
Evolutionary reshuffling in the Errantivirus lineage Elbe
within the Beta vulgaris genome
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SUMMARY

LTR retrotransposons and retroviruses are closely related. Although a viral envelope gene is found in some LTR

retrotransposons and all retroviruses, only the latter show infectivity. The identification of Ty3-gypsy-like

retrotransposons possessing putative envelope-like open reading frames blurred the taxonomical borders and

led to the establishment of the Errantivirus, Metavirus and Chromovirus genera within the Metaviridae. Only a

few plant Errantiviruses have been described, and their evolutionary history is not well understood. In this

study, we investigated 27 retroelements of four abundant Elbe retrotransposon families belonging to the

Errantiviruses in Beta vulgaris (sugar beet). Retroelements of the Elbe lineage integrated between 0.02 and

5.59 million years ago, and show family-specific variations in autonomy and degree of rearrangements: while

Elbe3 members are highly fragmented, often truncated and present in a high number of solo LTRs, Elbe2

members are mainly autonomous. We observed extensive reshuffling of structural motifs across families,

leading to the formation of new retrotransposon families. Elbe retrotransposons harbor a typical envelope-like

gene, often encoding transmembrane domains. During the course of Elbe evolution, the additional open

reading frames have been strongly modified or independently acquired. Taken together, the Elbe lineage

serves as retrotransposon model reflecting the various stages in Errantivirus evolution, and allows a detailed

analysis of retrotransposon family formation.

Keywords: Errantivirus, LTR retrotransposon, Ty3-gypsy, Beta vulgaris, envelope-like open reading frame.

INTRODUCTION

Present in high copy numbers and ubiquitous across all

eukaryotes, retrotransposons play a major role in the

maintenance of genome structure, function and evolution

(Kumar and Bennetzen, 1999). Based on the presence of

flanking long terminal repeats (LTRs), they are divided into

LTR and non-LTR retrotransposons. Members of both sub-

classes replicate by reverse transcription of their mRNA and

subsequent integration of the resulting cDNA into other

genomic positions (Boeke and Corces, 1989). Thus, both

their copy number and the host genome size increase

(Bennetzen, 2002; Ma and Bennetzen, 2004). Plant genomes

in particular tend to accumulate retroelements in high copy

numbers; in maize, for example, LTR retrotransposons

account for nearly 75% of the genome (Baucom et al., 2009).

Topreventseveredamageof thehostgenome,mechanisms

for suppression of LTR retrotransposon proliferation have

evolved. First, heterochromatic marks silence retrotranspo-

sons transcription epigenetically (Slotkin and Martienssen,

2007). Second, recombination events often lead to deletion of

internal sequences and thus formation of non-autonomous

LTR retrotransposons or solo LTRs, and hence counteract the

increase in genome size (Devos et al., 2002; Ma et al., 2004).

The essential gene products for proliferation of LTR

retrotransposons are encoded by the open reading frames

(ORFs) designated gag and pol. Based on the order of the

enzymatic domains of the aspartic protease (AP), reverse

transcriptase (RT), RNase H (RH) and integrase (IN), LTR

retrotransposons are classified either as Ty3-gypsy-like

(Metaviridae) or Ty1-copia-like (Pseudoviridae) type (Kumar

and Bennetzen, 1999; Hull, 2001).

Retroviruses and LTR retrotransposons are evolutionarily

closely related (Eickbush, 1994; Eickbush and Malik, 2002). In
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particular, Ty3-gypsy proteins show high similarity to their

retroviral equivalents (Xiong and Eickbush, 1990); however,

they lack the infectivity-facilitating Envelope (Env) proteins.

The identification of LTR retroelements with an additional

env ORF blurred the taxonomical borders between retrovi-

ruses and LTR retrotransposons (Song et al., 1994; Wright

and Voytas, 1998). Therefore, the Errantivirus, Metavirus and

Chromovirus genera within the family of Ty3-gypsy-like

retrotransposons were established (Fauquet and Mayo,

2001). In plants, Athila from Arabidopsis thaliana was the

first Errantivirus discovered (Pelissier et al., 1995; Wright

and Voytas, 1998). However, infectivity of Athila has not yet

been demonstrated. Cross-species analyses of Athila RT

motifs revealed high heterogeneity of the family members

and the presence of Athila relatives in both monocots and

dicots (Wright and Voytas, 1998, 2002; Marco and Marı́n,

2005). SIRE1, a representative of the Ty1-copia-like retro-

transposons containing an env ORF has been identified in

soybean (Laten et al., 1998), and was namesake of the genus

Sireviruses (Fauquet, 2005).

Env glycoproteins enable a virus particle to infect another

cell by mediating receptor binding, adsorption by the host

cell, and particle budding (Gallo et al., 2003). However, Env

proteins are extremely variable and only weakly conserved,

complicating identification of the corresponding ORFs

from sequence data. Usually, Env proteins comprise two

subunits: the larger surface protein that enables viral

adsorption by binding specific cell surface receptors, and

the transmembrane (TM) protein that mediates the entry

into the host cell by cell membrane fusion and allows

transfer between cells (Coffin, 1990).

Sugar beet (Beta vulgaris) possesses a relatively small

genome of 758 Mb (Arumuganathan and Earle, 1991) and

contains at least 63% repetitive DNA (Flavell et al., 1974;

Menzel et al., 2008). A major proportion of these repeats has

been characterized in cultivated and wild beets of the genera

Beta and Patellifolia (Schmidt and Metzlaff, 1991; Schmidt

et al., 1991; Dechyeva and Schmidt, 2006; Zakrzewski et al.,

2010), and has been found to include a variety of DNA

transposons (Jacobs et al., 2004; Menzel et al., 2006) and

retrotransposons (Heitkam and Schmidt, 2009; Weber and

Schmidt, 2009; Wenke et al., 2009), Recently, Weber et al.

(2010) identified a sireviral Ty1-copia retrotransposon

Cotzilla with a putative env ORF that lacks regions encoding

typical transmembrane domains.

Here, we have analyzed four families of an errantiviral

Ty3-gypsy lineage named Elbe in B. vulgaris at various

stages of retrotransposon rearrangement that reflect their

evolution. We show that Elbe Errantiviruses have a family-

specific large-scale structure. Genome-wide analysis

provides evidence of extensive recombination and reshuf-

fling between domains of various Elbe retrotransposons,

leading to formation of new families and extensive modifi-

cation or capture of putative env ORFs.

RESULTS

Elbe retrotransposon families constitute a lineage

of Errantiviruses

To investigate B. vulgaris Errantiviruses, a 385 bp fragment

of the B. vulgaris-RT homologous to the Athila RT was used

to detect overlapping B. vulgaris bacterial artificial chromo-

some (BAC) ends (McGrath et al., 2004). Their subsequent

assembly resulted in the creation of a complete in silico ret-

rotransposon. Domain-specific probes were derived from the

in silico element (Table S1) and hybridized to a high-density

filter containing 9216 BACs to identify full-length copies.

Partial sequencing of BAC 69P23 revealed two retrotranspo-

sons with characteristic errantiviral gag–pol polyprotein do-

mains. These elements were designated Elbe1 and Elbe2.

Using the Elbe2 gag–pol polyprotein as the query for a

database search resulted in identification of Elbe3 and Elbe4

within the sequence of BAC137 (DQ374067) from B. vulgaris

chromosome 9 (Schulte et al., 2006). The four Elbe retro-

transposons differ strongly in size and integrity. Based on

their LTR sequence similarity, which is less than 70%, they

represent four different but related families of LTR retro-

transposons (Wicker et al., 2007). The recent availability of

the draft assembly of the B. vulgaris genome sequence al-

lowed expansion of the number of Elbe members. Based on

similarity of more than 80% of the LTRs, 23 additional mem-

bers belonging to the four Elbe families have been identified.

