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Abstract. We introduce the key ideas behind the group field theory approach to quantum gravity, 
and the basic elements of its formaUsm. We also briefly report on some recent results obtained in 
this approach, concerning both the mathematical definition of these models, and possible avenues 
towards extracting interesting physics from them. 
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The field of background independent quantum gravity is progressing fast [1]. Not 
only new research directions are being developed, and new important developments 
are taking place in existing approaches, but some of these approaches are converging 
to one another, leading to further progress. The group field theory formahsm [4, 2, 3] 
can be understood in several different ways. It is a generalization matrix models for 2d 
quantum gravity [5]. It is an important part, nowadays, of the loop quantum gravity and 
spin foam approach to the quantization of 4d gravity [7, 6]. It is a point of convergence 
of loop quantum gravity and of simplicial quantum gravity approaches, like quantum 
Regge calculus and dynamical triangulations [2]. Recently, tools from non-commutative 
geometry have been introduced as well in the formalism, which, thanks to them, started 
to make tentative contact with quantum gravity phenomenology. 

In this paper we introduce the general idea behind the GFT formalism, and some basic 
elements of the same (for more detailed introduction, we refer to [2, 3, 4]), then report 
briefly on some recent results. 

THE GROUP FIELD THEORY FORMALISM 

Group field theories are an attempt to define quantum gravity in terms of combinatorially 
non-local quantum field theories on group manifolds, related to the Lorentz or rotation 
group. Let us motivate briefly the three main elements in this characterization. 

A good theory of quantum gravity should be background-independent, as it should 
explain origin and properties of spacetime itself, while we know how to formulate 
quantum field theories only on fixed backgrounds. Therefore, if an (almost) ordinary 
QFT it should be, quantum gravity can only be a QFT on some auxihary, internal or 
"higher-leveF'space. What background (non-dynamical) structures in OR could provide 
such space. One is the internal, local symmetry group of the theory, i.e. the Lorentz 
group. This gives the primary motivation for using the Lorentz group (and related) in 
GFT. Another background structure is the configuration space of GR: the (meta-)space 

CPl 196, The Planck Scale, Proceedings of the XXV Max Born Symposium 
edited by J. Kowalski-Glikman, R. Durka, and M. Szczachor 

©2009 American Institute of Physics 978-0-7354-0733-6/09/$25.00 

209 

Downloaded 04 Apr 2013 to 194.94.224.254. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://proceedings.aip.org/about/rights_permissions



of (spatial) geometries on a given (spatial) topology, coined "superspace"by Wheeler. 
We will see that these two possibilities for the field domain in GFT actually coincide, 
because, as we have learned from loop quantum gravity, the set of possible geometries 
can be characterized in terms of (Lorentz) group elements. The other key ingredient of 
GFTs is their combinatorial non-locality. Consider a point particle in 0+1 dimensions, 
with action S{X) = \x^ + ^X^. This action defines a trivial dynamics (for a trivial 
system), of course. What interests us here, however, is the combinatorial structure of its 
"Feynman diagrams", i.e. the graphs that can be used as a convenient book-keeping tool 
in computing the corresponding partition function Z = JdXe^^^'^^^ perturbatively in A. 
These are simple 3-valent (because of the order of the "interaction") graphs. 

FIGURE 1. A Feynman graph for a point particle and the corresponding field theory 

The fact that the Feynman diagrams of the theory are simple graphs like the above fol­
lows from 1) the point-like nature of the particle, and 2) the locality of the corresponding 
interaction, encoded in the identification of X variables in the interaction term. 

The same structure of diagrams is maintained, because the local nature of the in­
teraction and the point-like nature of the corresponding quanta are maintained, also 
when moving to a field theory setting, i.e. going from the above particle dynamics to 
the corresponding field theory (still dynamically rather trivial), governed by the action: 
S{(p) = \ jdx^{xf + ^ jdx^{xf. The associated Feynman amplitudes have integra­
tions over position or momentum variables, but still, the combinatorics of the diagrams 
is the same. 

