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a  b  s  t  r  a  c  t

Cancer  is  known  to be  a complex  disease  and  its  therapy  is  difficult.  Much  information  is available  on
molecules  and  pathways  involved  in  cancer  onset  and  progression  and  this  data  provides  a valuable
resource  for  the  development  of  predictive  computer  models  that can  help  to identify  new  potential
drug  targets  or to  improve  therapies.  Modeling  cancer  treatment  has  to take  into  account  many  cellular
pathways  usually  leading  to the  construction  of  large  mathematical  models.  The development  of  such
models  is complicated  by  the  fact that relevant  parameters  are  either  completely  unknown,  or  can  at  best
be measured  under  highly  artificial  conditions.  Here  we  propose  an  approach  for  constructing  predictive
models  of  such  complex  biological  networks  in  the  absence  of  accurate  knowledge  on parameter  values,
and apply  this  strategy  to predict  the  effects  of  perturbations  induced  by  anti-cancer  drug  target  inhi-
bitions  on  an  epidermal  growth  factor  (EGF)  signaling  network.  The  strategy  is  based  on  a  Monte  Carlo

approach,  in which  the kinetic  parameters  are repeatedly  sampled  from  specific  probability  distributions
and used  for  multiple  parallel  simulations.  Simulation  results  from  different  forms  of  the  model  (e.g.,  a
model  that  expresses  a certain  mutation  or mutation  pattern  or  the  treatment  by a certain  drug  or  drug
combination)  can  be  compared  with  the unperturbed  control  model  and  used  for  the prediction  of  the
perturbation  effects.  This  framework  opens  the way  to  experiment  with  complex  biological  networks  in

ve  co
the computer,  likely  to sa

. Introduction

Mathematical modeling and simulation techniques are valuable
ools for the understanding of complex systems in different areas of
cience. In recent years, this approach gained increasing popularity
lso in biology resulting in the establishment of the research area
f systems biology [1–3]. Systems biology tries to understand bio-
ogical systems by means of mathematical models, thus providing

 tool to study and predict the behavior of biological systems in sil-
co. In contrast to the situation in many areas in physics, where
t has been possible to make highly accurate predictions based
n a small number of assumptions, accurate predictions of bio-
ogical processes depend on the behavior of complex networks of

olecular, cellular and even organismal interactions, which have
een shaped by events hundreds of millions of years ago. It is

herefore quite likely that predictions in biology will have to be
ased to a large extent on the detailed knowledge of the compo-
ents of the networks involved, as well as their interactions. While

∗ Corresponding author. Tel.: +49 30 8413 1272; fax: +49 30 8413 1380.
E-mail address: wierling@molgen.mpg.de (C. Wierling).
URL: http://www.molgen.mpg.de/ sysbio/ (C. Wierling).
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oi:10.1016/j.mrgentox.2012.01.005
sts  in  drug  development  and  to improve  patient  therapy.
© 2012 Elsevier B.V. All rights reserved.

inherently difficult to achieve, any progress in our ability to pre-
dict the behavior of these biological networks can have enormous
practical consequences. Improved predictions on the response of
individual patients could, for example, decide between life and
death of the individuals involved, while improved predictions on
the effect of drugs could very well help to revolutionize drug devel-
opment, and therefore have enormous economic value.

To allow such predictions, two  basic strategies have been
considered: the identification of statistical correlations in the ther-
apy response of specific ‘biomarkers’ (e.g., transcripts, proteins,
metabolites, patterns of genomic methylation), and the modeling
of the disease and therapy, to represent accurately the biological
processes in the individual patient. While statistical procedures
have been quite successful in, e.g., predicting treatment responses,
they are, however, inherently a relatively blunt instrument, only
able to detect very strong correlations, which hold up across large
groups, irrespective of the multiple differences between the indi-
viduals which make up these groups. Predictive models, in contrast,
can take into account the individual situation in every patient, and

could therefore, in many cases, provide more reliable predictions.

