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Abstract

MicroRNAs have gained significant interest due to their widespread occurrence and diverse functions as regulatory
molecules, which are essential for cell division, growth, development and apoptosis in eukaryotes. The epidermal growth
factor receptor (EGFR) signaling pathway is one of the best investigated cellular signaling pathways regulating important
cellular processes and its deregulation is associated with severe diseases, such as cancer. In this study, we introduce a
systems biological model of the EGFR signaling pathway integrating validated miRNA-target information according to
diverse studies, in order to demonstrate essential roles of miRNA within this pathway. The model consists of 1241 reactions
and contains 241 miRNAs. We analyze the impact of 100 specific miRNA inhibitors (anit-miRNAs) on this pathway and
propose that the embedded miRNA-network can help to identify new drug targets of the EGFR signaling pathway and
thereby support the development of new therapeutic strategies against cancer.
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Introduction

MicroRNAs (miRNAs) are evolutionary conserved, endoge-

nous, non-protein-coding, 18–22 nucleotide RNAs that exert

function to negatively regulate gene expression at the post-

transcriptional level in a sequence-specific manner [1–3]. miRNAs

play important roles in nearly all biological processes, such as

developmental timing, cell proliferation, apoptosis, stem cell

maintenance, differentiation, signaling pathways, and pathogene-

sis including carcinogenesis [4–9]. To date, the human genome is

predicted to encode approximately 1,000 miRNAs, equivalent to

about 3% of the total number of human genes [10]. miRNAs

negatively regulate target gene expression via complementary base

pairing between their 59 seed sequence and the target mRNA 39

untranslated region. The 59 ‘‘seed’’ region of the miRNA sequence

(bases two to eight) is essential in mRNA target recognition [11].

miRNAs that bind to a protein encoding mRNA with imperfect

complementarity repress the mRNA translation, whereas miRNAs

binding to the mRNA with perfect complementarity target it for

destruction [12]. The expression of approximately 30% of human

proteins appears to be regulated by miRNAs [13]. Due to the

relatively few complementary base pairs, the target spectrum of

miRNAs can be very promiscuous. Although we do not know the

precise number of targets of each miRNA, it is reasonable to

suggest that the number could be in the hundreds. This means that

a single miRNA can target multiple components of a single cellular

pathway, or components of multiple pathways and therefore exert

profound impact on cell biology [14]. This could put an individual

miRNA in the unique position to function as a signaling amplifier,

to convey signaling crosstalk between pathways or to confer

signaling robustness of signaling pathways.

Cancer is a consequence of disordered genome function. A key

challenge in cancer research is explaining how cancer cells acquire

the fate of uncontrolled cell growth, aggressive invasion and

destruction of adjacent tissue and at the same time ignore and

circumvent apoptosis [15]. One approach in tumor therapy is to

specifically manipulate deregulated intracellular signaling path-

ways and to reduce the aberrant signal produced by over-

expressed oncogenes or alternatively to forcefully increase the

expression of tumor-suppressor genes. A yet untested alternative

approach might involve the use of miRNA targeting drugs that

could benefit from the potential broad impact which a particular

miRNA might have on multiple components within the same

deregulated signaling pathway.

The EGFR signaling pathway is one of the most important

cellular signaling pathways, which regulates relevant cellular

processes, including proliferation, differentiation, and develop-

ment [16]. Up-regulation and/or over-expression of EGFR

signaling have been associated with cancer-related processes,

including uncontrolled cellular proliferation and autocrine stim-

ulation of tumors producing their own growth factors. EGFR also

appears to protect cancer cells from toxic actions of chemotherapy

and radiotherapy, rendering these treatment modalities less

effective [17–19]. EGFR over-expression is frequently found in

epithelial tumor entities such as gastric, colorectal, head-and-neck,

breast, and lung cancers and is associated with advanced disease

and poor clinical prognosis [20,21].

In this study, we constructed a systems biological model of the

EGFR signaling pathway including corresponding miRNA-target

information based on diverse published miRNA studies (Table S1).

We then conducted in silico analysis of the impact of miRNAs and
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their corresponding inhibitors on the EGFR signaling pathway,

demonstrating the impact of miRNA regulatory processes on the

behavior of this signaling pathway. Furthermore, we quantitatively

elucidate the therapeutic concept ‘‘One hit – multiple targets’’

suggested by Wurdinger and Costa [22] hoping to open a new

avenue for drug development in cancer research.

Results

1. Establishment of an integrated miRNA-EGFR signaling
pathway model

The miRNA-EGFR signaling model was constructed using the

new version of PyBioS, a web-based modeling and simulation

software [23,24] (http://pybios.molgen.mpg.de). The model is

based on molecular interactions and comprises 1241 reactions and

901 entities. The entities defined in the model are summarized in

Table 1. The miRNA information is derived from miRBase [25]

as well as extensive literature search. Among the implemented

components, there are 26 sets of genes, compiled from groups of

individual genes that have been assigned to similar biological

functions. For instance, we defined MEK as a set of genes that

includes the individual genes for MAP2K1 and MAP2K2, two

closely related mitogen activated protein kinases. Furthermore, we

implemented sets of miRNA genes whose mature miRNAs have

the same targets in our model. For example, mir-631, mir-608,

mir-604, mir-492, and mir-30a have the common targets

TARBP2, RNASEN, DICER1 and DGCR8 [26–28]. Therefore,

we defined a gene set entity, named mir-TRDD including these 5

miRNA genes. Similarly, there are mRNA sets, miRNA sets and

protein sets which are produced by mRNA-transcription, miRNA-

transcription and mRNA-translation processes, respectively.

