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Delivery of reprogramming factor-encoding mRNAs by means of lipofection in somatic cells is a desirable
method for deriving integration-free iPSCs. However, the lack of reproducibility implies there are major
hurdles to overcome before this protocol becomes universally accepted. This study demonstrates the
functionality of our in-house synthesized mRNAs expressing the reprogramming factors (OCT4, SOX2,
KLF4, c-MYC) within the nucleus of human fibroblasts. However, upon repeated transfections, the mRNAs
induced severe loss of cell viability as demonstrated by MTT cytotoxicity assays. Microarray-derived
transcriptome data revealed that the poor cell survival was mainly due to the innate immune
response triggered by the exogenous mRNAs. We validated the influence of mRNA transfection on key
immune response-associated transcript levels, including IFNB1, RIG-I, PKR, IL12A, IRF7 and CCL5, by
quantitative real-time PCR and directly compared these with the levels induced by other methods
previously published to mediate reprogramming in somatic cells. Finally, we evaluated chemical
compounds (B18R, chloroquine, TSA, Pepinh-TRIF, Pepinh-MYD), known for their ability to suppress
cellular innate immune responses. However, none of these had the desired effect. The data presented
here should provide the basis for further investigations into other immunosuppressing strategies that
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might facilitate efficient mRNA-mediated cellular reprogramming in human cells.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Reprogramming of somatic cells toward pluripotency brought
a promise in the field of regenerative medicine. The first induced
pluripotent stem cells (iPSCs) were generated by introduction of
transcription factors into human fibroblasts by means of retrovi-
ruses. It was achieved by the group of Yamanaka, who transduced
fibroblasts with four transcription factors, namely OCT4, SOX2,
KLF4 and c-MYC [1,2]. Other research groups refined the protocol by
using less or other factors [3—5] or by implementing small mole-
cules to increase the efficiency [4,6—8]. iPSCs produced this way,
successfully serve as a tool in disease modeling or drug screening.
Nonetheless, they are not suitable to generate patient-specific
transplantable cells in a clinical setting because of the abundant
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insertional mutagenesis. Therefore, one of the main focuses in the
field has been to develop methods, which avoid genome insertions
when delivering the transcription factors to somatic cells. Accord-
ingly, the plasmids encoding the reprogramming factors have been
delivered to mouse and/or human cells by means of repeated non-
viral transfections [9], non-integrating, episomal viral vectors
[7,10], or using excisable vectors [11,12]. Even though they suc-
ceeded in reducing genomic insertions markedly, the risk of
modifying the host genome has never been eliminated completely.
Zhou et al. generated iPSCs completely devoid of genomic inser-
tions by introducing recombinant transcription factor proteins [13].
This method, however, was very inefficient. Recently, two alterna-
tive methods have been described to generate iPSCs, both inher-
ently incapable of causing insertional mutagenesis. To induce
pluripotency Warren et al. delivered the transcription factors as
mRNAs complexed with commercially available cationic lipids and
claimed high reprogramming efficiency [14]. This, however,
required 17 daily mRNA transfections, which has been shown to
severely compromise cell viability [15]. Miyoshi et al. produced
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iPSCs by transfection of mature human embryonic stem cell-
associated miRNAs [16]. Despite these achievements, the lack of
follow-up publications implies there are major hurdles to overcome
before these approaches become reproducible and routinely
applicable for successful cellular reprogramming [17].

We are experienced in both non-viral mRNA delivery into cells
[18,19] and the derivation of human iPSCs [6,20—22]. We have
previously applied a slightly adjusted mRNA reprogramming
protocol, which enabled us to reduce the number of transfections,
to successfully induce the onset of reprogramming in mouse
embryonic fibroblasts [23]. In this study we assessed the early
response in terms of expression of pluripotency-associated genes
upon transfecting human neonatal fibroblasts with mRNAs
encoding the Yamanka factors and studied in detail the impact of
repeated mRNA transfections on the viability and transcriptome of
human neonatal fibroblasts.

2. Materials and methods
2.1. Cell culture

Human foreskin fibroblasts (HFF1 and BJ, SCRC-1041 and SCRC-2522 from ATCC,
respectively) were cultured in DMEM (Life Technologies, Darmstadt, Germany)
supplemented with 10% fetal bovine serum (FBS, Biochrom, Berlin, Germany) at
37 °C, 5% CO».

2.2. In vitro mRNA synthesis

Previously described plasmids (containing a T7 RNA polymerase promoter)
encoding a single reprogramming factor (OCT4, SOX2, KLF4 or c-MYC) were
purchased from Addgene (Cambridge, USA) [14]. The plasmid encoding green
fluorescent protein (GFP) (pGEM4Z-EGFP-A64, kindly provided by Prof. Dr. E. Gilboa,
Duke University Medical Center, Durham, NC, USA) was previously described by Nair
et al. [24]. To produce mRNAs, plasmids were first purified using a QIAquick PCR
purification kit (Qiagen, Venlo, Netherlands) and linearized using restriction
enzymes (Xbal for plasmids encoding reprogramming factors and Spel for the GFP-
coding plasmid). Linearized plasmids were used as templates for the in vitro tran-
scription reaction using the T7 mMessage mMachine kit according to the manu-
facturer’s instructions (Ambion, Lennik, Belgium). This resulted in the production of
m(GFP) that was both capped and polyadenylated. All the other mRNAs (m(OCT4),
m(S0X2), m(KLF4) and m(c-MYC)) were capped and subsequently polyadenylated
with a poly(A) tailing kit supplied by Ambion. mRNAs were purified by DNase I
digestion followed by LiCl precipitation and a 70% ethanol wash. The mRNA
concentration was determined by measuring the absorbance at 260 nm using
a NanoDrop spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) and
then mRNA was stored in small aliquots at —80 °C at a concentration of 1 pg/ul.

mRNAs encoding the four Yamanaka factors including both pseudouridine and
5-methylcytidine-modified nucleotides were purchased from Stemgent (Miltenyi,
Bergisch Gladbach, Germany).