Now we move up in combinatorial dimension. Instead of point particles, let us con­
sider Id objects, that could be represented graphically by a line, with two end points. 
We label these two end points with two indices /, j , and we represent the fundamental Id 
objects by (e.g. orthogonal) matrices Mij. We want to move up in dimension also in the 
corresponding Feynman diagrams. We want diagrams corresponding to 2-dimensional 
structures. For this, we have to drop the assumption of locality. We define an action for 
M, given by S{M) = \MijMji + ^MijMjuMu. The racing of indices ij,kin the kinetic 
and vertex term represent identification of the points labeled by the same indices. This 
graphical representation of the Feynman diagrams used in evaluating the partition func­
tion Z = / !3Mij e"'5(^) gives 2-dimensional simphcial complexes of arbitrary topology, 
because obtained by arbitrary gluing of lines to form triangles (in the interaction vertex) 
and of these triangles to one another along common lines (as dictated by the propagator). 

Matrix models [5] have been quite successful in describing 2d quantum gravity. 
There is no obstruction to keep moving upward in combinatorial dimension. We can 

move from Id objects represented by matrices, with indices labeling the end points of the 
line, to 2d (closed) objects, represented by tensors, with indices labeling the boundary 
edges of the same 2d objects. The simplest combinatorial choice is that of triangles (2d 
simphces) and thus of tensors Tij^, with indices (representing the edges of the triangles) 
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FIGURE 2. A (piece of) Feynman diagram for a matrix model, of which we give both direct and dual 
(simpUcial) representation; the two parallel lines of propagation correspond to the two indices of the 
matrix; the extra line on the bottom indicates identification of the two edges of the triangles. 

traced out in the interaction term in such a way as to represent 3d objects, tetrahedra 
(3-simplices) bounded by such triangles. 

FIGURE 3. A (piece of) Feynman diagram for a tensor model, of which we give both direct and dual 
(simpUcial) representation; the three parallel lines of propagation (dual to the three edges in the triangles) 
correspond to the three indices of the tensor 

The process of combinatorial generahzation can be continued to tensor models whose 
Feynman diagrams are d-dimensional simphcial complexes. Moreover, while maintain­
ing the combinatorial structure of the theory, we can generalize matrix and tensor models 
in the direction of adding degrees of freedom, i.e. defining corresponding field theories. 
The tensor indices will be replaced by variables taking values in appropriate domain 
spaces. Choosing these spaces to be group manifolds, we obtain group field theories. 

The GFT field is a C-valued function of D group elements ^{gi,--,gd), for a group 
G, usually the SO{d — 1,1) Lorentz group (or SO{d) for Riemannian gravity). It is 
interpreted as the fundamental building block of quantum space, a second quantized 
(d-l)-simplex, and each argument corresponds to one of its boundary (d-2)-faces. One 
imposes invariance under diagonal action of the group G: (j){gi,...,gd) = (l>{gig, •••,gdg) 
to give closure of the d (d-2)-faces to form a (d-l)-simplex. The mode expansion gives: 

<CYV^^MKt^ 

with the / ' s labeling representations of G, the fe's being vector indices in the representa­
tion spaces, and the C's being group intertwiners, labeled by A. So, dually, the same field 
quanta can be interpreted and represented as spin network vertices for the group G. The 
GFT amphtudes will justify a geometric interpretation of the group variables as parallel 
transport of the gravity connection along elementary paths dual to the (d-2)-faces, and of 
the representations / as quantum numbers for volume operators for the same (d-2)-faces. 

The combinatorics of the field arguments in the action 

1 
s = ^ldgidgi<i>{gi)je'{gig7^)<j,{gi 

X 

{d+l)l 
dgij^{gij)--^{gd+ij)^{gijgji 

- i \ 
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<f ( g , g, gJ < — , W j , j . j . ) . 

