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Whole-genome transcriptome measurements are pivotal for 
characterizing molecular mechanisms of chemicals and predict-
ing toxic classes, such as genotoxicity and carcinogenicity, from 
in vitro and in vivo assays. In recent years, deep sequencing tech-
nologies have been developed that hold the promise of measuring 
the transcriptome in a more complete and unbiased manner than 
DNA microarrays. Here, we applied this RNA-seq technology for 
the characterization of the transcriptomic responses in HepG2 
cells upon exposure to benzo[a]pyrene (BaP), a well-known 
DNA damaging human carcinogen. Based on EnsEMBL genes, 
we demonstrate that RNA-seq detects ca 20% more genes than 
microarray-based technology but almost threefold more sig-
nificantly differentially expressed genes. Functional enrichment 
analyses show that RNA-seq yields more insight into the biology 
and mechanisms related to the toxic effects caused by BaP, i.e., 
two- to fivefold more affected pathways and biological processes. 
Additionally, we demonstrate that RNA-seq allows detecting 
alternative isoform expression in many genes, including regula-
tors of cell death and DNA repair such as TP53, BCL2 and XPA, 
which are relevant for genotoxic responses. Moreover, potentially 
novel isoforms were found, such as fragments of known tran-
scripts, transcripts with additional exons, intron retention or 
exon-skipping events. The biological function(s) of these isoforms 
remain for the time being unknown. Finally, we demonstrate that 
RNA-seq enables the investigation of allele-specific gene expres-
sion, although no changes could be observed. Our results provide 
evidence that RNA-seq is a powerful tool for toxicology, which, 
compared with microarrays, is capable of generating novel and 
valuable information at the transcriptome level for characterizing 
deleterious effects caused by chemicals.

Key Words:  RNA-seq; chemical carcinogenesis; gene expression 
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One of today’s main challenges in pharmaceutical, chemical, 
and cosmetic industries is to accurately assess the toxic prop-
erties and mechanisms of new and known chemical entities, 

such as on carcinogenicity and genotoxicity, preferably with-
out the use of animal experiments. From the early days of 
microarray-based genomics technologies, these have been 
embraced to this aim by the toxicological research community 
(Aardema and MacGregor, 2002; Decristofaro and Daniels, 
2008; Waters and Fostel, 2004). Gene expression profiling 
is currently widely applied for unravelling mechanisms that 
underlie toxic properties of chemicals as well as for predict-
ing toxicity of chemical compounds (Kim et al., 2005; Mathijs 
et al., 2009; McHale et al., 2010; Paules et al., 2011). Now, the 
emerging next-generation DNA-sequencing technologies and 
their application for gene expression analyses have the poten-
tial to advance transcriptomics-based risk assessment.

Over the last decade, several microarray-based platforms 
have been developed for whole-genome gene expression 
profiling, the most prominent ones being provided by 
Affymetrix, Agilent, and Illumina. For the purpose 
of enhancing the acceptance of the genomic profiling 
technologies for chemical risk assessment by regulatory 
authorities, both the microarray technology as well as their 
associated data analysis approaches have been thoroughly 
validated (MicroArray Quality Control I and II [MAQC I and 
II]) (Arikawa et al., 2008; Canales et al., 2006; Chen et al., 
2007; Liu et al., 2009; Shi et al., 2006).

Although all this is promising, microarray technology suf-
fers from some important limitations. First, the platforms 
are inflexible and incomplete, since hybridization probes 
are only present for “known” or predicted transcripts, there-
fore, by default the unknowns are missing. Information on 
splice and other variants is hardly available, although exon 
arrays can partly fill that gap (Chen et  al., 2011; Laajala 
et al., 2009). Secondly, microarray scanners have a limited 
dynamic range and sensitivity that hampers the detection of 
many low-expressed genes and are at best semiquantitative, 
as demonstrated by MAQC I (Shi et al., 2006). Due to this, 
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the so-called whole-genome arrays do not provide complete 
and accurate information on the actual cellular transcriptome 
and on how that can be affected by toxic compounds. Risk 
assessment of chemical exposure, however, requires quantita-
tive knowledge of dose-response relationships, and it is obvi-
ous that because of their limited utility, microarray technologies 
cannot completely meet that goal.

The arrival of deep sequencing applications for transcriptome 
analyses, RNA-seq, may circumvent these disadvantages of 
microarray platforms. Digital counting of all transcripts that are 
actually present in the cell, holds the potential to provide unbi-
ased and complete measurements of all small and large RNA 
molecules present in a cell (Wang et al., 2009). This implies 
that no a priori knowledge of the transcriptome is required, that 
splice variants and other isoforms can be measured, and that 
the dynamic range is unlimited (Sultan et al., 2008). However, 
RNA-seq results are still difficult to interpret because of the 
huge amounts of data generated, which in turn results in new 
challenges for the processing of sequence alignments as well as 
for subsequent statistical analyses. Also, the restricted a priori 
knowledge of the transcriptome hampers functional interpre-
tation. Furthermore, although new and improved algorithms/
tools are constantly designed, their standardization is still lim-
ited (Auer and Doerge, 2010; Bullard et al., 2010).

To date, within the toxicology community, the application of 
RNA-seq has hardly been evaluated. To our knowledge, there are 
only two publications available that describes this application. 
One focuses on RNA-seq analysis of kidney tissue taken from 
rats treated with aristolochic acid (Su et al., 2011). In this study, 
RNA-seq appeared to generate a consistent biological interpreta-
tion compared with traditional microarray platforms while simul-
taneously generating more sensitive results. However, alternate 
splicing and other sequence variations were not investigated. 
The second study deals with RNA-seq analyses of human A549 
cells exposed to NiCl

2
 (Tchou-Wong et al., 2011). In this article, 

no comparison was made with microarray technology and their 
RNA-seq analysis did not cover transcript isoforms.

