日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学位論文

Organocatalytic Approaches to Asymmetric Oxidation: Epoxidation of α-Branched Enals and α-Benzoyloxylation of Carbonyl Compounds

MPS-Authors
/persons/resource/persons58757

Lifchits,  Olga
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Lifchits, O. (2012). Organocatalytic Approaches to Asymmetric Oxidation: Epoxidation of α-Branched Enals and α-Benzoyloxylation of Carbonyl Compounds. PhD Thesis, Universität zu Köln, Köln.


引用: https://hdl.handle.net/11858/00-001M-0000-000E-F25F-7
要旨
This work describes the development of enantioselective oxidation reactions of carbonyl compounds using covalent organocatalysis. In the first part, asymmetric epoxidation of α-branched α,β-unsaturated aldehydes with aqueous hydrogen peroxide is presented. An exceptionally synergistic combination of a primary cinchona alkaloid-derived amine and a chiral BINOL-derived phosphoric acid was found to promote the reaction with excellent enantiocontrol for a wide variety of α,β-disubstituted and α-monosubstituted enals. Conformational analysis of catalytically relevant intermediates using NMR and computational techniques enabled the rationalization of the absolute stereochemistry of products. The second part of this thesis describes a highly efficient direct catalytic asymmetric α-benzoyloxylation of cyclic ketones. The same primary amine paired with an inorganic acid was found to be an effective catalyst for a wide range of substrates. The methodology was applied to the first asymmetric synthesis of (+)-2β,4-dihydroxy-1,8-cineole, a predicted terpenoid metabolite in mammals. Preliminary investigations on the α-benzoyloxylation of α-branched aldehydes and α-branched enals using this catalytic system demonstrated significant potential of the method for the enantioselective formation of oxygenated quaternary stereocenters.