FIGURE 4. The 3d example: the field, in group and representation picture, and its dual graphical 
representations as triangle and as spin network vertex 

is constructed so to obtain d-dimensional complexes F as Feynman diagrams. It de­
scribes the interaction of d+1 (d-l)-simphces to form a d-simplex by gluing them along 
their (d-2)-faces (arguments of the fields). The interaction is specified by the choice of 
function "V. The kinetic term involves two fields each representing a given (d-l)-simplex 
seen from one of the two d-simplices (interaction vertices) sharing it. Thus the function 
.X specifies how the geometric degrees of freedom are propagated across simplices. 

FIGURE 5. The 3d example: the simplicial representation of the interaction and of the propagation 

The resulting complexes/triangulations can have arbitrary topology, because each 
simphcial complex is built up by arbitrary gluings of d-simphces to one another. 

In representation space, each Feynman diagram is given by a spin foam (a 2-complex 
with faces / labeled by representation variables), and each Feynman amplitude by a 
spin foam model: Z(r) = L{/f} ̂ ({•^/}) • These models had been introduced in the loop 
quantum gravity approach to define the covariant dynamics of states of the quantum 
gravitational field, i.e. spin networks, and in fact transition amplitudes betwen given 
spin network states on the boundary is obtained in GFT as the expectation value of 
field operators having the same combinatorial structure of the two spin networks. The 
same representation variables in loop quantum gravity, have a geometric interpretation 
as quantum numbers of geometric operators, thus each of these Feynman amplitudes 
defines a sum-over-histories for discrete quantum gravity on the specific triangulation 
dual to the Feynman diagram. They can be understood, therefore, as a new implemen­
tation of the idea of simplicial gravity path integrals, like quantum Regge calculus and 
dynamical triangulations. To summarize: GFT incorporates many ingredients of other 
approaches to quantum gravity. Boundary states are spin networks, as in LQG, but they 
have a dual description as simplicial spaces, as in simphcial quantum gravity. Their dy­
namics is expressed as a covariant sum over quantum geometries as in spin foam models, 
or a discrete gravity path integral, as in quantum Regge calculus, but involves also a sum 
over inequivalent triangulations, as in the dynamical triangulations approach. 
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As an exphcit example, consider the Boulatov GFT model for 3d quantum gravity: 

S3d[(i>] = 2 y[^^]^^(^i'^2,^3)^(^3,^2,^1)+ 

- ^ y fe] ^Ul,^2,^3)^(^3,^4,^5)^U5,^2,^6)^(^6,^4,^1) (1) 

for a real field (j> : SU(2)^ —̂  M invariant under the diagonal right action of SU(2): 
^(^1,^2,^3) = ^Ui^,^2^,^3^) V^ G SU(2). 

The Feynman diagrams are dual to 3d triangulations. and the Feynman amplitudes are 

Ler- ' / LGdf 

with a single delta function on the group SIJlKzgfhi) for each 2-cell / in the Feynman 
diagram, dual to a single edge e of the simplicial complex, with argument given by the 
product of group elements hi each associated to a link in the boundary of the 2-cell. 

The same amplitude can be given in representation space: 

-(r)^(ni)n(y.+i)n{;;:| j: 
where the symbol for the vertex amphtude is the well-know 6j-symbol from the recou-
pling theory of angular momentum This is the Ponzano-Regge spin foam model. 

At this stage the connection with simplicial path integrals is rather indirect, but still 
very clear. Consider the continuum 3d gravity action: 

S{e,(0) = / tr{eAF{(0)), 
J J( 

with variables the triad 1-form / (x) G su{2) and the 1-form connection (>)\x) G su{2), 
with curvature F{(>)). Introducing the simplicial complex A and its topological dual 
cellular complex, we discretize the triad in terms of Lie algebra elements associated 
to the edges of the simphcial complex as Ee = Ef = Jge{x) = E^Ji G 5u(2), and the 
connection in terms of parallel transports along links of the dual complex as gL = e î® G 
SU(2). The discrete curvature is given by: Gf = Gg = HiGd/gL = e^^ G SU(2), and a 
discrete counterpart of the continuum action is: . S{E,g) = L/er f {Ef Gf). 

