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showing significant genome-wide association with affec-
tion status. Two single nucleotide polymorphisms are novel 
and will be verified in other populations in our follow-up 
study.   Copyright © 2012 S. Karger AG, Basel

  Introduction

  Over the last several years, genome-wide association 
studies (GWAS) have become one of the most important 
and popular tools in the process of gene mapping. While 
at the beginning their inherent challenges from their 
costs, data management, cleaning and analysis prohib-
ited their large-scale use, GWAS are now generally fea-
sible for most diseases and phenotypes, and have been 
extensively used by the scientific community. They have 
led to the identification of many novel associations be-
tween genetic loci and complex diseases/phenotypes, 
which have been replicated consistently and reliably in 
other studies.
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  Abstract

  For the meta-analysis of genome-wide association studies, 
we propose a new method to adjust for the population strat-
ification and a linear mixed approach that combines family-
based and unrelated samples. The proposed approach 
achieves similar power levels as a standard meta-analysis 
which combines the different test statistics or p values across 
studies. However, by virtue of its design, the proposed ap-
proach is robust against population admixture and stratifi-
cation, and no adjustments for population admixture and 
stratification, even in unrelated samples, are required. Using 
simulation studies, we examine the power of the proposed 
method and compare it to standard approaches in the meta-
analysis of genome-wide association studies. The practical 
features of the approach are illustrated with a meta-analysis 
of three genome-wide association studies for Alzheimer’s 
disease. We identify three single nucleotide polymorphisms 
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  However, despite their success in terms of the discovery 
of novel genetic associations, GWAS have not identified 
the genetic associations that explain the majority of the 
expected genetic heritabilities for most traits. For example, 
genes related to height found by GWAS so far only explain 
6–7% of the total variability in height  [1] , even though ge-
netic heritability is believed to be between 70 and 90%. 
Therefore, there has been a concerted effort to utilize all 
available GWAS for a particular phenotype of interest by 
doing a large-scale meta-analysis in order to maximize the 
statistical power to identify novel disease loci.

  Of course, a meta-analysis of several studies at a ge-
nome-wide level raises some statistical issues. One is that 
the same markers should be genotyped in all studies, 
which is not the case in most scenarios, since different 
genotyping platforms are likely to have been used in each 
study. This problem can be addressed by using imputa-
tion techniques. Imputation algorithms infer the geno-
types at the untyped marker loci using both the linkage 
disequilibrium (LD) information about the genomic re-
gion from a reference population, e.g. HapMap, or other 
genotypes at the typed marker loci in the same LD region 
in the same study. Currently, there are a number of effi-
cient imputation approaches  [2–4] . For the purpose of 
this paper, we assume that the same single nucleotide 
polymorphisms (SNPs) are genotyped in all studies of the 
meta-analysis.

  A second issue is the genetic and phenotypic hetero-
geneity introduced by the inclusion of different studies 
into the meta-analysis. Typically, large-scale studies in 
such meta-analysis projects have been collected at dif-
ferent time points and locations. At the same time, the 
ascertainment condition defined by phenotype often 
varies. Since it is very difficult to identify all differences 
between studies and account for them in the analysis, 
the meta-analysis results become susceptible to con-
founding and their control is a major issue in the analy-
sis. The total sample size in a large-scale meta-analysis 
project can easily exceed more than 10 or 20 thousand 
individuals, and for such sample sizes, even small im-
balances due to population structure can result in a sys-
tematic bias in the results of the association tests  [5] . 
While there are several approaches to adjust for popula-
tion structure in unrelated samples, none of the ap-
proaches are able to achieve the complete robustness of 
family-based design. For example, the differential level 
of population structure along the genome or its compli-
cated structure can violate the validity of the statistic  [6] . 
For each approach, examples have been reported in the 
literature in which the approach fails to adjust correctly, 

and provides either false positive or false negative results 
 [7–10] .

  Here we propose a new method for the meta-analysis 
of GWAS that combines both family-based and unrelated 
samples with rank-based statistics. Other methods such 
as genomic control and EIGENSTRAT can be sensitive to 
confounding due to population admixture or stratifica-
tion for some scenarios. However, the proposed approach 
for the meta-analysis that consists of both family-based 
and unrelated samples is completely robust in the sense 
that the type-1 error does not increase under violations of 
the model. At the same time, to prevent the proposed 
method from losing some efficiency, both a principal 
component analysis (PCA) and linear mixed model are 
applied. Because PCA and linear mixed model are not 
necessary for the complete robustness against any con-
founding, they can be selectively utilized to increase the 
efficiency for meta-analysis. Using simulation studies, 
the power and the robustness of the new approach is as-
sessed and compared to standard meta-analysis methods. 
We illustrate the approach by an application to Alzhei-
mer’s disease.

  Methods

  For simplicity, we assume that all studies that are included in 
the meta-analysis, regardless of whether samples are family-based 
or unrelated, have the same phenotypic ascertainment condition. 
If the phenotypic ascertainment condition is different, the infer-
ence by pooled samples can generate substantial false negative 
results and stratified analysis for each study has to be applied. De-
pending on the phenotype of interest, the test statistics can be 
specified so that binary traits, quantitative traits, multivariate 
traits or time-to-onset can be tested for association with a genet-
ic marker locus  [11–14] .

