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Abstract. We present a new three-dimensional general relativistic hydrodynamics
code, the Whisky code. This code incorporates the expertise developed over the
past years in the numerical solution of Einstein equations and of the hydrody-
namics equations in a curved spacetime, and is the result of a collaboration of
several European Institutes. We here discuss the ability of the code to carry out
long-term accurate evolutions of the linear and nonlinear dynamics of isolated
relativistic stars.
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1. Introduction

During the last few years, computa-
tional general relativistic astrophysics has
become increasingly important and accu-
rate. This is partly due to the rapid increase
in computing power through massively par-
allel supercomputers which make large-
scale, multi-dimensional numerical simula-
tions possible (Font et al. 2000b; Shibata
& Uryu 2000; Font et al. 2002; Shibata
& Uryu 2002; Duez et al 2002). In addi-
tion to being a unique tool for investigating
General Relativity in regimes of strong and
rapidly varying gravitational fields, such
simulations are also needed to fully under-
stand the incoming wealth of observations
from high-energy astronomy and (near-
future) gravitational wave astronomy. In an
attempt to respond, at least in part, to this

need we have recently developed Whisky,
a three-dimensional (3D) general relativis-
tic hydrodynamics code. The Whisky code
is the result of an ongoing collabora-
tion among several European Institutes,
i.e. the Albert Einstein Institute (Golm,
Germany), SISSA (Trieste, Italy) and the
Universities of Thessaloniki (Greece) and
Valencia (Spain), joined in a European
Network investigating sources of gravita-
tional waves (see www.eu-network.org for
further information).

In practice, the Whisky code solves the
general relativistic hydrodynamics equa-
tions on a 3D numerical grid with
Cartesian coordinates. The code has been
constructed within the framework of
the Cactus Computational Toolkit (see
www.cactuscode.org for details), devel-



L. Baiotti, I. Hawke, P. Montero and L. Rezzolla: The Whisky code 211

oped at the Albert Einstein Institute
(Golm), which provides high-level facilities
such as parallelization, input/output, etc.,
but also the solution of the Einstein equa-
tions with matter terms being provided by
the Whisky code.

In this paper we briefly discuss the main
features of Whisky and present some tests
of its validation. Indeed, validation repre-
sents an important aspect of the develop-
ment of any modern 3D finite-difference
code. The reasons for this are rather sim-
ple and are related to: (i) the lack of pre-
cise knowledge of the space of solutions of
the coupled system of the Einstein and gen-
eral relativistic hydrodynamics equations;
(ii) the likely chance that coding errors are
made in the implementation of the thou-
sands of terms involved in the solution of
such a complicated set of coupled partial
differential equations; (iii) the complexity
of the computational infrastructure needed
for the use of the code in a massively par-
allel environment which increases the risk
of computational errors.

The tests presented here will show both
the accuracy and the convergence of our
formulation for the general relativistic hy-
drodynamics equations, which are coupled
to a conformal transverse-traceless formu-
lation of the Einstein equations (Nakamura
et al. 1987). They will also show the ability
of the code to follow stably the linear and
nonlinear dynamics of isolated relativistic
stars. More specifically, we will first present
results of the linear pulsations of spherical
and rapidly rotating stars. The computed
frequencies of radial and quasi-radial os-
cillations will be compared with the corre-
sponding frequencies obtained with lower-
dimensional numerical codes, or with al-
ternative techniques such as the Cowling
approximation (in which the spacetime is
held fixed and only the general relativistic
hydrodynamics equations are evolved), or
with relativistic perturbative methods. The
comparison shows an excellent agreement
confirming the ability of the code to extract
physically relevant information even from
tiny perturbations. The successful determi-

nation of the eigenfrequencies for rapidly
rotating stars computed with our code is
particularly noteworthy since the equiva-
lent problem has not yet been tackled with
perturbative techniques.