The development of such predictive models is however compli-
cated by the lack of information on many of the model parameters,
in particular the reaction kinetics. Information on the kinetics and

dx.doi.org/10.1016/j.mrgentox.2012.01.005
http://www.sciencedirect.com/science/journal/13835718
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inetic parameters is either not available at all, or, at best, is based
n experiments often carried out under conditions quite differ-
nt from those in the living cell. Concentrations of many reactants
re usually unknown, or it is simply not feasible to determine
hem for every individual patient. Thus, computational modeling
pproaches must primarily face the challenge of coping with this
ack of information to come up with qualitative or even quantita-
ive predictions of the biological system that can help to understand
iseases such as cancer much better.

Clinical as well as basic research suggests that cancer is the result
f an accumulation of many factors that promote tumor growth
nd metastasis [4,5]. Cancer, like many other diseases, is caused
y disturbances in the complex interaction networks of biological
rocesses in the organism. Diagnosis and therapy of these dis-
ases require a detailed understanding of theses processes in health
nd disease. Due to the complexity of the problem it can only be
chieved with a systems biology approach and the development of
ppropriate mathematical models and modeling approaches can
upport the formulation of new hypotheses significantly.

However, quantitative modeling efforts, e.g., using systems of
rdinary differential equations (ODEs), are often hampered by the
ack of detailed information about reaction kinetics and their asso-
iated parameters. An alternative to quantitative approaches is
ualitative modeling, such as Boolean models or other discrete
odeling approaches, however their predictive power is limited

o qualitative results. Using quantitative models based on ODEs
nstead, requires often appropriate assumptions about the kinetic
arameters.

In this article we propose an approach for predicting the effects
f disturbances induced by targeted cancer therapies on the EGF
ignaling network. We  introduce a Monte Carlo type strategy incor-
orating repeated simulations with parameter vectors sampled
rom a given random distribution and subsequent statistical signifi-
ance testing, and demonstrate the applicability of the approach by
enerating statistically reproducible predictions of potential drug
argets.

. EGF signaling network and associated targeted cancer
herapies

Epidermal growth factor (EGF) mediated signaling, like other
eceptor tyrosine kinase signaling pathways, is known to be
nvolved in the regulation of cell proliferation and survival [6].
n humans, more than 30 ligands and four receptors, mem-
ers of the epidermal growth factor receptor (EGFR) family, are
nown that lie at the head of a complex, multi-layered signal-
ransduction network. The EGF signaling pathway is activated via
GF ligands binding the EGF receptor (Fig. 1). Downstream the
ctivated receptor complex invokes several signaling branches
ike the RAS-RAF-MEK-ERK (MAPK) cascade that activates cell
roliferation and the PI3K/AKT pathway that has a cell-survival,
nti-apoptotic effect [7]. Signal propagation via the MAPK pathway
s passed through the adapter molecules Grb and Sos activat-
ng RAS. Subsequently, the signal propagates via RAF and MEK
o ERK. Finally, active ERK promotes downstream several com-
onents that are involved in the induction of cell proliferation.

n parallel, the active EGF receptor also activates PI3K that
onverts phosphatidylinositol-(4,5)-bisphosphate, PI(4,5)P2, into
hosphatidylinositol-(3,4,5)-trisphosphate, PI(3,4,5)P3, and finally
esults in an activation of AKT. Active AKT inhibits apoptosis and
romotes cell survival genes. We  assume that other receptor tyro-

ine kinases have also a low-level effect on both signaling branches
hat is implemented in the model as an additional independent
eceptor. Refer also to Ref. [8] for a more comprehensive description
f an EGF signaling model.
arch 746 (2012) 163– 170

Different mutations and alterations have been found that can
convey cancer development, like mutations of oncogenes with
dominant gain of function (GoF), of tumor suppressor genes with
recessive loss of function (LoF), or gene over-expression (OE),
e.g., due to gene amplification. Several examples of such muta-
tions are present in the EGF signaling pathway. These include an
over-expression or mutation of the EGF receptor (EGFR, [9,10]),
constitutively activated oncogenes like RAS [11,12],  RAF [13] and
PI3K [14], and loss of function mutations as for the PTEN phos-
phatase [15].