During construction of the model, we emphasized the biological

sense, meaning that each protein entity is produced in the

compartment cytoplasm by a translation reaction of a respective

mRNA entity, which is generated in the compartment nucleus by

the transcription reaction of a gene entity (Fig. 1B). Each mRNA

and protein entity participate in their own decay reaction. We

assume that each gene has basal expression. Therefore, the

concentration of an mRNA entity depends on the concentration of

its gene entity and the kinetic parameters of the corresponding

mRNA transcription and decay reaction, the concentration of a

protein entity depends on the concentration of its corresponding

mRNA entity and the kinetic parameters of reactions, in which this

protein entity takes part. The reactions are summarized in Table 1.

Transcriptions include gene transcription and miRNA gene

transcription, where gene transcription is defined as a one step

process assuming that basal transcription is generated by constitu-

tive action of a single transcription factor. The miRNA gene

transcription simplifies two processes: (i) miRNA gene transcription

catalyzed by DNA-polymerase II or DNA-polymerase III; (ii)

cropping of the primary transcript (pri-miRNA) into a hairpin

intermediate (pre-miRNA) by the nuclear 650 kDa microprocessor

complex, comprising in humans of the RNase III DROSHA

(RNASEN) and the DiGeorge syndrome critical region gene 8

(DGCR8) (see Fig. 1C). The miRNA binding target reaction

simplifies two processes: (i) mature miRNA in complex with DICER

and TARB binds to the Ago-complex and turns it into the RNA-

induced silencing complex (RISC); (ii) RISC recognizes the target

mRNA and binds to it (see Fig. 1C). Furthermore, we modeled

clusters of distinct reactions involved in specific functions, such as

EGFR, small GTPase signaling, MAPK cascade, phosphatidylino-

sitol signaling, and Ca2+ signaling. Fig. 1A depicts the general

overview of the EGFR signaling pathway of our model. The

detailed model information is available under http://www.molgen.

mpg.de/,sysbio/models/EGF_miRNA_model.html in the form

of Systems Biology Markup Language (SBML) [29].

2. Analysis of predictive ability of the model
After establishing the miRNA-EGF signaling model we set out to

validate its predictive value. Based on the simulation, we attempt to

predict the dynamics of the underlying biological system so that the

validity of the assumption can be tested. Therefore, the in silico

prediction should be first compared with the experiment. If any

inconsistency occurs at this stage, it indicates that the model

representation is incomplete or not good enough. If the model could

pass the initial validation, it can then be used to make predictions to

be tested by experiments, as well as to explore many interesting

questions that are not amenable to experimental inquiry. Hence, we

compared the predictive results generated by our model with

experimental data obtained in cell culture experiments. In a recent

study, Avraham et al [30] investigated the impact of 23 miRNAs on

the EGFR signaling pathway and used expression of multiple

immediate early genes (IEGs) in EGF treated MCF10A cells as a

transcriptional readout. In these cells, the authors individually over-

expressed 23 miRNAs and then measured the concentration of

IEGs mRNAs (Fig. 2A). We tested how well our model can reflect

the observations of Avraham’s study. Therefore, using Petri net

simulations of our model (see Material and Methods), we simulated

the effects of individual miRNA over-expression testing the same

miRNAs that were analyzed in the aforementioned study (Fig. 2B).

Notably, the model construction was performed independently

from the Avraham’s study, and we did not use any data from this

study to feed into our model. The visual comparison of both results

shows that our in silico simulation result is in good accordance with

the in vitro response of MCF10A cells to miRNA over-expression

(Fig. 2A,B). Therefore, the information on miRNA-target relation-

ships we obtained by literature mining to build the model proves

sufficient to qualitatively recapitulate the IEG transcriptional

response to a cells miRNA expression status in the context of an

activated EGFR pathway.

3. Simulation of putatively oncogenic properties of mir-
192

Next we wanted to examine the inhibitory effect of a given

miRNA on its putative targets within the EGFR signaling cascade.

Table 1. Summary of model components/reactions.

Component Number Reaction Number

gene 183 transcription 179

mRNA 78 translation 75

protein 133 decay 218

miRNA 241 complex-formation 115

compound 35 translocation 133

complex 131 phosphorylation 49

pseudo-object 100 dephosphorylation 40

activation 10

miRNA-binding 417

other types 5

Sum: 901 Sum: 1241

Compound is metabolite; complex includes protein-protein complex, protein-
gene-complex, mRNA-miRNA complex; pseudo-object includes protein
inhibitor and miRNA inhibitor.
doi:10.1371/journal.pone.0030140.t001

miRNA Modeling
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Figure 1. Overview of the model. A: The model of the EGFR signaling pathway contains 4 sub-pathways: MAPK pathway, PI3K-AKT pathway, Ca2+

