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ABSTRACT

With the availability of next-generation sequencing
(NGS) technology, it is expected that sequence
variants may be called on a genomic scale. Here,
we demonstrate that a deeper understanding of
the distribution of the variant call frequencies at het-
erozygous loci in NGS data sets is a prerequisite for
sensitive variant detection. We model the crucial
steps in an NGS protocol as a stochastic branching
process and derive a mathematical framework
for the expected distribution of alleles at heterozy-
gous loci before measurement that is sequencing.
We confirm our theoretical results by analyzing
technical replicates of human exome data and
demonstrate that the variance of allele frequencies
at heterozygous loci is higher than expected by
a simple binomial distribution. Due to this high
variance, mutation callers relying on binomial
distributed priors are less sensitive for hetero-
zygous variants that deviate strongly from the
expected mean frequency. Our results also
indicate that error rates can be reduced to a
greater degree by technical replicates than by
increasing sequencing depth.

INTRODUCTION

Second-generation DNA sequencing has revolutionized
many biomedical areas. It especially accelerated the dis-
covery of disease genes in medical genetics (1,2) and is
now about to enter diagnostics (3). In order to translate

this technology into a reliable tool for molecular diag-
nostics for human genetics and other fields, it will be
necessary to further reduce error rates of sequence
variant detection. Understanding the process of how the
high-throughput sequencing data arise is crucial for the
development of sensitive genotype calling algorithms. It
is well known in the field that especially the error rates
in detecting heterozygous mutations in diploid genomes
are still considerably higher than the comparable error
rates of homozygous variants—even at high levels of
sequence coverage (4,5).

It is currently widely assumed that the frequencies of
calls at heterozygous sites in NGS data are binomially
distributed, an assumption that has been incorporated
into many variant calling programs for NGS data (6-8).
We were motivated to question this assumption by obser-
vations of more extreme probability distributions in
whole-exome sequencing (WES) data sets, as we will dem-
onstrate in this article. We therefore analyzed the key steps
in NGS data generation from a stochastic point of view
and identified the amplification of sequence fragments
during library preparation before measurement as
crucial for the distribution of allele frequencies at hetero-
zygous genomic loci.

We reasoned that the generation of fragments can be
described as a Bienaymé-Galton—Watson branching
process with discrete time steps, which is a model that
has been widely used by physicists and mathematicians
in population genetics (9-11). In this work, we provide a
detailed description of the fragment amplification process.
We then show that our model accurately reflects allele
frequencies in real WES data sets. One prediction of our
model is that technical replication is more effective in
reducing error rates than merely sequencing more reads
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from the same library, which we confirmed on a data set
with nine technical WES replicates. Our results have im-
portant implications for understanding the causes of
false-negative errors in NGS diagnostics.

MATERIALS AND METHODS
Exome sequencing and variant detection

Human blood or tissue samples of 17 anonymized donors
were used for exome sequencing. For one of these individ-
uals, nine technical replicates were generated. This means
nine independent samples of the same individual were col-
lected and further processed independently. For each
sample, genomic DNA was enriched for the target
region of all human CCDS exons (12) with Agilent’s
SureSelect Human All Exon Kit and subsequently
sequenced on a Illumina Genome Analyzer II with
100bp single end reads. The enrichment of adapter-
modified DNA fragments before sequencing includes an
amplification step of 18 cycles of polymerase chain
reaction (PCR) in the standard protocol. For one
exome, 36 cycles of PCR were run to analyze the effect
of the cycle number onto the allele frequency distribution.
The cluster generation step follows after the library prep-
aration. Its purpose is to increase the fluorescent signal of
a fragment on the sequencing flow cell, so that it becomes
detectable. The cluster generation includes another
35 PCR cycles in the standard protocol. The raw data of
~5 GB per exome was mapped to the haploid human
reference sequence hgl9 with novoalign (13) resulting in
a mean coverage of the exome target region of 50x. In this
study, heterozygous sequence variant detection was re-
stricted to positions of high human variability as defined
by dbSNP132 positions, in order to decrease the probabil-
ity of false positive calling errors. A genomic position was
called as a heterozygous variant if >20 sequence reads
covered this position in the reference-based sequence
alignment and if the ratio of the non-reference allele to
the sum of the non-reference allele and the reference allele
was between 0.14 and 0.86. This heterozygous detection
algorithm was shown to be highly sensitive for a coverage
>20 (14). For the replicates we classified a locus as truly
heterozygous, if it was classified as heterozygous by the
above described calling criterion and by SAMtools (15) in
at least six out of nine replicates.