In recent years several drugs became available that specifically
target components of cancer related pathways. There are also sev-
eral that inhibit components of EGF mediated signal transduction.
One of those targets is EGFR for which already several specific
inhibitors are available [16]. One of these is Cetuximab (ErbituxTM),
a chimeric monoclonal antibody against EGFR [17]. It binds to the
extracellular ligand binding domain of the EGFR receptor prevent-
ing the binding of EGF and TGF-� [18]. Another drug that is targeting
EGFR directly is Erlotinib (TarcevaTM). Erlotinib is binding the tyro-
sine kinase domain of EGFR [19]. Other drugs can specifically inhibit
components of the PI3K/AKT branch, like PI-103 that inhibits PI3K
[20], or the MAPK branch, for example U0126 that specifically
inhibits MEK  [21,22].

We  generated a mathematical model of the EGF signaling path-
way (cf. Fig. 1) using the PyBioS modeling and simulation system
[3,23]. The individual reactions of the pathway are modeled by mass
action kinetics. In addition to the native EGF signaling, also gain of
function mutations for RAS, RAF, and PI3K, a loss of function muta-
tion for PTEN, and an over-expression of EGFR were integrated and
can be activated individually. Moreover, inhibitory drug effects for
Erbitux, PI-103, Erlotinib, and U0126 can be introduced as indicated
in Fig. 1.

3. The Monte Carlo simulation strategy

The reactions involved in the model consist of a small number of
different reaction types such as synthesis reactions, product forma-
tion, and degradation reactions that are described by irreversible

mass action kinetics k ·
n∏

i=1

Si where k is a kinetic constant and Si is

the concentration of the ith substrate. Reversible reactions, as for
example complex formation reactions, are described by the differ-
ence of two separate terms for the forward (complex association)
and backward (complex dissociation) reaction each described by
an irreversible mass action kinetic with a kinetic parameter kon for
the association and a dissociation constant KD. Synthesis and decay
reactions have been introduced where appropriate. The rate laws
of the model, which have been applied, are summarized in Table 1.

In our modeling approach we  focus on predicting differences
between different states of the same network, e.g., the biologi-
cal network with or without inactivating different sets of drug
targets (see Fig. 2). To compensate for the uncertainty in many
of the parameters, the components of the parameter vector are
chosen from appropriate probability distributions reflecting avail-
able knowledge. In the set of simulation runs described here, in
particular, unknown kinetic parameters have been sampled from
a log-normal distribution with mean � = 2.5 and standard devia-
tion � = 0.5. Each parameter vector and each vector of input values
is used to model both the normal ‘control’ state as well as the
‘treated’ state, e.g., corresponding to an inhibition experiment.
Thus, differences of the two states are due to changes in only one

parameter or a small set of parameters. For simulation of the dif-
ferent inhibition experiments the model components representing
drugs were initialized with fixed concentrations (U0126 = 1.0, PI-
103 = 1.0, Erbitux = 100.0, Erlotinib = 1000.0; arbitrary units, a.u.).
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ig. 1. Model of the EGF-mediated signaling. Downstream of receptor tyrosine kin
nd  the branch of PI3K/AKT inducing cell survival.

ontrol and treatment simulations were repeated 1000 times with
ifferent parameter vectors until steady state levels of all compo-
ents were approximately reached within the simulation interval
0;20,000] (a.u.). The difference in model behavior between the
treated’ and the ‘untreated’ state is analyzed by comparing the
teady state concentrations for each individual model component.
ifferences in the steady state values of the two states for the model
omponents are analyzed by computing the geometric mean of the
atios of each individual pair (treatment vs. control) of Monte Carlo
imulations. For the identification of significant changes of a model
omponent between control and treatment the log2-ratios of rele-
ant model components can be plotted into a heat map  (see Section
).

. Results

In our approach we  focus on predicting differences between
ifferent states of the same network, e.g., the biological network

ith or without structural alterations such as a mutation or a drug

esponse. To compensate for the uncertainty in many of the param-
ters, the components of the parameter vector are chosen from
n appropriate probability distribution as described above. In the

able 1
eaction kinetics of the different types of reactions. The parameter k is sampled from a sp
nd  inhibition constants are kD = kDI = 1.