Their structural features are shown in Figure 1 and summa-

rized in Table 1.

As typical for LTR retrotransposons, Elbe Errantiviruses

are usually flanked by target site duplications (TSDs) of five

base pairs. The LTRs of approximately 1400 bp are termi-

nated by the characteristic dinucleotides 5¢-TG and CA-3¢,
which are important for integration of retroviral sequences

(Temin, 1980). Numerous putative promoter motifs have

been identified in the 5¢ LTRs of Elbe retrotransposons

(Figure S1).

All families of the Elbe lineage contain non-autonomous

rearranged members that lack an intact gag–pol ORF and/or

env-like ORF. Two autonomous Elbe1 and most Elbe2

members are full-length and possess two intact ORFs, but

the remaining families mainly comprise structurally defective

retroelements, harboring large insertions or deletions within

their protein-coding ORFs. Intact Errantiviruses contain a 3¢
UTR, a 5¢ UTR, and an internal UTR separating the two ORFs.

Most of the Elbe retrotransposons contain an 18 bp primer

binding site that is complementary to the 3¢ end of the

aspartic acid tRNA from Arabidopsis thaliana. Adjacent to the

3¢ LTR and separated by a thymine dinucleotide spacer as part

of the attachment site, a polypurine tract (PPT) was also

detected in all Elbe members. Multiple PPTs were identified

within the 3¢ UTR of all Elbe retrotransposons (Figure 5b).

Eight of the 27 Elbe Errantiviruses harbor insertions within

various domains. Although three insertions with high

Reshuffling of Errantiviruses 637

ª 2012 The Authors
The Plant Journal ª 2012 Blackwell Publishing Ltd, The Plant Journal, (2012), 72, 636–651



Elbe1-1 gag AP

Elbe1-2 gag AP RT RH IN

Elbe1 3

Solo-LTR

gag APElbe1*

Elbe1-4 gag AP RT RH IN

Elbe2-1

Elbe1-3

Elbe2 gag AP RT RH IN

Elbe1

*

Elbe2-2 gag AP RT RH IN

Elbe2-3 gag AP RH IN

Elbe2-4 gag AP RT RH IN

Elbe2-5 gag AP RT RH IN

LINE fragment Elbe3
Solo-LTR Insertion

Elbe2-6 gag AP RT RH IN

Elbe2-7 gag AP

Insertion

LINE Retrotransposon

Elbe3*
Elbe3-1

Elbe3-3

Elbe3-2

Insertion Ins
er

-
tio

n

be3

Elbe3-4

Elbe3-5

Elbe3-6

Elbe4 gag AP RT

4 Elbe3

*
Elbe4-1 RT IN

Elbe4-2 gag AP

Elbe4-3 gag AP

Elbe4-4 gag AP

Elbe4 gag AP RT

Solo-LTR

Elbe4-5 gag AP RT RH IN

Elbe4-6 RH IN

LT
R

1 kb

gag AP RT RH IN

Figure 1. Schematic representation of Errantiviruses of the Elbe lineage. Reference family members Elbe1, Elbe2, Elbe3, and Elbe4 are marked with an asterisk.

Open terminal arrows represent the flanking LTRs, with vertical wavy lines indicating incomplete LTRs due to missing sequence data. Rectangles indicate the gag–

pol ORF (gray) and the family-specific putative env ORF (hatched). Conserved domains are shown: gag, protease (AP), reverse transcriptase (RT), RNase H (RH),

integrase (IN). Vertical bars represent the primer binding site (black, adjacent to the 5¢ LTR) and single or multiple PPTs (gray, adjacent to the 3¢ LTR). Insertions are

indicated as white triangles, with size, sequence type and relative orientation shown in dashed boxes.

638 Cora Wollrab et al.

ª 2012 The Authors
The Plant Journal ª 2012 Blackwell Publishing Ltd, The Plant Journal, (2012), 72, 636–651



T
a
b

le
1

Fe
at

u
re

s
o

f
th

e
er

ra
n

ti
vi

ra
l

re
tr

o
tr

an
sp

o
so

n
s

o
f

th
e

E
lb

e
lin

ea
g

e

E
le

m
en

t
Le

n
g

th
(b

p
)

T
S

D
LT

R
le

n
g

th
(5

¢/3
¢,

b
p

)
P

ri
m

er
b

in
d

in
g

si
te

U
T

R
le

n
g

th
(5

¢/i
n

te
rn

al
/3

¢,
b

p
)

g
ag

–p
o

l
O

R
F

le
n

g
th

en
v-

lik
e

O
R

F
le

n
g

th
N

u
m

b
er

o
f

P
P

T
s

In
te

g
ra

ti
o

n
-

ti
m

e
(M

Y
A

)
R

ef
er

en
ce

(R
ef

B
ee

t0
.2

)
b

p
A

A
b

p
A

A

E
lb

e1
80

19
C

T
G

A
C

14
39

/1
43

7
T

G
G

C
G

C
C

G
T

T
G

C
C

G
G

G
G

A
13

8/
-/

24
73

25
32

a
84

3a
–

–
4

0.
09

B
A

C
69

P
23

E
lb

e1
-1

71
99

T
C

A
C

C
15

01
/1

50
5

T
G

G
C

A
C

C
G

T
T

G
C

C
G

G
G

G
A

14
4/

-/
16

60
23

89
a

79
2a

–
–

3
2.

77
co

n
ti

g
46

29
56

E
lb

e1
-2

11
82

0
–

96
5a

/1
44

9
T

T
G

T
G

C
C

G
T

T
G

T
C

G
G

G
G

A
14

1/
86

0/
16

02
54

12
17

98
13

91
46

2
2

1.
34

d
co

n
ti

g
36

69
00

E
lb

e1
-3

47
70

b
A

A
T

A
(A

/T
)

15
48

/1
48

9
T

G
G

C
G

C
C

G
T

T
T

T
C

G
G

G
G

A
25

/-
/1

69
9b

–
–

–
–

3
5.

59
co

n
ti

g
17

47
78

E
lb

e1
-4

11
88

9
T

C
C

A
T

10
09

a
/1

50
3

–
10

0a
/9

19
/1

60
3

53
77

17
84

13
77

45
7

2
2.

66
d

co
n

ti
g

65
94

64
E

lb
e2

12
48

7b
C

A
A

A
G

14
70

/1
47

2
T

G
G

C
G

C
C

G
T

T
G

C
C

G
G

G
G

A
30

3/
94

9/
15

58
52

97
b

17
64

b
14

37
47

8
3

0.
14

B
A

C
69

P
23

E
lb

e2
-1

12
52

7
A

G
C

A
C

14
73

/1
47

1
T

G
G

C
G

C
C

G
T

T
G

C
C

G
G

G
G

A
29

5/
99

7/
14

31
53

01
17

65
14

31
47

6
3

0.
02

A
cc

.G
U

05
73

42
E

lb
e2

-2
12

55
3

C
T

A
T

C
14

63
/1

44
3

T
G

G
C

G
C

C
G

T
T

G
C

C
T

G
G

G
A

31
5/

10
20

/1
57

8
52

83
17

50
14

51
47

9
3

2.
42

co
n

ti
g

39
83

25
E

lb
e2

-3
11

42
4

C
C

T
T

(T
/C

)
14

48
/1

44
7

T
G

G
C

A
C

T
G

T
T

G
C

C
G

G
G

G
A

30
9/

10
01

/1
57

5
46

90
a

15
57

a
95

4a
31

7a
3

2.
51

co
n

ti
g

71
31

99
E

lb
e2

-4
11

70
5

–
14

83
/1

15
8a

T
G

T
C

G
C

C
G

T
T

G
C

C
C

G
G

G
A

29
5/

89
9/

14
66

52
27

17
35

11
22

39
1

3
4.