2.3. mRNA transfection

HFF1 cells were seeded one day prior to the experiment (200,000 cells/well in 6-
well-plates for qRT-PCR experiments, 100,000 cells/well in 12-well-plates for cyto-
toxicity and immunostaining experiments). Either 4 pg of m(GFP) or a 4 ug mixture
of the four separate mRNAs (equal amounts of m(OCT4), m(SOX2), m(KLF4), m(c-
MYC)), either produced as described earlier or commercially bought, were pre-
diluted in 46 pl Opti-MEM (Invitrogen, Merelbeke, Belgium). These mRNA dilu-
tions were complexed with 4 pl of Lipofectamine RNAIMAX (LF) (1 mg/ml, Invi-
trogen, Merelbeke Belgium), also pre-diluted in 46 pl Opti-MEM. After 10 min of
incubation at RT, 900 ul of Opti-MEM were added and the complete solution was
added to one well (6-well-plate) or divided over two wells (12-well-plate) (after
removal of growth medium). After 2 h of incubation with the cells, the complexes
were removed and regular growth medium was added.

2.4. Analysis of GFP expression

To assess the number of GFP-positive cells, culture medium was removed from
the wells and the cells were washed with PBS. After detaching the cells with trypsin
(0.05%, Life Technologies) and centrifugation, the cells were re-suspended in flow
buffer (PBS containing 1% BSA and 0.1% azide). The samples were kept on ice until
GFP expression was evaluated by a Beckman Coulter Flowcytomer FC500, equipped
with a 488 nm laser. Images showing GFP expression in cells transfected with Lip-
ofectamine/m(GFP) complexes were taken with a confocal microscope LSM 510
(Zeiss, Oberkochen, Germany).

2.5. Immunostaining and microscopy analysis

To visualize the nuclear expression of the reprogramming factors, cells were
fixed with 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA, USA)
for 12 min at RT, washed two times with 0.05% Tween 20 (Sigma, Munich, Germany)
in PBS (PBST) and permeabilized with 1% Triton X-100 (Sigma) in PBS. After two
more washes with PBST, cells were blocked with 5% FBS and 1% Bovine Serum
Albumin (BSA, Sigma) in PBST for 1 h at RT. Primary antibodies to detect the
reprogramming factor proteins were purchased from Santa Cruz Biotechnologies
(Heidelberg, Germany): OCT4 (Cat. No. sc-5279), SOX2 (Cat. No. sc-17320), KLF4 (Cat.
No. sc-20691) and c-MYC (Cat. No. sc-764). Secondary antibodies were bought from
Life Technologies: Alexa Fluor 594 chicken anti-goat IgG (Cat. No. A21468), Alexa
Fluor 488 goat anti-mouse IgG (Cat. No. A11001) and Alexa Fluor 488 donkey anti-
rabbit IgG (Cat. No. A21206). Nuclei were counterstained with DAPI (100 ng/ml,
Vector Laboratories, Burlingame, CA, USA) diluted with PBST (12 min, RT). Cells were
visualized using a confocal microscope LSM 510.

2.6. Toxicity assays

HFF1 cells were plated in 12-well-plates (90,000 cells/well) and incubated with
mRNA complexes prepared as described above for 2 h. Transfections were per-
formed every day. Cell viability was evaluated 24 h post-transfection by an MTT
assay (Roche, Vilvoorde, Belgium) performed according to the manufacturer’s
instructions.

2.7. RNA isolation

Total RNA was isolated from cell lysates using the RNeasy Mini Kit (Qiagen,
Germantown, MD, USA) according to the manufacturer’s instructions. The concen-
trations of the isolated RNAs were determined by measuring the absorbance at
260 nm using a NanoDrop spectrophotometer and purity was assessed by agarose
gel electrophoresis.

2.8. Illumina bead chip hybridization and data analysis

The hybridization protocol has been described earlier by Mah et al. [25]. Briefly,
500 ng total RNA were used as input for amplification and labeling reactions (Illu-
mina TotalPrep RNA Amplification Kit, Ambion) prior to hybridization onto Illumina
HumanRef-8 v3.0 Expression BeadChips on the Illumina BeadStation 500 platform
(Illumina, San Diego, CA, USA, www.illumina.com). Raw data were converted to
background-subtracted, normalized (“rank invariant” algorithm) data with the help
of the Gene Expression Module version 1.8.0 provided with the GenomeStudio
software (Illumina). Genes were considered “present” if the “Detection P-Value”
Pdet < 0.01. Significant differential gene expression with respect to Lipofectamine-
treated control cells (“mock”) required pger < 0.01 in at least one of the samples
under investigation and was defined by 1.5 fold up- or down-regulation in combi-
nation with an FDR-adjusted (Benjamini and Hochberg algorithm) “Diff P-Value”
Padj < 0.05 as output by GenomeStudio. The heatmap was created using the
gplots package in R [26,27]. Functional annotation and analyses for KEGG
pathway enrichment were conducted using official gene symbols and default
settings of the DAVID platform version 6.7 (http://david.abcc.ncifcrf.gov/home.jsp)
[28,29]. Identification of interferon-regulated genes was achieved with the help of
the Interferome database [30]. The data discussed in this publication have been
deposited in NCBI's Gene Expression Omnibus [31] and are accessible through GEO
Series accession number GSE34943 (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE34943).

