model in 4d, one haa tbeimpose the grav-
ity constraints on the 4d GFT, once this is written as a namvoaotative field theory



on the Lie algebraso(4)*. They can be imposed on the Lie algebra varialBeda-
beling the 2-cellsf of I, dual to triangles of the simplicial compl&x requiring that
9k 2 S*  SU(@) (normal to tetrahedroh), s.t. B = k 1B;kt 8f t, and that
Yt tBf = 0. Inturn, these two conditions can be imposed by means dinbgrojec-
tion operatorssc [t (O k{1B¥kt(Bf )yandC 0 ¢ (B¢ acting on each fielgpin

the GFT action. In order to implement the correct simpligebmetry, it turns out to be
necessary to generalize slightly the standard definitighefield tog (B ;B> ;B3 ;B4; k),
with k 2 S%, with extended invariancep (By ;B ;B3 B4 k) = @ (hBy;hBy;B3hBs;h k)
with h 2 Spin@). On this field the two projection§, andC can be imposed giving:
®B; By B; By k)= (& C @) (BiB2;B3;Bs k).

Various models can be defined, and the identification of thheecobway of imposing
them and the definition of the ‘correctt GFT model (with andthwaiut the Immirzi
parameter) is in progress and will be reported elsewherp [A2&ny case all the models
being considered within this formalism and imposing thevaboonstraints produce
Feynman amplitudes with the general form:

Z Z

Z(r) = dB dh Br) @1'BiCn), 6
=] ) fD Spind) LD(Sl $) Br) (6)

Thus they are again nice simplicial gravity path integraish manifest implementation
of the simplicial geometry, for a BF theory on which one hapased both the gravity
constraintsS; on the Lie algebra variableB¢, and secondary constrain® on the
connection variablel , ensuring consistency between the gravity constraintstia@d
parallel transport. This 4d construction and the analyih® corresponding model(s)
is currently being completed [13].

It is anyway clear that this new GFT representation real@esxplicit duality between
simplicial quantum gravity and loop quantum gravity (spoafn models), on top of
bringing GFTs in close contact with non-commutative geaynet

Group field theory renormalization and the sum over topologes

A second area of recent developments [17, 18] has been tHeamm of quantum
field theory techniques to GFTs, to gain a better understgnednd control over its
perturbative expansion, using tools from renormalizattoeory.

GFTs define a sum over simplicial complexes 1) of arbitrapotogy and 2) that corre-
spond, in general, to pseudo-manifolds, i.e. contain @rsimgularities at the vertices.
The issue of controlling the sum over topologies, and of iifgng an approximation

in which simple topologies dominate, has an analogue in ¢diméext of matrix models
[5]. In matrix models, it has been shown that, in the so-calégge-N limit, diagrams

of trivial topology (% in the compact case) dominate the perturbative sum. The issu
of controlling the relative weight of manifolds and pseudanifolds in the perturbative



sum arises instead only in dimensidDs- 2 and it has represented an obstacle to the
development of tensor models. A third issue is to identifg aontrol the divergences
that arise in this pertrbative expansion, which are of twoety, a) divergences in the
sum over (pre-)geometric data (group elements or groupesgmtations) for each am-
plitude associated to a given simplicial complex; b) theedjence of the entire sum over
simplicial complexes.

The work of [17] makes the first steps toward solving thesedhssues, leaving aside
3b), starting a systematic study of GFT renormalizatiorthim context of the Boulatov
model for 3d (Riemannian) quantum gravity, that we haveuwtised above. The diver-
gences of this model are related to the topology of the bsb{dedimensional cells),
dual to vertices of the simplicial complex, in the Feynmaagdams, but it is difficult to
establish which diagrams need renormalization in full geliy, mainly due to the very
complicated topological structure ob3implicial complexes, after a scale is introduced
in the theory by an explicit cut-off in the spectral decompos of the propagator.

