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Abstract Human pluripotent stem cells hold great promise
for basic research and regenerative medicine due to their
inherent property to propagate infinitely, while maintaining
the potential to differentiate into any given cell type of the
human body. Since the first derivation in 1998, pluripotent
human embryonic stem cells (ESCs) have been studied
intensively, and although these cells provoke ethical and
immune rejection concerns, translation of human ESC re-
search into the clinics has been initiated. The generation of
embryonic stem cell-like human induced pluripotent stem
cells (iPSCs) from somatic cells by virus-mediated over-
expression of distinct sets of reprogramming factors
(OCT4, SOX2, KLF4, and c-MYC, or OCT4, SOX2,
NANOG, and LIN28) in 2007 has opened up further oppor-
tunities in the field. While circumventing the major disputes
associated with human ESCs, iPSCs offer the same advan-
tages and, in addition, new perspectives for personalized

medicine. This review summarizes technical advances to-
ward the generation of potentially clinically relevant human
iPSCs. We also highlight key molecular events underlying
the process of cellular reprogramming and discuss inherent
features of iPSCs, including genome instability and epige-
netic memory. Furthermore, we will give an overview of
particular envisaged human iPSC applications and point out
which improvements are yet to come and what has been
achieved so far.
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Introduction

Human pluripotent stem cells, which have the ability to self-
renew indefinitely and to form derivatives of all three em-
bryonic germ layers, are of great value for basic research
and potential applications in the clinics. Besides teratoma-
derived embryonal carcinoma cells and embryonic germ
cells, biomedical research has focused on human embryonic
stem cells (ESCs) as the gold standard of human pluripotent
stem cells ever since their derivation by Thomson et al. in
1998 [1]. However, ethical as well as immune rejection
concerns are two major issues associated with the utilization
of human ESCs in basic and translational research. These
conflicts were overcome with the groundbreaking achieve-
ment of generating human induced pluripotent stem cells
(iPSCs), which are pluripotent stem cells derived from so-
matic cells mediated by the ectopic expression of four
transcription factors, namely OCT4, SOX2, KLF4, and c-
MYC [2], or OCT4, SOX2, NANOG, and LIN28 [3]. This
review briefly summarizes the recent technical progress that
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has been made regarding the generation of human iPSCs,
highlights key molecular mechanisms underlying and asso-
ciated with the process of cellular reprogramming, and
illustrates areas of potential applications of human iPSCs
emphasizing their value for personalized medicine (Fig. 1).

Generation and mechanisms

Techniques to generate human iPSCs

Since the first generation of human iPSCs, retro- or lentivi-
ral overexpression of the reprogramming factors has proven
to be a robust and efficient way of inducing pluripotency in
somatic cells. Efforts have been made to reduce or avoid
integration of foreign DNA into the target cells' genomes in
order to minimize unpredictable effects of random integra-
tions. To this end, both the identification of small molecules,
which enhance the efficiency of cellular reprogramming,

and the use of different somatic cell types at distinct devel-
opmental stages as starting material have facilitated the
reduction of the number of integrating vectors required to
induce pluripotency. Valproic acid (VPA), a histone deace-
tylase inhibitor, for instance, has been shown to increase the
efficiency of three factor-mediated reprogramming (OCT4,
SOX2, KLF4) and facilitated the generation of human
iPSCs by only two factors, namely OCT4 and SOX2 [4].
Furthermore, VPA in combination with 8-bromoadenosine
3′, 5′-cyclic monophosphate (8-Br-cAMP), an analog of
cyclic AMP, enhanced the induction of pluripotency in
human fibroblast cells [5]. Interestingly, vitamin C also
mediated the generation of human iPSCs with greater effi-
ciency [6]. Similarly, combined small molecule-based mod-
ification of distinct signaling pathways involved in the
reprogramming process has been shown to greatly increase
the efficiency of reprogramming using fewer reprogram-
ming factors on distinct cell types. This is particularly inter-
esting as supplementation with single molecules may not be