  Since, as we will see below, the proposed meta-analysis ap-
proach inherits the complete robustness of family-based samples 
against population structure, a pooled meta-analysis where all 
subjects from the studies are incorporated to a single statistic be-
comes feasible. The principle that guards the proposed meta-anal-
ysis method against genetic confounding also protects it against 
potential confounding due to study heterogeneity. For the pro-
posed method, first, the population structure between or within 
studies is adjusted with the eigenvectors from PCA and the linear 
mixed model with the estimated PC scores as covariates is applied 
to each study. Second, the distribution-based p values from each 
study are transformed to the rank-statistic  [6, 15]  and combined 
to form an overall statistic. It should be noted that the first step is 
conducted to maximize the statistical power because the rank-
statistic in the second step by itself can lose the efficiency without 
the first step, even though it always guarantees the robustness 
against the presence of population structure. The details for each 
step will be provided in the following subsection.
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  We assume that  K  GWAS with  m  SNPs are combined for me-
ta-analysis. In order to keep the notation simple, we assume here 
that all related subjects are trios, i.e. for each study subject, its 
genotype/phenotype and the parental genotype/phenotype are 
known. The same statistics simply extend to large pedigrees. 
There is a large amount of correlations between family members 
in a large pedigree and the power improvement for the proposed 
method becomes larger compared to our previous suggestions  [6, 
15] . If the  k -th study subjects are recruited as part of the family-
based design, we let the genotype of the  i -th marker locus in the 
offspring of the  j -th trio be  x  j  ,  ik  and the phenotype be  y  j  ,  k . The 
subject’s parental genotypes and phenotypes are denoted by  p  1  j  ,  ik  
( p  2  j  ,  ik ) and  q  1  j  ,  ik  ( q  2  j  ,  ik ), respectively. In the families for which the 
parental information is missing and paired (or more) sibling 
studies are available without parental information, the parental 
genotypes can be replaced by the sufficient statistic for pedigrees 
 [16] .

  Within-Family Component and Between-Family Component
  In the subject of the family-based samples, the information 

about the genetic association can be partitioned at the  i -th mark-
er locus into the within-family component and the between-fam-
ily component  [17] . At the within-family level, the evidence for 
association between the  i -th marker and the phenotype of inter-
est is summarized by the statistic  FBAT  i  that is computed based 
on the subject’s genotype, conditioning on its phenotype and the 
parental genotypes. The statistics for the within-family level are 
robust against the population structure. However, the informa-
tion about the association at the between-family level is sensitive 
to the population structure as in the statistic for unrelated sam-
ples. Therefore, the information about the association at the be-
tween-family level is directly included into test statistic  T  i  for 
unrelated samples, using offspring’s phenotype and its expected 
genotype which is calculated by Mendelian transmission from 
the parents to the offspring. This utilization of the proband’s phe-
notype and expected genotype is equivalent to the construction 
of a VanSteen-type test statistic that is statistically independent 
of the FBAT statistic under the null hypothesis  [12, 18, 19] . We 
will denote both the unrelated samples and the between-family 
component by the population-based component in the remain-
der of this paper.

  Principal Component Analysis and Linear Mixed Model
  We provide a new method to adjust population stratification 

in related subjects by extending the EIGENSTRAT approach  [9] . 
However, this approach can also be applied to the population-
based component for  T  i . Parents in each trio contain the whole 
information for population structure because the genotypes of 
nonfounder are transmitted from the founder with Mendelian 
transmission. We consider only parents, and the computational 
intensity has been largely improved without any loss of informa-
tion. Also inclusion of nonfounder for PCA can make spurious 
PC scores that do not reflect the true underlying population strat-
ification  [20] . In the first step, we select/calculate the genotypes/
sufficient statistic for parents and they are used to estimate the 
correlation matrix between individuals as follows:

  • For each trio, only parental genotypes from each family are 
selected to calculate the correlation matrix. If parental genotypes 
are unknown, the expectations of sufficient statistics (see Rabi-
nowitz and Laird  [16] ) are utilized.

  • PCA is applied to the correlation matrix calculated from the 
selected genotypes/expectation of the sufficient statistics by the 
same way as EIGENSTRAT.

  • From the PCA,  L  eigenvectors corresponding to the top large 
 L  eigenvalues are considered to adjust the population stratifica-
tion.  L  can be decided by considering the relative proportion of 
each eigenvalue to the total variability or Tracy-Widom statistic 
 [21] . The effect of misspecified  L  has been shown in the literature 
 [9] .

  We let  pc  1  jl  ,  k  and  pc  2  jl  ,  k  be the  l -th PC scores for the parents and 
 pc  3  jl  ,  k  for offspring, where  l  = 1, ...,  L .  pc  1  jl  ,  k  and  pc  2  jl  ,  k  are calcu-
lated from the correlation matrix, and  pc  3  jl  ,  k  is calculated as 
0.5( pc  1  jl  ,  k  +  pc  2  jl  ,  k ) because the common diseases are generated by 
several different genes, and recombination and Mendelian trans-
mission make this relationship preserved. For the  j -th trio at the 
 i -th SNP we let

   X  j  ,  ik  = ( p  1  j  ,  ik ,  p  2  j  ,  ik ,  x  j  ,  ik ) t 
   Y  j  ,  k  = ( q  1  j  ,  k ,  q  2  j  ,  k ,  y  j  ,  k ) t 
   PC  jl  ,  k  = ( pc  1  jl  ,  k ,  pc  2  jl  ,  k ,  pc  3  jl  ,  k ) t 
  1 3  = (1, 1, 1) t .

  We apply the weighted linear regression with correlation ma-
trix  R   [22]  as follows:
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  where  �  dd  �  is the kinship coefficient between the individuals  d  
and  d  � . If we let the residuals from the above regression for parents 
and offspring be  p  r  1  j  ,  ik  ( p  r  2  j  ,  ik ) and  x  r  j  ,  ik , respectively, and denote

   X  r  j  ,  ik  = ( p  r  1  j  ,  ik ,  p  r  2  j  ,  ik ,  x  r  j  ,  ik ) t ,

  our final model for trio in the  k -th study is
  
  , 0 3 , 1 1, , ,

, 1 , 2 ,

1

,

r
j k j ik j k L jL k j ik

j ik j ik j i

Y X PC PC� � � � �

� � � 3 ,, 0, .
t

k j ik N V� �

,

  If there are monozygotic twins, the linear regression of  X  j  ,  ik  on 
PC scores cannot be conducted. Thus a single individual of each 
monozygotic twin should be used for the regression but the re-
sidual is used for both of each monozygotic twin for the regression 
of  Y  j  ,  k . For  V  we need to consider the polygenic effects and com-
mon environment effects, and it can be achieved with the pro-
posed linear mixed model (see Appendix). We denote the vari-
ance from the polygenic effects and common environment effects 
by  �  g  

2  and  �  c  
2  respectively. If the genotypes of each marker are not 

available, they can be imputed with Hidden Markov model  [23]  
or Bayesian approach  [24] , and then the proposed method can be 
applied.