2.9. qRT-PCR

For M-MLV-driven reverse transcription (Affymetrix/USB Corporation, Cleve-
land, OH, USA), 1 pg total RNA was diluted to 9.5 ul with RNase/DNase-free distilled
water (dH;0, Life Technologies) and 0.5 pl oligo-dT (1 pg/ul, 15mer) were added. The
mixture was incubated at 72 °C for 5 min and cooled down on ice. 15 ul of a master
mix were added, containing the following components (per reaction): 9.4 ul RNase/
DNase-free dH;0, 5.0 ul 5 X M-MLV reaction buffer (USB), 0.5 pul dATP, dCTP, dGTP,
dTTP mix (25 mM each, USB), 0.1 ul M-MLV (USB) and the mixture was incubated at
42 °C for 1 h. The enzyme was inactivated at 65 °C for 10 min. The resulting cDNA
was kept at 4 °C for direct use or stored at —20 °C. Quantitative real-time polymerase
chain reaction (qRT-PCR) was performed in 384-well-plates (Applied BioSystems,
Foster City, CA) using the SYBRGreen PCR Master Mix (Applied Biosystems). Reac-
tions were carried out on the ABI PRISM 7900HT Sequence Detection System
(Applied Biosystems) as previously described [32]. Triplicate amplifications were
carried out per gene with three wells without template serving as negative controls.
ACTB was amplified along with the target genes as endogenous control for
normalization. All primer sequences are provided in Supplementary Table S1.

Data analysis was carried out using the ABI PRISM SDS 2.2.1 software (Applied
Biosystems) and Microsoft Excel (Microsoft Corporation, Redmond, WA, USA).
Housekeeping gene-normalized, relative mRNA levels of each gene (biological
sample versus reference) were calculated based on the 22T method [33]. Data are
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presented as mean LOG2 ratios with respect to biological controls and standard
deviation.

2.10. Analysis of the immune response to different nuclear reprogramming
approaches

HFF1 cells were plated in 6-well-plates (200,000 cells/well) one day prior to the
experiments. Per well the cells were transduced or transfected with (1) a 1:1:1:1
cocktail of retroviruses encoding four reprogramming factors (OSKM) or a GFP-
encoding retrovirus equivalent to the amount of a single reprogramming factor
(production of retroviruses and transduction procedure were described earlier
[6,20,22]) or (2) 100 pmol of a 1:1:1:1:1 mix composed of the miRNAs miR302a,
miR302b, miR302c, miR302d and miR367 or a non-target (scrambled) miRNA
(Ambion) or (3) 4 pg of in-house synthesized unmodified or purchased modified
mRNAs encoding the four reprogramming factors or mRNA encoding GFP. The cells
were harvested 24 h after transfection and RNA was isolated for microarray-based
global gene expression analysis and the analysis of immune response-associated
gene regulation by qRT-PCR (as described above). To determine the immunomod-
ulatory effect of different substances upon mRNA transfection, cells were pre-
incubated with these substances 1 h prior to transfection, during the incubation
of the complexed RNA with the cells and 24 h post-transfection at the following
concentrations: 200 ng/ml Vaccinia B18R (eBioscience/biocompare), 5, 50, 100 uM
Chloroquine (Sigma), 50, 100, 500 nM Trichostatin A (Sigma), 20 uM Pepinh-TRIF
(InvivoGen, San Diego, CA, USA), 20 uM Pepinh-MYD (InvivoGen).

3. Results

3.1. Transfection of HFF1 cells with mRNA encoding green
fluorescent protein or reprogramming factors

Human foreskin fibroblasts (HFF1) were transfected with 4 pg of
mRNAs encoding green fluorescent protein (m(GFP)) complexed
with 4 pl Lipofectamine RNAIMAX (LF) as described in Materials
and methods. The flow cytometry and microscopic analysis pre-
sented in Fig. 1 shows that approximately 85% of cells expressed
GFP with a very high intensity per cell. Next, we transfected HFF1
cells with a mixture of equal amounts of mRNAs encoding the
Yamanaka factors (m(OCT4), m(SOX2), m(KLF4), m(c-MYC)). After
24 h, the cells were fixed, stained and analyzed by microscopy.
Protein expression was clearly detectable (OCT4, SOX2) or
increased above endogenous background levels (KLF4, c-MYC)
when compared to mock-transfected control cells (Fig. 2). Impor-
tantly, the images confirmed the nuclear localization of the
expressed factors.

3.2. Viability of HFF1 cells transfected daily with mRNA lipoplexes

Transfection data can be properly valued only if the potential
toxic effects of the system are evaluated. To determine the effect of
the transfection protocol on cell viability, HFF1 cells were trans-
fected daily with Lipofectamine complexes carrying mRNAs
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encoding the Yamanaka factors. Cell viability was assessed 24 h
after each transfection. The data presented in Fig. 3 demonstrate
that there was no significant change in the viability of HFF1 cells
24 h after the first transfection. From day 2, however, the number of
cells in culture diminished progressively. No cells survived seven
consecutive transfections.

3.3. Comparative global gene expression analysis of reprogramming
factor mRNA-transfected and mock-transfected human fibroblasts