The path integral for this discrete theory on the simplicial complex A is equal to the 
previously computed GFT Feynman amplitude Z(r for the diagram F dual to A: 

moFT =n dEf 11 dg.e^^M^f^f) = Udg.UHGf), 
f •'s"(2) L •'SU(2) I ./SU(2) y 

which, as we have seen, can be also expressed as a function of group representations jg. 
From all this, we also learn that spin foam models can be seen as a way of re-writing 

simphcial gravity path integrals expressed in connection (group) variables. 
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SOME RECENT RESULTS 

Group field theory renormalization and the sum over topologies 

An area of recent developments [10,11] has been the application of quantum field the­
ory techniques to GFTs, to gain a better understanding and control over its perturbative 
expansion, using tools from renormalization theory. 

GFTs define a sum over simplicial complexes 1) of arbitrary topology and 2) that cor­
respond, in general, to pseudo-manifolds, i.e. contain conical singularities at the vertices. 
The issue of controlling the sum over topologies, and of identifying an approximation 
in which simple topologies dominate, has an analogue in the context of matrix models 
[5]. In matrix models, it has been shown that, in the so-called large-N limit, diagrams 
of trivial topology (S^ in the compact case) dominate the perturbative sum. The issue 
of controlling the relative weight of manifolds and pseudo-manifolds in the perturbative 
sum arises instead only in dimensions D > 2 and it has represented an obstacle to the 
development of tensor models. A third issue is to identify and control the divergences 
that arise in this pertrbative expansion, which are of two types: a) divergences in the 
sum over (pre-)geometric data (group elements or group representations) for each am­
plitude associated to a given simplicial complex; b) the divergence of the entire sum over 
simphcial complexes. 

The work of [10] makes the first steps toward solving these three issues, leaving 
aside 3b), starting a systematic study of OFT renormalization, in the context of the 
Boulatov model for 3d (Riemannian) quantum gravity, that we have discussed above. 
The divergences of this model are related to the topology of the bubbles (3-dimensional 
cells), dual to vertices of the simplicial complex, in the Feynman diagrams, but it is 
difficult to estabhsh which diagrams need renormalization in full generality, mainly due 
to the very complicated topological structure of 3D simplicial complexes, after a scale 
is introduced in the theory by an exphcit cut-off in the spectral decomposition of the 
propagator. What is achieved in [10] is the following: 

• a detailed algorithm is given for identifying bubbles (3-cells) in the Feynman 
diagrams of the model, together with their boundary triangulations, which in turn 
can be used to identify the topology (genus) of the same boundary. 

• using this algorithm, the authors are able to identify a subclass of Feynman dia­
grams which allow for a complete contraction procedure, and thus the ones that al­
low for an almost standard renormalization; moreover, this class of graphs, dubbed 
"type l"is shown to be a natural generahzation of the 2d planar graphs of matrix 
models, thus suggesting that they can play a similar role in GFTs to that of pla­
nar diagrams in matrix models. Notice also that the existence of such contraction 
procedure can be seen as a sort of generalised locahty property 

• for this class of diagrams, an exact power counting of divergences is proven, 
according to which their divergence is of the order: 

A r = (5^( / ) ' 
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where | ^ r | is the number of bubbles in the diagram F, and 5^(7) is the delta 
function on the group, with cut-off A, evaluated at the identity /. 

On the basis of these results, of the experience gained with esplicit evaluation of 
Feynman amplitudes, and of a better understanding of the combinatorial structure of the 
Feynman diagrams, it is then possible to put forward two main conjectures, obviously 
confirmed in all examples considered: 1) that all "type F'diagrams correspond to man­
ifolds of trivial topology; and 2) that an appropriate generahzation of the usual scaling 
limit (large-N) of matrix models to these GFT would lead to the relative suppression of 
all the "non-type F'diagrams, and thus leave us with: only type 1 diagrams in need for 
renormahzation, and only manifolds of trivial topology in the theory. 

