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Abstract
Neutrino oscillation experiments in the past decades have greatly improved our knowledge on

neutrinos by measuring the fundamental neutrino parameters. The ongoing and upcoming neutrino

oscillation experiments are intended to pin down the neutrino mass hierarchy and to discover the

leptonic CP violation. By means of neutrino oscillograms, we analyze the impact of non-standard

neutrino interactions on neutrino oscillations in the Earth matter. The standard neutrino oscil-

lation probabilities may be significantly changed by non-standard interaction parameters, and in

particular, the CP-violating effects in the energy range E = 1 ∼ 20 GeV are greatly enhanced.

In addition, the event rates of muon neutrinos in the proposed huge atmospheric neutrino exper-

iment, PINGU at the South Pole, have been estimated in the presence of non-standard neutrino

interactions. It has been found that the PINGU experiment has very good sensitivities to the

non-standard neutrino interaction parameters.
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I. INTRODUCTION

Today, the phenomenon of neutrino oscillations is considered to be the standard and

leading order mechanism for neutrino flavor transitions, providing strong evidence that neu-

trinos are massive and lepton flavors are mixed, which leads to physics beyond the Standard

Model (SM) of particle physics [1]. However, although it is widely accepted in the particle

physics community that this phenomenon stems from a non-trivial structure of leptonic fla-

vor mixing, the so-called non-standard neutrino interactions (NSIs), which are considered to

be sub-leading order effects to standard neutrino oscillations, may still affect neutrino flavor

transitions in a significant way [2]. The concept of NSIs is presently the most studied descrip-

tion for effects beyond the standard paradigm of neutrino oscillations. In fact, dimension-six

and higher-order operators exist in various theoretical extensions of the SM, which include

e.g. seesaw models, R-parity violating supersymmetric models, left-right symmetric models,

grand unification theories, and extra dimensions. Basically, all modern extensions could give

rise to NSIs. Therefore, the investigation of NSIs could reveal additional new physics behind

neutrino flavor transitions. In addition, it plays an important complementary role to direct

searches of physics beyond the SM at colliders such as the LHC.

For example, NSI effects have previously been studied for the accelerator-based neutrino

oscillation experiments MINOS and OPERA [3, 4], atmospheric neutrino experiments [5–7],

reactor neutrino experiments [8–10], and a future neutrino factory [11–15]. In this work, we

investigate neutrino flavor transition probabilities based on standard neutrino oscillations

and NSIs as sub-leading effects. Note that we only consider so-called propagation (or matter)

NSIs, which are parameterized by different NSI parameters, and not source and detector

NSIs. Especially, we derive oscillation probabilities for the νe → νµ and νµ → νµ channels

that are important for atmospheric neutrino oscillations, and study the impact of various

NSI parameters on these probabilities, in both cases of the normal neutrino mass hierarchy

(NH) and inverted neutrino mass hierarchy (IH). In addition, we estimate the number of

atmospheric neutrino events in the future PINGU experiment at the South Pole, which has

been recently shown to have great potential for determining the neutrino mass hierarchy

[16–19]. Very good sensitivities to the NSI parameters are expected at this experiment.

The remaining part of our paper is organized as follows. In Sec. II, we will review the

formalism of three-flavor neutrino oscillations in the presence of standard and non-standard

matter effects, and present the parameter mappings between the leptonic mixing matrix in

vacuum and that in matter. The analytical approximate formulas of oscillation probabilities

are derived for the appearance channel νe → νµ and disappearance channel νµ → νµ. Sec. III

is devoted to numerical analyses of the NSI effects on the neutrino oscillation probabilities

with and without intrinsic CP violation. Using neutrino oscillograms, we further point

out the important regions in the plane of zenith angles and neutrino energies, where the

NSI effects are most significant. Taking into account the NSIs, we estimate the event rate

of atmospheric muon neutrinos at the PINGU detector in Sec. IV. It turns out that the

PINGU has very good sensitivities to the NSI parameters. Finally, we conclude in Sec. V.
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II. NEUTRINO OSCILLATIONS WITH NSIS

In general, NSIs can be present for neutrino production, propagation, and detection. We

will concentrate on the non-standard matter effects for neutrino propagation, which should

be relevant for atmospheric and long-baseline neutrino oscillation experiments in particular.

In this section, we recall the general formulation of three-flavor neutrino oscillations in the

presence of standard and non-standard matter effects. In this case, neutrino flavor transitions

are determined by the effective Hamiltonian

H(x) = H0 +Hm(x) +HNSI(x) , (1)

where the vacuum Hamiltonian is given by

H0 =
1

2E
U







0 0 0

0 ∆m2
21 0

0 0 ∆m2
31






U † , (2)

the standard matter potential is

Hm(x) = VCC







1 0 0

0 0 0

0 0 0






, (3)

with VCC =
√
2GFNe(x), and the non-standard matter potential is parametrized by

HNSI(x) = VCC







εee εeµ εeτ
ε∗eµ εµµ εµτ
ε∗eτ ε∗µτ εττ






, (4)

where εαβ are real (for α = β) or complex (for α 6= β) constants, i.e., the so-called NSI

parameters. Note that GF is the Fermi constant and Ne(x) is the electron number density

in matter.