19
d

co
n

ti
g

91
33

86
E

lb
e2

-5
12

24
4

G
A

A
(T

/A
)C

13
12

a
/1

52
7

T
G

G
C

G
C

C
A

T
T

G
C

C
-G

G
G

A
30

9/
95

3/
14

74
52

74
17

47
15

12
46

1
2a

4.
03

d
co

n
ti

g
19

64
1

E
lb

e2
-6

12
32

5b
C

A
T

G
A

15
26

/1
50

1
T

A
G

C
G

C
C

G
T

T
A

T
C

G
G

G
G

A
31

0/
85

4/
15

03
51

92
b

17
14

b
11

28
b

47
5b

3
3.

61
co

n
ti

g
32

10
7

E
lb

e2
-7

71
36

b
G

T
C

(G
/A

)G
14

88
/1

48
0

T
G

G
C

G
C

T
G

T
T

G
C

C
A

G
G

G
A

31
3/

-/
13

50
b

25
05

a
b

82
2a

b
–

–
3

3.
67

co
n

ti
g

50
74

4
E

lb
e3

64
67

A
(A

/T
)A

C
C

13
58

/1
36

5
T

G
G

C
G

C
C

G
T

T
G

C
C

G
G

G
G

A
12

9/
-/

26
31

–
–

98
4

32
7

4
1.

00
A

cc
.D

Q
37

40
67

E
lb

e3
-1

46
22

–
11

85
c /1

34
8

–
-/

-/
20

89
–

–
–

–
4

0.
74

d
co

n
ti

g
91

98
57

E
lb

e3
-2

71
85

b
G

T
A

C
A

13
69

b
/1

36
7

T
G

G
A

C
G

C
C

A
T

T
G

C
C

G
G

G
G

A
11

5/
-/

33
16

b
–

–
10

18
33

6
4

2.
84

co
n

ti
g

39
78

28
E

lb
e3

-3
64

92
G

T
C

G
T

13
56

/1
22

5a
T

G
G

C
G

T
C

G
T

T
G

C
T

G
G

G
G

A
27

4/
45

8/
27

96
21

9a
71

a
16

4a
55

a
4

2.
27

d
co

n
ti

g
33

96
55

E
lb

e3
-4

39
19

–
14

30
/9

82
c

T
G

G
C

G
C

G
G

T
T

G
C

C
G

G
G

G
A

63
/-

/1
44

4
–

–
–

–
3a

1.
41

d
co

n
ti

g
35

11
28

E
lb

e3
-5

51
94

–
65

8c /1
35

6
T

G
G

C
G

T
C

A
T

T
G

C
T

G
G

G
G

A
38

1/
23

4/
20

96
15

0a
50

a
31

9a
10

7a
4

3.
07

d
co

n
ti

g
68

72
93

E
lb

e3
-6

66
91

–
13

49
/1

14
0c

T
G

G
C

T
C

C
G

T
T

G
C

C
G

G
G

G
A

29
5/

33
6/

30
22

18
0a

60
a

36
9a

12
3a

4
1.

54
d

co
n

ti
g

79
32

68
E

lb
e4

99
99

b
G

T
T

T
G

14
04

/1
37

1
T

A
G

C
G

C
C

G
T

T
G

C
C

G
G

G
G

A
28

1/
85

4/
15

58
b

33
90

a
11

24
a

11
39

37
5

2a
2.

28
A

cc
.D

Q
37

40
67

E
lb

e4
-1

78
10

(A
/T

)C
C

A
T

14
71

/1
31

5a
T

G
G

T
G

C
C

G
T

T
G

C
T

A
G

G
G

A
92

/1
24

9/
14

98
82

0a
41

7a
13

65
55

0
3

2.
08

d
co

n
ti

g
78

04
28

E
lb

e4
-2

74
53

A
T

A
C

(A
/C

)
14

78
/1

49
7

T
G

G
C

G
C

C
G

T
T

G
T

C
G

G
G

G
A

28
0/

-/
19

18
22

80
a

75
6a

–
–

3
2.

16
co

n
ti

g
28

78
2

E
lb

e4
-3

65
70

G
T

T
(C

/T
)C

15
24

/1
52

6
T

G
G

C
G

C
C

G
T

T
G

C
T

G
G

G
G

A
28

1/
-/

10
76

21
63

a
71

8a
–

–
2a

4.
32

co
n

ti
g

23
15

33
E

lb
e4

-4
69

41
–

12
97

/1
28

6
T

T
G

C
G

C
C

A
T

T
G

C
C

T
G

G
A

A
28

2/
-/

13
96

26
80

a
88

1a
–

–
2a

2.
94

co
n

ti
g

36
68

96
E

lb
e4

-5
11

37
3b

A
(C

/G
)C

C
T

12
82

/1
30

1
T

G
G

C
A

C
C

G
T

T
G

C
C

G
G

G
A

A
20

8/
77

1/
15

45
48

73
b

16
15

b
13

21
43

7
3

4.
62

co
n

ti
g

39
23

73
E

lb
e4

-6
89

15
b

A
C

G
A

T
91

0a
/1

33
3

T
G

A
C

G
C

C
G

T
T

G
T

C
G

G
G

G
A

75
1/

77
1/

17
80

22
04

a
72

7a
11

66
b

38
2b

3
3.

81
d

co
n

ti
g

40
71

67

b
p

,
b

as
e

p
ai

rs
;

A
A

,a
m

in
o

ac
id

s.
a
D

el
et

io
n

.
b
In

se
rt

io
n

h
as

b
ee

n
re

m
o

ve
d

.
c E

n
d

o
f

co
n

ti
g

.
d
A

g
e

es
ti

m
at

io
n

w
it

h
p

ar
ti

al
LT

R
se

q
u

en
ce

s.

Reshuffling of Errantiviruses 639

ª 2012 The Authors
The Plant Journal ª 2012 Blackwell Publishing Ltd, The Plant Journal, (2012), 72, 636–651



similarity to Elbe retrotransposons or parts thereof show

nested organization, five integrations originate from non-

LTR retrotransposons or are of unknown origin (Figure 1).

Thus, Elbe1 is integrated in reverse orientation into the

reverse transcriptase region of Elbe2, while Elbe3 is inte-

grated in reverse orientation into the PPT of Elbe4. Three

additional integrations are flanked by the inverted dinucleo-

tides (TG/CA) and a 5 bp TSD, and thus are considered as

solo LTRs from as yet unknown LTR retrotransposons.

Comparative analyses of Elbe RT amino acid sequences

with RTs of other eukaryotic retroelements (Xiong and

Eickbush, 1990) grouped Elbe elements within the Erranti-

viridae clade defined by Athila4-2 (Wright and Voytas, 2002)

(Figure 2). Conserved amino acid motifs of the gag–pol

polyprotein, such as the zinc finger domain of the gag

region, the seven conserved RT domains (Xiong and Eick-

bush, 1990) and the three integrase domains. including the

zinc finger, the DD35E domain (Fayet et al., 1990) and the

GPY/F motif (Malik and Eickbush, 1999), confirm the assign-

ment to the errantiviral clade (Figure S2).

env-like ORFs in the Elbe Errantiviruses

A putative env ORF downstream of the gag–pol polyprotein

is characteristic of Elbe retrotransposons. The predicted

proteins are approximately 400 amino acids long

(Table 1), and show remarkable differences in amino acid

composition, supporting the assignment of Elbe retro-

transposons to four families (Figure S3). The ability of

retroviruses to penetrate cell membranes is often associated

with a change in the hydrophobicity of retroviral Env pro-

teins. Hydrophobic signatures typical of TM domains were

predicted in the env-like ORF by TMpred and TMHMM

(Hofmann and Stoffel, 1993; Krogh et al., 2001) (Figure S4).