Heterozygous allele frequencies

The reference allele frequency at a genomic position that
was classified as heterozygous as described above is
defined as the number of fragments that map to this
position, cover the variable base and show the reference
allele, divided by all fragments covering this site. There are
two well-known biases that shift the detected mean refer-
ence allele frequency from the expected value of 0.5 to
slightly higher values: (i) SureSelect baits that were used
for exon enrichment are designed as 120bp antisense
oligonucleotides to the haploid reference sequence of the
latest Human Genome Build. This means DNA hybrid-
ization between sample DNA fragments containing
common variants, that differ from the reference

Nucleic Acids Research, 2012, Vol. 40, No.6 2427

sequence, may be weaker as compared with hybrids
without mismatches. This may lead to a slightly more ef-
fective enrichment of sequence fragments containing the
reference allele. (ii) After sequencing, all short sequence
reads are mapped to the haploid reference sequence.
Sequence fragments containing non-reference allele
variants have a lower mapping quality. For short read
lengths, reads with low base quality and low sequence
complexity, this may result in a slightly reduced
mapping ratio of non-reference allele fragments (16,17).
Due to this in vitro enrichment as well as in silico read
mapping-bias, the allele frequency distribution shifted
toward the reference allele (in our analyzed exome data
sets from 0.5 to 0.54). However, as these biases are sys-
tematic and not stochastic in nature they do not influence
the variance of the allele frequency distribution.

Distributions of heterozygous allele frequencies are
position- and individual independent

The dependence of the allele frequency distribution on
genomic position as well as on the individual was tested
on human exome data sets. Position dependence was
tested by comparing the distribution of all heterozygous
allele frequencies in an individual to a smaller random
subset of these positions (Supplementary Figure S3). The
comparison between these distributions did not show sig-
nificant differences by chi-squared testing. The depend-
ence on the individual was tested by comparing the
differences of heterozygous allele distributions between
different individuals and technical replicates of the same
individual. The difference in frequency distributions
between different individuals is statistically not significant
and fluctuations in these distributions are comparable to
those observed in technical replicates of the same individ-
ual. Since allele frequencies are position- and individual
independent, we computed the heterozygous allele fre-
quency distribution from SNP loci pooled from all
sequenced exomes.

RESULTS AND DISCUSSION
Fragment amplification as a stochastic branching process

Suppose that we have a tube that initially contains a set of
different alleles such as illustrated in Figure 1A. We now
perform K cycles of a PCR on these alleles, which basically
means adding a certain number of copies of these alleles to
the tube in discrete time steps. This is an essential part of
current NGS library preparation protocols that are used
to enrich adapter-ligated DNA fragments (18).

For the mathematical description of this process, we
will introduce a Markov chain, that corresponds to a
Galton—Watson branching process consisting of two
populations. Although we will study this process in our
work only for biallelic single nucleotide polymorphisms
(SNPs), it may be generalized to all sequence variants.

The preparation of a genomic DNA sample starts by
shearing the chromosomal DNA into sequence fragments
of a few hundred base pairs. We will discuss in the follow-
ing only fragments that contain a variable base of an SNP,
which means we can distinguish between two possible
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Figure 1. The fragment amplification as a stochastic branching process. (A) The distribution of the allele frequencies depends on a parameter P that
represents the efficiency of the PCR and the probability that an allele is amplified, the cycle number K, and on the initial number of alleles N. (B) The
variance of the allele frequency after amplification was sampled from simulations for P ranging from 0 (no amplification) to 1 (perfect duplication in
each PCR cycle), for different cycle numbers K and numbers of starting alleles N. The measurement process of sequencing was simulated for a read
coverage of 20x. The variance sampled from 10000 simulated heterozygous SNPs and depicted as black circles (0), is well approximated by the
analytical results of Equation (4) (black line). For a cycle number of K> 20, the variance does not change significantly. The variance reaches its
maximum for an amplification probability around P=0.2. For an increasing number of alleles before amplification, the variance approximates a
fixed level, explained solely by the variance introduced by the measurement process of sequencing.