The exact oscillation probability is given by Pαβ = |Sβα(x, x0)|2, where Sβα(x, x0) is the

evolution matrix satisfying the Schrödinger-like equation,

i
d

dx
|ν(x)〉 = H(x)|ν(x)〉 , (5)

and can be obtained by solving the above equation as

S(x, x0) = exp

[

−i

∫ x

x0

H(x′) dx′

]

. (6)

Since the standard matter potential Hm is invariant under any rotation in the 2-3 plane,

it is sometimes convenient to work in a new flavor basis (νe, ν̃2, ν̃3)
T = U23(νe, νµ, ντ )

T

with U23 ≡ O23Iδ. Note that the leptonic mixing matrix can be parametrized as U =

3



O23IδO13I
†
δO12, where Oij denotes the rotation in the i-j plane with a rotation angle θij

and Iδ ≡ diag(1, 1, eiδ) with δ being the leptonic Dirac CP-violating phase. If neutrinos are

Majorana particles, there will be two additional CP-violating phases in U . However, these

two leptonic Majorana CP-violating phases are irrelevant for neutrino oscillations both in

vacuum and in matter.

Now, in this basis, the standard Hamiltonian can be written as

H̃SD(x) =
1

2E
O13O12







0 0 0

0 ∆m2
21 0

0 0 ∆m2
31






OT

12O
T
13 +Hm(x) , (7)

where H̃SD(x) = U †
23HSD(x)U23 with HSD(x) = H0 +Hm(x), while the non-standard matter

potential turns out to be

H̃NSI(x) = VCC







εee ε̃eµ ε̃eτ
ε̃∗eµ ε̃µµ ε̃µτ
ε̃∗eτ ε̃∗µτ ε̃ττ






, (8)

with the modified NSI parameters

ε̃eµ = εeµc23 − εeτs23 ,

ε̃eτ = (εeµs23 + εeτc23)e
iδ ,

ε̃µµ = (εµµc
2
23 + εττs

2
23)− 2s23c23Re[εµτ ] ,

ε̃ττ = (εµµs
2
23 + εττc

2
23) + 2s23c23Re[εµτ ] ,

ε̃µτ =
[

(εµτc
2
23 − ε∗µτs

2
23) + (εµµ − εττ )s23c23

]

eiδ . (9)

Hence, in this basis, the effective Hamiltonian is

H̃(x) = ∆31













s212c
2
13α+ s213 s12c12c13α s13c13(1− s212α)

s12c12c13α c212α −s12c12s13α

s13c13(1− s212α) −s12c12s13α s212s
2
13α+ c213






+ A







1 + εee ε̃eµ ε̃eτ
ε̃∗eµ ε̃µµ ε̃µτ
ε̃∗eτ ε̃∗µτ ε̃ττ












,

where ∆31 ≡ ∆m2
31/(2E), α ≡ ∆m2

21/∆m2
31 and A ≡ VCC/∆31. Additionally, note that

sij ≡ sin θij and cos θij ≡ cij have been defined. The evolution matrix S̃(x, x0) in this

basis is related to S(x, x0) in the flavor basis via the unitary transformation S(x, x0) =

U23S̃(x, x0)U
†
23. The oscillation probabilities of antineutrinos can be obtained through the

replacements A → −A and δ → −δ.

A. Parameter Mappings

Now, following Refs. [20] and [21], we use a perturbation method to derive the effective

neutrino masses m̃2
i and leptonic mixing matrix Um in matter. Note that current neutrino

oscillation data indicate α ∼
√
2s213 ≈ 0.03. Therefore, we keep the terms of the same order
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α and s213, and ignore all other higher-order contributions, such as αs13, α
2, and αs213. Thus,

we write H̃ = M ·∆31 and introduce M ≡ M(0) +M(1):

M(0) =







s213 + A 0 s13c13
0 0 0

s13c13 0 c213






, (10)

M(1) =







s212α + Aεee s12c12α + Aε̃eµ Aε̃eτ
s12c12α + Aε̃∗eµ c212α + Aε̃µµ Aε̃µτ

Aε̃∗eτ Aε̃∗µτ Aε̃ττ






, (11)

whereM(0) corresponds exactly to the standard Hamiltonian H̃SD in the two-flavor limit with

α = 0, while M(1) incorporates the corrections from α and the NSI parameters. Obviously,

M(0) can be diagonalized by a rotation in the 1-3 plane, i.e.,

U (0) =







cos θ̂13 0 sin θ̂13
0 1 0

− sin θ̂13 0 cos θ̂13






(12)

with the effective mixing angle θ̂13 given by

tan 2θ̂13 =
sin 2θ13

cos 2θ13 − A
. (13)

In the following, we choose θ̂13 to be defined in the first quadrant 1. Namely, θ̂13 ∈ [0, π/4]

for A < cos 2θ13 and θ̂13 ∈ [π/4, π/2] for A > cos 2θ13. Therefore, we obtain [21]

sin2 θ̂13 =
Ĉ − cos 2θ13 + A

2Ĉ
, cos2 θ̂13 =

Ĉ + cos 2θ13 −A

2Ĉ
, (14)

with Ĉ ≡
√

(cos 2θ13 − A)2 + sin2 2θ13. Two other useful relations can readily be derived

from Eq. (14)

sin 2θ̂13 =
sin 2θ13

Ĉ
, cos 2θ̂13 =

cos 2θ13 − A

Ĉ
, (15)

implying sin θ̂13 = sin θ13/(1 − A) at the leading order of sin θ13. In the limit of α = 0 and

in the absence of NSIs, θ̂13 is just the effective mixing angle in matter.