Fig. 1 Hallmarks of cellular reprogramming and applications of human
iPSCs. Somatic cells obtained from any given donor can be reprogrammed
to iPSCs using a number of different techniques. Key molecular events that
mark this de-differentiation process include global chromatin remodeling,
circumvention of p53-induced cell cycle arrest, reprogramming of mito-
chondria and, in close context, the energy metabolism toward increased
glycolysis and decreased mitochondrial oxidative phosphorylation
(OXPHOS), and the process of mesenchymal-to-epithelial transition
(MET). Once human iPSCs lines from healthy or diseased individuals have

been established and fully characterized, they offer unprecedented oppor-
tunities in personalized regenerative medicine. Human iPSCs are valuable
tools for studying early developmental processes, to model human diseases
in a dish, thereby enabling the identification of new diagnostic markers and
tools and potential new drug targets, and to perform large-scale toxicity and
drug screens upon differentiation into other appropriate cell types. Eventu-
ally, human iPSCs are envisaged to directly treat a particular condition of
the donor through cellular replacement therapy, if needed, by transplanta-
tion of genetically corrected autologous cells
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as efficient as the simultaneous addition of several chemicals
[7]. To this end, transient treatment with defined cocktails
including, for instance, the ALK4/5/7 inhibitors SB431542
and A-83-01, the MEK inhibitor PD0325901, the GSK-3
inhibitor CHIR99021, the inhibitor of lysine-specific demethy-
lase 1 Parnate (also known as tranylcypromine), the allosteric
activator of 3′-phosphoinositide-dependent kinase-1 (PDK1)
PS48, the histone deacetylase inhibitor sodium butyrate (NaB),
thiazovivin, p160 Rho-associated coiled-coil kinase (ROCK)
inhibitor HA-100, and human leukemia inhibitory factor
could enhance distinct reprogramming protocols in various
somatic cell types, e.g., induction of pluripotency in kerati-
nocytes by overexpression of only OCT4 [7–10]. An alter-
native approach for reducing the number of genomic
integrations includes the development of single vectors,
which encode all necessary reprogramming factors and that
could potentially be excised from the iPSCs' genomes fol-
lowing acquisition of the fully reprogrammed embryonic
stem cell-like state [11–14]. To date, the generation of
genetically unmodified human iPSCs has been mediated
by transduction of non-integrating adenoviruses [15] or
RNA-based Sendai viruses [16], repeated transfection of
expression plasmids [17] or repeated electroporation of epi-
somal plasmids [9, 18] or so-called mini circle DNA [19],
all of which encode the required reprogramming factors. In
contrast to these approaches, Kim et al. treated neonatal
fibroblasts with recombinant versions of the reprogramming
factor proteins to induce pluripotency [20]; however, this
approach was very inefficient. The most recent strategies to
de-differentiate human somatic cells included repeated trans-
fection of reprogramming factor-encoding, synthetically
modified mRNAs [21] and overexpression of human
embryonic stem cell-specific miRNAs, either by lentivi-
ral transduction [22] or by transfection of cocktails of
mature miRNAs [23]. However, reproducing studies
have yet to be published. A critical review of the in
vitro derived mRNA-based reprogramming protocol has
revealed major obstacles that need to be addressed be-
fore this technique becomes routinely applicable for
successful cellular reprogramming [24].

As a result of the combined efforts to efficiently generate
pluripotent cells, while avoiding genomic alterations, a wide
range of human somatic cells have been reprogrammed, in-
cluding melanocytes [25]; cord blood-derived cells [9, 26,
27]; adult peripheral blood cells [26, 28, 29]; cells obtained
from adipose tissue [6, 9, 23, 30]; hepatocytes [31], and
amniotic fluid [10, 32–34]; and chorionic villi-derived cells
[34] amongst others.