Thus, as there is a clear need for further toxicological inves-
tigations to better understand the advantages and limitations of 
RNA-seq, the aim of this article is to explore the performance 
of RNA-seq by comparing its results with those from classical 
microarray analysis. Information on genes, transcripts, splice 
variants, and allele-specific expression has been gathered and the 
functional interpretation of these data at the level of pathways 
and biological processes performed. The input to this study is 
RNA from a human hepatoma (HepG2) liver cell line, exposed 
for 12 h and 24 h to benzo[a]pyrene (BaP), a ubiquitously pre-
sent and potent DNA-damaging carcinogen, that is also consid-
ered to be a human carcinogen by the International Agency for 
Research on Cancer (IARC) (http://monographs.iarc.fr/ENG/
Monographs/vol100F/mono100F-14.pdf). BaP is especially 
interesting for transcriptomic studies, as it has both genotoxic 
and nongenotoxic properties. The genotoxic properties are due 
to biotransformation of BaP to DNA-reactive metabolites thus 

also generating reactive oxygen species (Burczynski et al., 1999; 
Cavalieri and Rogan, 1995; Cheng et al., 1989). The nongeno-
toxic properties of polycyclic aromatic hydrocarbons (PAH) 
are assumed to result from its capability of activating the tran-
scription factor AhR, the aromatic hydrocarbon receptor, which 
controls the transcription of many biotransformation genes (Ma, 
2001; Nebert et al., 2004). In addition, BaP-mediated oxidative 
stress leads via the activation of transcription factor Nrf2 to the 
induction of multiple phase I and II biotransformation enzymes 
(Wang et  al., 2007). Recently, an extensive time series study 
on BaP-induced transcriptome changes in HepG2 demonstrated 
that a network of transcription factors may regulate the effects 
on functional gene sets (van Delft et  al., 2010). The mRNA 
profiles obtained from these networks at 12 h and 24 h exposure 
time points were clearly different, making these attractive time 
points for the RNA-seq study.

Several previous microarray studies have shown that HepG2 
cells are capable of metabolizing BaP, which in turn alters the 
expression of numerous genes, such as those related to the DNA 
damage response, apoptosis, cell cycle, DNA repair, metabo-
lism, etc. (Hockley et  al., 2006, 2009; Lin and Yang, 2007). 
These findings indicate that the HepG2 cells are a good model 
for this study, although we acknowledge that because HepG2 
cells are already transformed. As a consequence some gene 
changes may be missed. For comparison with microarray-based 
methods, the same samples were also investigated using the 
Affymetrix whole-genome HGU133Plus 2.0 GeneChip.

MATERIALS AND METHODS

Chemicals.  BaP, purity 96%, CAS no.  50-32-8 was obtained from 
Sigma-Aldrich (Zwijndrecht, The Netherlands). The chemical was dissolved in 
dimethyl sulfoxide (DMSO).

Cell culture and treatment.  Human hepatocellular carcinoma HepG2 
cells (ATCC HB-6065) were used in all experiments. HepG2 cells were 
maintained as a monolayer culture in 95% humidity, an atmosphere with 
5% of CO

2
, and at 37°C. HepG2 cells were passaged at preconfluent densi-

ties with the use of a trypsin-EDTA solution. Cells were cultured and pas-
saged in a minimal essential medium with 10% of fetal bovine serum, 1% 
penicillin/streptomycin, 1% sodium-pyruvate, and 1% nonessential amino 
acids. All medium compounds were obtained from Gibco BRL (Breda, The 
Netherlands). Three milliliter of cells (1 × 105/ml) were seeded into each well 
of a six-well microtitre plate. When the cells were 80% confluent, the medium 
was replaced with fresh medium containing either 2µM BaP or the vehicle 
control (0.5% DMSO) during 12 h and 24 h in two independent experiments 
(biological replicates). More details have been provided elsewhere (Jennen 
et al., 2010).

RNA isolation.  Total RNA was isolated after 12 h and 24 h of incubation 
with BaP or DMSO in HepG2 using the miRNeasy mini kit (Qiagen Westburg 
BV, Leusden, The Netherlands) according to manufacturer’s instructions, fol-
lowed by a DNase I (Qiagen Inc) treatment. RNA quantity was measured on a 
spectrophotometer and the quality was determined on the BioAnalyzer system 
(Agilent Technologies, Breda, The Netherlands). All RNA samples showed 
clear 18S and 28S rRNA peaks and demonstrated a RNA integrity number 
(RIN) level higher than 8.

RNA-seq: Library preparation and sequencing.  Poly-A RNA was puri-
fied with the Dynabeads mRNA purification kit (Invitrogen) following the 
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manufacturer’s instructions and was treated for 30 min at 37°C with TURBO 
DNase (Ambion; 0.2 units/1  μg of RNA). First- and second-strand synthe-
sis followed the manufacturer’s protocol. About 500 ng of double-stranded 
cDNA was fragmented by sonication with a UTR200 (Hielscher Ultrasonics 
GmbH, Germany). DNA was parceled in 2% high-resolution agarose gel and 
230–270 bp fragments were cut. Library amplification consisted of the follow-
ing two steps: (1) real-time PCR was performed on StepOne Real-Time PCR 
System with SYBR Green core reagents (Applied Biosystems) according to the 
manufacturer’s instructions and (2) large scale PCR was performed on PTS-100 
Programmable Thermal Controller (MJ Research Inc.) with 2×Phusion HF 
master mix (NEB) and primers for amplification of the mate-paired library 
(“PE_PCR primer 1.0” and “PE_PCR primer 2.0,” Illumina). Amplified mate-
rial was loaded to a flow cell at a concentration of 8 pM. Sequencing was car-
ried out on the Illumina Genome Analyzer by running 51 paired-end cycles 
according to the manufacturer’s instructions. For real-time monitoring of run 
quality and parameters Illumina’s Sequencing Control Software and for image 
analysis and base-calling Illumina Genome Analyzer Pipeline v1.5.0 was used. 
Resulting FASTQ files were quality checked using FASTQC (http://www.bio-
informatics.bbsrc.ac.uk/projects/fastqc/).