Furthermore, the eigenvalues to zeroth order are given by

λ
(0)
1 =

1

2

(

1 + A− Ĉ
)

,

λ
(0)
2 = 0 ,

λ
(0)
3 =

1

2

(

1 + A + Ĉ
)

, (16)

1 Note that it is also possible to define θ̂13 to be in [0, π/4] by properly arranging the eigenvalues and the

corresponding eigenvectors, as shown in Ref. [22].
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and the eigenvalues to first order are λ
(1)
i = M̃(1)

ii with M̃(1) = U (0)†M(1)U (0). It is straight-

forward to show

λ
(1)
1 = α cos2 θ̂13s

2
12 + A

[

cos2 θ̂13εee − sin 2θ̂13Re(ε̃eτ) + sin2 θ̂13ε̃ττ

]

,

λ
(1)
2 = αc212 + Aε̃µµ ,

λ
(1)
3 = α sin2 θ̂13s

2
12 + A

[

sin2 θ̂13εee + sin 2θ̂13Re(ε̃eτ) + cos2 θ̂13ε̃ττ

]

. (17)

The corrections to the eigenvectors are given by

U
(1)
i =

∑

j 6=i

M̃(1)
ji

λ
(0)
i − λ

(0)
j

U
(0)
j , (18)

where U
(1)
i and U

(0)
j stand for the column vectors of the matrices U (1) and U (0), respectively.

The effective neutrino masses in matter are determined by m̃2
i = m2

1 + ∆m2
31[λ

(0)
i + λ

(1)
i ],

while the effective leptonic mixing matrix is Um = U23

[

U (0) + U (1)
]

. In the absence of NSIs,

there are two resonances, i.e., A = α and A = cos 2θ13. For neutrino energies E > 1 GeV

and matter densities ρ = 3 g/cm3 in the Earth crust, we have A > α, so only the resonance

A = cos 2θ13 is relevant [22]. Now, after some lengthy computations, we find that

Um
e3 = sin θ̂13 +

cos θ̂13

2Ĉ

{

sin 2θ̂13
[

αs212 + A(εee − ε̃ττ )
]

+ 2A
[

cos 2θ̂13Re(ε̃eτ) + iIm(ε̃eτ )
]}

,

Um
e2 = − c13

2A
α sin 2θ12 − ε̃eµ +

tan θ13
A

ε̃∗µτ ,

Um
µ3 = s23 cos θ̂13e

iδ

{

1− A tan θ̂13

Ĉ

[

cos 2θ̂13Re(ε̃eτ) + iIm(ε̃eτ)
]

}

+
αc23 sin 2θ12 sin θ̂13

1 + A+ Ĉ
,

(19)

which reproduce the well-known results in the limit of vanishing NSI parameters [22, 23].

Our results in Eq. (19) differ from those in Ref. [23] by including higher-order corrections

from α and s13. The parameter mapping is not valid in the resonance region, where the

perturbation theory breaks down. Furthermore, the mixing matrix elements in matter could

be divergent, so we will calculate the oscillation probabilities that should be well-defined in

general, and particularly in the resonance region. As pointed out in Ref. [22], the mixing

angle θ12 can be arbitrary in the limit of α = 0 and in the absence of the NSIs, so the mapping

for Um
e2 in Eq. (19) cannot be taken seriously. For neutrino energies E > 1 GeV, only the

effective mixing angle θ̃13, which is determined by Um
e3 in the standard parametrization [1], is

crucially important for neutrino oscillations in the Earth matter. Note that the true effective

mixing angle θ̃13 differs from θ̂13 in the contributions from α and the NSI parameters.

B. Oscillation Probabilities

In practice, the oscillation probabilities can be computed using perturbation theory based

on small quantities, e.g., the smallest mixing angle θ13, the ratio of the two mass-squared
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differences α, and the NSI parameters εαβ. Following Ref. [21], one can explicitly decompose

the effective Hamiltonian as H(x) = H′
0(x) +HI(x), where H′

0(x) is the zeroth order in the

small parameters and HI(x) includes the higher-order contributions. Then, to first order,

the evolution matrix is approximately given by

S(x, x0) ≃ S0(x, x0)− iS0(x, x0)

∫ x

x0

[

S0(x
′, x0)

−1HI(x
′)S0(x

′, x0)
]

dx′ , (20)

where the zeroth-order evolution matrix S0(x, x0) is determined by H′
0(x). For constant

matter density, the oscillation probability for the νe → νµ channel is found to be [8, 12]

PNSI
eµ ≃ P SD

eµ − 4s̃13s23c23 (|εeµ|c23cχ − |εeτ |s23cω)
[

sin2 A∆

2
− sin2 ∆

2
+ sin2 (1− A)∆

2

]