signaling pathway, PAK signaling pathway. B, C are parts of the model network visualized by PyBioS. B: The mRNA BAD-1 is produced by the
transcription reaction (1) of gene BAD and also takes part in decay reaction (2) and translation-reaction (3), which produces the protein BAD-1
(cytoplasm). The protein BAD-1 takes part in further three reactions that are the decay-reaction (4), phosphorylation reaction (5) and
dephosphorylation reaction (6). The phosphorylated protein P-AKT (plasma membrane) catalyzes the phosphorylation reaction, in which protein
BAD-1 is phosphorylated into P-BAD-1. Afterwards, the protein P-BAD-1 is then dephosphorylated; C: shows a simplified miRNA biogenesis, target
recognition and competitive anti-miRNA effect. (1) miRNA-gene transcription; (2) miRNA translocation (from nucleus into cytoplasm); (3) miRNA-
binding-target reaction; (4) miRNA binds to the miRNA inhibitor.
doi:10.1371/journal.pone.0030140.g001

miRNA Modeling
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Based on the evidence provided by various studies, mir-192

regulates the expression of the genes MDM2 [31], EGFR [32],

PIK3CA [32], TP53 [31,33], PTEN [34], and CDKN1 [31]. We

therefore chose to test the impact of mir-192 levels on the EGFR

signaling response and performed simulations by varying mir-192

concentrations between 0 and 10,000 nM. We used this

concentration range as expression of an individual miRNA is

considered to vary widely in copy number per cell, with a few

tissue-specific species up to more than 10,000 copies per cell

(.2,000 nM) [35]. In these simulation experiments, expression of

other miRNAs was omitted to examine the effect of individual

miRNA regulation. Furthermore, the number of copies of an

individual mRNA present in a single cell is considered to vary over

four orders of magnitude (1 to .1,000 copies that is equivalent to

0.001 to 10 nM), with most mRNA species present in ,100 copies

and a few exceeding 1,000 copies [36]. Setting the concentration

of ligand protein EGF to 1 nM should realistically provide a long

and strong enough signal for its transduction through the entire

signaling pathway during the course of simulation. Some

compounds such as ATP and ADP were fixed to 1 nM, as well.

Thereby, it is ensured that signal transduction will not halt only

because of shortage of certain metabolites. The initial concentra-

tions of other entities including mRNAs, miRNAs, proteins,

complexes, etc. were set to 0 nM, which ensured the entire

signaling pathway would only be affected by the EGF signal

during simulation.

Modeling mir-192 over-expression using these experimental

conditions reveals that the concentrations of mir-192 target proteins

TP53, PTEN, MDM2 and CDKN1, are inversely correlated with

the mir-192 gene expression levels (Fig. 3A). Interestingly,

upregulated mir-192 gene expression is often seen in cancers [33],

and based on our modeling results we suggest that mir-192 over-

expression might confer a proliferative advantage of cancer cells by

simultaneous suppression of the proteins TP53, PTEN, MDM2 and

CDKN1. Notably, among the 241 miRNAs in our model, 44

miRNAs target TP53, 57 miRNAs target PTEN, and 10 target

MDM2 and mir-192 is one of few miRNAs in our model that

simultaneously target these 3 tumor suppressor proteins.

There is evidence that miRNA expression levels are correlated

with the development of various human cancers suggesting that

deregulated miRNAs might function as classical tumor suppressors

and oncogenes [5,37]. For example, mir-15a, mir-16 and let-7

have been found to be down-regulated in different types of cancer,

suggesting that they can act as tumor suppressor genes [5]. The

simulation result (Fig. 3A) indicates that mir-192 might function as

an Oncomir by repressing the expression of several tumor

Figure 2. Comparison of model predictions with experimental results. A: Experimental results of relative concentration changes of target
mRNAs according to individual miRNA over-expression experiments from the Avraham’s study [30] (Reprinted with permission from AAAS); B: in silico
prediction result of relative concentration changes of target-mRNAs according to each miRNA over-expression in the EGFR model. Both heatmaps
show very similar qualitative results (protein down-regulation), the only discrepancies are for miR-155 and miR-498. mRNAs with low concentration
changes (log2-ratio,0.001) are ignored and shown in ‘white’.
doi:10.1371/journal.pone.0030140.g002

miRNA Modeling
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suppressor genes simultaneously, which in turn reveals the

important role of miRNAs within signaling cascades [2]. Since

the expression of the EGFR protein is down-regulated by

increasing mir-192 gene expression (Fig. 3A), the expression of

most downstream proteins within the EGFR signaling pathway

decreases (Fig. 3B) which illustrates the impact of a given miRNA

on a signaling pathway by directly targeting its receptor protein.

These results suggest that the oncogenic function of mir-192 might

be partially compensated by reduced EGF signaling activity due to

reduced EGFR protein levels. However, constitutive activating

mutations in signaling components downstream of EGFR, like

NRAS(Q61L) or BRAF(V600E), are common in cancer cells [38].

These mutations in combination with mir-192 over-expression

could probably circumvent the effect of negative regulation of

EGFR by mir-192 while retaining the putative mir-192 Oncomir

effect via TP53, PTEN, MDM2 and CDKN1. Furthermore, it is

noteworthy that there are 36 miRNAs in our model that target the

EGFR mRNA (Table S2). It will certainly be interesting to analyze

expression of these miRNAs in different cancer types with respect

to the mutational status of the individual cancer case.