  Construction of an Overall Association
  The proposed PCA-based methods can be violated if the level 

of population structure varies along the genomic region as was 
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shown for EIGENSTRAT in the literature  [6] . In this reason we 
extend the proposed method to the hybrid analysis  [6]  in order to 
construct an overall association test for the entire pooled/mixed 
sample that is robust against confounding due to population 
structure or study heterogeneity. For the population-based com-
ponent, the proposed PCA and linear mixed model are applied to 
the population-based component for  T  i  across all studies in this 
step and  FBAT  i  is calculated by using within-family components. 
It should be noted that either logistic regression or linear mixed 
model for  T  i  can be chosen depending on the ascertainment con-
dition. Then we obtain the Z-statistic that corresponds to the p 
values of  FBAT  i  and  T  i .  pT  i  denotes the rank-based p value of the 
genotype coefficient for  T  i  that is constructed as follows: if the 
absolute value of  T  i  is the  o -th ordered among the  m  SNPs, the 
rank-based p value,  pT  i , for  T  i , is defined as

  ( o  –  � )/ m ,

  where  �  indicates the tuning parameter and  �  = 0.7 is recom-
mended for the robustness of the proposed p value in 500K GWAS 
 [6] . We denote  pFBAT  i  as a distribution-based p value of  FBAT  i  for 
the  i -th marker. For  pFBAT  i , we use the one-tailed p value with 
the direction of  T  i  to improve the statistical efficiency. If the num-
ber of markers whose  T  i ’s are larger than or equal to  T  i  is smaller 
than  m /2, then the one-tailed test for positive direction is applied 
to  FBAT  i  and otherwise the one-tailed test for negative direction 
is applied. We let  Z  p  and  	 ( � ) be the  p -th quantile and the cumu-
lative normal distribution of the standard normal distribution, 
respectively. Then, based on the statistical independence of  FBA-
T  i  and  T  i   [12] , we can obtain the following  overall association test 
for the meta-analysis ,  Z  i , at locus  i  for the pooled samples by com-
bining both Z-statistics in a weighted sum:

   	 ( w  FBAT  Z  pFBAT  i  +  w  T  Z  pT  i )

  where  w      2  FBAT  +  w     2  T  = 1 and  w  FBAT  Z  pFBAT  i  +  w  T  Z  pT  i   �   N (0, 1) under 
the null hypothesis. The optimal  w  FBAT  and  w  T  for continuous and 
binary trait are discussed in our parallel paper  [15] , and will be 
used for the proposed method.

  As outlined in our parallel paper  [6, 15]  for family-based as-
sociation analysis, the overall association test for the meta-analy-
sis will maintain the type-1 error in the absence and presence of 
systematic confounding as long as the assumption of Mendelian 
transmission in the family-based studies is preserved under the 
null hypothesis. The rank-based p values from the population 
components are always uniformly distributed along the whole ge-
nomes and  FBAT  i  are robust to the population structure. Also, 
because the population-based components and within-family 
components are independent, our overall statistic provides the 
valid type-1 error rate at the significance level  �  under the absence 
of the genetic effect  [6]  because

  
  

1

1 .
i i

m

FBAT pFBAT T pT
i

P w Z w Z
m

� �	 
 


  Depending on the heterogeneity of study design, the meta-
analysis using stratified analysis for each study can be conducted 
to minimize the type-2 error. We call this meta-analysis using 
unpooled data. We denote  pFBAT  ik  as a distribution-based p value 
of  FBAT  for the  i -th marker when the  k -th study is family based. 
If the  k  � -th study uses the population-based component from ei-
ther the family-based or unrelated samples, the p value  pT  ik  �  de-

notes the rank-based p value of the genotype coefficient for  T  ik  � . 
Then, our overall Z-statistics is

  
  

1 2
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  where  u  1  indicates the studies using family sample, and  u  2  indi-
cates the studies using population-based components. It can be 
easily shown by mathematical induction that the independence of 
statistics from each study at the  i -th marker provides
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  It should be noted that this is also preserved even when there 
is heterogeneity of studies, or non-normality of phenotypes.

  Results

  Simulation Studies
  The type-1 error and power of the proposed family-

based association test was assessed in the absence and in 
the presence of population stratification. For simplicity, 
in the simulation studies we consider nuclear families for 
which both parental genotypes and phenotypes are either 
known or unknown. To alleviate the computational in-
tensity,  T  i  for 100 K  markers are calculated under null hy-
pothesis, and they are used to get the rank for  pT  i  in 
100,000 replicates for empirical type-1 error and 5,000 
replicates for empirical power.

  Assuming Hardy-Weinberg equilibrium, the parental 
genotypes are generated by drawing from Bernoulli dis-
tribution defined by the allele frequencies. The offspring 
genotypes are obtained by simulated Mendelian trans-
missions from the parents to the offspring. The pheno-
types for each individual are decided by summing the 
phenotypic mean,  � , polygenic effect, common environ-
mental effect, main genetic effect and random error. The 
polygenic effect is independently generated from  N (0, 
 �  g  

2 ) for parents, and their average is combined with the 
value randomly sampled from  N (0, 1/2 �  g  

2 ) for offspring. 
For the main genetic effect, the genetic effect size param-
eter  a  is multiplied with the number of disease allele of 
each subject. For instance, the main genetic effect for the 
subject with homozygous disease genotype is 2 a . The 
random error is generated from  N (0,  �  e  

2  = 1). Under the 
null hypothesis of no association, the coefficient  a  will be 
set to 0. For scenarios in which population stratification 
is present, we assume that the population stratification is 
created by the presence of 2 subpopulations and each par-
ent is assigned to either of the 2 subpopulations with 50% 
probability.  �  for parents is either 0 or 0.4 depending on 
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the subpopulation and their average is used for offspring. 
The other effects for phenotype are sampled in the same 
way as in the absence of population stratification. The al-
lele frequencies for each marker in the two subpopula-
tions are generated by the Balding-Nichols model  [25] . 
That is, for each marker, the allele frequency,  q , in an 
ancestral population is generated from a uniform distri-
bution between 0.1 and 0.9,  U (0.1, 0.9). Then, if we let 
 F  ST  be the Wright’s measure of population subdivision, 
the marker allele frequencies for the two subpopulations 
are independently sampled from the beta distributions 
( q (1 –  F  ST )/ F  ST , (1 –  q )(1 –  F  ST )/ F  ST ).  F  ST  was assumed to be 
0.001, 0.005, or 0.01.