Reaction Biochemical 

Synthesis →S1 

With gene →S1 

Product formation S1 → S2 

With enzyme S1 → S2 

With  inhibitor S1 → S2
With  enzyme and inhibitor S1 → S2 

Complex formation S1 + S2 ↔ S1:S2 

With  inhibitor S1 + S2 ↔ S1:S2 

Degradation S2→ 
FR two branches are activated, the MAP-kinase branch inducing cell proliferation

following we apply the proposed Monte Carlo-based simulation
approach on the EGF signaling model. In our analysis we compare
the unstimulated signaling pathway with a perturbation such as an
external stimulus by EGF, a mutation or a drug or combinations of
those. Changes in the system state are judged by looking at certain
readout components of the model. As a readout we use the cell sur-
vival (reflected by the amount of active AKT) or cell proliferation
state (reflected by the amount of active ERK), each indicating the
activity of the two signaling branches downstream of active EGFR
(Fig. 1). Alternatively, one can look at the state of individual model
components.

4.1. Modeling the control and mutated states

In a proof of principle in silico experiment we tested the effect
of an extracellular EGF stimulus on the activity of the pathway.
Therefore, the initial concentration of EGF was set to 10 a.u. in
the case of stimulation and 0.1 a.u. for the unstimulated case. In

addition, independent of the stimulation by EGF a constant stim-
ulation by the additional growth factor (0.75 a.u.) was assumed.
This results in a basal activity of the pathway in the control state.
The results of 1000 Monte Carlo simulations both for control and

ecific random distribution for the individual Monte Carlo simulations. Dissociation

Kinetic rate law

v = k
v = k × [G]

v = k × [S1]
v = k × [S1] × [E]
v = k × [S1]/(1/kDI × [I])
v = k × [S1] × [E]/(1/kDI × [I])

v = k × [S1] × [S2] − k × kD × [S1:S2]
v = k × [S1] × [S2]/(1/kDI × [I]) − k × kD × [S1:S2]

v = k × [S2]
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Fig. 2. Flowchart of the Monte Carlo approach. Steady state simulations are performed for the normal state and the perturbed or treated state (e.g., inhibition by a drug).
Both  are initialized with the same set of kinetic parameters and initial values for all model components except the perturbed components. Subsequently, the models are
simulated into their respective steady states. This procedure is repeated k times with different parameter vectors, which are sampled from a given random distribution. For
graphical examination, steady state results of the respective control and treatment simulation runs are plotted with histograms for every component of the model. Finally,
ratios  can be calculated for the individual model component steady-state concentrations between normal and treatment conditions for every parameter set that has been
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reatment are depicted in Fig. 3. Both, cell survival and proliferation
re up-regulated due to EGF stimulation (see Fig. 3 upper panel).
his observation is in line with the expected biological behavior.

In a second experiment we tested the effect of a mutation of the
ncogene RAF. Therefore, we assume that RAF has a gain of func-
ion mutation due to which RAF is constitutively active (see Fig. 3
ower panel). In this case, cell proliferation is increased in 89.8%
f all Monte Carlo simulations compared to the unstimulated case.
nly in 10.2% of the simulations a decrease in cell proliferation is
bserved. In contrast, we do not see any changes in the activity of
he PI3K/AKT branch as indicated by cell survival. These qualita-
ive results are in line with the expectations and demonstrate the
pplicability of the proposed approach.

.2. Analysis of mutation and drug effects on the state of
he model

In a second step, we used the Monte Carlo strategy to test differ-
nt perturbations of the system, such as mutation or drug effects.
herefore, we have simulated different kinds of alterations of the

GF pathway that have been found to be related with cancer. In
his analysis we focus on the oncogenes RAS, RAF, and PI3K with
ominant gain of function mutations (GoF), the tumor suppres-
or gene PTEN with a recessive loss of function mutation (LoF),
re up- or down-regulated due to the treatment compared to the control or normal

and an over-expression (OE) of the receptor EGFR. In addition
we studied also the effect of targeted drugs on certain mutation
patterns. Fig. 4 depicts the experiment design and the results of
the simulations visualized in a heat map  of the ratios of specific
model components. As a reference for the computation of the
ratios we used an unstimulated state (low-level constant stimu-
lation by EGF (0.1 a.u.) and a constant stimulation by other growth
factors (0.75 a.u.) via an EGFR-independent receptor tyrosine
kinase.