+ 8s̃13s
2
23 [|εeµ|s23cχ + |εeτ |c23cω]

A

1− A
sin2 (1− A)∆

2

+ 8s̃13s23c23 (|εeµ|c23sχ − |εeτ |s23sω) sin
A∆

2
sin

∆

2
sin

(1−A)∆

2
, (21)

where ∆ ≡ ∆31L denotes the oscillation phase in vacuum, and s̃13 = s13/(1−A) is just sin θ̃13
in the leading order. In addition, we have defined εαβ = |εαβ|eiφαβ (for αβ = eµ, eτ), χ =

φeµ + δ, and ω = φeτ + δ. Note that we have neglected the terms proportional to α εαβ, and

P SD
eµ stands for the transition probability without the NSIs, i.e, P SD

eµ ≃ 4s̃213s
2
23 sin

2 (1−A)∆
2

.

The approximate formulas of neutrino oscillation probabilities to the second order of α and

s13 can be found in Ref. [21]. At leading order, only the NSI parameters εeµ and εeτ appear in

the transition probability PNSI
eµ [8, 12]. Hence, we will concentrate on these two parameters in

following numerical analysis. Furthermore, the CP-violating terms in the last line of Eq. (21)

related to NSI parameters are not suppressed by the ratio of two mass-squared differences

α, compared to the standard case. Thus, even when the standard CP violation is not visible

in an experimental setup, one may expect observable CP-violating effects stemming from

the catalysis of NSIs.

Next, for the νµ → νµ channel, we have [8, 12]

PNSI
µµ ≃ P SD

µµ − |εµτ |cφµτ

(

s32×23A∆sin∆ + 4s2×23c
2
2×23A sin2 ∆

2

)

+ (|εµµ| − |εττ)|s22×23c2×23

(

A∆

2
sin∆− 2A sin2 ∆

2

)

, (22)

where εµτ ≡ |εµτ |eiφµτ , s2×23 ≡ sin 2θ23 and c2×23 ≡ cos 2θ23 have been defined. Note that

only the NSI parameters εµµ, εµτ , and εττ appear in the survival probability PNSI
µµ [8]. Since

the current experimental bound on εµµ is very stringent, the dominant NSI effects should

come from εµτ and εττ .

III. NUMERICAL ANALYSIS

In order to illustrate the NSI effects on neutrino propagation in the Earth, we calculate

numerically the effective mixing angle θ̃13 and the oscillation probabilities. In our numerical

7
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FIG. 1: Dependence of the effective mixing angle sin2 θ̃13 on the NSI parameters and neutrino

energy, where a constant matter density profile ρ = 4.5 g/cm3 has been assumed (i.e., the Earth

mantle density) and the dotted line corresponds to sin2 θ̃13 = sin2 θ13. In addition, the best-fit

values of neutrino parameters from Ref. [28] have been used.

computations, we assume the PREM model of Earth matter density [24], and express the

baseline in terms of the zenith angle as L = −2R cos θz , where R = 6371 km is the Earth

radius and θz = π − h with h being the nadir angle. Note that −1 < cos θz < −0.84

corresponds to the trajectories crossing both the mantle and core of the Earth, while −0.84 <

cos θz < 0 to those crossing only the Earth mantle. On the other hand, there already exist

restrictive experimental constraints on the NSI parameters in realistic models [25]. However,

in Ref. [26], the model-independent upper bounds on the matter NSI parameters have been

found to be much larger than the model-dependent ones:







|εee| < 4.2 |εeµ| < 0.33 |εeτ | < 3.0

|εµµ| < 0.068 |εµτ | < 0.33

|εττ | < 21






. (23)

Therefore, in the following discussions, we just ignore εµµ, which receives the most stringent

constraint. For the other matter NSI parameters, we will take a conservative value |εαβ| = 0.1

for illustration 2.

A. Effective Mixing Angle in Matter

First of all, it may be interesting to show how the standard and non-standard matter

effects modify the effective neutrino mixing angles θ̃ij in matter. As mentioned in the

previous section, we will focus on θ̃13, which is relevant for neutrino energies E > 1 GeV. To

2 Recently, the MINOS experiment has constrained the NSI parameter to the range −0.20 < εµτ < 0.07 at

the 90% confidence level [27], in the framework of two-flavor neutrino oscillations.
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examine the dependence of θ̃13 on the NSI parameters, we consider two specific examples,

where only one relevant NSI parameter is switched on in each case and all the CP-violating

phases (i.e., δ and φαβ) are set to zero:

• εeτ 6= 0. With the help of Eqs. (9) and (19), we derive

sin2 θ̃13 =
Ĉ − cos 2θ13 + A

2Ĉ
+

cos 2θ13 − A

Ĉ3
A sin 2θ13c23εeτ , (24)

where the small terms αs13 and ε2eτ have been neglected. It is worthwhile to mention

that if the resonance condition A = cos 2θ13 is satisfied, we have θ̃13 = π/4, which is

independent of the NSI parameter εeτ in the leading order approximation. This can

be well understood in the framework of two-flavor neutrino oscillations in matter with

NSIs [4, 29], where one observes that the off-diagonal term in HNSI cannot modify the

resonance condition. The result in the case of εeµ 6= 0 can be obtained by replacing

c23εeτ with s23εeµ in Eq (24), and the difference between these two cases can be at-

tributed to a non-maximal θ23. In Fig. 1, we have calculated sin2 θ̃13 using the exact

formulas of parameter mappings [23]. From the left panel, we can clearly observe that

the resonance condition is essentially unchanged by εeτ , and θ̃13 = θ13 is achieved when

the standard matter effects are cancelled by the NSI effects. However, the resonance

is in fact shifted by higher-order corrections.