classes of fragments, those containing the base of allele A
and those that contain the base of allele 4,. We consider
the fragmentation as random and unbiased. This means
that the extensions into both directions from the variable
position is uniform and only limited by fragment size. We
also assume that the numbers 7; and n, of the fragments
containing allele 4, and A, are of the same order of mag-
nitude after fragmentation, as the DNA originates from
many cells of a single diploid genome (see Supplementary
Figure S4 for exceptions from this assumption). Before
sequencing (at time step k = 0), adaptor oligomers are
ligated to the fragments and a PCR is run for K cycles.
For successful amplification, adaptors must be attached to
both ends of the fragment. The initial number of
amplifiable fragments, n#; = n;(0) and n, = n,(0), is in the
order of dozens. For each such fragment, the attachment
of the polymerase to the adaptor is a prerequisite for amp-
lification. We assume that the probability of this event
depends only on the total number of polymerase mol-
ecules, which remains the same in every PCR cycle k,
and the sum of amplifiable fragments, n;(k)+ n,(k), but
is independent of the variant itself. For not too large K,
we may assume that polymerase is always in excess of
ni(k) +ny(k), and thus a constant fraction of fragments
will be bound by polymerase. We will use the parameter
p in the main manuscript to describe the cycle and
allele-independent probability that a fragment is copied
(in the Supplementary methods we perform the calcula-
tions for allele-specific amplification probabilities, p; and
p>). We now describe the probabilities of the three possible
transitions of a random allele in PCR cycle k, assuming
that the Markov condition holds:

ny (k)
) +mk)”

k
P((ny(k), na(k)) — (ny(k), na(k) + 1) = mlj

P((m(k), ny(k)) — (mi(k), ny(k)) =1 —p

P((n1(k), na(k)) — (n1(k) + 1, my(k)) =

1

The whole system thus transits to:
(mi(k + 1), ma(k + 1)) = (n1(k) + b1(k), na(k) + ba(k)) — (2)

where (by(k), by(k)) are realizations of binomially distri-
buted random variables B(ni(k),p) and B(n(k),p)
(Figure 1A).

The ratio n;(k)/(n1(k) + ny(k)) describes the proportion
of allele A after the k-th amplification cycle and this is the
allele frequency that we expect to measure by sequencing
multiple read fragments of this pool. Note that sequencing
itself will contribute to the totally measured variance.
Sequencing itself may be understood as a random
sample of finite size, which is the sequencing depth, on
the allele pool after amplification. We are thus primarily
interested in the distribution of the random variable Q(k)
describing the ratio of alleles after amplification. The dis-
tribution of alleles after step k solely depends on the dis-
tribution of alleles in step k — 1:

P((mi(k), no(k))I(ni(k — 1), na(k — 1)),
(mi(k = 2)na(k = 2)), ..., (m1(0), n2(0))) = A3)
= P((m(k), (k)| (1 (k — 1), na(k — 1))).

The entire process is determined by the probability
generating function of the offspring distribution.
Appropriately scaled, the law of Q(k) approaches a
normal distribution (10). We derived the first and second
moments of the offspring distribution (see Supplementary
Methods for a detailed calculus) to compute the asymp-
totic variance of Q(k):

2l+p) ' =200+ p 1+ pF -1

Var(Q(k)) = SN

)

assuming that 7,(0) = n,(0) = N.

