PRL 105, 261101 (2010)

PHYSICAL REVIEW LETTERS

week ending
31 DECEMBER 2010

Analytic Modeling of Tidal Effects in the Relativistic Inspiral of Binary Neutron Stars

Luca Baiotti,"> Thibault Damour,>* Bruno Giacomazzo,>%’ Alessandro Nag.aur,3 and Luciano Rezzolla’”®

Unstitute of Laser Engineering, Osaka University, Suita, Japan
*Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan
3Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France
*ICRANet, Pescara, Italy
*Department of Astronomy, University of Maryland, College Park, Maryland, USA
SGravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
"Max-Planck-Institut fiir Gravitationsphysik, Albert-Einstein-Institut, Potsdam, Germany
8Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, USA
(Received 29 June 2010; published 22 December 2010)

To detect the gravitational-wave (GW) signal from binary neutron stars and extract information about
the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate
templates. We present the two longest (to date) general-relativistic simulations of equal-mass binary
neutron stars with different compactnesses, C = 0.12 and C = 0.14, and compare them with a tidal
extension of the effective-one-body (EOB) model. The typical numerical phasing errors over the =~ 22 GW
cycles are A¢ =~ *0.24 rad. By calibrating only one parameter (representing a higher-order amplification
of tidal effects), the EOB model can reproduce, within the numerical error, the two numerical waveforms
essentially up to the merger. By contrast, the third post-Newtonian Taylor-T4 approximant with leading-
order tidal corrections dephases with respect to the numerical waveforms by several radians.
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Introduction.—Inspiralling binary neutron stars (BNSs)
are among the strongest sources of gravitational waves
(GWs) and certain targets for the advanced and new-
generation ground-based GW detectors LIGO, Virgo,
GEO, and ET [1]. These detectors will be sensitive to the
inspiral GW signal up to GW frequencies of about 1 kHz,
which are reached just before the merger. The late inspiral
signal will be influenced by tidal interaction between the
two neutron stars (NSs), which, in turn, encodes important
information about the equation of state (EOS) of matter at
nuclear densities. However, to reliably extract such infor-
mation, both a large sample of numerical simulations and
an analytical model of inspiralling BNSs which is able to
reproduce them accurately are needed. In this Letter we
report on significant progress on this problem by present-
ing the longest (to date) simulations of merging equal-mass
BNSs and by showing how to use them to calibrate an
effective-one-body (EOB) model of tidally interacting
BNSs.

Numerical simulations of merging BNSs in full general
relativity have reached a high level of accuracy and have
become more realistic (e.g., with the inclusion of magnetic
fields) only recently [2-5]. The analytical description of
tidally interacting binary systems has been initiated very
recently [6-9], with the following two major results. First,
the dimensionless quantity k, (Love number) in the (grav-
itoelectric) tidal polarizability —parameter Gu, =
2k¢R*“*1/(2¢ — 1)!! measuring the relativistic coupling
(of multipolar order €) between a NS of radius R and the
external gravitational field in which it is embedded has
been found to be a strongly decreasing function of the
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compactness parameter C = GM/(c*?R) of the NS.
Second, a comparison between the numerical computation
of the binding energy of quasiequilibrium circular sequen-
ces of BNSs [10] and the EOB description of tidal effects
[9] has suggested that higher-order post-Newtonian (PN)
corrections to tidal effects effectively increase by a factor
of order 2 the tidal polarizability of close NSs. The main
aim of this Letter is to extend the domain of applicability of
the EOB method [11], from the inspiralling-binary-black-
hole (BBH) case (for which it recently provided a very
accurate analytic description [12,13]), to the yet unex-
plored case of inspiralling BNSs. To this aim we have
performed two accurate and long-term BNS simulations
covering approximately 20-22 GW cycles of late inspiral,
and we will show that they can be reproduced accurately
almost up to the merger by a new tidal extension of the
EOB model.