Stimulation of the pathway by EGF (fixed concentration of
10.0 a.u.) results in an increase of cell survival and prolifera-
tion (Fig. 4, row 3). A similar effect can also be achieved by
an EGFR OE or GoF mutation (rows 1 and 2). However, a GoF
mutation in PI3K or a LoF mutation in PTEN results only in an
increased activity of the PI3K/AKT signaling (rows 4 and 5), while a
GoF mutation either in RAF or RAS only effects the MAPK signaling
(rows 6 and 7).

Furthermore, we  have analyzed the effects of targeted drugs in
combination with certain mutation patterns. EGF  stimulation can
efficiently be blocked by Erbitux and Erlotinib (rows 10 and 13). This

holds true also for an OE or GoF of EGFR, except for an Erbitux treat-
ment in case of an EGFR GoF. Similarly, mutations in PI3K and PTEN
or RAF and RAS cannot be impeded by either Erbitux or Erlotinib
and cause activity of the respective branches of the pathway (rows
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Fig. 3. Simulation results of a Monte Carlo sampling of the effects of an EGF stimulus and of a mutated (constitutively activated) RAF protein (RAF*) on cell proliferation
and  survival. The scatter plots show the steady state intensities for proliferation and cell survival indicating the activity of the MAPK- and PI3K/AKT-branch of the signaling
pathway from 1000 individual Monte Carlo simulations. The red diagonal line indicates identical values. While both proliferation and cell survival are up-regulated due to
E on the
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GF  stimulation (upper panel) a gain of function mutation in RAF only has an effect 

lower panel).

4–17). In such a case, a component downstream of the mutated
rotein might be an appropriate drug target. Since cancer cells usu-
lly acquire multiple critical mutations in essential pathways to
stablish their phenotypes, it looks obvious that a combined tar-
eted therapy might be essential to escape from the disease state.
ence, we have analyzed drug combinations to circumvent such a
ase. Our analysis demonstrates that any combination of an EGFR
E with a single mutation in one of the oncogenes or the tumor sup-
ressor gene leading to induced cell survival and proliferation can
e compensated by an appropriate drug combination (rows 18–27).

The presented simulation results are supported by evidence
rom the literature. As Pao et al. [24] have shown, tumors with
pecific KRAS mutations are associated with a lack of response to
he kinase inhibitors Gefitinib or Erlotinib. BRAF, another compo-
ent of the MAPK signal transduction, is also subject to a common
ctivating mutation (V600E) in colorectal cancer and its response
o Erbitux requires wild-type BRAF [25]. Also PIK3CA mutation or
TEN expression status predicts resistance of colon cancer cells to
he epidermal growth factor receptor inhibitor cetuximab (Erbitux)
26]. Hence, Perrone et al. [27] suggest to inhibit molecules belong-
ng to the downstream signaling of activated EGFR. As described

bove such results are also predicted by our simulations (Fig. 4). For
nstance, an over-expression of EGFR results in an increase of cell
urvival and proliferation (Fig. 5a vs. b). This can be reverted with
n EGFR inhibitor such as Erbitux unless there is not any critical
 MAPK-branch (proliferation) but no effect on the cell survival or PI3K/AKT-branch

mutation in the downstream signaling (Fig. 5c). But a GoF muta-
tion in an oncogene (e.g., RAF*) cannot be compensated and hence
the therapy efficacy fades (Fig. 5d).