RNA-seq: Analysis.  RNA-seq reads were mapped to the EnsEMBL v58 
cDNA sequences using bowtie v0.12.7 (Turro et al., 2011). On top of this align-
ment for uniquely mappable reads, RNA-seq by expectation-maximization 
(RSEM) v1.1.7 has been used to assign the ambiguous reads to different tran-
script isoforms using an expectation-maximization algorithm for estimation 
of each gene’s isoform distribution (Langmead et al., 2009). After the align-
ment step, RSEM provides read quantification at the individual transcript and 
gene level.

Both lists were separately imported into R for further statistical analysis using 
the Bioconductor package edgeR (Robinson and Oshlack, 2010). Differentially 
expressed (DE) genes/transcripts were identified using the following criteria: (1) 
absolute fold-change ≥ 1.5, (2) q value (false discovery rate [FDR]) ≤ 0.05, and 
(3) average read count in at least one experimental group ≥ 10.

Affymetrix microarray analysis.  Sample preparation, hybridization, 
washing, staining, and scanning of the Affymetrix Human Genome U133 Plus 
2.0 GeneChip arrays were conducted according to the manufacturer’s manual as 
previously described (Jennen et al., 2010). Quality controls were within accept-
able limits. Hybridization controls were called present on all arrays and yielded 
the expected increases in intensities. The data discussed in this publication have 
been deposited in Gene Expression Omnibus (Barrett and Edgar, 2006) under 
accession number GSE36244.

The Affymetrix CEL files were imported in R 2.12.2 under BioConductor 
v2.7 (Gentleman et al., 2004). Probe sets were reannotated using the BrainArray 
custom Chip Definition File (CDF) v13.0 annotations for both EnsEMBL 
genes and transcripts, generating two separate datasets. These custom CDFs 
were based on EnsEMBL v58. Next, both datasets were separately log trans-
formed, Robust Multi-Average (RMA) normalized, and further evaluated 
through an extensive quality control pipeline consisting of box plots, Probe 
Level Model fitting (fitPLM), Normalized Unscaled Standard Error (NUSE), 
Relative Log Expression (RLE), clustering/heat maps, Principal Component 
Analysis (PCA), and correlation plots. There were no technically deviating 
arrays. The limma package (Smyth, 2005) was applied for computing a linear 
model using time and dose as main components. The resulting p values were 
familywise error rate (FWER) corrected using the false discovery rate (FDR) 
approach. Genes were considered to be DE when their (1) absolute fold change 
≥ 1.5, (2) q value (FDR) < than 0.05, and (3) average expression in at least one 
of the two experimental groups > 6 (log2-scale).

Functional interpretation.  The biological outcome of the experiment was 
assessed using a combined strategy consisting of interpreting and visualization 
of the modulated genes at the biological pathway level (PathVisio; van Iersel 
et al., 2008) as well as of a gene ontology (GO) classification method as per-
formed by GO-Elite (Zambon et al., 2012).

For PathVisio, all human pathways were obtained from WikiPathways (Pico 
et al., 2008). Also, a gene database (HS_Derby_20100601.gdb) was used to 

map the genes on pathways. The annotations present in this gene database were 
based on EnsEMBL v58. For each time point, a separate gene list was imported 
using EnsEMBL gene identifiers. After the data were imported, pathway statis-
tics were calculated based on the DE genes by means of a Z-score. A pathway 
is considered significantly altered when (1) Z-score ≥ 1.96, (2) the minimum 
amount of DE genes was three, and (3) permutation p value ≤ 0.05 (n = 2.000).

GO-Elite v1.21 was used for functional classification using GO terminol-
ogy. In preparation for the analysis, the EnsEMBL v58 database was down-
loaded in combination with its associated GO OBO database (release date: 26 
July 2009). Gene identifiers of the DE genes were placed in the input file and 
the identifiers of the detected genes were placed in the denominator file. For 
a more thorough interpretation of the results, we only focused on GO terms 
belonging to the biological processes (P) class. A  GO term was considered 
to be differentially altered when (1) Z-score > 1.96, (2) there were at least 
three DE genes present in that process, and (3) permuted p value ≤ 0.05 (n 
=2.000). Large GO-processes (> 300 genes) were filtered out to minimize pro-
cess redundancy.

Expression of alternative isoforms.  In order to assess differences in 
isoform expression upon BaP treatment, we have used an entropy argument 
(Cover and Thomas, 2006). Short reads were counted for each isoform i of a 
gene separately using RSEM. An isoform was called expressed if at least 10 
reads were annotated for the respective gene sequence and had at least one 
read for the specific isoform. Let P

1
,…, P

N
 be the different relative isoform 

counts of a particular gene, i.e., P
1
 ₁ … + P

N
 + 1, then we defined isoform 

entropy (IE) as

IE= P where log , , .2 1i i
i

P i N( ) =∑ 

IE is a measure for the uniformity of expression of the different isoforms. It 
is high if many of the gene’s isoforms are expressed at similar levels and low 
if only one or few isoforms are predominantly expressed. In order to identify 
differences in isoform entropy between the BaP-treated and untreated HepG2 
cells, we computed for each gene the log2-ratio of IEs computed from the two 
states and considered IEs to be different if their absolute log2-ratio was ≥1.