Tidal corrections in the EOB approach.—We recall
that the EOB formalism [11] replaces the PN-expanded
two-body dynamics by a resummed description
with, in particular, a Hamiltonian of the form

Hgop = Mcz\/l + 2v(H; — 1), where M = M, + My
is the total mass and where v = M, Mpy/(M, + Mp)? is
the symmetric mass ratio. Here the “effective
Hamiltonian” H is a simple function of the momenta
and it incorporates the relativistic gravitational attraction
mainly through the so-called “EOB radial potential” A(r).
The structure of A(r) is remarkably simple at 3PN:
AN =1 — 2u + 2vi® + ayvu®, where a, =
94/3 — (41/32)7%, and u = GM/(c*rsp). An excellent
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description of BBHs has been found to be given by [12]
A%r) = PI[1 = 2u + 2vi® + ayvu* + asvu’® + agvu®],
where P%, denotes an (n, m) Padé approximant and where
values of the coefficients as = —6.37, ag = +50 provide a
very good agreement between EOB and numerical-
relativity (NR) waveforms for BBHs [12] (the results
presented here are insensitive to this choice as long as as
and a¢ are chosen in a well-defined range). Reference [9]
suggested to include tidal effects as corrections to both the
radial potential and the waveform (and radiation reaction).
The tidally corrected radial potential reads A(u) =
A%(u) + Atdal(y) where

Atidal — Z _ K£u2€+2A?dal(u). (1)
=2
Here «7u?‘*? describes the leading-order (LO) tidal inter-
actions. It is a function of the two masses, of the two
compactnesses C, g, and of the two (relativistic) Love
numbers k?‘B :

o MgM?® ki

= +{A - B}. 2
Ky (M, +MB)2€HC%“ { } 2

The additional factor A‘}dal(u) in Eq. (1) represents the
effect of higher-order relativistic contributions to the tidal
interactions: next-to-leading order (NLO), next-to-next-to-
leading order (NNLO), etc. A number of different prescrip-
tions can be considered for the correcting tidal factor A{d!,
and these will be presented in a longer companion work
[14]. Here, we will limit ourselves to an €¢-independent,
“Taylor-expanded” expression AW (y) =1+ au +
@,u’ [9], where @, are pure numbers in the equal-mass
case, but functions of My, C4, and k? in the general case.
The analytical value of the (£ = 2) 1PN coefficient @, has
been reported in [9] (and recently confirmed in [15]). In the
equal-mass case, it is @; = 1.25. We will use this analyti-
cal value in the following and use our simulations to
constrain the value of the 2PN coefficient &,. Similarly,
one takes into account an € = 2 tidal correction to the
waveform and radiation reaction, as given at LO in
Sec. V of [9]. Additional coefficients parametrizing
higher-order tidal relativistic contributions in the wave-
form and radiation reaction [such as (; in Eq. (71) of
[9]] were found to have a small effect [14] and will be
neglected here. In principle, tidal effects can also be ac-
counted for via modifications of one of the nonresummed
PN models, such as the Taylor-T4 one; see below for its
comparison with the NR results.

In order to measure the influence of tidal effects, it is
useful to consider the ““phase acceleration” @ = dw/dt =
d>¢/dr*, where ¢ = ¢, is the phase of either the curva-
ture or of the metric £ = m = 2 GWs. The function & ()
is independent of the two “‘shift ambiguities™ that affect
the GW phase ¢(¢), namely, the shifts in time and phase,
and thus a useful intrinsic measure of the quality of the
waveform [16]. Here we use another diagnostic to measure
the phase acceleration, namely, the dimensionless function

dé wdd/dt o
Cul@) = e ™ dejdl & ©)