Both programs detected TM domains with significant

scores, but with remarkable differences in position and

number. In particular, the TM domain of Elbe3 is character-

ized by high scores and probability values (Figure 3a). The

Env protein of the Elbe3 family is significantly different from

the Env protein of Elbe1, Elbe2 and Elbe4, which also contain

regions of high homology but form independent branches in

the neighbor-joining tree (Figure 3b). This indicates either

severe mutation and rearrangements, or, more likely,

independent acquisition of env-like ORFs during evolution.

Reshuffling of retrotransposon families in the Elbe

Errantivirus lineage

Commonly, retrotransposons are grouped according to

conservation of LTR sequences as shown for the 5¢ LTR in

Figure 4(a). However, due to family-specific signatures, 3¢
UTRs may also be used for classification. Surprisingly,

comparison of Elbe 3¢ UTRs resulted in an inconsistent

grouping of Elbe1 members within the Elbe2 and Elbe3

families (bold in Figure 4b), which is also supported by low

conservation in pairwise Elbe1 3¢ UTR sequence compari-

sons (Figure 4c). The 3¢ UTRs of Elbe1-1 and Elbe1-3 show

high homology (75–79%) to the 3¢ UTR of Elbe2 copies, al-

though the homology of the remaining regions confirms the

clear assignment to the Elbe1 family. Similarly, Elbe1 shows

between 75 and 79% identity to the 3¢ UTR of the Elbe3

elements, thus suggesting recombination of the 3¢ UTRs

between retrotransposons of different families.

Figure 5(a) schematically represents the three recombined

Elbe1 retrotransposons Elbe1, Elbe1-1, and Elbe1-3, including

the identity values of the corresponding regions. Frequent

recombination is strongly confirmed by the number of PPTs

within the 3¢ UTR of all Elbe members (Figure 5b). Although

Elbe2 and Elbe4 retrotransposons have three PPTs, and the

Elbe3 family have four PPTs, members of the Elbe1 family vary

and contain up to four PPTs in the reshuffled 3¢ UTR regions.

The distances between the most upstream and the most

downstream PPT are similar in all 3¢ UTRs, indicating a

common origin. Most PPTs have a conserved upstream

dinucleotide motif (TT), while the two nucleotides down-

stream are diverged. However, only the PPT directly upstream

of the 3¢ LTR contains the nucleotides TT adjacent to the 3¢ LTR,

suggesting a functional role within plus-stand synthesis by

defining an attachment site essential for integrase binding.

Structural analysis of all LTR-flanked Elbe members

revealed a high degree of rearrangements within and

between families (Figures 1 and 5). In order to quantify this
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Figure 2. Classification of Elbe members. The relationship of Elbe retrotrans-

posons to other Errantiviruses is visualized in a dendrogram based on an RT

amino acid sequence alignment. The following retrotransposons are

included: Rire1 (Oryza australiensis); Cire1 (Citrus sinensis); SALIRE1, Cotz-

illa1 and Cotzilla3 (Beta vulgaris); Tnt1 and Tto1 (Nicotiana tabacum); SIRE1,

Diaspora and Calypso (Glycine max); Hopie, Opie2 and PREM-2 (Zea mays);

Athila4-2 (Arabidopsis thaliana); Bagy2-1 (Hordeum vulgare); Cyclops-2

(Pisum sativum); Beetle1 and Beetle2 (Patellifolia procumbens). The retro-

transposon gypsy (Drosophila melanogaster) and the retrovirus Osvaldo

(Drosophila buzzantii) are also included. Bootstrap values are indicated as a

percentage of 1000 replicates.
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reshuffling on a genome-wide scale, we hybridized ten Elbe

sequences to 9216 BACs on a high-density filter containing

1.5 B. vulgaris genome equivalents. LTR regions of the four

Elbe families as well as all internal Elbe2 protein domains

(gag, AP, RT, RH, IN, env) served as probes. We identified

402 BACs containing at least one complete or partial Elbe

element (Figure 6a, right panel). In total, 93 hybridization

patterns were detected, demonstrating the high degree of

rearrangements and internal deletions within Elbe mem-

bers. A total of 116 BACs showed hybridization signals with

all seven Elbe2-specific probes, whereas 52 BACs contained

only truncated Elbe2 copies. In contrast, 121 BACs contain

only parts of the gag–pol polyprotein of the Elbe2 family and

no Elbe2 LTR, while 344 of the 402 BACs possess at least one

Elbe LTR. Noteworthy is the detection of solo LTRs, mostly

derived from Elbe3, for which the LTR was exclusively

detected on 65 BACs.

In order to quantify the occurrence of solo LTRs within the

B. vulgaris genome, a local BLAST search was performed

using the 5¢ LTRs of retrotransposons of the Elbe lineage

(Figure 6b). Solo LTRs of all Elbe families with and without

TSDs were detected. Due to truncations at the 5¢ or 3¢ end,

many solo LTRs showed only a regional and hence partial

sequence homology to the query. The Elbe3 family shows

the highest number of solo LTRs (200), confirming the

results of the hybridization experiment (Figure 6a). There

were similar numbers with and without TSDs; however,

TSD-flanked solo LTRs showed a preference for strong
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Figure 3. Variable sequence and structure of Elbe Env-like proteins.

(a) Putative transmembrane (TM) domains in the Env amino acid sequences of representative members of the Elbe lineage. The TMHMM output shows the

probability of TM domains (black, left y axis). TMpred generates scores based on the likelihood of encoded TM domains, whereby only scores greater than 500

(dashed line) are considered significant for a TM domain (dark gray, inside fi outside; light gray, outside fi inside, right y axis). The x axis indicates amino acid

sequence position.

(b) Dendrogram representing alignments of the amino acid sequence of the Env-like proteins. All Elbe elements possessing an env ORF were analyzed. For

comparison, the Env-like proteins of the following retrotransposons are included: gypsy (Drosophila melanogaster), Calypso (Glycine max), Athila4-2 (Arabidopsis

thaliana), Cyclops-2 (Pisum sativum) and Cotzilla1 (Beta vulgaris). Bootstrap values are indicated as a percentage of 1000 replicates.
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sequence conservation over their full length. The high

number of solo LTRs with only regional homology strongly

suggests recombination between LTRs. The total number of

solo LTRs of the remaining Elbe families was considerably

lower, indicating a decreased recombination frequency

compared with the Elbe3 family.

The similarity of UTRs, the number of PPTs, the distribu-

tion in genomic sequences and the high number of

conserved or truncated solo LTRs strongly suggest that the

various families of the Elbe lineage evolved by recombina-

tion and reshuffling of Elbe precursor retrotransposons.

Proliferation of the Elbe Errantivirus lineage in the genera

Beta and Patellifolia

Estimation of the transposition time revealed large differ-

ences among and particularly within individual Elbe families

(Table 1). Elbe2 was active 0.02 million years ago (MYA)

while Elbe2-4 transposed 4.19 MYA. A similar variation has

been calculated for the Elbe1 copies (0.09 MYA for Elbe1

versus 5.59 MYA for Elbe1-3).

The abundance and organization of the Elbe Erranti-

viruses within the beet genera Beta (sections Beta,
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Figure 4. Reshuffling of retrotransposons of the Elbe Errantivirus lineage. Neighbor-joining tree based on (a) the sequence of the 5¢ LTR, and (b) the sequence of the

3¢ UTR of Elbe Errantiviruses. Bootstrap values are indicated as percentage of 1000 replicates.