Several attempts to induce pluripotency in HFF1 and B]J cells by
repeated lipofection of the mRNAs encoding the reprogramming
factors failed due to progressive loss of cell viability. We decided to
investigate the reason for this massive cell death. It is known that
transfection of poly(A)-tailed mRNA into human fibroblast cells
induces interferon response [15,34]. To get a more detailed insight
into which pathways are involved in the immediate response, we
analyzed the transcriptomes of two human fibroblast cell lines
(HFF1 and BJ) transfected with mRNAs encoding the reprogram-
ming factors and mock-transfected, LF-treated controls. The anal-
ysis was performed 24 h post-transfection. The results were
compared with the transcriptomes of untreated wild-type human
neonatal fibroblasts (HFF1 and BJ cells), human embryonic stem
cells (ESCs, lines H1 and H9) and human induced pluripotent stem
cells derived from HFF1 and BJ cells (FiPSCs) generated and main-
tained in our laboratory [20,21]. Hierarchical clustering based on
the global gene expression of all samples demonstrated a clear
separation of fibroblasts transfected with mRNAs encoding the
reprogramming factors from wild-type and mock-transfected
fibroblasts as well as from human FiPSCs and ESCs (Fig. 4a).
Accordingly, linear correlation coefficient analysis revealed that
mRNA-transfected fibroblasts shared decreasing numbers of
expressed genes with mock-transfected fibroblasts (R> = 0.84),
wild-type fibroblasts (R*> = 0.73), FiPSCs (R> = 0.60) and ESCs
(R? = 0.56). Interestingly, mock-transfected and wild-type fibro-
blasts are closer to FiPSCs and ESCs (R*> = 0.71) than are reprog-
ramming factor-transfected fibroblasts from FiPSCs and ESCs
(R? = 0.58) (Fig. 4b). This emphasizes that the active transcriptome
of reprogramming factor mRNA-transfected fibroblasts is indeed
different from both the original donor cells as well as the pluripo-
tent cell lines and that an overall shift toward a pluripotent cell type
has not yet occurred.

To investigate if, nevertheless, potential pluripotency-associated
genes are up-regulated as early as 24 h after transfection of the
reprogramming factors, we generated a Venn diagram based on
“detected” genes in mock control cells, reprogramming factor-
transfected fibroblasts and the union of FiPSCs and ESCs (the

Fig. 1. GFP expression in HFF1 cells. a) 4 ug of m(GFP) and 4 pl of LF, both pre-diluted in 46 pl of Opti-MEM, were mixed and incubated for 10 min at RT. Then, 900 ul of Opti-MEM
were added and this solution was added to HFF1 cells for 2 h, after which the complexes were removed and regular growth medium added. 10,000 cells were analyzed for GFP
expression 24 h post-transfection (black line: untreated control; green line: GFP-positive cells). b) Microscopic image of HFF1 cells lipofected with m(GFP) (magnification 40x ).
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Fig. 2. Nuclear expression of reprogramming factors in HFF1 cells. Cells were transfected with 4 ug of mRNA encoding equal amounts of OCT4, SOX2, KLF4 and c-MYC by complexing
with 4 pl LF as described in Materials and methods. After 24 h, cells were immunostained for the transfected factors. The nuclei were stained with DAPI (magnification 40x).

overlapping genes in these two pluripotent cell types), which is
presented in Fig. 4c. The list of 148 putative pluripotency-associated
genes, which overlap in reprogramming factor-transfected fibro-
blasts and the union of FiPSCs and ESCs, is given in Supplementary
Table S2. It is enriched for cellular membrane and transmembrane
protein-encoding genes and genes associated with cell—cell
signaling such as SYT1, CXCR7, CEACAM1, BST2 and CXCL6.

To analyze the changes induced by transfection with mRNAs
encoding reprogramming factors we filtered the global gene
expression data for genes, which were significantly up- or down-
regulated in reprogramming factor-transfected fibroblasts with
respect to mock-transfected control fibroblasts. As shown in Fig. 4d,
a total of 993 genes were significantly differentially regulated
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Fig. 3. Cytotoxicity of reprogramming factor-encoding mRNA transfections in HFF1
cells. Cells were transfected with 4 pg of mRNA encoding equal amounts of OCT4,
SOX2, KLF4 and ¢-MYC by complexing with 4 pl LF as described in Materials and
methods. The transfection solution was divided over two 12-wells containing HFF1
cells. Transfections were done every day; seven consecutive transfections were per-
formed. MTT assay was done 24 h post every transfection. Graphs represent
means + SD. n > 2.

between the two groups. Of these, 662 genes were significantly up-
regulated (e.g. IFNB1, CCL5, ISG20, OAS1, MDA5 (IFIH1), RIG-I
(DDX58), IRF7, MYD88, ADAR, TRIF (TICAM1)) and 331 genes were
significantly down-regulated (e.g. CCNB1, CCNB2 CCNF, CDC20, BAX)
in mRNA-transfected fibroblast cells when compared to the mock-
transfected fibroblasts (Supplementary Table S3 and S4). The DAVID
database was used to functionally annotate these gene lists [28,29].
As a result, the three most highly enriched clusters of the 662 up-
regulated genes represented (1) the response to bacteria or bacte-
rial structures or drugs, (2) innate immune response and (3)
regulation of apoptosis (Supplementary Tables S5). The list of up-
regulated genes was further enriched for KEGG pathways such as
the Jak-STAT signaling pathway, RIG-I-like receptor signaling
pathway, antigen processing and presentation, the cytosolic DNA-
sensing pathway, the Toll-like receptor signaling pathway and
apoptosis (Supplementary Fig. Sla—c, Supplementary Table S5).
The initiation of apoptosis upon mRNA transfection is further
supported by the fact that the list of 331 down-regulated genes is
highly enriched for genes associated with cell cycle, cytoskeleton
and chromosome condensation, which might suggest that prolif-
eration is compromised in mRNA-transfected cells (Supplementary
Table S6). Accordingly, the down-regulated genes are significantly
involved in cell cycle and p53 signaling pathways (Supplementary
Fig. S1d—e and Supplementary Table S6). According to the Inter-
ferome database [30], 249 of the 662 up-regulated genes and 40 of
the 331 down-regulated genes are so-called interferon-regulated
genes (IRGs) (Supplementary Tables S7 and S8).