4. Simulation of a mir-181 dependent EGFR signaling
threshold

AKT/PKB, apart from the MEK/ERK branch, is another

important kinase branch activated downstream of mitogen-

activated PI3K: EGFR+EGFRPI3KRPIP3RPDPK1RAKT

Rtarget proteins. According to previous studies, mir-181c targets

AKT [39] and MYC [40]. Next, we were interested in how the

EGFR signaling threshold (the minimal concentration of EGFR

receptor protein for activating downstream proteins by constitutive

input of the EGF signal) can be affected by mir-181c. Therefore,

we set the initial condition of mir-181c gene expression level to

1 nM and the concentration of EGF fixed to 1 nM. During the

simulation, the gene expression level of EGFR increases from

0.1 pM to 10 nM (Fig. 3C). At a threshold of 10 pM of EGFR,

EGF can activate the downstream signaling proteins as judged by

increasing concentrations of the chosen readout model compo-

nents. In a second simulation, we simulated knock down of mir-

181c by setting its gene expression level to zero, while all other

conditions remained identical (Fig. 3D). In the absence of mir-

181c, the threshold of the EGFR signaling activation is lowered to

Figure 3. Modeling of mir-192 and mir-181c effects on the EGFR signaling pathway. A: Increased expression of mir-192 gene corresponds
with a reduced level of targets’ protein expression; B: Concentrations of EGFR downstream activated proteins are inversely correlated with the mir-
192 gene expression level; C: simulation result with fixed mir-181c gene expression level (1 nM), whereas all other 240 miRNA genes are not
expressed. All 13 AKT-dependent proteins can only be activated after the concentration of EGFR protein is getting higher than 10 pM. This activation
threshold is due to the presence of mir-181c. D: represents another simulation result without the presence of mir-181c, additionally all other 240
miRNAs were not expressed, as well. At this condition, the activation threshold of these proteins is at 0.001 pM. By comparing these two results
(C, D), one can understand that mir-181c raises the activation threshold of the EGFR signaling pathway significantly.
doi:10.1371/journal.pone.0030140.g003

miRNA Modeling
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0.001 pM, which indicates that the presence of mir-181c can

potentially contribute to fine tuning of the EGFR signaling

threshold in a range from 0.001 pM to 10 pM of the EGFR

protein under these simulation conditions. Our results therefore

exemplify a crucial role that miRNAs might play in signaling

cascades by dampening positive mediators, restricting the signal to

an appropriate competence zone. Hence, miRNAs targeting

important components of a signaling pathway might be able to

regulate their target to achieve optimal signaling efficacy and limit

undesired signaling fluctuations, which is essential for genes

expressed at low levels, because stochastic changes in the

activation of their promoter are more genetically prominent [41].

5. Evaluation of the ‘‘One hit – Multiple Targets’’ concept
using miRNA modeling

Evidence from various studies indicates that normal miRNA

expression is important for proper development and differentiation

in a tissue and cell-type specific manner [22]. Deregulation of

miRNA expression is therefore a common feature of many types of

cancer [42]. However, one important question remains un-

touched: whether the miRNAs are differentially expressed as a

consequence of the pathologic cell state, or whether the particular

cancer or disease is a direct cause of the deregulated expression of

miRNAs. However, the therapeutic concept ‘‘One Hit – Multiple

Targets’’ could provide a solution to this problem.

The idea behind this concept from Wurdinger’s study [22] is to

normalize or to correct a deregulated miRNA expression, which

then directly or indirectly affects its protein-coding mRNA targets.

Some of these targets may be encoded by oncogenes and tumor

suppressor genes and the defects in those mRNA expression levels

could be immediately reverted to normal state by normalization of

deregulated miRNA expression. This restoration of the deregu-

lated post-transcriptional control could have immense therapeutic

benefit. In the following, we perform in silico simulation to

quantitatively elucidate the effect of two miRNA inhibitors on the

EGFR signaling pathway: anti-mir-489 and anti-mir-34a. In

general, anti-miRNAs could be designed in form of antagomirs,

which are anti-miRNA oligonucleotides (AMOs) conjugating with

cholesterol [43]; alternatively, they can be designed as locked-

nucleic-acid anti-sense oligonucleotides (LNAs) [44,45]. In both

cases, specific anti-miRNAs bind to their corresponding mature

endogenous miRNA according to sequence complementarity, thus

effectively blocking miRNA inhibitory function. The anti-mir-489

specifically antagonizes the inhibition effect of mir-489, which

targets CDKN1, PIK3CA, TP53 and AKT [46], and anti-mir-34a

antagonizes the inhibition effect of mir-34a, which targets MTOR,

ERK, MDM2, PIK3R1, EGFR, RPS6KA5, CAMK, TP53,

PTEN, PKC, PDPK1, MYC, CDKN1 and ELK1 [47–54]. In

order to study the potential anti-miRNA effects in silico, we carried

out two simulation processes and separately investigated both

inhibitor effects and additionally the downstream effect on the

EGFR signaling pathway. Therefore we performed in silico

experiments with different concentrations of anti-mir-489 (Fig. 4A

and B). The heatmap of Fig. 4A shows the change in concentration

of mir-489 target proteins, whereas Fig. 4B depicts the change of

concentration of the downstream proteins in the EGFR signaling

pathway. The results show a correlation between the concentrations

of these four target proteins and the amount of anti-mir-489, which

indicates that the miRNA-489 inhibitory effect is effectively

abolished by this anti-miRNA. Actually, anti-mir-489 exerts its

inhibitor effect not only on these four target proteins of mir-489, but

also indirectly influences downstream proteins of the EGFR

signaling pathway through those target proteins (Fig. 4B). This

reflects the ‘‘One Hit – Multiple Targets’’ effect of anti-miRNA.