Expression of alleles.  Allele-specific gene expression can be measured if a 
heterozygous single nucleotide polymorphism (SNP) is present in the transcript.

Raw sequence reads of untreated HepG2 cells were aligned using bowtie 
(v0.12.7) against UCSC human genome (hg19) reference. Only reads that 
aligned to a unique position within the reference were used for the detection 
of SNPs. Further, potential PCR artifacts were filtered using rmdup (from 
samtools v0.1.17). Overall, 78,510,329 reads were used as input to the 
detection of gene polymorphisms, which yields on average 37× coverage 
of the HepG2 transcriptome. SNP calling was incorporated with samtools 
(mpileup, bcfutils, vcfutils) using standard parameters except for the 
maximum coverage, which was artificially set to 10,000 and the minimum 
mutational penetrance, which was set to 20. Statistical tests for each 
treatment/control pair at each SNP were performed to investigate changes in 
the allelic ratio using a binomial test.

RESULTS

Differential Expression in HepG2 Cells Upon BaP 
Treatment Using RNA-Seq

In total, eight lanes were sequenced resulting in a total of 
110.7 million reads. For each lane, the percentage of total reads 
uniquely mapped to the EnsEMBL v58 genome was between 
57.7 and 61.6%. Applying the RSEM algorithm increased these 
mapping numbers to 74.8–78.4%. All alignment statistics are 
summarized in Supplementary table 1.
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Applying the filtering criteria to each time point 
resulted in the detection of 13,385 (12 h) and 12,918 (24 h) 
EnsEMBL-annotated genes, which were subsequently used 
for downstream analysis. Within these gene lists, 1080 (12 h) 
and 704 (24 h) genes were found to be DE between BaP-treated 
and untreated cells (see Materials and Methods). These gene 
sets were then further interpreted with regard to their biological 
context (pathways) as well as their function (GO).

Pathway analysis revealed 21 (at 12 h) and 13 (at 24 h) sig-
nificantly altered pathways (Table  1). The majority of these 
changed pathways were related to relevant toxicological pro-
cesses like BaP metabolism, biotransformation, and oxidative 
stress. Furthermore, after 12 h of exposure, BaP induced large 
changes in both the ATM-dependent and non–ATM-dependent 
DNA damage response.

Analyses of GO terms belonging to the biological processes 
(P) class indicated that 387 processes were affected at 12 h and 
214 processes at 24 h, with 97 overlapping processes. A  full 
list of all regulated processes is provided in Supplementary 
table 2. Many of the processes affected at both time points are 
associated with responses to xenobiotic compounds and stress 
responses. Also, at 12 h modifications of apoptosis-related 
pathways were found, whereas at 24 h effects on sterol metabo-
lism and DNA damage response were observed.

Alterations of Isoform Expression Upon BaP Treatment

An advantage of RNA-seq compared with microarrays is 
that sequencing allows the quantification of gene expression 

at the isoform level, such as splice variants and polyadenyla-
tion variants. After alignment of the short reads to EnsEMBL 
transcripts, we observed a large number of genes that expressed 
two or more isoforms regardless of exposure time and treatment. 
Approximately, 57% of the genes expressed more than two iso-
forms over any of the experimental conditions, indicating that 
alternative splicing is a common event in HepG2 cells (Fig. 1A).

In order to measure differences in isoform expression 
distribution upon BaP treatment, we applied an entropy criterion 
(see Materials and Methods). Figure 1B displays the histogram 
of the log2-ratios (treatment vs. control) of isoform entropy. The 
vast majority of genes did not change isoform entropy upon BaP 
treatment, which implies that isoform distribution was not altered 
and thus that alternative splicing is not affected by BaP. However, 
after treatment, 839 genes showed a change in isoform entropy 
of more than twofold meaning that there is either a loss or a 
gain of isoforms upon BaP treatment. Interestingly, these genes 
contained, among others, 13 apoptosis genes (out of 86 genes 
from the Kyoto Encyclopedia of Genes and Genomes pathway, 
which represents a significant overrepresentation, Fisher’s P = 
0.000113, Q = 0.0394). Several of these genes that are known to 
be associated with carcinogenic processes, i.e., TP53, BCL2, and 
XPA and with oxidative stress response such as AKR1B10, are 
depicted in Fig. 1C–F. Additionally, changes of isoform entropy 
were observed across the full range of expression strength. For 
example, TP53 is highly expressed in the cells with 1194–1675 
short read assignments (reads per kilobase per million [RPKM]: 
14.40–18.97), whereas BCL2 is expressed at a very low level 
with 11–30 short reads (RPKM: 0.05–0.14).

TABLE 1 
Interpretation of BaP-Induced Gene Expression Changes Measured by RNA-Seq In HepG2 at the Level of Biological Pathways 

(WikiPathways)

12 h pathway name Z-score 24 h pathway name Z-score

BaP metabolism 6.33# BaP metabolism 7.38#

Oxidative stress 5.09# Cholesterol biosynthesis 6.08
Keap1-Nrf2 4.63# Codeine and morphine metabolism 4.16
GPCRs, class A rhodopsin-like 3.67 Keap1-Nrf2 3.85#

Metapathway biotransformation 3.47# Urea cycle and metabolism of amino groups 3.66
Myometrial relaxation and contraction 3.12# Metapathway biotransformation 3.65#

Nucleotide GPCRs 3.06 Oxidative stress 3.34#

Hypertrophy model 2.96 Statin pathway 3.26
Estrogen metabolism 2.94# Estrogen metabolism 3.13#

Focal adhesion 2.88 Tryptophan metabolism 2.74#

DNA damage response 2.82 Adipogenesis 2.31
Blood clotting cascade 2.77 Inflammatory response pathway 2.30
Biogenic amine synthesis 2.70 Myometrial relaxation and contraction 2.18#