(c) Pairwise sequence identity matrix of the 3¢ UTRs of the Elbe retrotransposons show higher similarity across families. The numbers indicate the nucleotide

sequence identity (percentages). Gray shading indicates different homology values.
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Corollinae and Nanae), Patellifolia and outgroup Spinacia

oleracea were analyzed by Southern hybridization using

LTR-derived probes (467–627 bp) and env-specific probes

(226–482 bp, Table S1) of retrotransposons of the Elbe

lineage (Figure 7). Highly abundant copies with many

conserved restriction sites exist in all Beta species as

detected by strong signals and a conserved banding

pattern (Figure 7a–d). In particular, hybridization with the

Elbe3 LTR reveals very strong signals, suggesting the

occurrence of many retroelement copies and solo LTRs.

Although Elbe1 and Elbe4 show strong signals in the

related genus Patellifolia, only weak signals were detected

with Elbe2 and Elbe3 probes. Elbe3 also was detectable in

Spinacia oleracea. Compared to the LTRs, the Elbe env-

like ORFs show a similar hybridization pattern with

weaker signal strength (Figure 7e–h). Although strongly

rearranged, Elbe3 is the most abundant family. Although

Elbe3 LTR signals occur in S. oleracea, no env signal was

Elbe2 gag PR RT RH IN

Elbe1-2 gag PR RT RH IN

Elbe1-1 gag PR
86% 82%

78%

gag PR RT RH INElbe1-2

Elbe1-3
80%

75 %

74%

gag PR RT RH INElbe1-2

Elbe1 gag PR

Elbe3

83% 84%

78%

Elbe1-2 [TT]GGGGGAG[GA] 1526 [TT]GGGGGAG[TT]TGAT
Elbe1-4 [TT]GGGGGAG[GA] 1527 [TT]GGGGGAG[TT]TGAT

Elbe1-1 [TT]GGGGAGG[GA] 564 [TT]GGGGGAG[CA] 810 [AT]GGGGGAA[TT]TGAT
Elbe1-3 [TT]GGGGGAG[GA] 625 [TT]AGGGGAA[CA] 760 [CC]GAGGGAG[TT]TGAT
Elbe2 [TT]GGGGGAG[GA] 635 [TT]GGGGGAG[CA] 839 [TT]GGGGGAG[TT]TGAT
Elbe2-1 [TT]GGGGGAG[GA] 630 [TT]GGGGGAG[CA] 845 [TT]GGGGGAG[TT]TGAT
Elbe2-2 [TT]GGGGGAG[GA] 638 [TT]GGGGGAG[CA] 858 [TT]GGGGGAG[TT]TGAT
Elbe2-3 [TT]AGGGGAG[GA] 631 [TT]GGGGGAG[CA] 855 [TT]GGGGGAG[CT]TGAT
Elbe2-4 [TT]GGGGAGG[GA] 610 [TT]-GGGGAG[CA] 773 [TT]GGGGTAG[TT]TGAT
Elbe2-5 [TT]GGGGGAG[GA] 621 [TT]GGGGGAG[CA] 766 deletion TCAT
Elbe2-6 [TT]GGGGGAG[AA] 601 [TT]GTGGGAG[CA] 817 [TT]GGGGGAG[TT]TGAT
Elbe2-7 [TT]GGGGGAG[GA] 590 [TT]GGGGGAG[CA] 659 [TT]AGGAAAG[TT]TGAT

Elbe1 [TT]GGGGGAG[GA] 653 [TT]GGGGGAG[CA] 568 [TT]GGGGGAA[AG] 206 [TT]GGGGGAG[TT]TGAT
Elbe3 [TT]GGGGGAG[GA] 630 [TT]GGGGGAG[CG] 560 [TT]GGGGGAG[AT] 206 [TT]GGGGGAG[TT]TGAT
Elbe3-1 [TT]GGGGGAG[GG] 654 [TT]GGGGGAG[CG] 548 [TT]GGGGGAG[AT] 205 [TT]GGGAGAG[TT]TGAT
Elbe3-2 [TT]GAAGGAG[AA] 637 [TT]GGGGAAG[CG] 571 [TT]GGGTGAG[AT] 206 [TT]-GGAGAG[TT]TGAT
Elbe3-3 [TT]-GGGGAG[GA] 618 [TT]GGGGGAG[CG] 561 [TT]GGGAGAG[AT] 204 [TT]-GGAGAG[TC]TGAT
Elbe3-4 deletion     [TT]TGGGGAG[CG] 562 [TT]GGGGAAG[AT] 206 [TT]GGGGGAG[TT]TGAT
Elbe3-5 [TT]GGGGCAG[GA] 649 [TT]GGGGGAG[CG] 550 [TT]GGGAGAA[AT] 206 [TT]GGGGGAG[TT]TGAT
Elbe3-6 [TT]GGGGGAG[GA] 649 [TT]GGGGGAG[CG] 560 [TT]GGGAGAG[AT] 205 [TT]GGGGGAG[TT]TGAT

Elbe4 deletion [TT]GGGGGAG[AA] 856 [TT]GGGGTTT[TT]GGAT
Elbe4-1 [TT]GGGGGAG[AT] 604 [TT]GGGGGAG[CA] 814 [TT]GGGGGAT[AT]TGAT
Elbe4-2 [TT]GGGGAGG[AT] 604 [TT]GGGGGAG[CA] 853 [TT]GAGGGAT[TT]TGAT
Elbe4-3 [TT]GGGGAGG[AT] 566 deletion                  [TT]GGGGGAG[TA]TGAT
Elbe4-4 deletion [TT]GGGAGAG[CA] 858 [TT]GGGGGAT[TT]TGAT
Elbe4-5 [TT]GGGGGGA[AT] 631 [TT]GGGGGAG[CA] 834 [TT]GAGGGAT[TT]TGAT
Elbe4-6 [TT]GGGTAGA[AT] 859 [TT]GGGGGAG[CA] 841 [TT]GGGGGTT[TT]TGAT

(a)

(b)

Figure 5. Rearrangement of Elbe Errantiviruses.

(a) Recombination of the 3¢ UTR of Elbe1-1, Elbe1-3 and Elbe1 across different Elbe families. Arrows and boxes correspond to those shown in Figure 1. Sequence

similarities of homologous regions are indicated in the shaded areas.

(b) Comparison of the polypurine tracts (PPTs) within the 3¢ UTR of the Elbe retrotransposons. Black shading indicates identity of 100%. The numbers indicate the

distance (nucleotides) between the PPTs. The start of the 3¢ LTR is shown in gray.
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Figure 6. Genome-wide analyses of recombination hot spots and solo LTR formation.

(a) Existence of Elbe probe hybridizations detected in sugar beet BACs. Of 9216 BACs (1.5-fold genome coverage), 402 showed at least one signal after hybridization

with one of ten Elbe probes. The probes were constructed to detect the family-specific LTRs of all four Elbe families as well as internal domains of Elbe2. Ninety-three

different hybridization patterns were observed, and positive hybridization signals are shown in dark gray. On the right, the number of detected BACs with the

respective hybridization pattern is plotted using light gray bars.

(b) Family-specific numbers of Elbe solo LTRs within the genome of Beta vulgaris. The histogram shows solo LTRs of the four Elbe families with target site

duplication (TSD, black bars) and without TSD (gray bars). Solo LTRs that are completely homologous, not homologous at the 5¢ end or not homologous at the 3¢ end

are indicated by rectangles, circles and triangles, respectively.
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detected, indicating the absence or strong sequence

divergence of the env-like ORF in this distantly related

species.

Physical mapping of the Elbe retrotransposons on B. vul-

garis chromosomes was performed by fluorescent in situ

hybridization (FISH). LTR probes were hybridized to mitotic

metaphase, prometaphase and interphase nuclei, and

revealed dispersed signals on all chromosomes (Figure 8).