We will also investigate the nonlinear
dynamics of stellar models that are unsta-
ble to the fundamental radial mode of pul-
sation. We show that upon perturbation,
the unstable models will either collapse to
a black hole, or migrate to a configuration
in the stable branch of equilibrium config-
urations. In the case of a gravitational col-
lapse, we will follow the evolution all the
way down to the formation of a black hole,
tracking the generation of its apparent hori-
zon. In the case of migration to the sta-
ble branch, on the other hand, we will be
able to accurately follow the nonlinear os-
cillations that accompany this process and
that can give rise to strong shocks. The
ability to simulate large amplitude oscilla-
tions is important as we expect a neutron
star formed in a supernova core-collapse
(Zwerger & Müller 1997; Dimmelmeier et
al. 2001) or in the accretion-induced col-
lapse of a white dwarf to oscillate violently
in its early stages of life.

We use the signature (−, +, +,+) and
units in which c = G = M¯ = 1. Greek in-
dices are taken to run from 0 to 3 and Latin
indices from 1 to 3.

2. Basic Equations

The Whisky code has been constructed
exploiting the expertise developed in the
building of a similar but distinct code
which has been described extensively in
(Font et al. 2000b, 2002). The development
of the Whisky code has benefited from the
release of a public version of the general rel-
ativistic hydrodynamics code described in
Font et al. (2000b), (2002), and developed
mostly by the group at the Washington
University as part of the NASA Neutron
Star Grand Challenge Project (see
wugrav.wustl.edu/Codes/GR3D for de-
tails).
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The Whisky code, however, also in-
corporates important recent developments
regarding, in particular, new numerical
methods for the solution of the hydro-
dynamics equations. These include: (i)
the Piecewise Parabolic Method (PPM)
(Colella & Woodward 1984) and the
Essentially Non-Oscillatory (ENO) meth-
ods (Harten et al. 1987) for the cell recon-
struction procedure; (ii) the Harten-Lax-
van Leer-Einfeldt (HLLE) (Harten et al.
1983) approximate Riemann solver, the

Marquina flux formula (Aloy et al. 1999b);
(iii) the analytic expression for the left
eigenvectors (Ibáñez et al. 2000) and com-
pact flux formulae (Aloy et al. 1999a) for
the Roe Riemann solver and the one using
the Marquina flux formula; (iv) the possi-
bility to couple the general relativistic hy-
drodynamics equations with a conformally
decomposed 3-metric. The incorporation of
these new numerical techniques in the code
has lead to a much improved ability to sim-
ulate relativistic stars, as will be shown in
the section devoted to the tests. The in-
terested reader may also refer to Font et
al. (2000b, 2002) for more details about
the general formulation and the results ob-
tained with the similar, distinct code.

While the Cactus code provides at each
time step a solution of the Einstein equa-
tions (see Alcubierre et al. (2000) for the
validation of the Cactus code for the space-
time evolution)

Gµν = 8πTµν , (1)

where Gµν is the Einstein tensor and Tµν is
the stress-energy tensor, the Whisky code
provides the time evolution of the hy-
drodynamics equations, expressed through
the conservation equations for the stress-
energy tensor Tµν and for the matter cur-
rent density Jµ

∇µTµν = 0 , ∇µJµ = 0. (2)

An important feature of the Whisky
code is the implementation of the so called
Valencia formulation of the hydrodynam-
ics equations (Mart́ı et al. 1991; Banyuls

et al. 1997; Ibáñez et al. 2000), in which
the set of equations (2) is written in hyper-
bolic, flux-conservative form

∂tq + ∂if (i)(q) = s(q), (3)

where the right hand side (the source
terms) depends only on the metric and
on the stress-energy tensor, vanishing in a
flat spacetime, where the strict hyperbol-
icity is recovered. In order to write system
(2) in the form of system (3), the prim-
itive hydrodynamical variables (i.e. the
rest mass-density ρ, the pressure p, the
fluid 3-velocities vi, the internal energy
density ε and the Lorentz factor W ) are
mapped to the so called conserved variables
q ≡ (D, Si, τ) via the relations

D ≡ √
γWρ ,

Si ≡ √
γρhW 2vi ,

τ ≡ √
γ

(
ρhW 2 − p

)−D , (4)

where γ is the determinant of the spatial 3-
metric γij and h ≡ 1+ε+p/ρ is the specific
enthalpy. The Lorentz factor is defined in
terms of the velocities and of the 3-metric
as W = (1 − γijv

ivj)−1/2. Note that only
five of the primitive variables are indepen-
dent.