According to a standard NGS protocol, we simulated
the amplification process of our model depicted in
Figure 1A for K=1[1,30], N =1[5,25], for P ranging
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from 0 to 1 and a sequencing depth of 20x. We computed
the variance of the resulting allele frequency ratio for
10000 SNPs (Figure 1B) which is the expected order of
magnitude for heterozygous variant calls in a human
exome. The behavior of the variances sampled from our
simulations is well described by function (4) adapted by
the additional contribution of variance introduced by
sequencing. For fixed P and N, the variance increases
with a growing number of PCR cycles K and approaches
a constant level for K> 15. This also means that
increasing the number of cycles in the library preparation
above the default value of K > 18, as well as amplification
of the cluster generation step that succeeds the library
preparation will only contribute marginally to the total
variance. For fixed K and N, the variance has its
maximum around P = 0.2 and decreases for P tending
to 1. This is clear as with perfect amplification, we
expect the initial ratio of 7;(0)/(n1(0) + n2(0)) ~ 0.5 to
remain constant. For fixed K and P, the variance decreases
with an increasing number of alleles before amplification.
It is easier for one allele to gain predominance in the pool
that is sequenced if the initial allele set is small, the amp-
lification efficiency is low and enough PCR cycles are run.

High variance of heterozygous allele frequencies in real
human exome data sets

After modeling the amplification step as stochastic
process, we analyzed the distribution of allele frequencies
at heterozygous genomic loci in real human exome data
that were generated following a standard protocol with 18
PCR amplification cycles. In order to compare the empir-
ically measured frequencies with our simulated data, all
heterozygous SNP positions that were covered by more
than 20 reads were downsampled to 20 reads per
position. The allele frequencies were derived from these
read sets. The variance of the measured reference allele
distribution is 0.017 and thus markedly larger than the
variance of 0.012 that is expected for hypothetical
sequencing before amplification (this is the variance of a
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binomial distribution where n represents the sequencing
depth and the success parameter is the ratio of the
alleles in the starting solution, Figure 2A). Thus, the
sequence fragments in a short read alignment, on
which the variant call is performed, are not properly rep-
resented by a random sample of the initial ratio of
n1(0)/(n1(0) 4+ n2(0)), but the effect of the amplification
process on this distribution has to be taken into account.

Our model assumes a constant amplification efficiency
over all PCR cycles, which seems to be a reasonable sim-
plification given the relatively low number of PCR cycles
used in NGS library preparation protocols. A value of
P €]0.3,0.5] yielded a variance for the allele frequencies
that is close to the value determined on the real exome
data (Figures 1B and 2A). We measured the amount of
fragmented DNA used as input in our WES experiments
at k = 0 (5 ng) and measured about 5 — 10 ug after K = 18
cycles of amplification. This corresponds to an amplifi-
cation by a factor of 1—2x10°, and thus values of
P e[0.3, 0.5] are realistic.

As already discussed, with fixed P and N the variation
is approaching a limit for increasing K and for K> 15 it
hardly changes. To check this experimentally, we
sequenced the exome of the same individual that was
amplified with 36 PCR cycles instead of 18. As expected
by Equation (4), no significant increase in the variance
could be detected (Figure 2B). We also studied the effect
of the succeeding cluster amplification step by analyzing
the variance of the difference of heterozygous allele
frequencies of a library preparation that was sequenced
after two different cluster generations. In contrast to the
library preparation, the effect of the cluster generation on
the total variance of the allele frequency is negligible
(Supplementary Table S2).

Influence of allele frequency variance on error rates in
heterozygous variant detection

Assuming comparable read qualities, the variant call is
based on a random sample drawn from the set consisting
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Figure 2. Variance of the measured allele frequency at heterozygous genomic positions in NGS exome data sets. (A) The distribution of heterozy-
gous allele frequencies measured in exome data sets at 20x coverage (blue) compared to the theoretical distribution expected before amplification
(red). The variance of the real distribution after amplification is significantly larger. (B) An exome of the same individual was sequenced following 18
and 36 cycles of amplification. As expected from theory, the variance of the allele frequencies only slightly increases after the additional 18 cycles of

amplification.
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Figure 3. Influence of variance in measured allele frequency on variant calling. (A) The genotype at the SNP position rs539412 has been called as
heterozygous variant in the first four replicates, but was not detected in the fifth replicate due to low frequency. (B) The false negative error rate
decreases with increasing sequencing depth. At low total sequencing depth, the error rate is markedly reduced by considering pools of technical
replicates. The classification of a genotype as heterozygous based on a simple frequency interval (heterozygous if the non-reference allele frequency is
between 14% and 86%) is more sensitive than a calling algorithm that uses a binomial prior distribution as default setting for the allele distribution.
The false negative error can be further reduced by considering an additional technical replicate (see also Supplementary Table S1).