• εµτ 6= 0. In a similar way, we obtain

sin2 θ̃13 =
Ĉ − cos 2θ13 + A

2Ĉ
− sin2 2θ13

2Ĉ3
A sin 2θ23εµτ , (25)

where the small terms αs13 and ε2µτ have been omitted. It is now evident that the

standard resonance condition A = cos 2θ13 does not lead to sin2 θ̃13 = 1/2. Namely,

the resonance has been shifted by the NSI parameter, which has also been pointed

out in Ref. [29] in the framework of two-neutrino oscillations. For a fixed value of

θ̃13, if εµτ becomes larger, the neutrino energy has to increase in order to balance the

negative contribution from εµτ . In the right panel of Fig. 1, we have shown sin2 θ̃13
by using the exact mapping formulas. The main features can be well described by the

approximate formula in Eq. (25). Note that, compared to εeτ , the εµτ correction to

θ̃13 is milder since it is further suppressed by sin 2θ13. Similarly, one can also consider

the impact of εee, εµµ, and εττ on the effective mixing angles.

B. Neutrino Oscillograms: Standard Case

The matter effects on neutrino propagation in the Earth can be perfectly illustrated

through the so-called neutrino oscillograms. In order to compare between standard and

non-standard matter effects, we first briefly summarize the general features of the standard

neutrino oscillograms, which have been systematically studied in Refs. [30, 31].
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FIG. 2: Standard neutrino oscillograms without NSIs (i.e., εαβ = 0) in the appearance channel:

P SD
eµ = P (νe → νµ) for neutrino oscillations in the case of normal neutrino mass hierarchy (left

panel) and P̄ SD
eµ = P (ν̄e → ν̄µ) for antineutrino oscillations in the case of inverted neutrino mass

hierarchy (right panel).
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FIG. 3: Standard neutrino oscillograms without NSIs (i.e., εαβ = 0) in the disappearance channel:

P SD
µµ = P (νµ → νµ) for neutrino oscillations in the case of normal neutrino mass hierarchy (left

panel) and in the case of inverted neutrino mass hierarchy (right panel).

In Figs. 2 and 3, we have reproduced the neutrino oscillograms in the νe → νµ and

νµ → νµ channels, respectively. In our numerical calculations, the latest global-fit data on

leptonic mixing angles and the neutrino mass-squared differences given in Ref. [28] have

been used. Since the Dirac CP-violating phase has not been experimentally constrained, we

simply take δ = 0 in the calculations. Some general comments on the neutrino oscillograms

are in order [30]:

• In the left panel of Fig. 2, the oscillation probability P SD
eµ ≡ P (νe → νµ) is shown in

the NH case. The resonance in the mantle appears around cos θRz ≈ −0.75 and ER ≈
6 GeV, where the resonance energy ER is essentially determined by A = cos 2θ13 while
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the corresponding baseline LR or the zenith angle θRz by the requirement of maximal

oscillation phase ∆ = π. Note that we can safely ignore the effects of ∆m2
21 for neutrino

energies E > 1 GeV. The ridges in the core region are caused by the parametric

resonances, receiving both contributions from the mantle and core oscillation phases

[30]. Since the resonance takes place in the neutrino sector, the oscillation probability

of ν̄e → ν̄µ is suppressed by matter effects and the oscillogram is almost empty. In

the right panel of Fig. 2, we have calculated the antineutrino oscillation probability

P̄ SD
eµ ≡ P (ν̄e → ν̄µ) in the IH case. Now that the resonances occur in this case and

dominate the contributions to oscillation probabilities, the similarity between P SD
eµ for

NH and P̄ SD
eµ for IH is evident. The oscillation probability P̄ SD

eµ in the NH case is highly

suppressed, as P SD
eµ in the IH case.

• In Fig. 3, we have given the survival probabilities P SD
µµ ≡ P (νµ → νµ) for both NH (left

panel) and IH (right panel). The probability P SD
µµ receives the dominant contribution

from the vacuum oscillation due to θ23 and ∆m2
31, and is significantly affected by the

1-3 mixing through θ13 only in the resonance regions. In fact, the latter effect reduces

P SD
µµ , as indicated in the left panel of Fig. 3. In the absence of resonance, as in the

IH case, P SD
µµ is basically given by the vacuum oscillation probability as shown in the

right panel. The antineutrino survival probabilities P̄ SD
µµ ≡ P (ν̄µ → ν̄µ) in NH and IH

cases are similar to P SD
µµ in IH and NH cases, respectively.

The detailed study of the maxima and minima in neutrino oscillation probabilities and the

general conditions for resonances in the two-flavor approximation can be found in Ref. [30],

while those for the three-flavor oscillations in Ref. [31]. In our discussions, since the neutrino

energies are always above 1 GeV, the three-flavor corrections should be negligible.