Molecular events underlying cellular reprogramming

Despite a basic understanding of the OCT4, SOX2,
NANOG-regulated transcriptional regulatory network that

shapes the undifferentiated human pluripotent stem cell
identity [35–37], our knowledge of distinct pathways and
mechanisms involved in the conversion of the somatic into
the pluripotent phenotype is limited. We, therefore, in a
recent study analyzed early events triggered by retroviral
transduction of the reprogramming factors OCT4, SOX2,
KLF4, and c-MYC—the original method that has proven to
be very robust with respect to inducing pluripotency in
somatic cells. One of the key findings was that, levels of
reactive oxygen species (ROS) increased significantly upon
viral transduction, leading to DNA damage and ultimately to
the activation of p53, which is responsible for arresting cell
cycle and inducing apoptosis and senescence. Hence, we
found transcripts involved in apoptosis, cell cycle regula-
tion, and aging to be over-represented [38]. These findings
are in line with the observations that direct or indirect, stable
or transient downregulation of p53 enhances cellular reprog-
ramming in mouse and human somatic cells [5, 39–44].
Hence, overcoming this hurdle is a crucial step in acquiring
a pluripotent state.

Furthermore, suppression of the epithelial-to-mesenchymal
transition and promotion of the reverse process, the
mesenchymal-to-epithelial transition (MET), have been
shown to be another critical step in the process of cellular
reprogramming of mouse cells of mesenchyme origin
[45–47]. Likewise, in a meta-analysis, we identified the initi-
ation of MET as an early reprogramming event in human
fibroblasts [38] eventually resulting in the establishment of
the epithelial ESC-like phenotype characterized by multiple
cell–cell adhesion complexes [48–50]. This is also supported
by the ameliorating effect of TGFβ pathway and GSK3
inhibitors on cellular reprogramming [7–10].

Especially in order to enable access of the transcription
machinery to pluripotency-associated genes and, thus, for
the major transcriptional changes to occur in the process of
reprogramming, epigenetic remodeling through distinct al-
teration of histone modification and CpG methylation pat-
terns is required as highlighted in the first report of human
iPSCs [2]. Global studies based on mouse embryonic fibro-
blasts (MEFs) and MEF-derived iPSCs unveiled greater
details about the kinetics of distinct histone modifications
that occur throughout the de-differentiation process [51].
Again, these findings are in line with the observation
that treatment of somatic cells with agents, which influ-
ence the chromatin remodeling machinery, such as VPA,
sodium butyrate, or vitamin C, following overexpression
of the reprogramming factors increases reprogramming
efficiencies [4, 6, 10].

Reprogramming of mitochondria and energy metabolism

Reprogramming of energy metabolism is a known feature of
cancer cells [52]. As cancer cells proliferate, there appears to
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be a switch from mitochondrial-based oxidative phosphor-
ylation to glycolysis even in the presence of oxygen, a
phenomenon referred to as the Warburg effect [53]. This
was initially thought to be due to damage to mitochondria
while more recent findings suggest that the reason for this
switch lies in the change of energy requirement and anabolic
demands of tumor cells [54]. In fact, cancer cells exhibit a
high necessity of building the macromolecules needed to
proliferate while avoiding the generation of high levels of
ROS, a common by-product of mitochondrial respiration.
Hence, cancer cells opt for re-routing the energy flux outside
the organelle.

A similar mechanism may also be in place during reprog-
ramming. Recent findings from our group [55, 56] and from
others [10, 57–62] suggest, indeed, that the derivation of
iPSCs is associated with a reconfiguration of mitochondria
and bioenergetic metabolism. Mitochondria within iPSCs
exhibit a reduction in number [55, 57, 59, 60] and oxidative
phosphorylation, which then translates into increased gly-
colysis [55, 56, 58, 61, 62] and lower production of ROS
[55, 57, 63]. Interestingly, these metabolic changes may
play an instrumental role in reprogramming, as they occur
before the re-establishment of the human ESC-like proper-
ties [58]. Accordingly, the modulation of oxygen levels and
the small molecule-based alteration of energy metabolism
have been found capable of significantly enhancing the
efficiency of cellular reprogramming [10, 64].