of all alleles 4; and A, after amplification which is of size
ny(k)+ny(k). The coverage or sequencing depth at a
variant site is equivalent to the size of the random
sample on which the call is based. We hypothesized that
a certain rate of true heterozygous alleles will not be called
due to the high variance in allele frequencies after ampli-
fication (i.e. false-negative calls). To test this, we generated
nine exome replicates of the same individual and classified
genomic loci as heterozygous if they were called heterozy-
gous in at least six out of nine replicates by two accepted
calling algorithms (see ‘Material and Methods’ section).
Figure 3A shows the common polymorphism rs539412,
that was called as heterozygous variant in the first four
replicates, but failed to be called as heterozygous variant
in the fifth replicate due to low frequency. Using this as a
gold standard, we then measured the false-negative rate
for calls based on each of the single WES data sets. Over
the whole exome, we measured a false-negative rate
between 1% and 3% depending on the coverage with
the default settings of a widely used variant caller
(Figure 3B). In a usual exome, one expects between
10000 and 15000 heterozygous variants. Our results
indicate that one will miss around a hundred heterozygous
variants by sequencing an exome only once simply due to
the stochastic fluctuation of the allele frequencies after
amplification. Surprisingly a variant calling approach
that is simply based on a heterozygous allele frequency
interval f with [14% <f<86%], as suggested in Ref.
(14), has higher sensitivity at a comparable specificity
(see ROC analysis in Supplementary Figure S2) than a
more sophisticated variant calling algorithm that uses
the wrong prior distribution for the allele frequencies in-
dependent of the coverage (Figure 3B). Additionally for a
sequencing depth above 30x the false negative rate does

not decrease further. Thus, once a sufficient sequencing
depth has been reached, only technical replication is
able to further reduce the total error rates substantially
(Figure 3B and Supplementary Table S1).

Final remarks

In this work, we studied the distribution of alleles at het-
erozygous genomic positions as measured in NGS data
sets. A solid knowledge of distribution and variance of
allele calls at heterozygous loci is important as it is an
essential prior information for many variant calling
approaches. Besides, the distribution of the allele fre-
quency also plays a role in algorithms used to detect
copy number variations or sample contaminations.

We have demonstrated that amplification steps contrib-
ute considerably to the total variance of this distribution.
We modeled the fragment generation process as a
Bienaymé—Galton—-Watson  branching process and
showed that the variance is accurately described by
Equation (4). For typical values of the efficiency P
of the amplification process and sequencing depth,
this is substantially higher than the variance of the
corresponding binomial distribution (Figure 2A).
Clearly, the higher the variance of allele calls at heterozy-
gous loci, the higher the false negative error will be.
Ultimately, calling errors arising from random events
during library preparation and fragment amplification
could be avoided in single molecule sequencing techniques
of the future (19) and we are eager to see these data.

From our analytical results, one may draw some con-
clusions about how to reduce the stochastic fluctuactions
coming from the amplification step: increasing the effi-
ciency of the adaptor ligation (which is increasing N),
increasing p and reducing the number of PCR cycles K
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in a second-generation protocol will help to reduce the
variance of heterozygous alleles.

NGS technologies such as whole-exome and genome
sequencing are beginning to be used for diagnostic
purposes. In this setting, it is critical to provide an estima-
tion of the sensitivity of these approaches. Clearly, it is
important to report regions of the exome that are not
sufficiently covered for reliable variant calling. In
addition, our results suggest that it is also important to
evaluate the variance at heterozygous SNP positions as it
might serve as an indicator of the quality of an experiment
and thus for the overall false-negative error rate. The sen-
sitivity of an exome screen that is based on data of a
second-generation sequencing platform is not only
bound by the coverage of the target region but is also
affected by amplification which is inherent to the method.

SUPPLEMENTARY DATA

Supplementary Data is available at NAR Online:
Supplementary Tables 1 and 2, Supplementary Figures
1-4, Supplementary Methods.
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