3.4. Innate immune response in HFF1 cells induced by
reprogramming experiments using different delivery techniques

The increased expression levels of immune-related genes
observed for the microarray-derived transcriptome data were
verified by qRT-PCR. We chose to assess the expression of a set of
innate immune response-related genes, known to be regulated
during retroviral-based reprogramming [25] and relevant at
distinct levels of the antiviral innate immune response. They are
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Fig. 4. Microarray-based transcriptome analysis of untreated, mock-transfected and reprogramming factor-transfected fibroblasts, fibroblast-derived iPSCs and human ESCs.
a) Hierarchical clustering (Pearson’s correlation) on the basis of the global gene expression data. (RF mRNA: reprogramming factor mRNA—transfected human neonatal fibroblasts,
HFF1, BJ; Mock: mock-transfected fibroblasts, HFF1, BJ; Fibs: wild-type fibroblasts, HFF1, BJ; FiPSCs: fibroblast-derived induced pluripotent stem cells, two HFF1-, two BJ-derived
lines; ESCs: human embryonic stem cells, lines H1 and H9). b) Linear correlation coefficients (R%) between the different groups of samples on the basis of the global gene
expression data. ¢) Venn diagram based on “detected” genes in mock-transfected fibroblasts, reprogramming factor-transfected fibroblasts and the union of FiPSCs and ESCs
depicting distinct and overlapping transcriptional signatures between the different groups of samples. d) Heatmap portraying the total of 993 significantly differentially expressed
genes in reprogramming factor-transfected fibroblasts compared to mock-transfected fibroblasts (662 genes up-regulated, 331 genes down-regulated, cut off: fold change > 1.5 up-
or down-regulation and p,q; < 0.05). For comparison, the corresponding gene expression data for wild-type fibroblasts, FiPSCs and ESCs were included. The heatmap is colored by
row-scaled LOG2 average expression signals according to the color key on the top. Samples were clustered by column means.

either directly involved in the recognition and binding of exoge-
nous, putatively pathogenic, nucleic acids (RIG-I (DDX58) [35,36],
PKR (EIF2AK2) [37,38], OAS1 [37,39] and IFIT1 [40]), key regulators of
transcription during the innate immune response (IFNB1 [41]),
intra- or extracellular transducers of the stimulus (IL12A (CLMF,
NKSF1) [42,43), IRF7 [41,44], STAT2 [45], CCL5 (RANTES) [46,47]) or
viral restriction factors (ISG20 [48,49], TRIM5 [50,51]). Interestingly,
all of these genes are regulated by interferons (Supplementary
Table S7). As shown in Fig. 5, qRT-PCR demonstrated the up-
regulation of all 11 genes under investigation in both B] and HFF1
fibroblasts upon transfection of the mixture of unmodified
reprogramming factor-encoding mRNAs when compared to mock-
transfected control cells.

In a next step, we compared the magnitude of this innate
immune response during reprogramming experiments utilizing
different delivery techniques. To this end, gene expression levels of
the same set of innate immune response-associated genes were
assessed after (1) retroviral transduction of a 1:1:1:1 cocktail of the
reprogramming factors OCT4, SOX2, KLF4 and c-MYC, (2) one single
transfection of the reprogramming factors using equal ratios of the
in-house synthesized, unmodified mRNAs by means of lipofection,
(3) two subsequent of the aforementioned mRNA lipofections (day1,
day2), (4) one transfection of a 1:1:1:1 mixture of the Yamanaka
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Fig. 5. qRT-PCR of innate immune response-associated transcripts in human fibroblast
cells upon mRNA transfection. B] and HFF1 cells were lipofected with a mixture of
mRNAs encoding the reprogramming factors in equal ratios (4 pg per 6-well) and
harvested 24 h later for RNA isolation. Bars and error bars represent the average of
LOG2 ratios of transfected fibroblasts over mock-transfected controls and SD of tech-
nical triplicates. n = 1 per cell line.
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factors using commercially available, modified mRNAs, (5) one
transfection of a mix of pluripotency-promoting miRNAs (miR302s/
367). Concerning the series of retroviral and miRNA tests, the
experimental set-ups were based on either our own or published
reprogramming experiments [16,22,52]. Fig. 6a shows that our
unmodified reprogramming factor mRNAs, although capped and
poly(A)-tailed, induced the strongest up-regulation of immune-
associated genes. Interestingly, the second transfection with the
same mRNA cocktail 24 h after the first one, only slightly increased
the expression levels of a few genes, namely, PKR, IL12A, ISG20, yet,
does not have an overall augmenting immunogenic effect suggest-
ing that the cellular immune response is already nearly maximally
up-regulated after the first transfection. The transcript levels of the
delivered reprogramming factors itself, however, were only slightly
increased after the second transfection when compared to the levels
determined after the first transfection (Fig. 6b). In contrast, immu-
nostaining of the introduced factors after two subsequent trans-
fections revealed that the expression of the translated proteins was
very weak (data not shown). Transfection of commercially
available modified reprogramming mRNAs, which, in contrast
to the mRNAs produced ourselves, contained pseudouridine
and 5-methylcytidine-modified nucleotides, resulted in markedly
reduced expression levels of almost all immune response-associated
genes compared to transfections with our unmodified mRNAs
(Fig. 6a). Nonetheless, the incorporation of modified nucleotides did
not prevent the up-regulation of the innate interferon response and
expression levels of the immune response-associated genes were
still elevated when compared to mock-transfected controls.
Surprisingly, the number of reprogramming factor transcripts in the
cell were notably less when compared to the transfections with the
same amount of unmodified mRNAs (Fig. 6b). When cells were
transduced with a retroviral reprogramming factor cocktail,
expression levels of both immune response-associated and
reprogramming factor genes of cells were similar to those detected
upon transfection of modified mRNAs. Yet, it must be emphasized
that retroviral transcripts are usually not yet fully expressed 24 h
post-transduction as demonstrated by the increase in immunoflu-
orescent staining intensity of reprogramming factors 24,48 and 72 h
post-transduction in our recent publication [25]. Finally, as antici-
pated, an up-regulation of endogenous reprogramming factors by
miRNAs could not be observed as early as 24 h post-transfection
(Fig. 6b). Interestingly however, the transfected miRNAs did not
trigger any immune response (Fig. 6a). In contrast to the transfection
or transduction of the reprogramming factors, the internalization
and functionality of the transfected miRNAs could not be verified by
immunostaining of the four factors. Therefore, we chose to analyze
PODXL transcript levels instead. PODXL is a surface marker expressed
in human ESCs, iPSCs and embryonal carcinoma cells [53] and is
activated as early as 24 h post-retroviral transduction as demon-
strated by our previous findings on cellular reprogramming-
initiation events [25]. In this respect, the one and two trans-
fections of unmodified RNAs successively up-regulated PODXL as did
the cocktail of retroviruses and, to a lesser extent, the combination of
miRNAs. Surprisingly, the modified mRNAs did not up-regulate
PODXL 24 h post-transfection (Fig. 6¢).