Genomic instability

Recent findings have pointed out that the derivation of
iPSCs alters the integrity of the genomes of the parental
cells. The occurrence of chromosomal aberrations within
human ESCs and iPSCs has been demonstrated by different
groups [65, 66], as the reprogramming process has been
found to be associated with a high mutation rate [67–69].
Certain types of aneuploidies within human ESCs and
iPSCs may induce proliferative advantage by increasing
the expression of pluripotency-associated genes. According-
ly, the affected chromosomes have been found to harbor
genes such as NANOG, LIN28, or LEFTY [65, 66]. Addi-
tionally, we recently demonstrated that the mitochondrial
genome might also undergo mutational events [63].

This is a highly relevant issue as genome integrity is of
critical importance for iPSC-based clinical applications.
Hence, it is essential to address the biological and clinical
relevance of these mutations. Reassuringly, the detected
chromosomal abnormalities have so far not been linked with
a functional defect. Indeed, genomic aberrations have been
suggested to be transient as they do not compromise cellular
functionality [69]. It has also been demonstrated that several
iPSC lines harboring karyotype variations could pass a
stringent test of differentiation capacity [70]. In accordance,

we observed that, although aged-derived iPSCs exhibited
numerous chromosomal aberrations, the cells showed low
levels of oxidative stress and DNA damage, in a similar
manner as iPSCs derived from young donors and human
ESCs, and did not exhibit apoptosis resistance, which are all
hallmarks of cancer transformation [63]. Finally, the pres-
ence of mitochondrial mutational events did not affect the
reprogramming-associated modulation of mitochondria and
energy metabolism [56].

Taken together, despite the potential risks for iPSC-based
clinical applications, the detected loss of nuclear and mito-
chondrial genome integrity has not been associated with any
specific cellular deficiency, suggesting that reprogramming-
related genomic alterations might not necessarily translate in
the acquirement of malignant features. Nevertheless, further
in-depth investigations are warranted to distinguish harm-
less variations from those impairing the functionality or
promoting clinical risks [71].

Epigenetic memory

With the progress of the iPSC field, an increasing number of
human andmurine somatic cell types have been reprogrammed
to a pluripotent state enabling studies to evaluate basic plurip-
otent stem cell properties among iPSCs derived from different
origins and by different techniques and also with respect to
human ESCs. One of the early, comparative studies of that kind
was based on global gene expression, miRNA expression, and
histone modification data, amongst others; this revealed that
distinct molecular signatures are characteristic for iPSCs from
certain tissues of origin (although derived from different spe-
cies) and distinguished iPSCs from ESCs [72]. Kim et al. were
able to identify and link DNA methylation patterns of murine
and human iPSCs from different tissues to their characteristic
differentiation behavior but noticed diminution of these marks,
at least in mouse iPSCs, by repeated rounds of reprogramming
and chromatin-modifying chemicals [73, 74]. Similarly, Polo et
al. were able to correlate patterns of chromatin modification
with distinct expression signatures and differentiation proper-
ties using a system of mouse so-called secondary iPSCs [75].
For human iPSCs, different reports have highlighted the exis-
tence of residual gene expression patterns in distinct iPSCs,
which may result from incomplete promoter DNA methylation
of tissue-specific genes and which also distinguish them from
human ESCs, even if non-integrating reprogramming methods
were used; it was also shown that these iPSCs preferably
differentiate back into the lineage they were originally derived
from [31, 33, 76–78]. This inherent characteristic of iPSCs can
be exploited in the sense that if donor cells of mesoderm origin
(e.g., cardiomyocytes and adipocytes) are needed for down-
stream applications, one should use cells of mesoderm origin
(bone marrow-derivedMSCs) as the source for reprogramming
into iPSCs. A precedence for this is the derivation of iPSCs
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from retinal pigmented cells and the rapid and efficient differ-
entiation of these back to the original cell type [77].

In contrast, Guenther et al. argued against the existence of
an epigenetic memory following a meta-analysis of transcrip-
tional and histone modification data [79]. They suggested that
the slight differences observed were primarily due to
laboratory-specific bias rather than fundamental differences
between different types of human iPSCs and iPSCs and ESCs.
In summary, the question if iPSCs retain an epigenetic mem-
ory throughout the process of de-differentiation and whether
they are to be distinguished from human ESCs as a separate
pluripotent cell type is still a matter of debate, which will be
clarified as research proceeds.