  At first for various scenarios, we verified that the pro-
posed overall family-based association test maintains the 
 �  level. We consider three different rank-based p values 
for conditional mean model  [26]  ( pT  1 ,  pT  2  and  pT  3 ).  pT  1  is 
the proposed rank statistic from the distribution-based p 
values by the linear mixed model with adjustment of pop-
ulation stratification. For comparison,  pT  2  indicates the 
rank-based p value from the linear mixed model for con-
ditional mean model without adjustment of population 
stratification, and simple linear model without adjust-
ment of population stratification is applied in  pT  3  where 
the latter is equivalent to our recent works  [6, 15] . Each 
rank-based p value is combined with  pFBAT  with optimal 
weights.  Z  1 ,  Z  2  and  Z  3  correspond to the overall p values 
that combine  pFBAT  with  pT  1 ,  pT  2  and  pT  3 , respectively. 
The proposed PCA method and linear mixed model are 
directly applied to whole families without transformation 
to rank-statistic and they are denoted as  POP .  POP  is 
based on the Wald test and it is approximately equal to 
the variance component model approaches  [27, 28] . We 
assume that parental phenotype/genotypes are known 
and 500 nuclear families with  N  off  offspring are available 
for each replicate. We assume that  �  c  

2  =  �  g  
2  = 0.3.  Table 1  

shows the empirical type-1 error estimates for the pro-
posed linear mixed model with or without adjustment of 
population stratification in the absence ( F  ST  = 0.00) and 
presence of the population stratification for 3 different 
 F  ST  ( F  ST  = 0.001, 0.005 and 0.01). The results from  POP  do 
not provide any evidence for a departure of the empirical 
type-1 error estimates, both in the absence and presence 
of population stratification. That is, the proposed PCA 
method adjusts the population stratification and the lin-
ear mixed model fits the correlation of the family mem-
bers well. Also all of  Z  1 ,  Z  2  and  Z  3  preserve the  �  level and 
we confirm that the rank-based p value is a single require-
ment to provide the validity under the presence of popu-
lation stratification and misspecified covariance matrix.

  In the next set of simulation studies, we assess the em-
pirical power over the different nuclear family structures. 
Under the assumption of an additive disease model for a 
quantitative trait, the genetic effect,  a , is given as a func-
tion of the heritability attributable to main genetic effect, 
 h  2 , the disease allele frequency,  p  D , and the phenotypic 
variance,  �  2  =  �  c  

2  +  �  g  
2  +  �  e  

2 , by:
  
  1a �

2

22 1 1D D

h
p p h

  where  h  2  indicates the heritability attributable to the 
main genetic effect. We assume that  p  D  = 0.1 and  �  e  

2  = 1. 
We assume 500 nuclear families available in our simula-
tions.  Table 2  shows the empirical power estimates from 
5,000 replicates when parental genotypes/phenotypes are 
known. The results show that  POP  is the most powerful 
under both absence and presence of population stratifica-
tion, followed by  Z  1 . However, their difference is usually 
very small.  FBAT  does not use the between-family com-
ponents and it is the least informative. The results indi-
cate that the hybrid analysis  [6, 15]  can be improved when 
the linear model with appropriate correlation structure is 
applied to conditional mean model and the population 
stratification is adjusted. For the application of the linear 
mixed model to the between-family component of the 
subjects from the family-based designs, the expected ge-

  Table 1.   Empirical type-1 error estimates at the 0.001 � level

 Noff  FST  POP  FBAT  Z1  Z2  Z3 

 1  0  1.10  0.99  0.95  1.07  1.06 
 0.001  1.15  0.93  1.03  1.03  0.95 
 0.005  1.09  0.80  0.99  1.10  1.03 
 0.01  1.03  1.04  1.14  1.02  1.09 

 2  0  1.05  1.03  1.03  1.08  0.98 
 0.001  0.89  0.85  1.01  0.84  0.99 
 0.005  1.00  1.12  1.05  0.91  1.01 
 0.01  1.11  0.93  0.98  1.03  0.99 

 3  0  1.03  1.05  0.89  1.05  1.11 
 0.001  0.93  0.92  0.95  0.99  1.08 
 0.005  0.86  1.12  0.85  0.90  0.89 
 0.01  1.25  1.01  1.25  1.16  1.33 

 E mpirical type-1 error at the scale !10–3 is calculated for dif-
ferent levels of population stratification, FST, when parental phe-
notypes and genotypes are known. We assume that  � g

2 =  � c
2 = 0.3 

and  � e
2 = 1, and the disease allele frequency is 0.1. Noff means the 

number of offspring. 
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notypes instead of the observed genotypes for offspring 
are used for the computation of the test statistic  T  i . For 
the between-family component the phenotypic variance 
of parents, Var( q  1  j  ,  ik   �   p  1  j  ,  ik ), is different from the pheno-
typic variance of the subjects from the family-based de-
sign, Var( y  j  ,  k   �   p  1  j  ,  ik ,  p  2  j  ,  ik ), but our linear mixed model to 
the between-family component assumes that both are 
same. The test statistic is generally the most efficient 
when the variance/covariance structure is correctly spec-
ified and it may explain the reason for the power loss of 
 Z  1  compared to  POP .