We then investigated whether the immune response is specific
for the introduced factors by substituting the reprogramming
factors with GFP-encoding mRNAs or retroviruses, or scrambled
control miRNAs. Logically, as shown in Fig. 7a, apart from normal
variation, we did not detect significant alteration in gene expres-
sion levels of reprogramming factors. Yet, with all delivery tech-
niques, the expression levels of immune response genes followed
the exact pattern and the absolute transcript quantities were
similar when compared to those observed for the respective
delivery of reprogramming factor cocktails (Fig. 7b).
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Fig. 6. Expression levels of innate immune response-associated genes, introduced
reprogramming factor genes and PODXL in HFF1 cells upon delivery of reprogramming
factors by diverse methods. HFF1 cells were transfected with a 1:1:1:1 cocktail of
mRNAs encoding OCT4, SOX2, KLF4 and c-MYC. Transfections were carried out once or
twice (“1 mRNA”, “2 mRNA”", respectively; 4 pg total per 6-well per transfection). The
mRNAs were either synthesized in our laboratory (“mRNA”) or commercially bought
(“modified mRNA”). Alternatively, HFF1 cells were transduced once with a 1:1:1:1
combination of retroviruses encoding OCT4, SOX2, KLF4 and c-MYC or transfected once
with a 1:1:1:1:1 mix composed of the miRNAs miR302a, miR302b, miR302c, miR302d
and miR367 (100 pmol total per 6-well). All samples were harvested 24 h after the last
transfection/transduction for RNA isolation. a) Levels of innate immune response-
associated transcripts. b) Expression levels of the reprogramming factor genes. c)
PODXL transcript levels. Bars and error bars represent the average of LOG2 ratios of
transfected/transduced fibroblasts over mock-transfected/-transduced controls and SD.
n =6 for “1 mRNA”; n = 4 for “2 mRNA”; n = 3 for “Retrovirus”, “modified mRNA” and
“miRNA".

3.5. Effect of chemical treatments on innate immune response in
HFF1 cells upon transfection of mRNAs encoding reprogramming
factors

As demonstrated above, the main roadblock in our mRNA
reprogramming experiments was the activation of innate immune
response resulting in decreased proliferation and increased loss
of cell viability. This might have been a result of the up-regulation
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Fig. 7. Expression levels of reprogramming factor genes and innate immune response-
associated genes in HFF1 cells upon delivery of control genes by diverse methods.
Repetition of the HFF1 transfection/transduction experiments as described in Fig. 6.
Yet, this time, the total amount of mRNAs and miRNAs used for reprogramming were
substituted with the same amount of GFP-encoding mRNA (“1 mRNA”, “2 mRNA"; 4 ug
total per 6-well per transfection) or a scrambled miRNA (100 pmol total per 6-well).
Similarly, cells were transduced with a GFP-encoding retrovirus equivalent to the
amount of retrovirus encoding one of the reprogramming factors in the reprogram-
ming OSKM cocktail. a) Expression levels of the reprogramming factor genes. b) Levels
of innate immune response-associated transcripts. Bars and error bars represent the
average of LOG2 ratios of transfected/transduced fibroblasts over mock-transfected/-
transduced controls and SD. n = 6 for “1 mRNA”"; n = 4 for “2 mRNA”"; n = 3 for
“Retrovirus” and “miRNA”.

of one of the key innate immune response regulators, type I
interferon IFNBI. Interestingly, Yang et al., adopting an integrated
genomics approach, identified Nabumetone, a nonsteroidal anti-
inflammatory drug, significantly enhanced the induction of plu-
ripotency in mouse cells [54]. With this evidence, we next searched
for substances that might suppress the innate immune response we
observed from our microarray-based transcriptome data, thereby,
increasing mRNA-based reprogramming efficiency. We evaluated
the ability of five substances to prevent up-regulation of the
different innate immune response-associated genes by means of
gRT-PCR when they were incubated before, during and after
delivery of the mRNA complexes.

The first molecule to suppress the innate interferon response we
tested, was B18R — a virus-encoded decoy receptor specific for type
I interferons of various species, which neutralizes signaling via type
I interferon receptors. B18R was described to prevent trans-
membrane signaling and transcriptional regulation of the inter-
feron-regulated genes [55,56] and has been used in the only mRNA-
based reprogramming protocol published so far [14]. As presented
in Fig. 8a, in our hands this treatment did not show any measurable
decrease of innate immune response even though all of these genes
are known to be IRGs as determined by the Interferome database.
Because this result was in line with our previous finding that B18R
did not have any effect on the efficiency of inducing pluripotency in

fibroblast cells [25], we did not pursue investigations using B18R
further.