Finally, an equation of state is used to
relate the pressure to the rest mass density
and to the energy density. The code can use
any equation of state, but presently only a
polytropic equation of state of the type

p = KρΓ , (5)

an “ideal fluid” equation of state

p = (Γ− 1)ρ ε (6)

and a hybrid equation of state as described
in Zwerger (1995) have been implemented.
For more details on this formulation, see
also the review by Font (2000).

An important feature of the Valencia
formulation is that it is possible to extend
to relativistic hydrodynamics the power-
ful numerical methods developed in classi-
cal hydrodynamics; in particular, our code
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takes advantage of the High Resolution
Shock Capturing (HRSC) properties of
Godunov type methods (Godunov 1959).
For a full introduction to HRSC meth-
ods see Laney (1998), Toro (1999) and
LeVeque (1998).

3. Numerical Techniques

The time update of all the equa-
tions, general relativistic hydrodynamics
and Einstein, are performed with the
Method of Lines (MoL) (Laney 1998; Toro
1999). The method of lines is a procedure to
transform a set of partial differential equa-
tions such as (3) into a set of ordinary dif-
ferential equations. This is done by inte-
grating equations (3) over space in every
computational cell defined by its position
(xi, yj , zk)

d
dt

(q̃) = L(q̃) =
∫∫∫

sd3x +

+
∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

f (1)(q(xi−1/2, y, z))dy dz

−
∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

f (1)(q(xi+1/2, y, z))dy dz

+ . . . , (7)

where q̃ is the spatially integrated vector
of conserved variables, i.e.

q̃ ≡
∫

q dx dy dz (8)

and f (i) is the i-th component of the flux
five-vector f .

Several time-integrators are available in
our implementation of MoL and the or-
der of accuracy of the solution of the ordi-
nary differential equation (7) is the same as
the truncation order of the integrator em-
ployed, provided that the discrete operator
L is of the same order in space and at least
first-order accurate in time.

In our implementation of MoL, the right
hand side operator L(q̃) is simplified by

approximating the integrals with the mid-
point rule to get

L(q̃) = si,j,k + f (1)
i−1/2,j,k− f (1)

i+1/2,j,k + . . . .

(9)
Given this simplification, the calculation of
the right hand side of (7) splits into the
following parts:

1. Calculation of the source terms
s(q(xi, yj , zk)) at all the grid points.

2. Reconstruction of the data q to both
sides of a cell boundary. In this way, two
values q

L
and q

R
of qi+1/2,j,k are deter-

mined at cell boundary; q
L

is obtained
from cell i (left cell) and q

R
from cell

i + 1 (right cell). The code implements
several reconstruction methods. In par-
ticular, as Total Variation Diminishing
(TVD) methods we have implemented
“minmod”, van Leer monotonized cen-
tered (van Leer 1979) and Superbee
(Toro 1999). Additional reconstruc-
tion methods are: arbitrary order ENO
methods (Harten et al. 1987) and the
Piecewise Parabolic Method (Colella &
Woodward 1984), which is a third or-
der accurate in space. As mentioned be-
low, PPM has emerged as our actual
best choice for all the test evolutions we
present here.

3. Solution at cell boundary of the
Riemann problem (LeVeque 1998; Toro
1999; Laney 1998) having the values

qL,R as initial data.
4. Calculation in each coordinate di-

rection (x, y, z) of the inter-cell
flux f (x)(qi+1/2,j,k), f (y)(qi,j+1/2,k),
f (z)(qi,j,k+1/2), that is the flux across
the boundary between a cell (e.g. the
i-th) and its closest neighbour (e.g. the
(i + 1)-th).