  Power Analysis in an Unpooled Meta-Analysis
  We calculate the effect of rank-based p-value transfor-

mation on the power. The empirical power at 0.05 ge-
nome-wide significance level is calculated from 10,000 
replicates for 500K GWAS under Bonferroni correction. 
We consider the meta-analysis in which one family-based 
and one unrelated sample are combined, and one family-
based and two unrelated samples are combined. When 
two unrelated samples are used, their sample sizes are as-
sumed to be equal. 1,000 trios for family-based samples 

are generated with parental phenotypes unknown for 
both cases. The results from each study are combined 
with Liptak method using the optimal weights.  POP  is the 
empirical power estimates when the linear regression is 
applied to both family-based and unrelated samples. For 
other statistics, family-based samples are split to be-
tween-family and within-family components, and then 
 FBAT  for within-family component is calculated. For be-
tween-family component, the linear regression is used 
and it is combined with  FBAT . While the distribution-
based p value from between-family component and un-
related samples is combined with  FBAT  in  NONRANK , 
the rank-based p value for between-family component 
and unrelated samples is combined in  RANK .

  For our empirical power estimates, we assume that 
 h  2  = 0.005 and  �  c  

2  +    �  g  
2  +  �  e  

2  = 1 under the absence of 
population structure. Because we assume that the paren-
tal phenotype is unknown, the identification of  �  c  

2 ,  �  g  
2  

and  �  e  
2  is not required. For disease model, we assume that 

 p  D  = 0.1 and the genetic effect  a  is calculated in the same 
way as in the simulation study for  table 2 .  Table 3  shows 
the empirical power estimates for each meta-analysis. 
The results show that  POP  is always the most efficient, 
followed by  NONRANK  while both are virtually equal. 
 RANK  is always least efficient. However the power loss is 
negligible if three or more studies are combined, even 
when unrelated samples have much larger sample size, 
compared to family-based design. If the sample sizes for 
family-based and unrelated samples are not highly differ-
ent, the power loss of  RANK  is also very small.

  Also we consider the meta-analysis with only unre-
lated samples as an extreme case. In  figure 1 , we assume 
the meta-analysis without family-based samples and it 
shows the relative power of rank-based p value compared 
to the distribution-based p value. We assume the meta-
analysis with 2, 4, 10 and 20 studies, and their Z-statistics 
for each study are simply generated from  N (0.05, 1). Then 
their p values using both distribution-based and rank-
based approaches are calculated respectively, and the Lip-
tak method is applied to combine the p values. We as-
sume GWAS with 1,000 SNPs or 10,000 SNPs, and the 
relative efficiencies of empirical powers are calculated 
from 2,000,000 replicates at the genome-wide  �  = 0.05 
level.  Figure 1  shows that the relative power of the rank-
based p values is proportional to the number of studies 
and SNPs. Our results confirm that the proposed meta-
analysis can have more than 90% relative efficiency with 
more than two GWAS for large-scale genome-wide meta-
association analysis. As a result, because  RANK  is a 
unique choice that preserves the complete robustness to 

  Table 2.   Empirical power estimates at the 0.0001  �  level

 Noff  h2  FST  POP  FBAT  Z1  Z2  Z3 

 1  0.005  0.001  0.1483  0.0030  0.1447  0.1206  0.1328 
 0.005  0.1461  0.0016  0.1423  0.1094  0.1354 
 0.01  0.1421  0.0044  1.1452  0.0678  0.1390 

 0.010  0.001  0.5451  0.0134  0.5326  0.4694  0.5092 
 0.005  0.5364  0.0134  0.5255  0.4106  0.5056 
 0.01  0.5421  0.0114  0.5389  0.3352  0.5304 

 2  0.005  0.001  0.2440  0.0136  0.2314  0.1856  0.2124 
 0.005  0.2398  0.0116  0.2202  0.1700  0.2080 
 0.01  0.2288  0.0154  0.2034  0.1218  0.1890 

 0.010  0.001  0.7252  0.0606  0.7106  0.6402  0.6794 
 0.005  0.7131  0.0634  0.6855  0.5820  0.6642 
 0.01  0.7216  0.0586  0.6893  0.4992  0.6626 

 3  0.005  0.001  0.3552  0.0322  0.3310  0.2692  0.2948 
 0.005  0.3509  0.0344  0.3335  0.2318  0.3042 
 0.01  0.3431  0.0342  0.3174  0.1826  0.2760 

 0.010  0.001  0.8565  0.1694  0.8257  0.7642  0.7942 
 0.005  0.8423  0.1560  0.8239  0.7072  0.7870 
 0.01  0.8485  0.1598  0.8205  0.6390  0.7834 

 E mpirical power estimates at the 0.0001  �  level are calculat - 
ed for different level of population stratification, FST, when paren-
tal phenotypes and genotypes are known. We assume that  � g

2 = 
 � c

2 = 0.3 and  � e
2 = 1, and the disease allele frequency is 0.1. Noff 

means the number of offspring. 
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any type of violations, such as non-normality, population 
stratification, etc., we recommend using the rank-based 
p value for unrelated samples.

  Application to Alzheimer Studies
  Late-onset Alzheimer’s disease is a progressive and fa-

tal brain disease. During the last 30 years, people have 
tried to localize the Alzheimer’s disease susceptibility 
genes, but except for APOE those efforts have mostly led 
to inconsistent findings, even though Alzheimer’s disease 
is highly inheritable    [29] . To overcome this problem, sev-
eral 500K GWAS  [30–33]  have been conducted to iden-
tify the causal gene. However, each single GWAS may be 
under insufficient efficiency and results for each marker 
need to be confirmed with a robust approach.

  In our analysis, we applied the proposed method to 
one family-based design and the meta-analysis is per-
formed with two additional case-control designs. The 
family sample was collected as part of the National Insti-
tute of Mental Health Genetics Initiative Study and it is 
denoted as NIMH. For meta-analysis one case-control 
sample was collected by the Translational Genomics Re-
search Institute and the other case-control sample was 
collected by GlaxoSmithKline. We denote the former and 
the latter by TGEN  [33]  and GSK  [32] , respectively. Each 
of these three studies performed whole genome associa-
tion analysis using 500,668 SNPs on the GeneChip Hu-
man Mapping 500K Array Set (Affymetrix, Santa Clara, 
Calif., USA). For our analysis, if the minor allele frequen-
cy is less than 0.05, or the p value from Hardy-Weinberg 

  Table 3.   Empirical power estimates at the 0.05 genome-wide sig-
nificance level