Secondly, chloroquine, originally synthesized as an anti-malaria
drug, intrigued us to examine its ability to suppress the immune
response initiated by mRNA delivery. This lysosomotropic
substance has been reported to exert pleiotropic functions such as
enhancing transfection efficiency by facilitating endosomal escape
and/or diminishing lysosomal degradation [57,58]. Moreover,
chloroquine has been shown to have several immunemodulatory,
anti-inflammatory effects such as the ability to inhibit TNF-a, IL-13
and IL-6 production in lipopolysaccharide-stimulated human
monocytes/macrophages [59], to reduce type I interferon (IFN-a)
production in CpG-DNA- or viral ssRNA-stimulated plamacytoid-
derived dendritic cells or IL-12 production in ssRNA poly(U)-
stimulated monocyte-derived dendritic cells [43,60]. We tested
three different concentrations of chloroquine and noticed a strong
concentration-dependent cytotoxic effect. Even though the
expression levels of a few innate interferon response-associated
genes (RIG-I, OAS1, CCL5, ISG20) were slightly reduced upon chlo-
roquine treatment when compared to mock-transfected controls
(Fig. 8b), these reductions were not sufficient to balance out the
cytotoxic effects of this molecule.

Trichostatin A (TSA), a streptomyces metabolite, was first
discovered as an antifungal antibiotic and later as an inhibitor of
mammalian histone deacetylases [61,62]. Moreover, it was reported
to block nuclear translocation of the transcription factor IRF7 and as
a consequence numerous interferons and other pro-inflammatory
cytokines [63]. When applied at the suggested concentrations,
TSA showed no significant effects on the expression levels of genes
tested (Fig. 8c). When used at the highest concentration (500 nM),
expression levels of CCL5 and ISG20 were reduced when compared
to untreated, mRNA-transfected samples, however, the absolute
gene expression values were still much higher than those deter-
mined for mock-transfected controls.

Finally, we tried Pepinh-TRIF and Pepinh-MYD, two peptide
inhibitors designed to contain domains of the signaling adapter
molecules TRIF and MyD88, thus facilitating interaction with the
respective pattern-recognition receptors TLR3 or TLR7/8 [64,65].
Competing with endogenous TRIF and MyD88 for association with
those TLRs, these two peptide inhibitors could attenuate signaling
to the nucleus, thereby, suppressing the up-regulation of innate
immune response genes. However, treatment of HFF1 cells with
each of these peptides at the suggested concentration of 20 uM, did
not lead to a marked reduction in expression of any of the immune
response-associated genes (Fig. 8d).

4. Discussion

The ability of our method to transfect human fibroblast cells
with mRNA successfully was demonstrated by the high levels of
expression of GFP after m(GFP) lipofection. Moreover, when mRNAs
encoding the Yamanaka factors (OSKM) were introduced into HFF1
cells (human neonatal fibroblasts), the proteins were expressed
within the cell nucleus as one would expect. Daily transfections
with factor-encoding mRNAs caused tremendous cytotoxicity with
no viable cells after seven consecutive transfections. Despite our
expertise and experience in producing induced pluripotent stem
cells (iPSCs) [6,20—22], several attempts to apply our mRNA-
mediated technique to fully reprogram HFF1 cells into induced
pluripotent cells failed because of this progressive cell death.
Accordingly, also Angel and Yanik noticed severe cell damage upon
repeated transfection with mRNA [15]. These observations spurred
us to investigate the barriers preventing the successful induction of
pluripotency in fibroblast cells.
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Fig. 8. Effect of chemical treatments on the expression of innate immune response-associated transcripts in HFF1 cells upon mRNA transfection. HFF1 cells were transfected once
with a 1:1:1:1 mixture of mRNAs encoding OCT4, SOX2, KLF4, c-MYC (4 pg total per 6-well). One hour prior to transfection, during transfection and directly following transfection
cells were treated with 200 ng/ml B18R (a), given concentrations of chloroquine (b), TSA (c), or pepinh-TRIF or pepinh-MYD (d). All samples were harvested 24 h after transfection
for RNA isolation. Bars and error bars represent the average of LOG2 ratios of (treated) transfected fibroblasts over (treated) mock-transfected controls and SD. n = 1 for B18R; n =2
for Pepinh-TRIF; n = 3 for Pepinh-MYD; n = 2 for each concentration of TSA and chloroquine.

Despite the high expression levels of the exogenously delivered
reprogramming factors by means of mRNA lipofection, a general
switch in the global gene expression pattern from the fibroblast-
transcriptome toward the transcriptome of a pluripotent cell
(down-regulation of fibroblast genes, up-regulation of pluripotency-
associated genes) was not apparent at 24 h post-transfection of the
reprogramming factor-encoding mRNAs. However, we did observe
an overlap of the transcriptomes of reprogramming factor-
transfected fibroblasts and the union of human FiPSCs and ESCs
and the relevance for cellular reprogramming of these highlighted
genes warrants further investigation. This is supported by Plews
et al., who showed an activation of pluripotency-associated genes
upon delivery of mRNAs encoding the reprogramming factors into
human fibroblasts, however, complete reprogramming to fully
characterizable iPSCs was not attained [66]. The transcriptome data
obtained by microarray analysis allowed us to conclude that the key
roadblock during reprogramming by means of frequent mRNA
transfections is a strong innate immune reaction initiated by cellular
mechanisms recognizing foreign nucleic acids, as is the case during
microbial or viral infections. This is in line with recent reports [15].
Based on the findings reported in the review of Yoneyama and Fujita
[41], the cascade of events provoked in our mRNA-transfected cells
can be conceived as follows: first, the transfected, purified, in vitro
synthesized reprogramming factor-encoding mRNAs are recognized
by pattern-recognition receptors (PRRs). Because the secondary
structure of the transfected mRNAs is elusive, it is difficult to predict
which PRRs are responsible for the detection of the exogenous
mRNAs. In principle, given that lipofected nucleic acids are primarily
taken up via endocytotic routes [67], TLR3 and TLR7/8 in the endo-
somes should be the primarily involved PRRs [41]. Yet, it is known