Calcium regulation in the cardiac cell 2.64
DNA damage response (ATM dependent) 2.32
Glutathione metabolism 2.28
Wnt signaling pathway 2.18
Ovarian infertility genes 2.14
Type II diabetes mellitus 2.11
G-protein signaling pathways 2.07
Tryptophan metabolism 1.98#

# Changed at both 12 h and 24 h.
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FIG. 1.  (A) Histogram showing the number of expressed isoforms per gene in the four experimental settings. (B) Density plot of fold-changes (log2-scale) of 
isoform entropy (IE) in BaP-treated cells (24 h exposure time) versus untreated cells. (C) TP53 isoforms. Bars show relative proportions of reads mapped to the 
different isoforms with respect to the four experimental conditions. Isoforms are color coded with a legend given in the box. Total reads and RPKM values taking 
into account the library size and the gene length are shown below each bar. (D) BCL2 isoforms, (E) AKR1B10 isoforms, and (F) XPA isoforms.
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Characterizing Alterations of Allele-Specific Expression 
Upon BaP Treatment

Because HepG2 is a human hepatocarcinoma cell line, the 
abundant presence of heterozygous SNPs enables us to investi-
gate the allele-specific transcriptional landscape, which might 
help in explaining eminent features with respect to in vitro toxi-
cology and pharmacology in future studies. In order to identify 
heterozygous SNPs in HepG2 cells, we processed all uniquely 
mapped short reads. In total, 7351 heterozygous SNPs were 
assigned to coding regions of which 3749 and 2471 were suf-
ficiently covered in treatment and control samples (≥ 20 reads) 
in the 12-h and 24-h samples, respectively. Most SNPs refer 
to known variants across human populations (dbSNP entries) 
(Sherry et  al., 2001), whereas 241 had no match and appear 
specific for HepG2 cells.

The SNP penetrance density plot has a peak at 0.5, hence 
most genes show a balanced expression of both alleles (Fig. 2). 
The binomial test found 38 genes in the 12-h samples and 27 
genes in the 24-h samples to have changed allelic ratios between 
treatment and control samples (p < 0.05), however, following 
correction for multiple testing, no gene was significant in either 
experiment. Therefore, we conclude that there is no evidence that 
BaP influences allele-specific gene expression in HepG2 cells.

Detection of Novel Isoforms

Another advantage of RNA-seq over microarray technology 
is the possibility to detect novel isoforms. We used the combi-
nation of TopHat/Cufflinks in order to detect splice junctions 
and compared the assembled sequence reads against EnsEMBL 
annotation (Supplementary fig. 1). In total, 60,403 expressed 

transcript assemblies were identified, of which 28,966 (48%) 
were classified as “potentially novel isoforms.” In order to 
distinguish between the unknown alternative splicing events 
detected by cufflinks, the class of “potentially novel isoforms” 
was further examined comparing the transcript boundaries 
with known annotation. Specific types of alternative splicing 
included unknown exons, exon skipping, intron retention, alter-
native splice donor, or acceptor sites. In 23,487 out of 28,966 
transcripts that were tagged as “potentially novel isoforms,” 
we found evidence for at least one of the analyzed alternative 
splicing events. The majority of these transcripts (14,872) were 
fragments of known transcripts, whereas 3588 isoforms had 
additional exons that did not overlap with known exons, most 
of them in front or after the known gene structure, leading to 
“extended” transcripts (2636). In total, 5305 transcripts had 
alternative splice sites, not present in EnsEMBL 58, whereas 
5530 transcripts showed evidence for intron retention. Novel 
exon skipping events where detected in 1080 cases (Fig. 1G).

Comparison of RNA-Seq and Microarray Results

The outcomes of the Illumina RNA-seq and Affymetrix plat-
forms were obviously evaluated at the gene level because the 
microarray did not allow us to measure isoform-specific expres-
sion levels. For each platform, a baseline of detectable genes 
that were mapped against EnsEMBL genes was established 
and summarized in Supplementary table 3. On the Affymetrix 
platform, 11,435 (12 h) and 11,383 (24 h) reannotated genes 
passed the detection criteria. For RNA-seq, these numbers were 
slightly higher, i.e., 13,385 (12 h) and 12,918 (24 h). In each 
dataset, 90–95% of all genes were annotated with a meaningful 
EnsEMBL description and/or gene name. Within each platform, 
the log ratios of the biological replicates showed a high correla-
tion (Affymetrix: R = 0.87; RNA-seq: R = 0.72; Supplementary 
figs.  2A and 2B), whereas those between platforms were 
slightly lower (Replicate 1: R = 0.71; Replicate 2: R = 0.72; 
Supplementary figs. 2C and 2D). Across all platforms and time 
points, there was a large overlap in detected genes (9846), as 
illustrated in Fig.  3A. Additionally, each platform detected 
a fraction of unique genes, which could not be confirmed by 
the other platform. With respect to Affymetrix readouts, about 
~65% of these additional genes were also picked up by the 
RNA-seq system but showed low counts. Similarly, with respect 
to the RNA-seq platform, about ~35% of these additional genes 
were measured by means of the Affymetrix technology and cor-
responded with a very low intensity. All other additional RNA-
seq genes were not present on the Affymetrix chip.

The changes reported by RNA-seq were mostly larger 
than measured on the Affymetrix chip, examples are as fol-
lows: (1) CYP1A1 that showed a 93-fold (12 h) and 79-fold 
(24 h) increase on Affymetrix, whereas RNA-seq reported a 
199-fold (12 h) and 214-fold (24 h) increase and (2) ALDH3A1 
that showed a 6.3-fold (12 h) and 6.1-fold (24 h) increase on 
Affymetrix compared with the 32-fold (12 h) and 36-fold (24 h) 
increase reported by RNA-seq.