C. Neutrino Oscillograms: NSI Effects

Now we proceed to discuss the NSI effects on the standard neutrino oscillations in the

Earth by using neutrino oscillograms. To quantify the NSI effects, we consider the difference

between the standard (i.e., εαβ = 0) and non-standard (i.e., εαβ 6= 0) neutrino oscillograms,

namely ∆Peµ = PNSI
eµ − P SD

eµ and ∆Pµµ = PNSI
µµ − P SD

µµ . In Fig. 4, we numerically calculate

∆Peµ and ∆Pµµ in the NH case, and only one NSI parameter is switched on in each plot.

First, we consider the difference ∆Peµ in the appearance channel, for which the approx-

imate formula in the case of constant matter density can be obtained from Eq. (21) and

the numerical results are shown in the left column of Fig. 4. Two comments are in order:

(1) The contributions from NSI parameters to ∆Peµ are proportional to s13 in the limit

A → 1, i.e., around the resonance. In the deep core, i.e., cos θz < −0.84, the parametric

resonances dominate, so the NSI effects are not necessarily suppressed. (2) The difference

∆Peµ is independent of εµτ in leading order. For this reason, as shown in the lower plot,

∆Peµ is vanishing everywhere except in the core, if only εµτ 6= 0 is assumed. One common

11



cosθz

E
[G

eV
]

 

 

εeµ = 0.1

−1 −0.75 −0.5 −0.25 0

5

10

15

20

−1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1

cosθz

E
[G

eV
]

 

 

εeµ = 0.1

−1 −0.75 −0.5 −0.25 0

5

10

15

20

−1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1

cosθz

E
[G

eV
]

 

 

εeτ = 0.1

−1 −0.75 −0.5 −0.25 0

5

10

15

20

−1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1

cosθz

E
[G

eV
]

 

 

εeτ = 0.1

−1 −0.75 −0.5 −0.25 0

5

10

15

20

−1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1

cosθz

E
[G

eV
]

 

 

εµτ = 0.1

−1 −0.75 −0.5 −0.25 0

5

10

15

20

−1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1

cosθz

E
[G

eV
]

 

 

εµτ = 0.1

−1 −0.75 −0.5 −0.25 0

5

10

15

20

−1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1

FIG. 4: Differences between the standard and non-standard neutrino oscillograms in the νe → νµ

channel ∆Peµ ≡ PNSI
eµ −P SD

eµ (left column) and in the νµ → νµ channel ∆Pµµ ≡ PNSI
µµ −P SD

µµ (right

column), where the normal neutrino mass hierarchy and δ = 0 are assumed, and εeµ = 0.1 (upper

row), εeτ = 0.1 (middle row), and εµτ = 0.1 (lower row) are taken for illustration.

feature of all three plots is that significant NSI effects are lying in the core region, which is

only accessible in the atmospheric neutrino experiments.

Second, we turn to the difference ∆Pµµ in the disappearance channel, for which the

approximate formula in the case of constant matter density can be obtained from Eq. (22)

12



and the numerical results are shown in the right column of Fig. 4. As implied by Eq. (22),

the effects induced by εeµ and εeτ can only arise from higher-order corrections of s13 and α,

so they are insignificant as in the upper and middle plots. The most interesting observation

is that |∆Pµµ| ≃ 1 could be achieved, particularly in the core region. Switching off both εµµ
and εττ in Eq. (22), we have

∆Pµµ ≈ −|εµτ | sin 2θ23
(

A∆sin2 2θ23 sin∆ + 4 cos2 2θ23 sin
2 ∆

2

)

, (26)

where φµτ = 0 is assumed. Furthermore, note that the second term in the parentheses on

the right-hand side of Eq. (26) is always positive, while the first term can be either positive

or negative, depending on the oscillation phase ∆. If ∆ = (2k + 1)π/2 with k being an

integer, the contribution from the second term is negligible, since cos2 2θ23 ≈ 0.03 for the

best-fit value of θ23 = 40◦. Therefore, ∆Pµµ ∝ sin∆ should show an oscillatory behavior,

as given in the lower plot. It is worthwhile to note that ∆ = (2k + 1)π/2 corresponds to

the oscillation minima of the standard survival probability P SD
µµ . For example, comparing

the left plot of Fig. 3 with the lower plot in the right column of Fig. 4, one can observe

the huge difference in the region along the diagonal line. If ∆ = kπ holds, the second term

dominates over the first one, and ∆Pµµ follow the same oscillatory structure as the leading

vacuum oscillation term in P SD
µµ .

D. Non-Standard CP Violation

Finally, we show that the NSIs may lead to the enhancement of CP-violating effects in

neutrino oscillations [32]. In Fig. 5, the probability differences ∆Peµ(δ) ≡ PNSI
eµ (δ)−PNSI

eµ (0)

induced by the leptonic CP violating phase δ are calculated for δ = π/2. To signify the

CP-violating effects due to δ, we set all the NSI phase parameters to zero, i.e., φαβ = 0. As

mentioned before, the CP-violating effects in the standard case come from the interference

between two different oscillation frequencies, and thus these effects are relatively small in

both cases of NH and IH. However, the probability differences are enhanced greatly when

the NSI parameters are switched on, in particular in the NH case.