Clinical applications

Modeling human diseases in a dish

The successful conversion of human fibroblasts into in-
duced pluripotent stem cells has opened up new opportuni-
ties for modeling human diseases. The iPSC technology has
provided a unique possibility to investigate molecular mech-
anisms underlying the etiology of many diseases in vitro.

Within the last few years, several disease models have
been generated and affirmed that iPSCs enable to recon-
struct a disease phenotype in vitro. In Table 1, we present a
list of selected published disease models, for which iPSC-
derived somatic cells have been shown to possess the dis-
ease phenotype or which have been used for drug screens or
other functional studies. Definitely, it is a very demanding
task to indeed prove that the models convey the features of
the disease. It is necessary to recruit a reasonable amount of
patients, generate many iPSC lines, and efficiently differen-
tiate iPSCs into the disease-affected cell type. However, it is
worthwhile, because once generated, “disease in a dish”
provides an extraordinary opportunity to find novel diag-
nostic markers and tools, to identify drug targets, and to
screen for novel compounds that can treat the disease of
interest. For several disease models including spinal muscu-
lar atrophy (SMA) [80] and Rett's syndrome [81], it has
been successfully demonstrated that in vitro drug treatment
restores normal distribution of affected protein.

Human iPSCs as a tool for toxicology studies

The main funds of pharmaceutical companies are spent on
screening for metabolic properties early in drug discovery
processes [82]. The implementation of human iPSCs will
significantly simplify this procedure as unpredicted human
metabolism is one of the main causes of the withdrawal of
potential new drugs from pharmaceutical projects. Princi-
pally, any cell type existing today does not copy the

complexity and function of the liver. The human models
available to date are utilizing cancer cell lines or primary
cells isolated from liver biopsies; unfortunately, these two
cell types possess significant limitations [83, 84]. Primary
human hepatocytes are currently used as the gold standard
in drug metabolism studies even though they lose functional
properties when maintained in vitro. In general, there is an
immense requirement for in vitro models of healthy and
disease-specific hepatocytes. Hepatocytes and cardiomyo-
cytes are the most susceptible to drug-induced damage
(toxicity). It is very difficult to precisely predict hepatotoxic
and cardiotoxic properties of new compounds in humans,
and in many cases, toxicity is observed only in the late
phases of clinical trials, due to the species-specific differ-
ences and extensive use of animal models. Although signif-
icant progress has been made in differentiating iPSCs cells
into cardiomyocytes [85, 86] and hepatocytes [87–90], still,
efficient generation of a pure and mature cell population has
not yet been accomplished. Undoubtedly, the standardiza-
tion of the production of functional human cells is needed,
only then iPSC-derived hepatocytes, cardiomyocytes, neu-
rons, and other cell types will significantly improve the in
vitro metabolism studies and toxicity trials.

Therapeutic potential of human iPSCs

The generation of patient-specific pluripotent stem cells has
been one of the major goals in the field of regenerative med-
icine. Differentiation of iPSCs into a distinct cell types is of
prime importance, simply because access to a large number of
cells would allow their use instead of whole organ transplan-
tation. As iPSCs are explored as a source for generating
unlimited amounts of patient-specific cells for transplantation,
it is very important to precisely understand the developmental
processes that guide thematuration of the specific cell fate and,
thereby, help to repeat these events in vitro and engineer
artificial cells and tissues. In theory, human iPSCs could be
applied to treat a wide range of human diseases.