Elbe Errantiviruses are organized in clusters in heterochro-

matic regions, mostly visible as brightly stained DAPI-

positive signals. FISH on interphase nuclei confirmed that

some heterochromatic centers lack a hybridization signal

(Figure 8b,d,f,h). Elbe retrotransposons show a strong bias

to subterminal integration, and are largely excluded from

many centromeric and pericentromeric regions. The vari-

able signal strength along chromosomes is most likely

explained by hybridization to multiple Elbe copies in a

nested organization or in close vicinity and below the

threshold of resolution. This is in line with the nested

pattern for an Elbe1 copy (inserted in Elbe2) and an Elbe3

copy (inserted in Elbe 4), as shown in Figure 1.

DISCUSSION

We have identified an Errantivirus lineage containing the

retrotransposon families Elbe1, Elbe2, Elbe3 and Elbe4 that

is widespread in the genus Beta and is also detected in the

genus Patellifolia. Their high abundance facilitates recom-

binations leading to multiple rearrangements, formation of

non-autonomous copies, and formation of related retro-

transposon families. We detected various levels of re-

shuffling: (i) nested integration and truncation of

retrotransposons, (ii) exchange of the 3¢ UTR between

retrotransposons of different families, and (iii) a high num-

ber of partially rearranged solo LTRs.

Structural diversity, organization and rearrangements of

Elbe retrotransposon families

Illegitimate recombination counteracts retrotransposon pro-

liferation and produces non-autonomous copies by deletion

of internal sequences (Devos et al., 2002). Three Elbe families

contain autonomous and non-autonomous members, and

the extent of deletions and rearrangements is different for

each family. The Elbe2 retrotransposons predominantly

consist of autonomous elements, but the identified Elbe3

members exclusively are non-autonomous (Figure 1).

An essential feature of autonomous and non-autonomous

retrotransposon partners is the conservation of the LTR

sequences and adjacent UTRs, most likely due to co-

evolution of the partners in a host genome (Jiang et al.,

2002; Du et al., 2009). For example, the autonomous and

non-autonomous retrotransposons SARE and SNRE in

Glycine max share similar LTRs (Du et al., 2009). However,

retroelement partners may also belong to different

monophyletic groups. In Oryza sativa, the putative
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Figure 7. Distribution of the Elbe retrotranspo-

son families in the genus Beta and Patellifolia.

Genomic DNA restricted with HindIII was ana-

lyzed by comparative Southern hybridization

using probes from the LTR of Elbe1 (a), Elbe2

(b), Elbe3 (c) and Elbe4 (d), and the env-like ORFs

of Elbe1-2 (e), Elbe2 (f), Elbe3 (g) and Elbe4 (h).

Analyzed species of the section Beta: Beta vul-

garis ssp. vulgaris var. conditiva KWS2320

(lane 1) and Beta patula (lane 2); of the section

Corollinae: Beta corolliflora (lane 3); of the sec-

tion Nanae: Beta nana (lane 4); of the genus

Patellifolia: Patellifolia procumbents (lane 5);

and outgroup species Spinacia oleracea (lane 6).

Exposure times for LTR and env probes were 2

and 3 days, respectively.
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retrotransposon partners Rire2 and Dasheng exclusively

group into two highly diverged clades based on their LTR

sequences, suggesting only few inter-element recombina-

tions (Jiang et al., 2002). We observed two features of

evolution of non-autonomous Elbe copies. First, comparison

of Elbe LTRs allowed formal classification into four families,

clearly indicating a partnership between autonomous and

non-autonomous members of each family (Figure 4a).

Second, comparison of the 3¢ UTR revealed frequent inter-

element recombination events between members of differ-

ent Elbe families (i.e. between Elbe1 and Elbe2, and between

Elbe1 and Elbe3, respectively). In these examples, we

observed family formation in progress, but were able to

deduce the origin of the individual sequences (Figures 4b,c

and 5a). Similar reshuffling of two related lineages was

observed in the Errantiviruses of A. thaliana and G. max

(Marco and Marı́n, 2008).

The 3¢ UTR comprising the region between the env-like

ORF and the 3¢ LTR is a hotspot of Elbe recombination. In

G. max, recombination occurred upstream of the PPT (Du

et al., 2009), indicating a preference for inter-element

recombination close to the 3¢ LTR. The rearranged retroel-

ements Elbe1, Elbe1-1 and Elbe1-3, as well as the G. max

elements, are flanked by TSDs (Table 1). This strongly

suggests that the reshuffling occurred during reverse

transcription of a novel copy, probably by template switch-

ing of the reverse transcriptase, showing that the recomb-

inants are fully mobile and reverse transcription was not

aborted. An alternative explanation may be recombination

of autonomous retroelements after integration into the host

genome.

The number and positions of PPTs served as markers for

Elbe family-specific 3¢ UTRs (Figure 5b). Multiple PPTs have

also been reported for Athila from A. thaliana, Calypso from

G. max and Cyclops from P. sativum (Wright and Voytas,

2002). Up to four PPT copies have been identified in the Elbe

Errantiviruses, of which the terminal PPT corresponds to a

distinctive integrase attachment site. This site attracts bind-

ing of the integrase, thus defining the 5¢ end of the new

retrotransposon copy after plus-strand synthesis, and is

therefore essential for successful insertion of the new copy

into the host genome (Bowman et al., 1996). Multiple PPTs

may originate from rearrangements between Elbe copies

followed by selection, because only the terminal PPT would

enable full-length synthesis of the plus strand while inter-

nally initiated strands would lead to truncations.

Nested integrations are a common feature of LTR retro-

transposons (SanMiguel et al., 1996), and it is likely that

nested transposition fragmented intact Elbe copies and

produced the observed non-autonomous elements. We

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 8. Physical mapping of Elbe retrotrans-

poson families along Beta vulgaris chromo-

somes by fluorescent in situ hybridization. In

each panel, DAPI-stained DNA shows the chro-

mosome morphology as blue fluorescence,

while red signals correspond to hybridization

sites of retrotransposon probes. Metaphase

chromosomes (left) and interphase nuclei (right)

were hybridized with LTR-derived probes spe-

cific for Elbe1 (a, b), Elbe2 (c, d), Elbe3 (e, f) and

Elbe4 (g, h), respectively. Examples of intercalary

heterochromatic regions are indicated by

arrows.
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identified eight Elbe Errantiviruses containing insertions of

complete LINEs, solo LTRs or LTR retrotransposons

(Figure 1; e.g. Elbe1 within Elbe2 and Elbe3 within Elbe4).

Complete nested Elbe retrotransposons were only detected

on partially sequenced BACs and not in the draft genome

sequence of B. vulgaris. This reflects the limited capability of

next-generation sequencing assembly software to resolve

segmental duplications and homologous repeats with iden-

tities exceeding 85% (Alkan et al., 2011).

The clustered organization of Elbe retrotransposons was

also indicated by the dispersed patterns of FISH signals on

B. vulgaris prometaphase chromosomes (Figure 8). Most

Elbe retrotransposons were physically mapped in sub-

terminal chromosome positions, and are largely excluded

from many centromeric and pericentromeric regions. This is

in contrast to the Errantiviruses Athila from A. thaliana and

SNARE from G. max, which are located in recombination-

suppressed pericentromeric regions (Kumekawa et al., 2000;

Du et al., 2010).

Theoccurrenceofnested integrations isconsistentwith the

comparative hybridization to B. vulgaris BACs showing that

31%ofpositiveBACs(126of402)harbor twoormorecopiesof

different Elbe families (Figure 6a). We assume that, due to

their heterochromatic localization, Elbe retrotransposons

provide a safe harbor for novel retrotransposon insertions.