Numerical simulations.—They were performed with the
CACTUS-CARPET-WHISKY [17] codes, and, in essence, we
use the same gauges and numerical methods already dis-
cussed in [2]. As initial data we use quasiequilibrium
irrotational binaries generated with the multidomain
spectral-method code LORENE, within a conformally flat
spacetime metric [18]. The EOS of the initial data is the
polytropic one p = Kpr, where p, p, K = 123.6,and I" =
2 are the pressure, rest-mass density, polytropic constant,
and adiabatic index, respectively (in units where ¢ = G =
M, = 1). The evolutions are instead performed with either
a polytropic EOS or an “ideal-fluid” one, p = pe(I’ — 1),
where € is the specific internal energy; the differences in
phasing introduced by the different EOSs are of order
*0.13 rad [14]. Because the stellar compactness represents
the most important parameter determining the size of tidal
effects, we have considered two different (equal-mass)
binaries having total Arnowitt-Deser-Misner (baryonic)
mass of either 2.69 (2.89) M, or 3.00 (3.25) M, thus
with compactnesses C =C, = Cp = 0.12 or C = 0.14.
The dominant (€ = 2) tidal parameters for the two com-
pactnesses C = 0.12 (01.4) are found to be [7], respectively,
ky = k5 = k8 = 0.009 69 (0.07894), and therefore « =
496.01 (183.81). Hereafter the two binaries will be referred
to as M2.9C.12 and M3.2C. 14, respectively. The number of
refinement levels and their resolutions are the same as those
in [2], but the initial coordinate separation between the
stellar centers is 60 km, considerably larger than the one
considered in [2]. This yields about 10 orbits before merger,
thus the two longest BNS waveforms produced to date.

Discussion.—We start our comparison between the NR
results and the EOB ones by showing in Fig. 1 the Q,
diagnostics for various possible LO-NLO tidal models and
for scaled GW frequencies Mw =< 0.06 [i.e., up to 3
(5) GW cycles before merger for the M29C.12
(M3.2C.14) binary]. [We have estimated the NR Q, by
fitting each NR phase evolution on a (scaled) frequency
interval I = [0.043,0.057] with an analytical expression
that reproduces at lower order the behavior expected from
the PN approximation, thereby filtering out the amplified
numerical noise coming from the two time derivatives in
@ = d>¢/dr* (more details will be presented in [14]).]
The first thing to note is that both the tidal-free EOB model
(EOB™F, dotted line) and the EOB model including only
LO tidal corrections (EOBLO, dot-dashed line) are clearly
unable, both for the M2.9C.12 (upper panel) and the
M3.2C.14 binaries (lower panel), to match the correspond-
ing NR curves (dashed line with open circles). The dephas-
ing accumulated over the frequency interval 1,

A, GEOBNR = j (QEOB — ONRYj Inw, “
I

by the EOBC model relative to the C = 0.12 (0.14) NR
data, is about 5.5 (2.0) rad. This is much larger than the NR

261101-2



PRL 105, 261101 (2010)

PHYSICAL REVIEW LETTERS

week ending
31 DECEMBER 2010

300
280 -

260 fo

Q. [curvature]

M2.9C.12

' 4
t +
-e-

Q. [curvature]

M3.2C.14

L L L L L L L L L
0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06

Muw [curvature]

FIG. 1 (color online). Comparison of the EOB Q, curves for
different choices of the effective tidal amplification factor
AUl (y) = 1 + @,u + a,u?, with the corresponding NR ones
(dashed lines with open circles) for the two binaries considered.
The dotted line corresponds to the ‘“tidal-free” (or ‘‘point-
mass’’) EOB, namely, when ignoring tidal effects. The figure
also includes two Taylor-T4 models: tidal-free and augmented
by LO tidal effects.

phasing error, related to a finite-radius extraction and EOS
dependence, estimated to be A¢ = £0.24 [14].

The inclusion of the NLO 1PN tidal effect (&, = 1.25
[9]) only slightly reduces these dephasings to about 4.9
(1.8) rad (EOBN'© curves in Fig. 1). This clearly indicates
the need for NNLO (2PN and higher) tidal effects. We then
found that choosing @, = 130 yields a good match
between the Q,, curves (solid line, EOBNNL0) and the NR
data (dashed line with open circles) for both binaries, with a
corresponding phase difference A;pFOBNR ~ (.1 rad. The
value @&, = 130 is probably only an effective description of
higher-order relativistic tidal effects. Moreover, the precise
value of &,, or more generally of the amplification factor
AUl(y), is sensitive to the numerical truncation error. When
considering resolution-extrapolated GWs [14], we found a
smaller value of @,, which is compatible with the estimate
obtained using the binding energy of circular BNSs [10].