5. Recovery of the primitive variables and
computation of the stress-energy tensor
for use in the Einstein equations.

As a result of steps 1. – 4., the core of
the Whisky code is effectively represented
by two routines. One that reconstructs the
function q at the boundaries of a computa-
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tional cell and another one that calculates
the inter-cell flux f at this cell boundary.

As for the reconstruction methods, a
similar variety is present for the approxi-
mate Riemann solvers implemented in the
Whisky code. More specifically, are avail-
able the fast HLLE (Harten et al. 1983)
and the widespread Roe (Roe 1981) solvers
as well as the accurate Marquina flux
formula (Aloy et al. 1999b), which is
used to solve the Riemann problem in
a way that differs from the Roe solver
only at sonic points, where the Roe solver
has problems. The Roe-based approximate
Riemann solvers need the computation
of the eigenvalues and eigenvectors (from
both the right and left cell) of the linearized
Jacobian matrices A

L
and A

R
given by

f
L

= A
L
q

L
and f

R
= A

R
q

R
. We have im-

plemented the analytic expression for the
left eigenvectors (Ibáñez et al. 2000), thus
avoiding the computationally expensive in-
version of the three 5 × 5 matrices of the
right eigenvectors, associated to each spa-
tial direction. This implementation brings
a 40% reduction of the computational time
spent in the solution of the hydrodynamics
equations. However, in evolutions involving
also the time integration of the Einstein
equations, this is reduced to a 5% decrease
in computational cost. This is due to the
fact that the largest part of the time is
spent in the update of the spacetime field
variables.

4. Numerical Tests

As mentioned above several tests have
been performed to assess the stability and
accuracy of our code. The results obtained
so far are very encouraging and already
during these preliminary steps some new
physical results have been achieved.

First of all, we consider a standard
shock tube test, setting as initial data a
global Riemann problem, i.e. one in which
the initial discontinuity is orthogonal to the
main diagonal of the cubic grid. More pre-
cisely the initial data consist of a left and

−0.4 −0.2 0 0.2 0.4
main diagonal

0

0.2

0.4

0.6

exact solution
density/20
pressure/20
velocity

Fig. 1. Solution of a Riemann problem set
on the main diagonal of the cubic grid. The
figure shows the comparison of the hydro-
dynamical variables evolved by Whisky, in-
dicated with symbols, with the exact so-
lution. The numerical simulation was ob-
tained with the van Leer reconstruction
method and the Roe solver, on a 1403 grid.

right state with values

ρR = 1; pR = 1.666× 10−6; vR = 0
ρL =10; pL = 1.333; vL = 0

In Fig. 1 we show the solution at a
given time together with the exact solu-
tion. The excellent agreement of the two
sets of curves is particularly remarkable if
one bears in mind that the initial shock
is placed on the main diagonal of the cu-
bic grid, so that the evolution is fully 3-
dimensional.

Next, we consider the evolution of sta-
ble relativistic polytropic spherical (TOV)
stars. As this is a static solution, no evolu-
tion is expected. Yet as shown in Fig. 2,
both a small periodic oscillation and a
small secular increase of the central density
of the star are detected during the numeri-
cal evolution of the equations. Both effects
have, however, a single explanation. Since
the initial data contains also a small trun-
cation error, this is responsible for trigger-
ing radial oscillations which appear as pe-
riodic variations in the central density. As
the resolution is increased, the truncation
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error is reduced and so is the amplitude
of the oscillation. The secular growth, on
the other hand, is a purely numerical prob-
lem, probably related to the violation of
the constraint equations. As for the oscilla-
tions, also the secular growth converges to
zero with increasing resolution. The conver-
gence properties of the code are also clearly
shown in the growth of the Hamiltonian
constraint violation (Fig. 3), where we can
see that almost second-order convergence is
achieved. Note that the convergence rate is
not exactly second-order, because the re-
construction schemes are only first-order
accurate (Alcubierre et al. 2000) at local
extrema (i.e. the center and the surface of
the star) thus increasing the overall trun-
cation error.