A different perspective on GFT divergences is taken in [11], which also tackles the 
difficult issue of the summabihty of the entire perturbative sum (thus including the sum 
over topologies). The authors consider both the Boulatov model and a modification of 
the same proposed in [12], obtained adding a second interaction term in the action: 

A5 
4! . , 

1=1 

6 „ 

n /^^>[^(^l'^2,^3)^(^3,^4,^5)^(^4,^2,^6)^(^6,^5,^1)]- (2) 

The new term corresponds to the only other possible way of gluing 4 triangles to form 
a closed surface. This mild modification gives a Borel summable partition function [12]. 
This shows that a control over the sum over topologies and a non-perturbative definition 
of the corresponding GFT is feasible. 

For both the Boulatov model and the modified one, the authors of [11] establish gen­
eral perturbative bounds on amphtudes using powerful constructive techniques, rather 
than focusing on explicit power counting or Feynman evaluations. They find that, using 
the same regularization used in [10], the amplitudes of the Boulatov model for a diagram 
with n vertices, are bounded, with cut-off A, by K^i^e+inli^ ^^^ some arbitrary positive 
constant K, while the modifed model has amplitudes bounded by 2^«A^+^", and that both 
bounds can be saturated. This result shows that the Freidel-Louapre modification (BFL), 
even though Borel summable, is perturbatively more divergent that the original model. 

The second main result of [11] rehes again on constructive field theory techniques. A 
cactus expansion of the BFL model is obtained, and used to prove the Borel summability 
of the free energy of the model and to define its Borel sum. We can expect more 
apphcations of these techniques to other GFT models, also in higher dimensions. 

Emergent non-commutative matter fields from group field theories 

The last set of results we want to mention are interesting steps in the direction of 
bridging the gap between the microscopic GFT description of quantum space (and the 
language of spin networks, simplices, spin foams, etc) and macroscopic continuum 
physics, including usual General Relativity and quantum field theories for matter. In 
fact, this problem is faced by all discrete approaches to quantum gravity[l]. 

One would expect [9] a generic continuum spacetime to be formed by zillions of 
Planck size building blocks, and thus to be, from the GFT point of view, a many-particle 
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system whose microscopic theory is given by some fundamental GFT action. This 
suggests us to look for ideas and techniques from statistical field theory and condensed 
matter theory, and to try to apply/re-interpret them in a GFT context. 

Condensed matter theory also provides examples of systems in which the collective 
behaviour of the microscopic constituents, in some hydrodynamic approximation, gives 
rise to effective emergent geometries from the collective variables themselves[13]. What 
happens is that the collective parameters describing the fluid and its dynamics can be re­
cast as the component functions of an effective metric field, and that the effective dynam­
ics of perturbations (quasi-particles, themselves collective excitations of the fundamental 
constituents of the fluid) takes the form of matter field theories in curved spacetimes, on 
the same effective metrics. Inspired by these results, we ask: assuming that a given GFT 
model (Lagrangian) describes the microscopic dynamics of (the fundamental building 
blocks of) a discrete quantum spacetime, and that some solution of the corresponding 
fundamental equations can be interpreted as identifying a given quantum spacetime con­
figuration, 1) can we obtain an effective macroscopic continuum field theory for matter 
fields from it? and if so, 2) what is the effective spacetime and geometry that these emer­
gent matter fields see? As it turns out, it is possible [8] to apply the same procedure to 
GFT models and obtain rather straightforwardly effective continuum field theories for 
matter fields. The effective matter field theories that we obtain most easily are QFTs on 
non-commutative spaces of Lie algebra type. 