The left and right plots in the first row correspond to ∆Peµ(δ) = P SD
eµ (δ) − P SD

eµ (0) in

the NH and IH cases, respectively, since the NSI parameters are taken to be zero. One can

observe that the impact of δ is insignificant. See Ref. [33] for more discussions about the

CP-violating effects in the standard three-neutrino oscillations in matter. Even if the NSI

parameters are nonzero, the CP-violating effects are negligible in the IH case, as shown in

the middle and lower plots in the right column. This is because the transition probability

PNSI
eµ itself is suppressed rather than enhanced by matter effects. However, as in the NH

case, |∆Peµ(δ)| for δ = π/2 could be 12% in the mantle, while as large as 30% in the core, as

illustrated in the middle and lower plots in the left column. At the same time, without the

NSI effects, it is vanishingly small in both mantle and core regions. Therefore, the future

long-baseline oscillation experiments, where neutrino beams traverse the Earth mantle, will

have excellent sensitivities to NSI-enhanced CP-violating effects.
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FIG. 5: Oscillograms for the probability differences ∆Peµ(δ) = PNSI
eµ (δ)− PNSI

eµ (0) with δ = π/2 in

the normal neutrino mass hierarchy case (left column) and in the inverted neutrino mass hierarchy

case (right column). The two plots in the first row correspond to ∆Peµ(δ) with vanishing NSI

parameters, i.e., ∆Peµ(δ) = P SD
eµ (δ) − P SD

eµ (0) with δ = π/2.

The remarkable difference between standard and non-standard CP-violating effects be-

comes clear, if we look at the last line of Eq. (21). More explicitly, ∆Peµ(δ) is proportional

to αs13 in the standard case, while to |εeµ|s13 or |εeτ |s13 in the non-standard case. For

εαβ = 0.1 and α ≈ 0.03, the standard CP violation is suppressed by one order of magnitude.
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IV. EVENT RATES AT PINGU

In previous sections, we have explored the general features of NSI effects on neutrino

oscillations in the Earth matter at the level of oscillation probabilities, which should have

important implications for atmospheric neutrino experiments. In order to study the NSI

effects in a realistic experiment, we have to calculate the number of neutrino events in

small bins of energies ∆E and zenith angles ∆ cos θz for a terrestrial detector. To this end,

we take a multi-megaton scale ice Cherenkov detector for example, such as the proposed

PINGU detector at the South Pole [34]. The main idea of this proposal is to make the

Deep Core of the IceCube detector denser to lower the energy threshold down to a few GeV,

implying possible precision measurements of atmospheric neutrinos. Such an experimental

setup would be rather interesting in view of its great physics potential for the determination

of neutrino mass hierarchy, and the oscillation parameters [16–19]. We refer the readers to

Ref. [34] for a detailed description of the PINGU experiment.

Atmospheric neutrinos interact with the nucleons via charged-current interactions in the

detector and produce energetic charged leptons, which are radiating Cherenkov photons

when propagating in ice. The Cherenkov photons will be captured by the dense strings of

photomultipliers. The charged muons µ± leave clear and long tracks in the detector, so

the experimental resolution to the direction of muon neutrinos is much better than that

of electron neutrinos. Now, we make a rough estimate of the distribution of νµ-like events

collected by the PINGU detector for one year running. Explicitly, the number of νµ-like

events in the i-th zenith-angle bin and j-th energy bin is given by

Nij = 2πNAT

∫ cos θi+1
z

cos θiz

d cos θz

∫ Ej+1

Ej

dE

[(

dΦνµ

d cos θzdE
PNSI
µµ +

dΦνe

d cos θdE
PNSI
eµ

)

σCC
νN (E)

+

(

dΦν̄µ

d cos θdE
P̄NSI
µµ +

dΦν̄e

d cos θdE
P̄NSI
eµ

)

σCC
ν̄N (E)

]

ρVeff(E) , (27)

where Φνα (Φν̄α) denotes the neutrino να (antineutrino ν̄α) fluxes, NA is the Avogadro’s

number, PNSI
αβ (P̄NSI

αβ ) stands for the neutrino (antineutrino) oscillation probabilities with

NSI effects, and the effective volume of PINGU with 20 strings is parametrized as [16]

ρVeff(E) = 14.6 Mt×
[

log10

(

E

GeV

)]1.8

. (28)

Furthermore, we adopt the following simple parametrization of the deep inelastic ν-N and

ν̄-N scattering cross sections [16]

σCC
νN (E) = 7.30× 10−39 cm2

(

E

GeV

)

,

σCC
ν̄N (E) = 3.77× 10−39 cm2

(

E

GeV

)

. (29)

The atmospheric electron and muon neutrino fluxes are taken from Ref. [35], where the

neutrino fluxes have been calculated using a hybrid method for 1 GeV < E < 104 GeV and

tabulated in small bins of neutrino energy and zenith angle.
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FIG. 6: The number of νµ-like events in the E− cos θz plane, collected by the PINGU detector for

one year, where the normal neutrino mass hierarchy is assumed. The upper left plot corresponds

to the case of standard neutrino oscillations, i.e., all the NSI parameters are vanishing.