The in vitro developmental potential and the success of
iPSCs in animal models [91, 92] reveal the principle of
using human iPSC-derived cells as a regenerative source
for transplantation therapies. In this respect, the first clinical
trials using human ESC-derived cells will lay the foundation
for future clinical applications of iPSCs. Recently, the com-
pany Advanced Cell Technology undertook a cell replace-
ment trial to assess the safety of treating macular dystrophy
by transplantation of human ESC-derived retinal pigment
cells [93]. Despite the initial success in this trial, the “cows
are yet to come home,” and most importantly, it is too soon
to exclude the emergence of long-term effects in these
patients. Despite this hopeful human ESCs-based trial in
the eye, which is an immune-privileged organ, many general
and experimental obstacles must be solved before specified
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Table 1 Examples of successful iPSC-based modeling of complex disorders in a dish

Disease name Molecular
defect

Cells derived from iPSCs Phenotype in
iPSC-derived
cells

Drug or functional tests

Ectoderm

Spinal muscular atrophy
(SMA) [80]

Mutations in SMN1 Astrocytes, neurons,
mature motor neurons

Yes Tobramycin and VPA

Parkinson's disease [106–109] Mutation in LRRK2
and/or SNCA

Dopaminergic neurons No Transplanted into rats
with Parkinson's
disease

Parkinson's disease
(idiopathic and familial) [110]

Mutation in LRRK2 Ventral midbrain
dopaminergic neurons

Yes (impaired
autophagy)

No

Rett's syndrome [111, 112] Mutation in MECP2 Neural progenitor cells Yes High-dose gentamicin
and IGF1

Mucopolysaccharidosis type
IIIB [113]

Mutation in NAGLU Differentiated neurons
and neural stem cells

Partially Exogenous NAGLU

Schizophrenia [114] Complex trait Neurons Yes Loxapine

X-linked adrenoleukodystrophy
(X-ALD), childhood cerebral
ALD (CCALD), and
adrenomyeloneuropathy
(AMN) [115]

Mutation in ABCD1 Neurons, oligodendrocytes Partially 4-Phenylbutyrate and
lovastatin

Retinitis pigmentosa [116] Mutations in RP9,
RP1, PRPH2,
or RHO

Photoreceptor precursors,
retinal-pigment epithelial
cells, rod photoreceptor
cells, retinal progenitors

Yes Ascorbic acid,
a-tocopherol,
b-carotene

Alzheimer's disease
(familial and sporadic) [117]

APP duplication Neurons Yes β-Secretase inhibitors

Mesoderm

Fanconi's anemia [118] FAA and FAD2 Hematopoietic cells No (rescued) No

LEOPARD syndrome [119] Mutation in PTPN11 Cardiomyocytes Yes No

Type 1 long QT syndrome [120] Mutation in KCNQ1 Cardiomyocytes Yes No

Type 2 long QT syndrome [121] Mutation in KCNH2 Cardiomyocytes Yes Nifedipine, E-4031,
pinacidil, ranolazine,
cisapride

Recessive dystrophic
epidermolysis bullosa
(RDEB) [123]

Mutation in COL7A1 Hematopoietic and
non-hematopoietic cells

Partially Gene correction with
Col7a1

Familial dilated
cardiomyopathy [123]

Mutation in TNNT2 Cardiomyocytes Partially Metoprolol,
overexpression of
Serca2a

Huntington disease [124] Expansion of a
CAG trinucleotide
repeat in HTT

Neurons Partially (increased
lysosomal activity)

No

Endoderm

Glycogen storage disease
Ia (GSD1a) [125, 89]

Mutation in glucose-
6-phosphat-transporter
gene or absent
hepatic glucose-6-
phosphatase enzyme

Hepatocyte-like cells (fetal) Yes No

Familial
hypercholesterolemia [89]

Mutation in

LDLR

Hepatocyte-like cells (fetal) Yes No

Wilson's disease [126] Mutation in ATP7B Hepatocyte-like cells Yes Gene correction with
ATP7B, curcumin