FIG. 2.  SNP penetrance density plot demonstrating that most genes have 
balanced expression of both alleles.
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Our next focus was on the total number of DE genes per 
time point. Figure 3B shows that the majority of the DE genes 
found by Affymetrix were also demonstrated to be DE by the 
RNA-seq platform (12 h: 315; 24 h: 185). However, RNA-seq 
analysis resulted in a much higher number of DE genes, many of 
which were not found by microarray technology. Gene expres-
sions that are expected to be affected by BaP were indeed iden-
tified on both platforms, such as CYP1A1, which is regulated 
by AHR, NQO1, and AKR1B10, which are regulated by NRF2, 
and CDKN1A, which is regulated by TP53. Furthermore, the 
proto-oncogenes FAS and MDM2 were also demonstrated to 
be upregulated by both platforms, whereas expressions of the 
proto-oncogenes FOS and JUN and the tumor suppressor EXT1 
were only retrieved by RNA-seq. At both time points, 161 genes 
were uniquely identified by RNA-seq as DE. These included 
the NRF2-regulated gene OSGIN1, whereas there were only 
four DE genes that were only found by the microarrays.

Next, these lists of DE genes were interpreted in a func-
tional context (GO biological process annotations; Fig.  3C 
and Supplementary tables 3 and 5) as well as in a biological 
pathway context (WikiPathways; Fig. 3D and Supplementary 
fig. 4). Not only was the RNA-seq approach able to cover a 
larger part of the genes in nearly all relevant biological path-
ways and GO processes (Fig. 4 and Supplementary fig. 3), but 
it also provided a larger number of biological processes to be 

significantly affected compared with the microarray analy-
ses. For pathways, at both exposure periods, there appears a 
considerable overlap between both platforms, with RNA-seq 
identifying more pathways. A  between-platform comparison 
of the most important pathways is presented in Fig. 5, a simi-
lar presentation for all pathways is provided in Supplementary 
fig. 4. Two pathways were observed under all four conditions 
(both time points and both platforms), namely “benzo(a)
pyrene metabolism” and “metapathway biotransformation.” 
Some are only observed at 12 h of treatment, e.g., “glutathione 
metabolism,” or at 24 h, such as “cholesterol biosynthesis.” 
Moreover, 357 processes and 10 pathways were uniquely iden-
tified by RNA-seq, whereas with microarray analysis, these 
numbers were lower (69 and 5, respectively). More platform-
specific pathways are observed for RNA-seq than for microar-
rays, such as “Wnt signaling pathway,” which at 12 h of BaP 
exposure is only observed for RNA-seq, or “Keap1-Nrf2” and 
“oxidative stress,” which at 24 h are only observed for RNA-
seq. The DNA damage response pathway can be considered 
the prototypical effect for a genotoxic carcinogen like BaP. A 
part of this pathway that focuses on the regulation of TP53 is 
shown in Fig. 6, where the affected genes under all experimen-
tal conditions and platforms are also visualized. The complete 
DNA damage response pathway (and gene visualization) can 
be found in Supplementary fig. 5.

FIG. 3.  Between-platform comparison of total number of (A) detectable genes, (B) DE genes, (C) significantly altered biological processes (GO), and (D) 
significantly altered biological pathways (WikiPathways).
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Discussion

Because the development of next-generation high-throughput 
DNA sequencing technologies several years ago, gene expres-
sion analysis based on “digital counting” of the transcripts 
(RNA-seq) has come within reach. Here, we explored the perfor-
mance of RNA-seq within a toxicogenomics setting. The gene 
expression changes induced in HepG2 cells by the well-studied 
carcinogen BaP have been investigated. Information on genes, 
transcripts, splice variants, as well as the functional interpre-
tation of these data at the level of pathways and biological 
processes was gathered. For anchoring and comparing with 
microarray-based methods, the same samples were also inves-
tigated using the Affymetrix whole-genome HGU133Plus 2.0 
GeneChips.

The major advantages of RNA-seq are that it provides insight 
into all transcripts and their variants present in the cell as it is 
not biased to the “known transcripts,” and that it is quantita-
tive over a large dynamic range thanks to digital counting of 
the transcripts (Sultan et al., 2008; Wang et al., 2009). These 
added values are confirmed by our study. Unfortunately, inter-
preting the transcript data in a functional and biological path-
way context requires the mapping of the reads to the “known 
transcripts,” thereby losing information on “unknown” tran-
scripts. Despite this, we demonstrated that RNA-seq results in 

more enriched biological processes and pathways being identi-
fied as significantly affected compared with microarray anal-
yses (Fig.  3C and D). Also more platform-specific pathways 
are found by RNA-seq than by microarrays. This implies that 
RNA-seq provides better insight into the biology and mecha-
nisms related to the toxic effects caused by BaP.

Both at the level of genes as well as that of biological pro-
cesses and pathways, profound differences are observed between 
the 12 h and 24 h exposure periods (Fig. 3B–D, Supplementary 
table 1, and Supplementary fig. 4), which is in agreement with 
previous publications (Hockley et  al., 2006; van Delft et  al., 
2010). For instance, in an extensive time series study using 20k 
genes Agilent arrays, temporal profiles for functional gene sets 
demonstrated both early and late effects in up- and downregula-
tion of relevant gene sets involved in cell cycle, apoptosis, DNA 
repair, and metabolism of amino acids and lipids. Pathway 
analyses of the RNA-seq data indicate that at 12 h specifi-
cally G-protein-coupled receptor pathways and DNA damage 
response pathways are affected, whereas at 24 h this was “cho-
lesterol biosynthesis” and “codeine and morphine metabolism.” 
Most of these time-dependent differences were also observed 
by the microarray analyses. Also in the previous study, it was 
shown that genotoxic responses occur before effects on metab-
olism pathways (van Delft et  al., 2010). Visualization of the 
effects in the “DNA damage response” pathway demonstrates 
that especially the network of genes around TP53 is upregu-
lated (Fig. 6). This is irrespective of the transcriptomics plat-
form used. It also shows for several genes that the effects at 12 h 
are larger than at 24 h, which agrees with the pathway analyses.