As anticipated, the PPM reconstruction
scheme has shown to be more accurate than
the TVD ones. This is clear in Fig. 4, in
which the results obtained with the PPM
method are compared to the best of the
TVD methods (i.e. the van Leer one) for
a stable TOV run, similar to the previous
ones, using 643 grid points. Note that the
PPM reconstruction is more effective in re-
ducing both the initial truncation error (as
shown by the smaller amplitudes in the os-
cillations) and the secular error (as shown
by the small growth rate).

In order to further investigate the accu-
racy of our implementation of the hydrody-
namics equations, we have suppressed the
spacetime evolution and solved just the hy-
drodynamics equations in the fixed space-
time of the initial TOV solution. This ap-
proximation is referred to as the “Cowling
approximation” and is widely used in per-
turbative studies of oscillating stars. In
this case, in addition to the confirmation
of the convergence rate already checked
in fully evolved runs, we have also com-
pared the frequency spectrum of the nu-
merically induced oscillation with the re-
sults obtained by an independent 2D code
(Font et al. 2000a) and with perturba-
tive analyses. In Fig. 5 we show a compar-
ison between the two codes reporting the
power spectrum of the central density os-

0 2 4 6
t (ms)

0

0.01

0.02

ha
m

 n
2

32
64
96
128

Fig. 3. The L2-norm of the Hamiltonian
constraint for the same evolutions as in
Fig. 2.

cillations computed with the Whisky code
and the corresponding frequencies as ob-
tained with perturbative techniques and
with the 2D code. Clearly the agreement
is very good with an error below 1% in the
fundamental frequency. The fact that the
frequencies computed with the code coin-
cide with the physical eigenfrequencies cal-
culated through perturbative analysis al-
lows us to study with our code the physical
properties of linear normal-modes of oscil-
lation even if such oscillations are generated
numerically.

The last test performed in the linear
regime consisted of the evolution of rapidly
rotating stars, with angular velocity up to
95% of the allowed mass-shedding limit for
uniformly rotating stars. The initial data
routines have been adapted from the RNS
code (Stergioulas & Friedman 1995). As
in the previous tests the Hamiltonian con-
straint shows a convergence rate of nearly
second-order everywhere, except at the sur-
face and the center of the star. In analogy
with the nonrotating case, the truncation
error triggers quasi-radial oscillations in the
star. Such pulsations converge to zero with
increasing resolution. Determining the fre-
quency spectrum of fully relativistic and
rapidly rotating stars is an important sci-
entific achievement, allowing the investiga-
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Fig. 2. Central mass-density, normalized to the initial value, in a stable TOV star
(M = 1.4 M¯ and polytropic index Γ = 2) evolution at different resolutions. PPM and
Marquina were used for all runs.

tion of a parameter space which is astro-
physically relevant but too difficult to treat
with current perturbative techniques.

Note that a number of small improve-
ments on the boundary and gauge condi-
tions have allowed us to extend consider-
ably the timescale of our evolutions of sta-
ble rapidly rotating stars, which can now
be evolved for about 10 ms, that is for sev-
eral rotational periods (Stergioulas 2002).