that TLR3 and TLR7/8 are preferentially expressed in immune cells
[41]. Accordingly, the microarray data suggest that TLR3 is only
expressed in fibroblasts upon mRNA transfection and that TLR7/8
receptors are not expressed in any of the samples under investiga-
tion. It is tempting to speculate that cytoplasmic receptors such as
RIG-1 and MDA5 are essential for the recognition of exogenous
mRNA when accessible in the cytoplasm, e.g. after endosomal escape
of the transfected mRNA [67]. Concerning these, our microarray data
revealed low level expression of both of these receptors in mock-
transfected control fibroblasts and strong up-regulation upon
mRNA transfection (RIG-I (DDX58): 47-fold up-regulation, MDA5
(IFIH1): 72-fold up-regulation). Indeed, it has been shown by Kato
et al. that induction of type I interferons upon infection of mouse
embryonic fibroblasts with several single-stranded RNA viruses was
RIG-I- but not TLR-dependent [68]. Although it is not completely
clear, which of the suggested receptor(s) is/are eventually respon-
sible for the detection of the foreign mRNAs, our results emphasize
that the up-regulation of the receptors involved, triggered an
increased translation of type I interferons (such as IFNB1) and pro-
inflammatory cytokines (such as CCL2, CCL5, IL10 and IL12A). In
turn, type I interferons provoked positive feedback regulation,
which enhanced different defense mechanisms against the putative
pathogen attack at different levels. Correspondingly, our data sug-
gested that within the mRNA-transfected cells, PRRs like RIG-I,
MDAS5, including those, which elicit antiviral/antimicrobial activities,
such as OAS1, PKR and ADAR, were significantly up-regulated
together with a number of signaling molecules (JUN (as part of the
transcription factor AP-1), IRF7, MYD88, IRAK4 etc.). As a result,
protein translation was potentially blocked, the foreign nucleic acid
degraded and apoptosis induced. In support of this effect, we
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detected down-regulation of interferon-responsive cell cycle regu-
lating genes (CDC20, CCNB1, CCNF). In line with our results, Johnston
and co-workers reported induction of IFNB1, PKR, OAS1 as well as
induction of cell death in human dermal fibroblasts stimulated
with dsRNA [69]. It is worth mentioning that interferons as well as
the up-regulated pro-inflammatory cytokines act in an autocrine
and paracrine fashion, i.e. they transduce their signal into neigh-
boring cells activating the same innate immune mechanisms in
those cells and sensitizing them toward foreign nucleic acids [15,41].
Taken together, these findings are in line with our previous obser-
vation with respect to retrovirally transduced fibroblasts, i.e. one of
the main obstacles to overcome during retroviral-based reprog-
ramming experiments is the innate immune response, which is
triggered in the target cells [25].

Despite the lack of TLR7/8 expression in HFF1 and BJ fibroblasts,
the TLR-associated adapter molecules MYD88 and TRIF as well as
the signaling molecule IRF7 were highly up-regulated upon trans-
fection of mRNAs encoding the reprogramming factors. Therefore,
we were still convinced that both Pepinh-TRIF and Pepinh-MYD as
well as TSA would modulate the innate immune response in mRNA-
transfected fibroblasts. Unfortunately, none of the chemicals tested
showed significant down-regulation of the assessed immune
response-associated genes in our hands, although their inhibitory
function on distinct levels of the innate immune response activated
upon non-viral mRNA transfection was promising.

Beside the quest for alternative ways of suppressing the immune
response in mRNA-mediated induction of pluripotency in human
somatic cells, it is of importance to investigate the potential of small
molecules to increase the efficiency of this reprogramming
approach. Several chemical compounds such as the histone
deacetylase inhibitor VPA and the cyclic AMP analog 8-Br-cAMP,
which transiently down-regulate p53 [4,6] were shown to enhance
the induction of pluripotency in somatic cells. Furthermore, treat-
ment of cells with sodium butyrate, a histone deacetylase inhibitor,
and other molecules, which modulate distinct signaling pathways,
including PS48, an activator of 3’-phosphoinositide-dependent
kinase-1 (PDK1) [8], MEK inhibitor PD0325901, GSK3 inhibitor
CHIR99021, TGF-B/Activin/Nodal receptor inhibitor A-83-01, ROCK
inhibitor HA-100 and human leukemia inhibitory factor (LIF) [7],
also resulted in increased reprogramming efficiencies. We, there-
fore, propose that these small molecule cocktails should be tested
and also incorporated into mRNA-based cellular reprogramming
protocols in the future.

5. Conclusions

We have clearly demonstrated the functionality of our mRNA
transfection protocol in terms of expression of the translated
proteins in the nucleus. Full reprogramming of human neonatal
fibroblasts into iPSCs by means of repeated transfection of mRNAs
encoding the Yamanaka factors was impeded by activated innate
immune response. We intensively investigated this activation by
means of comparative global transcriptome analysis and qRT-PCR
of selected genes within the innate immune response pathway.
The comparison of the immune responses triggered by different
delivery methods revealed that the immune response induced by
unmodified mRNA was the highest, followed by retroviral trans-
duction and modified mRNA, which induced similar expression
levels of immune-associated genes. In contrast, miRNA trans-
fections did not induce a significant response. Supplementation
with various anti-inflammatory compounds (B18R, chloroquine,
TSA, Pepinh-TRIF, Pepinh-MYD) did not induce a down-regulation
of immune response-associated genes in our assays. In summary,
our data provide an important basis for developing new approaches
for suppressing immune reactions, be it the use of other chemical

compounds and/or siRNA(s), thus, allowing multiple mRNA trans-
fections to facilitate efficient mRNA-mediated induction of plurip-
otency in human somatic cells.
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