Also by microarray analyses, unique DE genes and biologi-
cal processes and pathways were found, which suggests that this 
technology may reveal biology that is missed by RNA-seq but 
may also represent false-positive observations. Obviously, nei-
ther can be excluded. Examples are the pathways “cytochrome 
P450” and “nuclear receptors in lipid metabolism and toxicity.” 
However, because methods based on quantitative hybridiza-
tion are sensitive to mismatches, cross-hybridization with other 
mRNAs may occur, resulting in reporting DEs that actually are 
not affected. It is noteworthy to mention that microarray plat-
forms report in general smaller gene expression changes than 
RT-PCR-based methods, as was shown in the MAQC I project 
(Canales et al., 2006; Shi et al., 2006). Furthermore, because 
RNA-seq detects more genes, the background list of unaffected 
genes also increases. In overrepresentation analysis tools like 
PathVisio and GO-Elite, these background lists are required for 
correct statistical analyses. When a background list increases, 
significant changes may become less significant. For instance, 
the biological process “GO:0042770 DNA damage response, 
signal transduction” was significant for microarrays with 7 DE 
out of 74 measurable genes (permuted p value = 0.01), whereas 
for RNA-seq, 10 DE among 80 measurable genes was not sig-
nificant (permuted p value = 0.214). Nevertheless, it is undis-
putable that the RNA-seq analysis represents a more complete 
and thus a more correct picture of the biology.

FIG. 4.  Coverage plot comparing the relative number of detected genes 
in WikiPathways between each platform after 12 h BaP exposure showing that 
the majority of the relevant pathways (i.e., [coverage] >50%) show an increase 
of measurable genes using the RNA-seq approach. The circle size corresponds 
with the total number of genes in that pathway. A distinction was also made 
between toxicology-related pathways (red), signaling pathways (blue), and all 
other Wikipathways pathways (black).
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Besides the detection of DE genes and known transcript 
isoforms, RNA-seq also offers the potential to detect novel 
isoforms. Although the majority of transcript assemblies over-
lapped with current Ensembl annotation, we detected 1080 
transcripts with novel exon-skipping events that correspond to 
735 different genes. These genes span a wide range of func-
tional annotations including cancer and genotoxic response 
pathways, e.g., p53 signaling (CHEK1, DDB2, ABL1), apopto-
sis (PLEKHG2), and cell cycle (CDC25, RBL1).

We in particular showed that RNA-seq can provide informa-
tion on BaP-induced gene expression changes at the level of 
splice variants and allows investigating allele-specific effects, 
which to our knowledge has never before been described in the 
context of a toxicogenomics study. It has been shown previously 
that DNA damage induces apoptosis and regulates alternative 
splicing (Muñoz et al., 2009). Where BaP treatment effects on 
alternative splicing have not yet been globally investigated, 

however, previous work has selectively identified transcribed 
genes with activated alternative splicing after BaP treatment 
(Yan et al., 2010). Furthermore, BaP has been found to induce 
alternative splicing of MDM2 in lung cancer cell lines and that 
this process is associated with lung cancer (Weng et al., 2005).

For 839 gene expressions, we observed isoform changes, 
meaning that either a loss or a gain of isoforms occurred fol-
lowing BaP treatment. Interestingly, several of these genes 
are known to be relevant for chemical carcinogenesis, such as 
TP53, BCL2, and XPA or chemical oxidative stress response, 
such as AKR1B10 (Fig. 1D–F). TP53 and BCL2 are both tumor 
suppressor genes involved in cell cycle and/or apoptosis of cells 
following exposure to DNA damaging carcinogens like BaP. 
In fact, TP53 is a transcription factor and has a key function in 
the regulation of expression of many genes following the DNA 
damage formation, also in HepG2 cells (Hockley et al., 2006; 
van Delft et  al., 2010). Especially at 24 h of BaP treatment, 

FIG. 5.  Between-platform comparisons of the pathways affected in HepG2 cells by BaP treatment. A summary is displayed of some relevant toxicological 
pathways that were significantly altered across most experimental conditions. The length of the bar corresponds with the pathway size (red), number of genes in the 
pathway detected by the platform (yellow), and the number of DE genes found in that pathway (green). The Z-score as well as the numerical values are displayed 
next to each bar. This Z-score is colored red when that pathway was significantly altered at that time point.