In addition to illegitimate recombination, Elbe Erranti-

viruses are involved in unequal homologous recombination.

This unequal intra-element recombination between the two

LTRs of a single retroelement results in a solo LTR harboring

TSDs. In contrast, a hallmark of the unequal inter-element

recombination between the LTRs of two adjacent retrotrans-

posons belonging to the same family is the lack of TSDs

(Devos et al., 2002). We observed differences in the abun-

dances of solo LTRs between the Elbe families (Figure 6b).

As shown by BAC hybridization and analysis of the

B. vulgaris genome assembly, there is a strong bias for

Elbe3 solo LTRs. Factors influencing the recombination rate

are LTR length and chromosomal localization (Du et al.,

2010). However, Elbe LTRs are of similar lengths and

similarly localized in subterminal chromosome regions. In

O. sativa, evolutionarily young retrotransposons are char-

acterized by a high percentage of intact elements and a low

percentage of remnants and solo LTRs, but the opposite is

found in older families (Ma et al., 2004). As Elbe3 elements

are highly fragmented and many solo LTRs were found, we

regard this family as the most ancient among Elbe retro-

transposons. The high abundance of Elbe3 members is

consistent with the strong Southern hybridization signals,

even in the outgroup species Spinacia oleracea (Figure 7).

However, based on the estimation of the integration time,

the four Elbe families possess young and old members with

transposition times ranging from 0.02 MYA (Elbe1) to 5.53

MYA (Elbe1-3). Furthermore, 22 of 27 Elbe members trans-

posed at least 1 MYA, suggesting that this Errantivirus

lineage is ancient and existed before species separation in

the genus Beta (Table 1). Horizontal transfer cannot be

excluded but is unlikely because there is no habitat overlap.

In O. sativa and G. max, the ratios of solo LTRs with and

without TSDs are 1:3 and 1:10, respectively (Ma et al., 2004;

Du et al., 2010). In B. vulgaris, the similar numbers of Elbe

solo LTRs with TSDs and without TSDs reveal equal rates

of intra-element and inter-element recombination, both

process described by Devos et al. (2002).

The LTRs contain regions for transcription initiation (U3)

and termination (U5). Therefore, the RNA transcript lacks the

U3 at the 5¢ end and the U5 at the 3¢ end. During reverse

transcription, full-length copies are generated and the

missing regions are copied from the opposite LTRs through

rearrangement at the RNA template. As multiple genomic

RNAs are packaged during virus-like particle formation

(Boeke et al., 1986; Jordan and McDonald, 1999; Feng et al.,

2000), a template switch of the reverse transcriptase is very

likely responsible for rearrangement of LTRs. Such reshuf-

fling events have been described in Saccharomyces

cerevisiae, A. thaliana and G. max (Jordan and McDonald,

1998; Marco and Marı́n, 2008; Du et al., 2009). In B. vulgaris,

56% of the detected Elbe solo LTRs show aberrant 5¢ or 3¢
ends, suggesting frequent sequence reshuffling events

during reverse transcription (Figure 6b). Another explana-

tion is recombination between the LTRs of different retro-

transposon copies, resulting in circularization and deletion

of the internal region and simultaneous production of a

hybrid LTR containing the left end of the left LTR and the

right end of the right LTR (Shirasu et al., 2000).

The additional ORF of Elbe retrotransposons

As is typical for members of the Errantiviridae, Elbe retro-

transposons encode an additional ORF, possibly originating

from a nucleolus-derived gene encoding an Env-like protein.

As described for membrane-penetrating proteins (Lerat and

Capy, 1999), we found transmembrane domains in the env-

like ORFs using two bioinformatic approaches; however,

their number and position within the ORFs varied, indicating

high sequence flexibility (Figure 3a).

Within the Envelope proteins of insect retrotransposons

and mammalian retroviruses, the two conserved motifs KRG

and LTPL have been reported to be important for the

adsorption and penetration of a virus (Lerat and Capy,

1999). Due to the absence of the two motifs in the Sirevirus

SIRE1 of G. max (Laten et al., 1998), it was assumed that Ty3-

gypsy-like and Ty1-copia-like retrotransposons acquired the

env ORFs independently (Kumar, 1998). In the plant Sirevi-

ruses Cotzilla of B. vulgaris and PpRT of Pinus pinaster, no

conserved KRG and LTPL motifs were detected (Miguel et al.,

2008; Weber et al., 2010). As neither the Env-like proteins of

the Elbe elements nor the other Errantiviruses used for the

alignment (Figure S3) contain the motifs, we assume that all

plant retrotransposons lack these conserved motifs.
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The Envelope proteins of G. max Errantiviruses and

Sireviruses share common domains, indicating that they

originated from a common ancestor. Therefore, indepen-

dent capture of either one or both env-like genes after

bifurcation of both superfamilies has been suggested

(Du et al., 2010).

Implication of analysis of the Elbe lineage for Beta genome

analysis

Detailed knowledge of the Elbe lineage, consisting of at least

four families identified so far, is crucial for genome

sequencing and annotation for two reasons. First, genome-

wide distributed repetitive sequences of high abundance

such as Elbe retrotransposons are difficult to assemble from

the short sequence reads that are characteristic of high-

throughput sequencing technologies. Second, annotation of

truncated or internally deleted members of the Elbe families

may be ambiguous: more than 50% of the identified Elbe

retrotransposons (Figure 1) and 42% of the Elbe retrotrans-

posons analyzed by BAC hybridization (Figure 6a) lack the

reverse transcriptase gene that is a hallmark of retrotrans-

posons. The Elbe3 family is the most abundant family, but

none of its copies contain the gene encoding the reverse

transcriptase (Figures 1 and 7c). These decayed members,

fragments and solo-LTRs are difficult to identify; however,

detailed knowledge of the Elbe retrotransposons and their

numerous remnants enables straightforward annotation.

Sugar beet (B. vulgaris) is a relatively young crop origi-

nating from single crosses between mangold and fodder

beet (Fischer, 1989), and hence has a narrow genetic base.

Wild Beta species are an important resource in order to

utilize the gene pool of the genus and introduce genetic

diversity and agronomically desirable traits such as patho-

gen resistance and tolerance against abiotic stress (Van Geyt

et al., 1990). Genome sequencing of wild beet species is in

progress and will enable comparative studies of Elbe

families, which in turn will support annotation of these

genomes.

Elbe families are of considerable age, and their presence

in various species of the genera Beta and Patellifolia suggest

their existence in the last common ancestor. Interestingly,

the env-like ORFs are different in each Elbe family, indicating

independent acquisition and conservation over long evolu-

tionary periods, but after the split of the genus Patellifolia, in

which homologous env-like sequences are not detectable by

Southern hybridization (Figure 7e–h). The function, if any, of

the env-like ORF remains unknown. Despite the resem-

blance of transmembane domains in the Env-domain, it is

unlikely that Elbe retrotransposons represent intermediate

stages in the evolution of retroviruses because the plant cell

wall prevents infectivity. Nevertheless, the presence of the

env ORFs shows that Elbe retrotransposons are vehicles for

amplification and distribution of coding sequences within

the genome. The Elbe env ORFs are most likely fragmented

or truncated, but they provide sequences that may be

assembled into new composite genes. Because of the ability

to acquire genomic fragments including genes or parts

thereof and to move them to new locations, env-like

retrotransposons provide raw material for plant gene and

genome evolution by increasing the gene copy numbers and

changing the gene structure and regulation through trans-

position, insertion, excision and ectopic recombination

(reviewed by Bennetzen, 2000).