According to the simulation results (Fig. 4.), we expect a functional

relevant concentration range of an anti-miRNA drug to be in

between 10 nM and 100 nM, which suggests a suitable range to test

the potential drug effect in, for example, cultured cancer cell lines.

Figure 4. Modeling of anti-mir-489 and anti-mir-34a effects on the EGFR signaling pathway. Heatmaps A and B are the results of anti-
mir-489 simulations. C and D are the results of anti-mir-34a simulations. The first experiment within each heatmap (from bottom to top) is the
‘control’ state; the miRNA effect and anti-miRNA effect of the different experiments is always compared versus the ‘control’ state. A: Quantitative
changes of mir-489 direct target-proteins due to different amounts of anti-mir-489 per experiment. The inhibition effects of mir-489 is inversely
correlated with the anti-mir-489 concentration. B: Quantitative changes of the EGFR downstream activated proteins according to different amounts
of anti-mir-489 per experiment. The concentrations of many downstream activated proteins of the EGFR signaling pathway correlate with the
concentration of anti-mir-489. C: Quantitative changes of mir-34a direct target-proteins due to different amounts of anti-mir-34a per experiment. The
inhibition effects of mir-34a inversely correlate with the anti-mir-34a concentration. D: Quantitative changes of the EGFR downstream activated
proteins according to different amounts of anti-mir-34a per experiment. The concentrations of many downstream activated proteins correlate with
the anti-mir-34a concentration.
doi:10.1371/journal.pone.0030140.g004

miRNA Modeling
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We also performed in silico experiments with different

concentrations of anti-mir-34a (Fig. 4C and 4D). The anti-mir-

34a inhibits mir-34a in the same way as anti-mir-489 inhibits mir-

489. The common phenomenon of the application of both anti-

miRNAs is that not only the expression levels of target proteins

(Fig. 4 A and C), but also the indirect target proteins (Fig. 4B and

D) can be reverted to the normal expression levels (the ‘‘control’’

state), by increasing anti-miRNA concentrations to a certain level

(10 nM). Both results reveal the crucial role of ‘‘One Hit –

Multiple Targets’’ in the signaling cascade. ‘Correcting’ miRNA

inhibitory effect can lead to normalizing the expression levels of its

numerous target proteins, some of which may function as onco-

proteins and tumor-suppressor proteins. This might result in

recovery of the normal phenotype of a cell from a disease state to a

normal state. However, there are also differences between the

effect of mir-34a and anti-mir-489, for instance, there are five

proteins (Active-NF-kB, P-CREB1, P-MYC, P-ELK1 and P-

AFT1), which do not change at all due to anit-mir-489 (Fig. 4B),

while all the downstream proteins were affected by mir-34a and its

anti-mir (Fig. 4D). It seems that anti-mir-34a has more profound

effects on this signaling pathway than anti-mir-489 does. However,

this could be due to the fact that mir-34a targets 14 proteins in the

EGFR signaling pathway, while mir-489 targets only four.

Next, we assessed the potential effects of 100 different anti-

miRNAs individually and selected 19 important downstream proteins

of the EGFR signaling pathway as readout components of

effectiveness of anti-miRNAs. An anti-mir-combination effect was

not considered. Using this in silico simulation approach, we found

clear differences of anti-mir effects on this signaling pathway. For

instance, anti-mir-155 has considerable influence on the activation of

many downstream proteins and is therefore considered as an effective

anti-miRNA (Fig. 5A), whereas anti-mir-663 exerts almost no effect

on this pathway and is therefore regarded as a non-effective or less

effective anti-miRNA for this signaling pathway (Fig. 5B). Further-

more, based on this simulation data, we investigated the concentra-

tion changes of all model components due to the effect of each anti-

miRNA, applied a statistical t-test and calculated the P-value of each

anti-miRNA according to its effect on the entire signaling pathway

(see Materials and methods). Table 2 lists the top 15 anti-miRNAs

with most significant P-values (P-value,0.05). Thus, we believe that

those anti-miRNAs should be suitable as potential candidates for

cancer treatment. However, those anti-miRNAs need to be tested

and verified by in vitro and in vivo experiments.

Afterwards, we investigated the corresponding 15 miRNAs with

their target information and another 15 miRNAs whose anti-

miRNAs have almost no effect on the EGFR signaling pathway

(Fig. 6A and B). We counted the number of targets of those miRNAs

individually according to the information in Table S1. As expected,

we found that an anti-miRNA that antagonizes a miRNA with

more targets, can exert a greater impact on the signaling pathway.

In contrast, an anti-miRNA appears less effective, if the anti-

miRNA antagonizes a miRNA with very few targets. However, anti-

mir-181c, anti-mir-214 and anti-mir-200a can also exert consider-

able impact on this signaling pathway during simulation, although

the number of direct targets of these three miRNAs are low (Fig. 6A).