	 RNA-SEQ FOR TRANSCRIPTOME RESPONSES BY BENZO[A]PYRENE	 435

 at M
PI M

olec G
enetics on A

pril 11, 2013
http://toxsci.oxfordjournals.org/

D
ow

nloaded from
 

http://toxsci.oxfordjournals.org/


a large shift in transcript isoforms occurs, mainly due to the 
decrease of ENST0000044588 and ENST00000414315 and 
increase of the main transcript ENST00000269305 (Fig. 1C). 
ENST00000414315 codes for a truncated protein, whose func-
tion is unclear. A total of 10 human TP53 isoforms are currently 
characterized described in literature that are produced by alter-
native splicing, use of alternative translation site, or alternative 
promoter (reviewed in Marcel and Hainaut, 2009 and http://
www-p53.iarc.fr/p53isoforms.html), whereas in EnsEMBL, 
even 16 isoforms are mentioned. Current knowledge on the role 
and activities of these isoforms is still limited. Also for BCL2, 
a splice variant that codes for a truncated protein decreases fol-
lowing BaP treatment (Fig. 1D). To date, no information is avail-
able about the possible role of this variant protein. AKR1B10 
is one of the most induced genes by BaP, already giving an 
almost 10-fold induction at early 12 h. This has been reported 

previously as well and agrees with activation of the transcrip-
tion factor NRF2 by reactive metabolites and/or oxidative stress 
(Nishinaka et al., 2011; van Delft et al., 2010). Interestingly, at 
24 h, the level of splice variant ENST00000496435 is increased 
even further (Fig.  1E), although this variant does not appear 
to code for a protein product. XPA is involved in nucleotide 
excision repair of DNA damages, among others that caused 
by BaP (de Vries et al., 1997a, 1997b). Following BaP treat-
ment, transcript ENST00000485042 is almost completely lost 
at 24 h (Fig. 1F). The relevance of this transcript is unknown, 
as it appears not to code for a protein product. All together, 
these data show that exposure to genotoxic compounds causes 
differential expression of splice variants. The biological and 
mechanistic relevance of these are to-date unknown but dif-
ficult to ignore because isoform variation in many relevant 
genes occurs. To understand the significance of these, more 

FIG. 6.  Part of the “DNA damage response” pathway, thereby focussing on the network around TP53 and visualizing gene expression changes according 
to analyses by RNA-seq and Affymetrix arrays. Every block represents a gene present in the DNA damage response pathway. Every block is divided in four 
subblocks, corresponding from left to right with: “Affymetrix 12 h,” “Affymetrix 24 h,” “RNA-seq 12 h,” and “RNA-seq 24 h.” The color code is based on the 
following: (1) grey for genes not passing the detection criteria, (2) light-blue for not DE genes, (3) light-green or light-red (up/downregulated) for genes that are 
statistically altered but did not meet our FC criteria, and (4) dark-green/dark-red color for up/downregulated genes that are DE.
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in-depth studies will be needed, e.g., by overexpressing spe-
cific splice variants and the analyses of protein variants using 
proteomics-based technologies.

Furthermore, we measured isoform expression by RT-PCR 
in order to validate differential expression, which appeared 
difficult. Although we could confirm the relative expression 
of the different isoforms in general and also could confirm 
the induction upon BaP treatment, validating the changes in 
relative expression of the different isoforms between treat-
ment and control samples was not quite successful (results 
not shown). Validating isoform expression levels is a difficult 
task because it is typically dependant on multiple and differ-
ent factors (Fang and Cui, 2011) such as annotation differences 
of the transcripts between different genome databases (i.e., 
EnsEMBL and RefSeq) and the numerical methods that quan-
tify transcript-specific expression. Additionally, for detecting 
isoform expression differences upon chemical treatment a fur-
ther increase in sequencing depth might still be needed in order 
to resolve the expression levels of only moderately expressed 
isoforms.

HepG2 cells are human by origin and thus heterozygous for 
their chromosome pairs, with each cell having maternal and 
paternal chromosomes. Furthermore, allelic imbalance in gene 
expression is a phenomenon known to occur in man (Ju et al., 
2011; Zhang et al., 2009). Due to the presence of heterozygous 
SNPs, it is possible to investigate allele-specific transcriptional 
changes by RNA-seq, but so far this has not been exploited 
in a toxicological context. Despite that we were technologi-
cally able to investigate this, we did not find any evidence 
that BaP influences allele-specific gene expression changes in 
HepG2 cells.

To date, there are a few studies that also investigated the 
relationship between microarray and RNA-seq gene expres-
sion data (Beane et  al., 2011; Bottomly et  al., 2011; Liu 
et  al., 2011; Marioni et  al., 2008; Su et  al., 2011). Marioni 
et al. (2008) illustrated that the data between the microarrays 
and RNA-seq, both Illumina platforms, were highly repro-
ducible. After comparison of DE genes, they concluded that 
there is a high correlation for gene expressions that had on 
average a large number of reads (> 250), whereas this corre-
lation decreased when the number of reads decreased. These 
results are in concordance with our own (see Supplementary 
fig. 2). Bottomly et al. (2011) investigated the expression lev-
els between two different mouse strains and reported that the 
Illumina RNA-seq platform was in high concordance with the 
output obtained from the Illumina and Affymetrix microarray 
platforms. As with our results, the RNA-seq platform was able 
to detect more DE genes. Beane et al. (2011) compared differ-
ent RNA-seq protocols, sequencing types (paired end/single 
end) in combination with results obtained from Affymetrix 
exon and whole-genome arrays. Among all DE genes detected 
in the RNA-seq experiment, only 21% was also DE on either 
the exon or whole-genome chip. Thus, our study is in agree-
ment with these previous findings.

In conclusion, RNA-seq data appear to provide a more com-
plete picture at the level both of DE genes and of affected path-
ways than microarrays. Additionally, we highlight the potential 
of RNA-seq for characterizing mechanisms related to alterna-
tive splicing and other transcript isoforms and to allele-specific 
expression, and therewith gathering new information. Our 
results give evidence that RNA-seq is a powerful tool for toxi-
cogenomics that, compared with microarrays, will add valuable 
information at the transcriptome level for characterizing toxic 
effects caused by chemicals, as evidenced from the large num-
bers of processes and pathways that are missed by microarrays. 
Clearly, more in-depth studies are needed to further substanti-
ate our findings. Among others, studies should be directed on 
verification of splice variants and the differential expression 
for these.

SUPPLEMENTARY DATA

Supplementary data are available online at 
http://toxsci.oxfordjournals.org/.
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