Figure 1 also reports the Q, diagnostics obtained
when using two versions of the Taylor-T4 approximant:
the tidal-free model (T4, magenta, upper solid line) and
the Taylor-T4%© one (thick dashed line). The latter model
includes only the LO tidal effects [6], i.e., the LO tidal
contribution al(x) o« kIx° to dx/dt [where x=
(Mw/2)*3; see [8] and Egs. (86)—(88) of [9]]. Note that
the tidal-free Taylor-T4 Q,, curve nearly coincides with the
tidal-free EOB one, with a dephasing A;¢T™EOB =
0.013 rad. On the other hand, the /-integrated dephasings

between the T4© description and the NR results are rather
large, namely, A;¢™R = 6,96 (2.53 rad) for C = 0.12
(0.14). We have investigated whether a suitable PN-
amplification factor a%"4(x) = 1 + aT*x + al*x> of
a'(x) might accurately reproduce the NR data, but we
found that this was not possible with a single choice of
a14l(x) for the two simulations [14]. The latter result
suggests that the EOB modeling of tidal effects may be
more robust than the corresponding Taylor-T4 one.

We next consider the comparison of the waveforms in
the time domain and over the full inspiral up to the merger.
This is shown in Fig. 2, whose left-hand panels refer to the
M2.9C.12 binary and the right-hand ones to M3.2C.14. The
top parts compare the (real part) of the EOBNNLO (with
a, = 1.25, @, = 130) and the NR metric h,, waveforms,
while the bottom panels show the corresponding phase
differences, A@FOBNR(r) = HFOB(r) — pNR(¢) (suitably
shifted in time and phase a la [19]). The two vertical lines
indicate two possible markers of the “‘time of the merger”;
more specifically, the dashed lines refer to the NR merger,
defined as the time at which the modulus of the metric NR
waveform reaches its first maximum, while the vertical
dash-dotted line represents the EOB estimate of the ‘“for-
mal”’ contact [9]. Figure 2 clearly shows that the agreement
in the time domain between the analytic EOB description
and the numerical one is extremely good essentially up to
the merger, with a phase error which is well within the
estimated error bar. More precisely, (i) in the M3.2C.14
case, the phase difference A@FOBNR(f) varies between
—0.1 rad in the early inspiral and +0.04 rad at the NR
merger; (ii) in the M3.2C.12 case, A@FOBNR(y) s
—0.15 rad both in the early inspiral and as late as 130 M
(i.e., approximately 1.5 GW cycles) before the NR merger.
For the latter binary, it is only just before the NR merger
that the dephasing becomes of order 1 rad.

Conclusions.—We have presented the first NR-EOB
comparison of the GWs emitted during the inspiral of
relativistic BNSs. In particular, we have analyzed the
longest to date numerical simulations of equal-mass, irro-
tational BNSs with two different compactnesses. We found
that tidal effects are significantly amplified by higher-order
relativistic corrections (2PN and higher) and that the in-
clusion of such corrections is necessary for an accurate
phasing of the GW signal. Such an amplification is equiva-
lent to a (distance-dependent) effective increase of the
Love numbers. When a single choice for the unique free
parameter in the NNLO term is made, the EOB model is
able to reproduce the two NR phase evolutions well within
the estimated NR error and essentially up to merger (and in
fact up to merger in the C = 0.14 case). By contrast, we
have shown that the use of the Taylor-T4 PN approximant
considered in [8] leads to phase disagreements (over the
frequency interval I = [0.043,0.057]) A;¢pT™ R = 6.96
(2.53) rad for C = 0.12 (0.14).

The work reported here provides the first evidence that
an accurate analytic modeling of the late inspiral of tidally
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Comparison between NR and EOB phasing for the M2.9C.12 (left-hand panels) and M3.2C.14 (right-hand

panels) binaries. The top panels show the real parts of the h,, waveforms, while the bottom panels show the corresponding phase
differences. Note the excellent agreement almost up to the time of merger (vertical dashed and dot-dashed lines) and the very large

errors when tidal effects are neglected (dotted line).

interacting BNSs is possible, thereby opening the possibil-
ity to extract reliable information on the EOS of matter at
nuclear densities from the data of the forthcoming
advanced GW detectors. These encouraging results, how-
ever, also call for a continued synergy between more
accurate numerical simulations (notably, exploring differ-
ent mass ratios) and higher-order analytic results.
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