We now consider tests of the nonlinear
dynamics of isolated spherical relativistic
stars. To this purpose we have constructed
TOV solutions that are placed on the un-
stable branch of the equilibrium configu-

rations (see inset of Fig. 6). The trunca-
tion error in the initial data for a TOV is
sufficient to move the model to a different
configuration and in Whisky this leads to
a rapid migration toward a stable configu-
ration of equal rest-mass but smaller cen-
tral density. Such a violent expansion pro-
duces large amplitude radial oscillations in
the star that are either at constant ampli-
tude if the polytropic equation of state (5)
is used, or are damped through shock heat-
ing if the ideal fluid equation of state (6) is
used. This is summarized in Fig. 6, which
shows the time series of the normalized cen-
tral density for a TOV. We also show that
the asymptotic central density tends to a
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Fig. 6. Normalized central mass-density evolution of an M = 1.4 M¯, Γ = 2 unstable
TOV star performed with 963 grid points.

value corresponding to a rest-mass slightly
smaller than the initial one (straight line).
This is the energy loss due to the internal
dissipation.

An alternative solution for the unstable
model is that of a gravitational collapse. In
this case, in fact, the initial star does not
expand but rather moves to increasingly
larger density configurations, finally form-
ing a black hole. In order to study the grav-
itational collapse of the unstable configura-
tion, the introduction of a density pertur-
bation in the initial model is necessary. A
very small one of the order of 1% with de-
pendence cos(πr/2rs), where r is the coor-
dinate distance from the center and rs its

value on the surface, is sufficient to over-
come the effects of the truncation error and
induce the star to collapse. Note that af-
ter adding the perturbation to the initial
configuration, the constraint equations are
solved to provide initial data which are a
solution to the Einstein equations. As a
summary of the results obtained, we show
in Fig. 7 the growth of the horizon mass,
tracked with an apparent horizon finder
based on the fast-flow algorithm (Gundlach
1998). At t = 0.246 ms a black hole forms

and an apparent horizon appears. As the
remaining stellar material continues to ac-
crete onto the newly formed black hole, its
horizon mass increases, finally leveling off
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PPM
TVD (van Leer)

Fig. 4. Central mass-density, normalized
to the initial value, in a stable TOV star
(M = 1.4 M¯ and polytropic index Γ = 2)
evolution with 643 grid points. Comparison
between PPM and van Leer reconstruction
methods.

0.00 2.00 4.00 6.00 8.00
f (kHz)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

H1 H2 H3F

Fig. 5. Fourier transform of the central
mass-density evolution of an M = 1.4 M¯,
Γ = 2 stable TOV star performed with 1283

grid points. The units of the vertical axis
are arbitrary.

until t = 0.306 ms. The subsequent growth
of the horizon mass is then only the result
of the increasing error due to grid stretch-
ing (the radial metric function develops a
sharp peak which cannot be resolved accu-
rately enough).
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Fig. 7. Horizon mass evolution. The initial
rest mass of the TOV star is M = 1.44 M¯
and again Γ = 2.

5. Conclusions

We have illustrated the main features
and the present status of our new 3D
general relativistic hydrodynamics code.
Through a wide set of numerical tests, we
have shown both the accuracy and the con-
vergence of our implementation of the for-
mulation of the general relativistic hydro-
dynamics equations, coupled to a confor-
mal transverse-traceless formulation of the
Einstein equations. We have also shown
that our code can accurately and stably
evolve the linear and nonlinear dynamics
of isolated relativistic stars, both for pul-
sations of spherical and rapidly rotating
stars. The computed frequencies of radial
oscillations are compared with the corre-
sponding frequencies obtained with other
numerical and perturbative techniques and
the good agreement among these values is
one of the greatest present achievements of
our code.

We have also investigated the nonlinear
dynamics of stellar models that are unsta-
ble to the fundamental radial mode of pul-
sation, decaying either to a black hole (a
collapse which we can follow up to and past
the formation of the event horizon) or in a
migration to a configuration on the stable
branch of equilibrium configurations.
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These encouraging results are impor-
tant premises for the application of the
Whisky code to more physical scenarios.
Furthermore we are presently working on
incorporating in Whisky the use of a fixed
mesh refinement. This is an important im-
provement that will increase the numerical
resolution where needed and move the po-
sition of the outer boundaries further out
in the wave zone, where information on the
gravitational wave content of the spacetime
can be reliably extracted.
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