 1 family based +
  1 unrelated 

 1 family based +
  2 unr elated 

 N  POP  NORANK  RANK  POP  NORANK   RANK 

 1,000  0.0118  0.0110  0.0104  0.0421  0.0394  0.0385 
 1,500  0.0297  0.0282  0.0246  0.1440  0.1381  0.1353 
 2,000  0.0536  0.0522  0.0400  0.2793  0.2706  0.2667 
 2,500  0.0973  0.0941  0.0575  0.4540  0.4440  0.4384 
 3,000  0.1585  0.1532  0.0828  0.6244  0.6135  0.6050 
 3,500  0.2212  0.2136  0.0942  0.7605  0.7515  0.7396 
 4,000  0.3106  0.3025  0.1248  0.8699  0.8632  0.8544 
 4,500  0.3898  0.3812  0.1413  0.9247  0.9217  0.9136 
 5,000  0.4826  0.4722  0.1555  0.9595  0.9583  0.9538 

 Emp irical power is estimated with 10,000 replicates at the 0.05 
genome-wide significance level. The multiple testing problem is 
addressed with Bonferroni correction. We assume 1,000 trios 
available for family-based samples with parental phenotypes un-
known. N denotes the sample size for each unrelated sample. POP 
indicates the empirical power estimates when a simple linear re-
gression is applied to trio and unrelated samples, and the results 
from each study are combined with Liptak’s method with the op-
timal weights. For NORANK and RANK, trio data are split to be-
tween-family and within-family components, and then T and 
FBAT are calculated respectively. While the distribution-based p 
values for between-family component and unrelated samples are 
combined with FBAT with Liptak’s method in NONRANK, the 
rank-based p values for between-family component and unrelated 
samples are combined in RANK. 
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  Fig. 1.  Relative power of rank-statistics in 
a meta-analysis. The relative power of the 
rank-based p values in meta-analysis is 
compared with the distribution-based p 
values when different numbers of studies 
are combined. X-axis indicates the nomi-
nal significance level and y-axis indicates 
the empirical relative power for the given 
nominal significance level. If the relative 
efficiency is 1, it indicates that the rank-
based p values are equally efficient as the 
distribution-based p values. The dashed 
vertical line indicates the 0.05 genome-
wide significance level under Bonferroni 
correction and rank-based p values are 
calculated for genome-wide studies with 
1,000 ( a ) and 10,000 markers ( b ). 
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proportion test is less than 0.0001, these SNPs are exclud-
ed from the analysis. The analysis was conducted in the 
Linux system with 2,412.309 cpu MHz, and the computa-
tion took around one week with a single node. The pro-
grams for PCA were developed with C++ and will be in-
cluded in PBAT software.

  NIMH consists of two populations, European Ameri-
can and African American, and we can expect that there 
may be population stratification.  FBAT  is applied to the 
within-family component of NIMH. The proposed PCA 
method is conducted to adjust population stratification 
and the linear regression using PC scores as covariates is 
applied to the between-family component. It was empiri-
cally shown that through the analysis of Phase II HapMap 
the differential level of linkage disequilibrium does not 
significantly affect the results  [9]  and we use all SNPs that 
passed the quality control. Then the rank-based p value 
for between-family component and the exact p values of 
 FBAT  are combined with Liptak’s method.

   Figure 2  shows the PC scores for NIMH. The first PC 
score is plotted against the second PC score. We found 
that two PC scores explained more than 90% of the total 
variability and chose two PC scores for the analysis. 1,376 

individuals from 410 families are self-reported European 
ancestry and they are labelled with 1 in  figure 2 . Fifty-
eight individuals from 24 families were of African de-
scent and they are labelled with 2. The results show that 
the proposed method completely identifies African de-
scent and European ancestry, and it seems there may be 
two subgroups in European ancestry.

   Table 4  shows the results from NIMH. 360,742 SNPs 
in NIMH after quality control are analyzed and the 0.05 
genome-wide significance level is 1.386  !  10 –7 . We have 
two genome-wide significant SNPs. The most significant 
and the second genome-wide significant SNPs are SNP1 
and SNP2, respectively. In our paper, their rs numbers are 
not shown but they will be updated with additional re-
sults in our follow-up studies.

   Table 5  shows the results from our meta-analysis. The 
SNPs from SNP1 to SNP20 in  table 5  correspond to the 
SNPs in  table 4 . For TGEN the PC score is also obtained 
with EIGENSTRAT and the logistic regression is ap-
plied. For GSK Cochran-Armitage test is calculated 
without application of EIGENSTRAT because only lim-
ited data are available. Their distribution-based p values 
from between-family component for NIMH and two 
case-control designs are transformed to rank-based p 
values. The p values from between-family and within-
family components in NIMH are combined with Liptak 
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  Fig. 2.  Population stratification in NIMH. The proposed PCA ap-
proach is applied to NIMH. The first PC scores are plotted against 
the second PC scores. There are two populations, European 
American and African American. 1 indicates European Ameri-
can and 2 indicates African American. 

  Table 4.   Genome-wide association analysis with NIMH (500K)