The reason for this could be that they target key components of the

EGFR signaling pathway, for instance, mir-181c targets AKT and

MYC (see above). This phenomenon helps to understand the

principle of ‘‘One Hit – Multiple Targets’’ approach.

Discussion

Since the discovery of miRNAs in 1998, the function of those

molecules in oncogenesis and cancer progression has been a major

subject of intense investigation. One way to conceptualize the roles

of the miRNAs is in the context of an integrated network emerging

from summation of the interactions of miRNAs and their targets.

In this study, we constructed a systems biological miRNA-model of

the EGFR signaling pathway using the software PyBioS. The

miRNA-target information is based on diverse studies (Table S1).

The absorption of an extracellular signal, in this case EGF ligand,

must not induce some specific cellular instructions. Actually, it is

the cell that interprets the signal according to its history and actual

environment. In this case, our model can be considered as a virtual

cell functioning only with the EGFR signaling pathway and the

initial conditions of the model can be viewed as the virtual

environment in which this virtual cell is living. We showed the

predictive ability of our model by comparing the in silico simulation

data with the experimental results from the study of Avraham et al

[29] and reached high accuracy. Therefore, we conclude that our

model should be able to predict cellular responses to altered

miRNA levels. Based on this model, we conducted quantitative

miRNA and anti-miRNA in silico analysis of the effects of miRNA

expression levels and the resulting alterations evoked by miRNA

inhibitors. We demonstrated that some miRNAs could play an

essential role in the EGF triggered signaling cascade and some

anti-miRNAs might have considerable effect on this pathway. For

instance, by increasing the expression level of mir-192 in our

model, we showed that not only the expression of its direct target

proteins were reduced, but also many downstream proteins were

affected indirectly, indicating that altered miRNA expression level

might have a direct and indirect impact on the EGFR signaling

pathway. Furthermore, we demonstrated that mir-181c is able to

raise the activation threshold of the EGFR signaling pathway,

which potentially optimizes the signal efficacy, and limits

undesired signaling fluctuations. We demonstrated that by

administration of a proper amount of anti-mir-34a and anti-mir-

489 in silico, the direct and indirect target proteins of the EGFR

signaling pathway could be reverted to a normal state, which

indicates that a phenotype of a cell from a disease state could be

reverted to a normal state by anti-miRNAs inhibition and

elucidates the therapeutic benefit of anti-miRNA drugs.

Moreover, we studied 100 different anti-miRNAs by investigat-

ing their effect on the downstream proteins of the EGFR signaling

pathway. As expected, our simulation results indicate that the

more targets a miRNA has in the EGFR signaling pathway, the

more likely is the corresponding anti-miRNA to exert considerable

effect on this pathway. However, we show that targeting key

components of the signaling pathway is more important and

effective. Based on the simulation data, we propose a top 15 list of

anti-miRNAs (p,0.05) with most significant impact on the EGFR

signaling pathway (Table 2), and suggest that those anti-miRNAs

could be potential test candidates for follow-up studies assessing

the impact of distinct miRNA inhibitors on EGFR pathway

activation in cancer derived cell lines or other suitable model

systems. One particularly interesting candidate could be anti-mir-

21. mir-21 has been implicated as an oncogene in different types of

cancers such as breast-, colon-, cervical-cancer and glioblastoma

and a higher level of mir-21 is often correlated with poorer survival

of patients [55], [56,57]. Based on our simulation results, the

inhibition of mir-21 leads to a significant up-regulation of pro-

apoptotic proteins such as CASP9, BAD, TP53. This is in

agreement with the study conducted by Chan et al [55], where

mir-21 has been shown to be an anti-apoptotic factor. Moreover,

the inhibition of mir-21 also leads to the up-regulation of CDKN1,

a tumor-suppressor that regulates the cell cycle progress [58,59].

The down-regulation of CDKN1 supports the oncogenic activity

of mir-21. In 2010, an independent study of Mei et al [60]
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Figure 5. Modeling the individual effect of 100 anti-miRNAs. A and B: Each anti-miRNA is activated when the corresponding miRNA is over-
expressed individually (an anti-mir-combination effect is omitted). Each row in this heatmap represents the predicted anti-miRNA effect and the more
columns in the same row appears red or orange, the stronger is the predicted effect that this particular miRNA inhibitor can exert on the EGFR
signaling pathway. In this manner, we can examine the impact of each anti-miRNA on this signaling pathway.
doi:10.1371/journal.pone.0030140.g005
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successfully applied an anti-mir-21 to enhance the chemothera-

peutic effect in breast carcinoma cells. Based on our simulation

results, we suggest that an anti-mir-21 (p-value: 1.90e-06) could be

an effective anti-cancer drug also for other types of cancer with

elevated EGFR signaling. Furthermore, according to our simula-

tion results, the application of anti-mir-335 can lead to the up-

regulation of many essential tumor suppressors such as CDKN1,

TP53, CASP9 and TSC2. In 2011, an independent study of Shu

et al [61] elucidated the oncogenic potential of mir-335 and

validated that the inhibition of mir-335 can inhibit the growth and

invasion of malignant astrocytoma cells. Therefore, we suggest

that anti-mir-335 (p-value: 1.85e-03) might be an effective anti-

cancer drug for other types of cancer, similar to the potential

benefits of an anti-mir-21. Similarly, the anti-mir-221 (p-value:

3.64e-04) and anti-mir-222 (p-value: 1.81e-03) exerted significant

impact on model components during in silico simulation. In 2011,

Stinson et al [62] substantiated that specific miRNA such as mir-

221 and mir-222 can promote transformation to more aggressive

cancer phenotype with poor diagnosis. Hence, the therapeutic

value of the application of both anti-mir-221/222 should not be

underestimated. We therefore conclude that our modeling results

with respect to the impact of miRNAs on the EGFR pathway are

in good accordance with published data of some of the miRNAs

that are relevant in cancer treatment. The other eleven anti-

miRNAs we identified to have the greatest impact on the EGFR

signaling pathway (Table 2) have not been tested for their anti-

oncogenic properties in vivo and we suggest that they should be of

importance for in vitro or in vivo follow-up studies.

Surprisingly, we noticed that among the 241 miRNAs of our

model, 130 miRNAs target DICER, and 45 miRNAs target

RNASEN (Table S2), whose protein products process pre-miRNA

into mature, functional miRNA thereby playing an essential role in

the miRNA-biogenesis process. This raises the interesting question

whether those 175 miRNAs regulate the overall mature miRNAs

level through targeting the mRNAs of both genes. William et al [63]

discovered that in some types of tumor, such as ovarian cancer, a

lower DICER expression was significantly associated with advanced

tumor stage. DICER down-regulation has also been discovered in

various cancer types by other groups [64–66]. This DICER

misregulation could reflect a globally impaired expression of mature

miRNAs in human cancers [67,68].

One limitation of our current EGFR signaling model is that

ErbB2–4 are not taken into consideration and we analyze EGFR

(ErbB1) as a single and isolated cell surface receptor. The future

work could be adding the combination of homo- and hetero-

dimerization of these four ErbB family members. Furthermore,

our model assumes that each gene has basal expression and we

have not added specific transcription factors or expression data for

all transcription reactions. Similarly, for the phosphorylation

reactions, we have not considered the detailed information of the

phosphorylation sites of proteins. Despite of those flaws, our model

could effectively be employed for estimating miRNAs inhibition

effect.

Recently, RNAi based methodologies have been widely used in

order to silence a single target gene, and have contributed to

advances in molecular biology [69,70]. However, various studies

using microarray based expression screens have indicated that in

pathological tissues there can be an imbalanced gene expression

pattern involving many genes [71,72], which can reduce the

usefulness of those RNAi technologies dramatically. In contrast,

the concept that one miRNA can manipulate several genes

involved in one or many signaling pathway seems to be very

promising and effective for cancer treatment. Furthermore, Iguchi

et al [57] pointed out that the therapeutic intervention of miRNA

Table 2. Top 15 anti-miRNAs.

anti-miRNA P-value

Anti-mir-21 1.90e-06

Anti-mir-155 4.54e-06

Anti-mir-221 3.64e-04

Anti-mir-17 1.44e-03

Anti-mir-489 1.78e-03

Anti-mir-222 1.81e-03

Anti-mir-335 1.85e-03

Anti-mir-126 1.86e-03

Anti-mir-100 3.50e-03

Anti-mir-181c 1.17e-02

Anti-mir-214 1.18e-02

Anti-mir-200a 1.19e-02

Anti-mir-34a 1.26e-02

Anti-let-7c 3.22e-02

Anti-mir-182 4.22e-02

P-value gives the significant level of concentration-differences of all model
components between the state of the applied specific anti-miRNA and control
state (inactivated anti-miRNA).
doi:10.1371/journal.pone.0030140.t002

Figure 6. Histogram of miRNA/target relationships. A: The top ranked 15 miRNAs of Table 2 correlated with the amount of their
corresponding targets in the EGFR signaling pathway (Table 1). B: The 15 miRNAs correlated with amount of their corresponding targets in EGFR
signaling pathway. The anti-miRNAs of these miRNAs have much less effect on this pathway (Fig. 5A and B).
doi:10.1371/journal.pone.0030140.g006
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should less likely have severe adverse effect. However, the studies

conducted by Okamura et al [73] and Calin et al [74] explain the

passenger strand effect, meaning that the passenger strand of the

mature miRNA exerts an inhibitory effect and confers resistance

to miRNA regulation, respectively. These finding indicate that

cancerous cells are able to eliminate the therapeutic effect of a

miRNA. Therefore, we believe that a combined therapeutic

strategies might be needed to succeed in clinical application of

anti-miRNA drug.

Materials and Methods

1. Petri Net Extension
The simulation processes are based on the Petri net, which is a

graphical and mathematical modeling language developed in the

early 1960s by Carl Adam Petri [75]. The Petri nets approach has

subsequently been adapted and extended in many fields such as

systems biology. Furthermore, many extensions to Petri nets have

been developed for various modeling and simulation purposes

[76]. We implemented a Petri nets extension for the PyBioS

software [24], which includes the characteristics of hierarchical-,

hybrid- and timed-Petri nets. Therefore, it is particularly suitable

for the simulation of large-scale networks. In the following, we

explain the simulation process.