The event distribution in the case of standard neutrino oscillations is shown in the upper

left panel of Fig. 6, where the bin widths ∆E = 1 GeV and ∆ cos θz = 0.05 are used

and NH is assumed. Note that the highest number of events can reach ∼ 800, which is

in agreement with the estimation in Ref. [16]. It is evident that the event distribution is

mainly determined by the νµ → νµ survival probability, which is given in the left panel of

Fig. 3. In the presence of NSIs, the event distribution is distorted, as shown in the other

plots of Fig. 6. In particular, in the case of εµτ 6= 0, the number of events at high energy

bins is increased remarkably. This is because the νµ → νµ channel in Eq. (27) dominates the

contributions to the observed νµ-like events, and the NSI parameter εµτ significantly modifies

the survival probability in this region. The latter has already been pointed out in Sec. III

C and illustrated in Fig. 3. Therefore, the PINGU detector has a better sensitivity to εµτ
than εeµ and εeτ . Note also that the total number of events is approximately unchanged.

To quantify the significance of NSI effects, we define an SD–NSI asymmetry as the dif-

ference between the number of νµ-like events in the standard case (i.e., εαβ = 0) and that
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FIG. 7: The SD–NSI asymmetry A ≡ (NSD
µ − NNSI

µ )/
√

NSD
µ of νµ-like events at the PINGU

detector for one year, in the cases of normal neutrino mass hierarchy (left column) and inverted

neutrino mass hierarchy (right column).

in the NSI case

A =
NSD

µ −NNSI
µ

√

NSD
µ

(30)

for each bin in the E – cos θz plane. In Fig. 7, we illustrate the distribution of the asymmetry
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A for specific values of NSI parameters. In the cases of εeµ 6= 0 and εeτ 6= 0, the large

asymmetry appears in the low energy regions E ∼ [5, 10] GeV, and is separated by the lines

of zero asymmetry. For εeµ = 0.1 or εeτ = 0.1, the maximal asymmetry can be as large as

A ≈ 7, which is comparable to the estimated sensitivity to the neutrino mass hierarchy [16].

As expected, in the case of a non-vanishing εµτ , the SD–NSI asymmetry is much more

stunning (e.g., A ≈ 50), indicating a great discovery potential on this NSI parameter. We

have also made a comparison between NH and IH in Fig. 7, where one can observe that the

asymmetry in some bins is reduced in the case of εeµ 6= 0 and εeτ 6= 0 for IH, while there

is no significant difference in the case of εµτ 6= 0. Therefore, the experimental sensitivity

to the NSI parameters, in particular εµτ , at the PINGU detector, is almost independent of

neutrino mass hierarchy.

Note that the real sensitivity to NSI effects will actually be much lower because of sys-

tematics, the smearing effects in the reconstruction of neutrino energies and zenith angles,

the uncertainties in the matter density profile and the other neutrino oscillation parameters

[16]. In addition, the ντ interactions lead to an important background to the νµ events.

Nevertheless, a detailed simulation on the probe of NSIs at PINGU is meaningful and will

be elaborated elsewhere.

V. SUMMARY

Now we are entering a new era of precision measurements of neutrino parameters, includ-

ing three leptonic mixing angles and two neutrino mass-squared differences. The ongoing

and forthcoming neutrino experiments are expected to pin down neutrino mass hierarchy

and to discover CP violation in the lepton sector. As the precisions of oscillation experiments

gradually improve and more data are accumulated, it is promising to discover or constrain

the new physics effects beyond the standard paradigm of neutrino oscillations.

One of the most widely studied scenarios is the non-standard neutrino interactions. In

this paper, we have considered the NSI effects on neutrino oscillations in the Earth matter

by using neutrino oscillograms. First, we derive the mapping formulas between the lepton

mixing matrix in vacuum and that in matter beyond the leading order approximation. In

particular, the NSI effects on the effective mixing angle θ̃13 have been discussed in some

detail. Then, the NSI effects on the neutrino oscillograms of the Earth are investigated. The

most significant difference between the standard and non-standard oscillograms appears in

the νµ → νµ survival probability and in the case of εµτ 6= 0. In addition, the CP-violating

effects in neutrino oscillations can be enhanced by the NSI effects, even if the CP-violating

phases in the NSI parameters are switched off. Finally, the NSI effects in the PINGU

experiment are explored. We calculate the event rate of atmospheric muon neutrinos at

PINGU, and demonstrate that the future huge atmospheric neutrino experiments should

have very good sensitivities to the NSI parameters, in particular εµτ . However, a more

sophisticated simulation of the NSI effects at PINGU, including the systematics and other

uncertainties, is needed to make a final conclusion.
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In addition to atmospheric neutrino experiments, such as PINGU, the ongoing and up-

coming long-baseline neutrino oscillation experiments, which are intended for the determi-

nation of neutrino mass hierarchy and leptonic CP violation, are also sensitive to the NSI

effects. In general, the future neutrino oscillation data will soon lead us either to the discov-

ery of new effects beyond the standard oscillation scenario, or to more restrictive constraints

on new physics parameters.
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