5. Discussion and outlook

Cancer is a complex disease and it has been found that multiple
genetic changes are necessary before a cell can acquire tumorigenic
competence, e.g., rodent cells require at least two  genetic changes
to acquire tumorigenic competence and their human counterparts
are more difficult to transform [28]. Thus, several regulatory cir-
cuits must be disrupted in order for a cell to become cancerous.
Hanahan and Weinberg [4] describe six essential alterations in
cell physiology that collectively dictate malignant growth: self-
sufficiency in growth signals, insensitivity to growth-inhibitory
(antigrowth) signals, evasion of programmed cell death (apoptosis),
limitless replicative potential, sustained angiogenesis, and tissue
invasion and metastasis. Furthermore, Hanahan and Weinberg [5]
also added reprogramming of energy metabolism and evading
immune destruction. Hence, to understand a complex disease, such

as cancer, we  need to apply a systems biology approach integrating
all relevant components, interactions, and pathways of the cellular
reaction network and its effects on cell physiology. This leads to the
analysis of large computational models.
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Fig. 4. Heat map  of simulation results of the effects of the EGF ligand, over-expression (EGFR), gain of function (EGFR, PI3K, RAS, RAF) and loss of function (PTEN) mutations,
and  different drugs on specific model components. Colors of the heat map  represent log2-ratios of the steady-state concentrations versus a control state of low level activity
in  cell survival and proliferation.
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Fig. 5. Schema of the EGF signaling pathway. Colors are corresponding to the code used in Fig. 4. (a) Low amounts of growth factors that are present in the cell environment
establish a basal level in cell survival and proliferation. (b) Over-expression of the EGF receptor – as frequently found in various cancer tissues – results in an activation of
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he  MAP  kinase- and PI3K/AKT-branch. (c) EGFR over-expression can be inhibited by
his  cannot circumvent an increase in proliferation due to a downstream located m

In this article we describe a strategy for deriving predictions
rom large networks coping with the fact that knowledge about
he kinetic parameters is limited. By incorporating all known facts
nto the models and sampling the parameters from appropriate ran-
om distributions reflecting all available information or the lack of

t, we can take advantage of this information, while handling the
ncertainty inherent in any attempts to derive predictive models
f biological networks of sufficient complexity to represent, e.g.,
omplex disease states.

While predictions on a broad level (up and down regulation of
odel components with respect to different states) can often be

enerated in the absence of many model parameters, our approach
s not restricted to that situation. The Monte Carlo approach can
lso be applied if different kinetic parameters are known to a cer-

ain extent and, thus, it will ultimately benefit from progress in the
xperimental approaches to measure such kinetic parameters.

Application of next generation sequencing of individual
atients, combined with the development of systems that are able
rug Erbitux (Cetuximab) that results in a down regulation of both branches, (d) but
n, e.g., in RAF*.

to model the disease process, can help to improve the understand-
ing of the consequences of cancer related mutations on a molecular
pathway level and their functional effects on the cellular and organ-
ism level. The analysis described here gives a first impression of
the power of predictive models for the identification of new drug
targets, as well as the improved targeting of therapies which are
already available. The proposed modeling approach is a useful tool
to study molecular interaction networks, such as signal transduc-
tion pathways, in silico to identify and formulate new hypothesis.
However, qualitative or semi-quantitative predictions as provided
by this modeling approach, have to be validated by appropriate
in vitro or in vivo models. For instance, predicted drug effects have
to be tested, e.g., in patient-specific cell lines or xenograft mod-
els, but finally, at least for approved drugs, the in silico predictions

can also help the medical doctor to choose between alternative
therapies.

The presented example of the EGF pathway is only a small
piece of all the cellular signaling pathways that are involved in



1 n Rese

c
r
t
t
r
w
o
s

C

A

E
a
C
(

l
m

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

70 C. Wierling et al. / Mutatio

ancer development and progression [4,5]. However, to incorpo-
ate further factors such as hypoxia, crosstalk with other signal
ransduction pathways, redundancy of pathways and in this con-
ext also genomic instability leading to adaptations and acquired
esistance, the underlying model has to be significantly extended
ith all cancer-related signaling pathways. Additional extensions

f the model will also be necessary to cover other relevant factors,
uch as drug uptake or pharmacokinetics.
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