What is achieved in [17] is the following:

+ a detailed algorithm is given for identifying bubbles (3lgein the Feynman
diagrams of the model, together with their boundary tridagons, which in turn
can be used to identify the topology (genus) of the same kanynd

« using this algorithm, the authors are able to identify a fagscof Feynman dia-
grams which allow for a complete contraction procedure,thod the ones that al-
low for an almost standard renormalization; moreover, thass of graphs, dubbed
“type 1”is shown to be a natural generalization of the 2d atagraphs of matrix
models, thus suggesting that they can play a similar roleRit$5to that of pla-
nar diagrams in matrix models. Notice also that the exigeasfcsuch contraction
procedure can be seen as a sort of generalised locality fyope

« for this class of diagrams, an exact power counting of digeogs is proven,
according to which their divergence is of the order:

i 1
Ar= M) "

where {r jis the number of bubbles in the diagrdm and & (I ) is the delta
function on the group, with representation cut-affevaluated at the identity

On the basis of these results, of the experience gained wiiicé evaluation of Feyn-
man amplitudes, and of a better understanding of the condrinhstructure of the
Feynman diagrams, it was then possible to put forward twanrocanjectures, obviously
confirmed in all examples considered: 1) th#it“type 1”diagrams correspond toan-
ifolds of trivial topology, and 2) that an appropriate generalization of the usualrggal
limit (large-N) of matrix models to these GFT would lead te tielative suppression of
all the “non-type 1"diagrams, and thus leave us with: onjyetyl diagrams in need for
renormalization, and only manifolds of trivial topologytime theory.

A different perspective on GFT divergences is takenlLin [18)jch also tackles the
difficult issue of the summability of the entire perturbatsum (thus including the sum



over topologies). The authors consider both the Boulatodehand a modification of
the same proposed in [19], obtained adding a second ini@naetrm in the action:

A5 8 °
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The new term corresponds to the only other possible way angld triangles to form a
closed surface. This mild modification gives a Borel sumrmaadartition function|[19].
This shows that a control over the sum over topologies andchgpeoturbative definition
of the corresponding GFT is feasible.

For both the Boulatov model and the modified one, the autidis8pestablish general
perturbative bounds on amplitudes using powerful consitre¢echniques, rather than
focusing on explicit power counting or Feynman evaluatidrsey find that, using the
same regularization used in [17], the amplitudes of the Bww model for a diagram
with n vertices, are bounded, with cut-off, by K"A8* 32 for some arbitrary positive
constank, while the modifed model has amplitudes bounde&B8+ 3", and that both
bounds can be saturated. This result shows that the Frietdgpre modification (BFL),
even though Borel summable, is perturbatively more divetrgieat the original model.
The second main result of [18] relies again on constructielel fiheory techniques. A
cactus expansion of the BFL model is obtained, and used t@phe Borel summability
of the free energy of the model and to define its Borel sum. We egect more
applications of these techniques to other GFT models, alb@her dimensions.

Similar techniques have been also applied_ in [20] to obthperturbative bounds, in
any dimensions, on the colored GFT models for BF theory fiedinéd in [21]. This
colored extension of the GFT formalism is particularly sditfor the analysis of the
topology of the GFT Feynman diagrams, in that, for example,ldubbles are readily
identified, and has been usedin/[21] to 1) show that the assocFeynman diagrams
are cellular complexes; 2) define their cellular homologyd&fine a related homotopy
transformation; 4) relate the GFT amplitudes for these mdiaxg to the fundamental
group; 5) prove that the corresponding closed “Type 1 graphsomotopically trivial,
and thus, by the Poincaré conjecture, 3-spheres. This prinefirst conjecture put
forward in [17]. Moreover, inl[22] the boundary graphs of th@me colored models
are identified, and the topological (Bollobas-Riordan)t&ytolynomials associated to
(ribbon) graphs are generalized to topological polynomadapted to colored group
field theory diagrams in arbitrary dimension.

Emergent non-commutative matter fields from group field theasies

The last set of results we want to mention are interestingsste the direction of

bridging the gap between the microscopic GFT descriptiomudntum space (and
the language of spin networks, simplices, spin foams, &td)raacroscopic continuum
physics, including usual General Relativity and quantuid fizeories for matter. In fact,
this problem is faced bgll discrete approaches to quantum gravity[1].



One would expect [16] a generic continuum spacetime to beddrby zillions of Planck
size building blocks, and thus to be, from the GFT point ofwig many-particle system
whose microscopic theory is given by some fundamental GE®racT his suggests us to
look for ideas and techniques from statistical field theargt aondensed matter theory,
and to try to apply/re-interpret them in a GFT context.

Condensed matter theory also provides examples of systemsich the collective
behaviour of the microscopic constituents, in some hydnadyic approximation, gives
rise to effective emergent geometries from the collectagables themselves[23]. What
happens is that the collective parameters describing thteghd its dynamics can be re-
cast as the component functions ofedfective metric fieldand that the effective dynam-
ics of perturbations (quasi-particles, themselves colleexcitations of the fundamental
constituents of the fluid) takes the form of matter field the®m curved spacetimes, on
the same effective metrics.