Hepatitis C [127] Hepatitis C virus
(HCV) infection

Hepatocyte-like cells
infected with genotype
2a HCV

Yes Cells supported the
HCV life cycle,
appropriate antiviral
inflammatory
response
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cell types derived from iPSCs can be applied to humans.
First, provision of personalized medicine in the form of
patient-specific iPSC-derived cellular therapeutics is very
promising but costly. To compromise on time and high costs
for the generation, characterization, and safety validation of
individual clinical-grade iPSC lines on the one hand and
possible immune rejection of non-autologous transplants on
the other, the establishment of HLA-haplotype banks of
iPSCs has been suggested [94, 95]. Associated with that,
however, are the low cloning efficiency and poor survival of
human pluripotent stem cells following cryopreservation
[96]. Although an improvement of both aspects has been
reported for the supplementation of culture media with
ROCK inhibitors, such as Y-27632 [97–99], there is room
for further optimization of pluripotent stem cell cryopreser-
vation protocols. Second, standards of defined, xeno-free
human iPSC culture, differentiation, and cryopreservation
conditions, i.e., feeder-free culture or maintenance on autol-
ogous feeders [100] in media devoid of non-human compo-
nents, have to be uniformly applied [101, 102]. Third, it is
crucial that we develop an efficient alternative approach to
viral reprogramming and to understanding the genetic and
epigenetic changes that take place during this process. Fur-
thermore, the risk of teratoma formation, toxicity, and im-
munological rejection should be eliminated. Moreover,
protocols for efficient and reproducible derivation of fully
matured cells from iPSCs and purification of defined cell
lineages should be optimized.

In summary, although hurdles remain to be overcome
before the iPSC technology can be routinely applied in in
vitro disease studies, drug development, toxicity tests, and
cellular replacement therapies, major progress has been
made. Generally, technologies to derive footprint-free hu-
man iPSCs have been established. Numerous disease-
specific iPSC lines have been derived, and differentiation
protocols to generate terminally differentiated cells of inter-
est have been developed. CELLular Dynamics International,
for example, set new standards offering a variety of iPSC-
derived terminally differentiated cell types, e.g., cardiomyo-
cytes, hepatocytes, and neuronal cells, which are useful for
studying molecular mechanisms underlying distinct dis-
eases, assessing safety and efficacy of potential new drugs,
and evaluating toxicity in vitro [103–105]. Furthermore, a
lot will be learned from the first ongoing and proposed
clinical trials involving human ESC-derived cell products,
which will be transferable to human iPSCs in the future.
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Table 1 (continued)

Disease name Molecular
defect

Cells derived from iPSCs Phenotype in
iPSC-derived
cells

Drug or functional tests

A1AT deficiency [128] Mutation in A1AT Hepatocyte-like cells Yes (corrected) Transplanted into
mice with liver
injury

Several germ layers

Down's syndrome [107] Trisomy 21 Teratoma Yes No

Familial dysautonomia [129] Mutation in IKBKAP Hematopoietic cells, endothelial
cells, central nervous system
and peripheral neurons,
endodermal cells

Yes Kinetin

Friedreich's ataxia
(FRDA) [130]

GAA repeat in
FXN

Cardiomyocytes,
peripheral neurons

Partially No

A1AT α-1-antitrypsin; ABCD1 ATP-binding cassette, subfamily D, member 1; APP amyloid-β precursor protein; ATP7B copper-transporting
ATPase 2; CFTR cystic fibrosis transmembrane conductance regulator; COL7A1 α1-chain of type VII collagen; FAA Fanconi's anemia,
complementation group A; FAD2 Fanconi's anemia, complementation group D2; FXN frataxin; HCV hepatitis C virus; HTT huntingtin; IGF1
insulin-like growth factor 1; IKBKAP I-κ-B kinase complex-associated protein; KCNH2 potassium voltage-gated channel, subfamily H (eag-
related), member 2; KCNQ1 potassium voltage-gated channel; LDLR low-density lipoprotein receptor; LRRK2 leucine-rich repeat kinase 2;
MECP2 methyl CpG binding protein 2; NAGLU α-N-acetylglucosaminidase; PRPH2 peripherin 2; PTPN11 protein tyrosine phosphatase, non-
receptor type 11; RHO rhodopsin; RP retinitis pigmentosa; Serca2a sarcoplasmic/endoplasmic reticulum calcium ATPase 2; SMN1 survival of
motor neuron 1; SNCA α-synuclein; TNNT2 troponin T type 2; VPA valproic acid
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