The basic point is the use of the same natural duality between Lie algebra and corre­
sponding Lie group, interpreted as the non-commutative version of the usual duality be­
tween coordinate and momentum space. More precisely, if we have a non-commutative 
spacetime of Lie algebra type [Xju,Xv] = CfiyXi, the corresponding momentum space 
is naturally identified with the corresponding Lie group, in such a way that the non-
commutative coordinates X^ act on it as (Lie) derivatives (as we expect in the quantum 
setting). The link with GFTs is then obvious: in momentum space the field theory on 
such non-commutative spacetime will be given, by definition, by some sort of group 
field theory. The task will then be to derive the relevant field theories from matter from 
interesting GFT models of quantum spacetime. 

In 3 spacetime dimensions the results obtained recently [14] concern the euclidean 
signature and a non-commutative spacetime given by the 5u(2) Lie algebra, and we 
start again from the Boulatov GFT model. We look [14] at two-dimensional variations 
8(j>{gi,g2,g3) = y^igig^^) around a class of GFT classical solutions (they can be inter­
preted as quantum flat space on some a priori non-trivial topology) given by: 

<P^'\gi,g2,g3) = \jj ldg5{g,g)F{g2g)5{g3g), F:G^R, JF^ = \ (3) 

The effective action is then: 

Seffiw] ^ S3A<l>^'^ + Y]-S3M^'h = \f¥{g)^{g)¥{g-')-

- J^J[dgfw{glMg2)¥{g3)5{glg2g3)-^J[dg]'^¥{gl)-Mg4)5{gl..g4) 
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with the kinetic term and the 3-valent coupling given in term of F: 

^ ( ^ ) = l - 2 ( / ^ ) - jdhF{h)F{hg), 

with F{g) assumed to be invariant under conjugation F{g) = F{hgh^^). This is a non-
commutative quantum field theory invariant under the quantum double of SU(2) (which 
provides a quantum deformation of the Poincare group ISU(2)). 

Expanding F in group characters: F{g) = Y.j£nj2p}X}i.s)^ where j G N label irre­
ducible representations of SU(2), the kinetic term reads: 

^ U ) = 1 - 3 F 2 - ^ ^-^Xj{g) =Y,Ff f 1 - ^ ) - 2 F 2 ^ Q\g)-M\ (4) 

We can interpret Q^{g) > 0 as a generahzed "Laplacian", and FQ as a "gravita-
tionaF'mass M^. For the simple classical solution F{g) = a + V^l^-a^Xi is)^ we obtain 

J^{g) = ^{l-a^)p^-2a\ (5) 

Similar results have also been obtained in the 4d context [15, 8]. It has been shown that 
from GFT models (indirectly) related to 4d quantum gravity, it is possible to derive effec­
tive non-commutative matter field theories of "deformed special relativity"type, based 
on momentum group given by AN(3) « S0{4, l)/S0{3,1) and a non-commutative K-
Minkowski spacetime: [xo,Xi] = iKxf, these field theories form the basis for much current 
work in the area of quantum gravity phenomenology [16]. 

Work in this direction, therefore, including these recent and preliminary results, is a 
step in bridging the gap between the fundamental discrete theory of spacetime we have at 
hand, and a continuum description of spacetime, and getting closer to possible quantum 
gravity phenomenology, thus bringing this class of models a bit closer to experimental 
falsifiability. Let us also notice that, contrary to the situation in analog gravity mdoels 
in condensed matter, we have here models which are non-geometric and far from usual 
geometrodynamics in their formahsm, but which at the same time are expected to encode 
quantum geometric information and indeed to determine, in particular in their classical 
solutions, a (quantum and therefore classical) geometry for spacetime [2]. We are, in 
other words, far beyond a pure analogy. 

CONCLUSIONS 

We have introduced the key ideas behind the group field theory approach to quantum 
gravity, and to the microscopies of quantum space, and the basic elements of its for­
malism. We have also briefly reported on some recent results obtained in this approach, 
concerning both the mathematical definition of these models, and possible avenues to­
wards extracting interesting physics from them. From our outline it should be clear that, 
while much more work is certainly needed in this area of research, the new direction to­
ward quantum gravity that group field theories provide is exciting and full of potential. 
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