Transposable elements, in particular LTR retrotranspo-

sons including Ty1-copia-like and Ty3-gypsy-like elements

such as Elbe, are the most abundant sequence class of plant

genomes. In plants with large and complex genomes, for

example maize, transposable elements make up over 70% of

the nuclear DNA (SanMiguel and Bennetzen, 1998). A

consequence of the activity of retrotransposons is the

dynamic change of the nuclear genome size. In addition to

ancestral polyploidization, the activity of retrotransposons,

often occurring in transpositional bursts, is the major cause

for the variation of angiosperm genome size over several

orders of magnitude (Bennett and Leitch, 1995, Bennetzen

et al., 2005). Retrotransposons are a dynamic component of

plant genomes, and analysis of the Elbe errantiviral lineage

in B. vulgaris revealed different levels of retrotransposon

rearrangement and reshuffling. Thus, the Elbe lineage

provides insight into the evolution of highly abundant

retrotransposon families exhibiting varying degrees of

autonomy, age and fragmentation.

EXPERIMENTAL PROCEDURES

Plant material and isolation of genomic DNA

Plants of Beta vulgaris ssp. vulgaris (KWS2320), Beta patula (BETA
548), Beta corolliflora (BETA 846), Beta nana (BETA 541), Patellifolia
procumbens (BETA 951) and Spinacia oleracea (Matador) were
grown under long-day conditions. Wild beet seeds were obtained
from the Plant Genome Resources Center Gatersleben (Germany),
and cultivars were provided by KWS Saatzucht Einbeck (http://
www.kws.de/).

Genomic DNA was isolated from young leaves using the CTAB
(cetyltrimethyl/ammonium bromide) protocol as described previ-
ously (Saghai-Maroof et al., 1984).

Polymerase chain reaction

Probes for Elbe retrotransposons were amplified and sequenced for
Southern hybridization. Primers used are listed in Table S1. PCR
with 50 ng BAC DNA or plasmid template was performed in a 50 ll
volume containing 5· GoTaq buffer and 2.5 units of GoTaq poly-
merase (Promega, http://www.promega.com). Standard PCR con-
ditions were 94�C for 3 min, followed by 35 cycles of 94�C for 30 sec,
the primer-specific annealing temperature for 30 sec, 72�C for 30–
60 sec, and a final incubation at 72�C for 5 min.

BAC library analysis and BAC sub-cloning

To isolate a full-length Elbe retrotransposon, a high-density filter
containing 9216 clones of a BAC library (Gindullis et al., 2001) was
hybridized with an env-like RT sequence of B. vulgaris amplified
using degenerated primer pairs (Vicient et al., 2001). DNA of
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selected B. vulgaris BACs was isolated using the Nucleo Bond
BAC 100 kit (Macherey & Nagel, http://www.mn-net.com/) and sub-
cloned into pUC18 (Thermo Scientific, http://www.thermoscientific.
com) using BamHI and HindIII. Sub-clones were hybridized with a
radiolabeled env-like RT fragment. Positive clones were sequenced
by primer walking using a Beckman Coulter CEQ8000 capillary
sequencer (Beckman Coulter, https://www.beckmancoulter.com).

Southern hybridization

Southern analyses were performed on HindIII-restricted genomic
DNA separated on 1.2% agarose gels, which were transferred onto
Hybond XL nylon membranes (GE Healthcare, http://www.
gehealthcare.com/). The membranes were hybridized with 32P-la-
beled probes generated by random priming according to standard
protocols at 60�C overnight (Sambrook et al., 1989). Subsequently,
the filters were washed at 60�C in 2· SSC/0.1% SDS and 1· SSC/0.1%
SDS for 10 min each, and signals were detected by autoradiogra-
phy.

Fluorescent in situ hybridization

Mitotic chromosomes were prepared from the meristem of young
plants. After incubation for 3–5 h in 2 mM 8-hydroxyquinoline,
leaves were fixed in methanol:acetic acid (3:1). Fixed plant material
was macerated in an enzyme mixture consisting of 0.3% w/v cyto-
helicase (Sigma-Aldrich, http://www.sigmaaldrich.com), 1.8% w/v
cellulase from Aspergillus niger (Sigma-Aldrich), 0.2% w/v cellulase
Onozuka-R10 (Serva, http://www.serva.de), and 20% v/v pectinase
from A. niger (Sigma-Aldrich), followed by spreading of the nuclei
suspension onto slides as described by Desel et al. (2001).

Fluorescent in situ hybridization (FISH) of B. vulgaris chromo-
somes was performed as described by Heslop-Harrison et al. (1991)
and modified for beet as described by Schmidt et al. (1994). FISH
probes were labeled by PCR in the presence of biotin-11-dUTP.
Standard stringencies of 76% for hybridization and 79% for washing
were used. Chromosome preparations were counter-stained using
DAPI (4¢,6¢-diamidino-2-phenylindole) and mounted in antifade
solution (CitiFluor, http://www.citiflour.co.uk). Examination of
slides was performed using a fluorescent microscope (Zeiss Axio-
plan 2 imaging Zeiss, http://www.zeiss.com) equipped with filter 09
(fluorescein isothiocyanate), filter 15 (Cy3) and filter 02 (DAPI).
Images were acquired directly using APPLIED SPECTRAL IMAGING

version 3.3 software (Applied Spectral Imaging, http://www.
spectral-imaging.com) coupled with the high-resolution CCD
camera ASI BV300-20A.

Computational methods

In order to identify complete Elbe copies, homology searches were
performed using B. vulgaris sequence entries in the EMBL data-
base, mainly consisting of BAC end sequences generated by
McGrath et al. (2004). Retrieved sequences were used to assemble
an in silico env-like Ty3-gypsy retrotransposon from which primers
were derived.

Using the BLAST algorithm (Altschul et al. 1990), a preliminary
B. vulgaris genome assembly was queried using family-specific
LTRs to identify additional Elbe members. This unedited and non-
public assembly comprises 768.1 Mb in 383 968 contigs, with an
N50 contig size of 5399 bp. A current version of the sugar beet
genome draft (RefBeet0.9) is available for download at http://
bvseq.molgen.mpg.de (Lange et al., 2010; Dohm et al., 2012).

Hits of at least 1400 bp and more than 80% identity to the queries
were further analyzed. Sequences were aligned using the MUSCLE
algorithm (Edgar, 2004). Comparative sequence analyses were
performed using MEGA 4.0 software (Tamura et al., 2007). Neigh-

bor-joining trees were constructed with 1000 bootstrap replicates.
Evolutionary distances were computed using the Poisson correction
method, and positions containing alignment gaps and missing data
were eliminated only in pairwise sequence comparisons. Errantivi-
rus transposition times were estimated using the equation t = K/2r,
where t is the age, K is the number of nucleotide substitutions per
site between each LTR pair, and r is the nucleotide substitution rate.
A mean synonymous substitution rate of 1.5 · 10)8 mutations per
site per year as determined for the chalcone synthase and Adh loci
in A. thaliana (Koch et al., 2000) was applied.

Protein sequences of Elbe members were deduced using the
GeneWise algorithm (Birney et al., 2004) with Cyclops-2 (Chavanne
et al., 1998) as the reference sequence.

The Plant Care database (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html) was used for promoter motif scanning
within the LTRs.

To predict the putative transmembrane (TM) domains in the env-like
ORFs, TMpred (http://www.ch.embnet.org/software/TMPRED_form.
html) (Hofmann and Stoffel, 1993) and TMHMM (http://www.cbs.
dtu.dk/services/TMHMM-2.0/) (Krogh et al., 2001) were used.

Retrotransposon accessions

The accession numbers of the retrotransposons analyzed in this
paper are listed in Table S2.
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sequences of representative members of all Elbe families (examples
are also shown in Figure 3).
Table S1. Primers used for amplification of domain-specific probes
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