In our model network, places and transitions represent bio-

objects (gene, mRNA, miRNA, protein and compound) and

biochemical reaction, respectively (Fig. 7). Each place is marked

with a value representing the concentration of a model

component.

Formal definition of Petri nets [77]:

A Petri net is a 6-tuple, PN = (P, T, F, W, m, D)

where:

P = { p1, p2 , … , px}is a finite set of places (model

contains x bio-objects),

T = { t1, t2 , … , ty} is a finite set of transitions (model

contains y reactions),

F is subset of [( P x T ) U (T x P ) is a set of arcs]

W: FR{0, 1, 2, .. x } is a weight function,

m: PR{0, 1, 2, .. x } is the initial marking,

P >T = Ø (meaning that the sets P and T are disjointed),

D: mRPR{p1, p2 , … , px} is the decay rate function of

each component.

During simulation in each time step, each transition is evaluated

with transition speed as ‘activated’ or ‘not activated’. If an activated

transition can fit to a certain criteria, then it can fire, referring to

biological sense, this reaction can occur. The transition speed is

calculated by individual functions Fy(S, E, I) referring the corre-

sponding substrate S, enzyme E and Inhibitor I for each reaction y.

For instance, the speed of transition t1:

F m BADð Þ,m ATPð Þ,m P{AKTð Þð Þ~
m BADð Þ
W BADð Þ �

m ATPð Þ
W ATPð Þ �

m P{AKTð Þ
W P{AKTð Þ

Figure 7. Transition fire of Petri Nets. An exemplary phosphorylation reaction of the Petri Nets. BAD-1 (p1), ATP (p2), P-BAD-1 (p3), ADP (p4) and
P-AKT (p5) are places and phosphorylation reaction (t1) is a transition. A: the concentrations of model components at time point 0 (before transition
fire); B: the concentrations of components in model at time point 1 (after transition fire).
doi:10.1371/journal.pone.0030140.g007

Table 3. Transition t1 at time point 0 (before firing).

Components Concentrations

BAD-1 1.0

ATP 2.0

P-AKT 3.0

P-BAD-1 0.0

ADP 0

doi:10.1371/journal.pone.0030140.t003

Table 4. Transition t1 at time point 1 (after firing).

Components Concentrations

BAD-1 0.95 – 0.09

ATP 1.95 – 0.18

P-AKT 2.95 – 0.27

P-BAD-1 0.05 – 0.05*0.09

ADP 0.05 – 0.05*0.09

doi:10.1371/journal.pone.0030140.t004
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where m(BAD), m(ATP) and m(P-AKT) are concentrations of

places BAD, ATP and P-AKT; W(BAD), W(ATP) and W(P-AKT)

are the weights of the places.

If the following conditions hold true:

speed~F m BADð Þ,m ATPð Þ,m P{AKTð Þð Þw0

^ m BADð Þ§speed ^ m ATPð Þ§speed

the transition t1 fires in forward direction, meaning that this

phosphorylation reaction takes place.

If the following conditions hold true:

speed~F m BADð Þ,m ATPð Þ,m P{AKTð Þð Þv0

^ m BADð Þƒspeed ^ m ATPð Þƒspeed

the transition t1 fires in backward direction, meaning that the

dephosphorylation reaction takes place.

If one of the above two conditions is fulfilled, but the enzyme P-

AKT is present at low concentration, the reaction can take place.

However, its reaction flux will be low, too.

For example, at time point 0, initial concentrations of BAD-1,

ATP and P-AKT are 1.0, 2.0 and 3.0, and we assume that their

weight function values are

W BADð Þ~5, W ATPð Þ~5, W P{AKTð Þ~5,

then the decay function values are

D BADð Þ~m BADð Þ � 0:09~0:09

D ATPð Þ~m ATPð Þ � 0:09~0:18

D P{AKTð Þ~m P{AKTð Þ � 0:09~0:27

and the speed is calculated by f1 :

speed~F m BADð Þ,m ATPð Þ,m P{AKTð Þð Þ~0:05

Table 3, 4 show the concentration-changes of components of

reaction t1 from the time point 0 to time point 1.

It is noteworthy to mention that we take multiple time scales of

intracellular biochemical reactions into consideration. For proteins

and components, the decay takes place each time according to

their individual decay function D(m(proteins)*0.09) with 0.09 as

decay kinetic parameter; for ligand-receptor complex, the decay

takes place every 10 times according to their individual

D(m(ligand-receptor complex)*0.2) with 0.2 as decay kinetic

parameter. Currently, these different decay kinetic parameters

are based on empirical experience. All types of kinetic parameters

applied in Petri Nets simulation are summarized in Table 5.

2. Analysis of significant changes of model components
due to the effect of anti-miRNAs

Significance analysis of concentration changes of all model

components were performed using t-test [78]. Suppose the model

contains n components and CX symbolizes the simulated

concentration of one model component and for the state of the

application of anti-miRNA (e.g. anti-mir-21)

Vanti{mir~ C1, C2, C3 ,:::,Cn½ �

where Cx is the concentration of one model component in the

current state, and for the corresponding control state (e.g. mir-21)

Vcontrol~ C01, C02, C03 ,:::,C0n
� �

where C9x is the concentration of one model component in the

control state the p-value is copmuted by the t-test:

P{value~t:test Vanti{mir,Vcontrolð Þ
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