 SNP  pFBAT  pT  Overall 

 SNP1  5.54!10–14  8.32!10–7  2.83!10–18 

 SNP2  5.63!10–5  2.06!10–4  8.55!10–8 

 SNP3  2.78!10–4  8.95!10–5  1.79!10–7 

 SNP4  1.39!10–5  1.90!10–3  2.73!10–7 

 SNP5  1.58!10–5  1.96!10–3  3.14!10–7 

 SNP6  3.13!10–5  1.26!10–3  3.39!10–7 

 SNP7  5.34!10–4  1.01!10–4  3.86!10–7 

 SNP8  6.41!10–3  3.60!10–6  4.05!10–7 

 SNP9  3.62!10–3  9.15!10–6  4.13!10–7 

 SNP10  1.50!10–4  4.11!10–4  4.29!10–7 

 SNP11  2.41!10–5  2.02!10–3  4.61!10–7 

 SNP12  1.31!10–3  4.52!10–5  4.89!10–7 

 SNP13  2.29!10–3  4.24!10–5  8.60!10–7 

 SNP14  4.04!10–3  2.58!10–5  1.09!10–6 

 SNP15  3.13!10–5  3.67!10–3  1.14!10–6 

 SNP16  1.00!10–4  1.69!10–3  1.29!10–6 

 SNP17  2.49!10–6  1.88!10–2  1.31!10–6 

 SNP18  2.15!10–3  7.57!10–5  1.31!10–6 

 SNP19  6.60!10–5  2.93!10–3  1.65!10–6 

 SNP20  7.32!10–6  1.31!10–2  1.77!10–6 

 A fter the quality control, 360,742 SNPs are analyzed and the 
genome-wide significance level at 0.05 is 1.386 ! 10–7. The p val-
ues of the top 20 SNPs are shown. 
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method, and those are combined with the other rank-
based p values from TGEN and GSK with Fisher’s meth-
od. Imputation is not performed for the analysis and 
272,769 SNPs after quality control are available for all 
studies. The 0.05 genome-wide significance level is 1.833 
 !  10 –7 . Our results show that there are three genome-
wide significant SNPs, SNP1, SNP21, and SNP2. SNP1 
and SNP2 were also significant in  table 4 .  pT  in NIMH 
in  table 5  are different from those in  table 4  and it hap-
pens that the number of available SNPs in both tables are 
different.

  In particular,  table 5  shows that the results from TGEN 
are inconsistent with the other studies. For example, 
SNP1 is very significant in NIMH and GSK while it is not 
in TGEN. At the same time, the allelic direction in TGEN 
does not correspond to the others. Because SNP1 is asso-
ciated with APOE that is generally known to be associ-
ated with Alzheimer’s disease, the systematic heterogene-
ity for ascertainment condition may exist in TGEN. The 
insignificance of SNP1 in TGEN can also be explained 
with this systematic heterogeneity. If we exclude TGEN 
from our meta-analysis and consider their directions, the 

p values for SNP2 and SNP21 are 3.82  !  10 –8  and 1.40  !  
10 –6 , respectively. Thus, SNP2 seems the more promising 
SNP associated with Alzheimer’s disease. This SNP2 is 
novel and will be verified in the other populations in our 
follow-up study.

  Discussion

  In genetic association analysis, it has been known that 
the presence of population stratification can deteriorate 
the validity of genetic association and many different 
methods have been proposed. Under population stratifi-
cation we can adjust them either by modeling them or by 
using the robust statistics without any statistical model. 
We will call the former a model-based approach and the 
latter a model-free approach. For instance, STRUCTURE 
and EIGENSTRAT are model-based, and TDT and rank-
based p values are model-free approaches. The former 
can increase the efficiency when the assumed models are 
correct but otherwise they can lose both efficiency and 
validity. The model-free approaches are beneficial in 

  Table 5.   Meta-analysis with rank-based p value (500K)

 SNP  N IMH  TGEN
  pT 

 GSK
  pT 

 Overall 

 pFBAT  pT  

 SNP1  5.54!10–14  2.57!10–6  9.63!10–1  2.57!10–6  <1.00!10–20 

 SNP21  1.13!10–2  1.53!10–3  2.78!10–3  1.54!10–3 1.14!10–7 

 SNP2  5.63!10–5  2.23!10–4  1.38!10–1  3.90!10–2 1.26!10–7 

 SNP12  1.31!10–3  4.66!10–5  1.55!10–2  1.02!10–1 1.90!10–7 

 SNP22  3.47!10–4  1.17!10–3  1.37!10–2  2.67!10–2 2.31!10–7 

 SNP3  2.78!10–4  9.79!10–5  7.90!10–1  7.42!10–3 2.66!10–7 

 SNP9  3.62!10–3  1.36!10–5  3.45!10–1  2.01!10–2 8.18!10–7 

 SNP23  6.41!10–3  3.60!10–6  4.05!10–7  7.96!10–5 1.44!10–6 

 SNP24  3.62!10–3  9.15!10–6  4.13!10–7  8.40!10–1 1.63!10–6 

 SNP10  1.50!10–4  4.11!10–4  4.29!10–7  5.56!10–2 2.78!10–6 

 SNP25  2.41!10–5  2.02!10–3  4.61!10–7  9.90!10–6 3.47!10–6 

 SNP7  1.31!10–3  4.52!10–5  4.89!10–7  9.39!10–2 3.93!10–6 

 SNP26  2.29!10–3  4.24!10–5  8.60!10–7  1.79!10–1 4.37!10–6 

 SNP27  4.04!10–3  2.58!10–5  1.09!10–6  1.11!10–2 4.90!10–6 

 SNP28  3.13!10–5  3.67!10–3  1.14!10–6  1.46!10–3 5.00!10–6 

 SNP19  1.00!10–4  1.69!10–3  1.29!10–6  2.74!10–1 6.27!10–6 

 SNP29  2.49!10–6  1.88!10–2  1.31!10–6  1.18!10–3 6.39!10–6 

 SNP30  2.15!10–3  7.57!10–5  1.31!10–6  2.19!10–1 6.45!10–6 

 SNP31  6.60!10–5  2.93!10–3  1.65!10–6  7.28!10–4 7.76!10–6 

 SNP32  7.32!10–6  1.31!10–2  1.77!10–6  1.74!10–1 8.04!10–6 

 Aft er the quality control, 272,769 SNPs are available for all three studies and the 0.05 genome-wide signifi-
cance level is 1.833 ! 10–7. The directions of each statistic are not considered for overall p values. The p values 
of the top 20 SNPs are shown. 
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terms of validity, but they are less efficient under the gen-
eral population stratification model. Our recommenda-
tion is to use both approaches, such as PCA-based ap-
proach and rank-based p value, to improve the efficiency 
and guarantee the validity.

  The rank-based p value also provides the statistical 
inference robust against the other types of violations, 
such as non-normality and the existence of the con-
founders. This is because the rank-based p values over 
the whole genome are always uniformly distributed. 
One useful application is for computations in a family-
based association analysis. The covariance structure in 
family-based samples makes the calculation of the test 
statistics intensive and in this reason the statistical anal-
ysis in general pedigree structures has been limited. 
However, if the distribution-based p values are trans-
formed to the rank-based p value, we can use the simpli-
fied covariance structure. For instance, for a large pedi-
gree we can split each large pedigree into several nuclear 
families and the proposed linear mixed model for nucle-
ar family can be applied. The slight power loss is expect-
ed but it is worthwhile to try because we can accelerate 
the computation.