Inspired by these results, we ask: assuming that a given Gielehaescribes the micro-
scopic dynamics of (the fundamental building blocks ofliscrete quantum spacetime
and that some solution of the corresponding fundamenteadteans can be interpreted
as identifying a given quantum spacetime configuration,ah) we obtain an effective
macroscopicontinuumfield theory for matter fields from it? and if so, 2) what is the
effective spacetime and geometry that these emergentnfiatts see?

As itturns out, it is possible [15] to apply the same procedaorGFT models and obtain
rather straightforwardly effective continuum field thexsfor matter fields. The effective
matter field theories that we obtain most easily are QFTs oraoonmutative spaces of
Lie algebra type.

The basic point is the use of the same natural duality betwéerlgebra and corre-
sponding Lie group, that we have exploited in the previousige, to construct a new
(non-commutative) representation for GFTs, now re-imetgd as the non-commutative
version of the usual duality between coordinate and monmersfpace. More precisely,
if we have a non-commutative spacetime of Lie algebra tjgeX, 1= CﬁvXA , the cor-
responding momentum space is naturally identified with threesponding Lie group,
in such a way that the non-commutative coordinadgsct on it as (Lie) derivatives (as
we expect in the quantum setting). The link with GFTs is thbwi@us: in momentum
space the field theory on such non-commutative spacetini®eviiven, by definition,
by some sort of group field theory. The task will then be todethe relevant field
theories from matter from interesting GFT models of quangjpacetime.

In 3 spacetime dimensions the results obtained recently §@dcern the euclidean
signature and a non-commutative spacetime given byuiki) Lie algebra .

The group field theory we start from is again the Boulatov nhoe look [24] at
two-dimensional variationd¢ (91 ;02 ;03) Lp(glg31) around a class of GFT classical
solutions (they can be interpreted as quantum flat space e sopriori non-trivial



topology) given by:
=z z
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The effective action is then:
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with the kinetic term and the 3-valent coupling given in tesfi-:
Z 2 Z = 32
#@=12 F dhF(F hg); B - "

30 F:

with F (g) assumed to be invariant under conjugatio@m) = F (hgh 1). This is a non-
commutative quantum field theory invariant under the quardouble of SU2) (which
provides a quantum deformation of the Poincaré group(2)J

Expanding- in group characters: (g) = 3 j.n— FjXj (@), wherej 2 N label irreducible
representations of SI2), the kinetic term reads:

2 j 2 2 2.
A (@)=1 3F Z}djxj Z}F 1 . 2Fy Q@) M“: (9)

We can interpretQ?(g) 0 as a generalized “Laplacian”, arﬁf as a “gravita-
tional’massM?. For the simple classical solutidh@)= a+ 1 a2x1(g), we obtain

X (g)= g(l a’)p® 2a: (10)
Similar results have also been obtained in the 4d contextlf&b It has been shown that
from GFT models (indirectly) related to 4d quantum graviitig possible to derive effec-
tive non-commutative matter field theories of “deformedcsplerelativity’type, based
on momentum group given by AlS) SO0@4;1)=S0O@3;1)and a non-commutative-
Minkowski spacetimefXg ;X 1= ikX;; these field theories form the basis for much current
work in the area of quantum gravity phenomenolagy [26].

Work in this direction, therefore, including these receesults, is a step in bridging
the gap between the fundamental discrete theory of spagetienhave at hand, and a
continuum description of spacetime, and getting closepgsile quantum gravity phe-
nomenology, thus bringing this class of models a bit clos@xperimental falsifiability.
Let us also notice that, contrary to the situation in anal@yity mdoels in condensed
matter, we have here models which are non-geometric anddar fisual geometrody-
namics in their formalism, but which at the same time are etqukto encode quantum
geometric information and indeed to determine, in paréicul their classical solutions,
a (quantum and therefore classical) geometry for spacdfingve are, in other words,
far beyond a pure analogy.



CONCLUSIONS

We have introduced the key ideas behind the group field thappyoach to quantum
gravity, and to the microscopics of quantum space, and tee& ledements of its for-
malism. We have also briefly reported on some recent reshittsreed in this approach,
concerning both the mathematical definition of these moaeid possible avenues to-
wards extracting interesting physics from them. From oulioe it should be clear that,
while much more work is certainly needed in this area of resgdhe new direction to-
ward quantum gravity that group field theories provide isitaxg and full of potential.
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