  However, even though the proposed method provides 
flexibility of a genetic analysis, there are still some limi-
tations. First, the pooled meta-analysis under the pres-
ence of heterogeneity in the study can lead to reduced 
statistical power of our meta-analysis approach even 
though the rank-based p values enable the meta-analysis 
using the pooled samples. In situations in which substan-
tial study heterogeneity is present and known prior to the 
analysis, test statistics should be calculated for each study 
separately and combined into overall statistics, using 
Fisher’s method of combining p values or the Liptak ap-
proaches of weighted Z-statistics  [34, 35] . Second, the 
proposed method requires the independence of each sta-
tistic for the complete validity. For instance, some SNPs 
can be the first ranked for all studies because of popula-
tion stratification. In this scenario, the final p value be-
comes 8.9  !  10 –12  for a meta-analysis using two 500K 
GWAS. Even though it seems uncommon, it is still pos-
sible for ancestry informative markers  [36] . To prevent 
this effect, some modification for the proposed method 
is necessary for the meta-analysis using unpooled sam-
ples while the meta-analysis using pooled samples is al-
ways fine. Statistics for case-control designs and be-
tween-family component from family-based designs are 
calculated separately and then combined to calculate the 
summary statistic, such as weighted Z-score. Then the 
rank-based p values for the summary statistics are com-

bined with the p values from the within-family compo-
nents in family-based design. This ‘double stratification’ 
can lead to the loss of efficiency, but no alternative has 
been suggested yet in this scenario. Third, if the number 
of markers is small compared to the sample size or the 
amount of heritability, our transformation can deterio-
rate the efficiency. For instance, when 1,000 SNPs are 
analyzed as was shown in  figure 1 , the power of rank-
statistic can decrease to around 80% compared to the 
distribution-based p value. For such a number of SNPs, 
some modification is necessary but the power loss may 
be negligible in most GWAS. In future work, we will in-
vestigate these problems and some extensions will be 
provided.
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  Appendix

  Linear Mixed Model for Related Subjects
  We provide the linear mixed model to consider the correlation 

between family members for our simulations. Even though the 
proposed linear mixed model is provided for our simulation stud-
ies, it can be extended to the related subjects in real analysis with 
popular statistical software such as R and SAS if family structure 
is not highly unbalanced. Also, when the rank-based p value is 
applied to  T  ik , overall statistics,  Z  ik , is always valid and only effi-
ciency depends on the chosen covariance structure. Thus, if the 
correlations between family members are expected to be small, it 
is better to assume the simplified covariance to reduce the com-
putational intensity.

  For the correlations between family members we assume that 
there is no polygenic dominant effect. If the  k -th study consists of 
related subjects, we let polygenic additive effects for two parents 
and offspring  a  1  j  ,  k ,  a  2  j  ,  k  and  a  3  j  ,  k , and common environmental ef-
fects be  c  1  j  ,  k ,  c  2  j  ,  k  and  c  3  j  ,  k . If we let  �  g  

2  and  �  c  
2  be their variances 

for the polygenic additive effects and common environmental ef-
fects, it is generally assumed that  c  1  j  ,  k ,  c  2  j  ,  k  and  c  3  j  ,  k  are identical 
and follow  N (0,    �  c  

2 ). Also  a  1  j  ,  k ,  a  2  j  ,  k   �   N (0,  �  g  
2 ) and  a  3  j  ,  k   �   a  1  j  ,  k ,  a  2  j  ,  k  

 �   N (0.5 ( a  1  j  ,  k  +  a  2  j  ,  k ), 0.5 �  g  
2 ). Thus, if we let  A  j  ,  k  = ( a  1  j  ,  k ,  a  2  j  ,  k ,  a  3  j  ,  k ) t  

and  C  j  ,  k  = ( c  1  j  ,  k ,  c  2  j  ,  k ,  c  3  j  ,  k ) t , then  Y  j  ,  k  can be expressed with random 
effects as

   Y  j  ,  k  =  �  0  +  �  X  r  j  ,  ik  +  �  1  PC  j  1,  k  + ... +  �  L  PC  jL  ,  k  +  C  j  ,  k  +  A  j  ,  k  +  �  j  ,  ik 

  where  �  j  ,  ik  is a random error vector for the  j -th family member in 
the  k -th study. While  C  j  ,  k  can be easily incorporated into the linear 
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mixed model,  A  j  ,  k  requires some transformations because the 
probability density function of  A  j  ,  k  is

  
  3 , 1 , 2 ,1 , 2 ,

,

0 5
,

/ 2
j k j k j kj k j k

j k
g g g

a . a aa a
f A � � �

� � �

  where  	 ( � ) is a probability density function for standard normal 
distribution. If we let  I  d  be the identity matrix with  d   !   d  dimen-
sion, with simple algebra we can show that it is equivalent to the 
following linear mixed effect model:

   Y  j  ,  k  =  �  0  +  �  X  r  j  ,  ik  +  �  1  PC  j  1,  k  + ... +  �  L  PC  jL  ,  k  +  C  j  ,  k  +  Z  t  j  ,  k  A  �  j  ,  k  +  �  j  ,  ik 
   C  j  ,  k   �   N (0,  �  c  

2  I  3 ),  A  �  j  ,  k   �   N (0,  �  g  
2  I  3 ),  �  j  ,  ik   �   N (0,  �  e  

2  I  3 )

  where
  
  

2 22
, 3 ,

2

2 2

0
0 , and

1/ 2 1 1/ 2

0 0, 0 ,  1 1, 1 .

j k g j k t

t t

I
A N , I Z�



�

  As a result, via the proposed transformation we can use the 
linear mixed model to test family-based association with stan-
dard statistical software such as SAS (MIXED, NLMIXED) or R 
(nlme, lme4). Also, the proposed model can be further extended 
to binary trait with the generalized linear mixed model.
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