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ABSTRACT

The tensor-based morphometry (TBM) has been widely used in char-
acterizing tissue volume difference between populations at voxel
level. We present a novel computational framework for investigat-
ing the white matter connectivity using TBM. Unlike other diffu-
sion tensor imaging (DTI) based white matter connectivity studies,
we do not use DTI but only T1-weighted magnetic resonance imag-
ing (MRI). To construct brain network graphs, we have developed
a new data-driven approach called the ε-neighbor method that does
not need any predetermined parcellation. The proposed pipeline is
applied in detecting the topological alteration of the white matter
connectivity in maltreated children.

Index Terms— tensor-based morphometry, structural connec-
tivity, brain network, maltreatment, Jacobian determinant

1. INTRODUCTION

The human brain exhibits one of the most complex networks. This
anatomical substrate supports the emergence of the coherent physi-
ological activities in the distant brain regions that make up a func-
tional network [1]. Unlike extensively studied functional brain net-
works, structural connectivity is not often explored till the introduc-
tion of diffusion tensor imaging (DTI) which is often used to inves-
tigate the structure of axonal fiber bundles in human brains in vivo.

Recently, there has been an attempt of using cross-correlation of
cortical thickness as a way to investigate cortico-cortical connectiv-
ity [2, 3]. Besides the cortical thickness, it is possible to correlate
other voxel-wise morphometric measures such as the Jacobian de-
terminant (JD) obtained from the tensor-based morphometry (TBM)
framework. The JD measures the change in the volume of a voxel
in deforming the template brain to match an individual brain [4]. By
correlating the JD at different voxels, we can quantify how the local
volume in one voxel is correlated to the local volume in other voxels.
Thus it can be directly used in constructing the whole brain map of
corresponding structures.
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In this paper, we propose to construct a structural connectivity
map based on the cross-correlation of the JD for the first time. The
main advantage of the proposed technique is that it does not require
DTI but still able to construct the population specific connectivity
maps only using T1-weighted MRI. Since MRI has been extensively
collected than DTI so far in clinical applications, it would be highly
beneficial if we can exploit this massive database of MRI.

The second advantage is that it can build connectivity maps over
the whole brain. While the cortical thickness-based connectivity is
restricted to the gray matter only, neural development such as myeli-
nation or glial proliferation contributes the white matter volume [5].
Our approach can build a connectivity map of the whole brain en-
abling such an investigation that involves in the white matter.

The proposed framework is applied to the brain networks of
the children who have been maltreated in the early stages of life
and have been institutionalized in orphanages in East Europe and
China but are now living with adopted families in the USA (Post-
Institutionalized; PI). It is known that individuals who experience
such an early adversity are at heightened risk for a various mental
and physical problems. In the physically abused children, smaller
local volume was found in the orbitofrontal cortex, which is known
as central to social and emotional regulation [6]. Rodent models
show that the chronic stress occurs the cytoarchitectural changes in
the frontal cortex [7]. Thus we expect decreased white matter con-
nectivity in the PIs in the regions including the frontal cortex.

2. METHODS

2.1. Subjects and MRI image

T1-weighted MRIs were collected using a 3T GE SIGNA scanner for
32 PI and 33 normal control (NC) subjects. Two groups are matched
in terms of age (PI: 11.19 ± 1.73 years, NC: 11.48 ± 1.62 years;
T (63)=0.71, p > 0.47). But the gender ratios (girls over all; PI:
0.59, NC: 0.39) and the whole brain volume (PI: 1,808.2 ± 117.6
cm3, NC: 1,690.0 ± 156.4 cm3; T (63)= 3.44, p < 0.001) are differ-
ent. A study specific template was constructed using symmetric nor-
malization (SyN) through Advanced Normalization Tools (ANTS)
[8].

Computational load quadratically increases as the number of
nodes increases. Even with 336363 white matter voxels in the
template as in this case, there will be total 113140000000 cross-
correlations to compute. Thus, to reduce the computational load, the
1mm-resolution JD maps are subsampled at every 5 mm after spatial
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Fig. 1. Framework of the proposed analysis applied to post-
institutionalized (PI) children and normal control (NC). (a) Jacobian
determinant maps of individuals projected on the template. (b) par-
tial correlation maps seeded at the genu (marked with green squares)
(c) FDR-thresholding on partial correlation is used to establish edges
of the connectivity network. Only edges connecting near the genu
are visualized. The different pairings are marked with different col-
ors. (d) The proposed ε-neighbor graphs of connectivity. Only posi-
tive correlations are shown here. The gray shading of nodes indicates
the node degree. The size of nodes represents the number of nodes
that are merged in the ε-neighbor construction.

smoothening with a Gaussian kernel with 3 mm FWHM. Subse-
quently 2692 nodes are obtained (reduction ratio= 0.0080). This
is more than sufficient number of nodes for modeling white mat-
ter connectivity and substantially larger than most of connectivity
studies that use between 50-100 nodes.

2.2. Partial correlation maps

Fig.1 illustrates the proposed pipeline. Between 2692 nodes, we link
two nodes if the partial correlation of the JDs is statistically signifi-
cant at a certain threshold. The JD is defined as the determinant of
the displacement gradient matrix ∂U/∂x [4] as

J = det(I+ ∂U/∂x) (1)

where U is the displacement matrix and x is the coordinate vector.
To remove the possible confounding effect of age, gender and brain
volume, we used the partial correlation obtained from fitting general
linear models (GLM). Let z = (1, age, gender, volume) be the nui-
sance covariate vector. Then we modeled the JD on the i-th node
as

Ji = zλi + εi (2)

where λi = (λi1, . . . , λi4)
′ is the unknown parameter vector and εi

is the correlated zero mean Gaussian noise. The residual of the fit is
given by ri = Ji−zλ̂i, where λ̂i are the least-squares estimation. It
can be shown that the partial correlation ρij between Ji and Jj while
factoring out the effect of the nuisance covariates z is simply given
by the correlation between the residuals ri and rj [9]. The partial
correlation ρij is then estimated using the Pearson correlation as
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where n is the number of subjects in each group.

2.3. FDR thresholding of partial correlations

In order to obtain the deterministic network graph, we have thresh-
olded the partial correlations using the false discovery rate (FDR)
thresholding. The distribution of correlations can be approximated
using the Fisher transform: [10]:

zij =
tanh−1(ρ̂ij)√

1/(n− 3)
∼ N(0, 1). (4)

The null hypothesis H0 is that there is no link between the nodes i
and j, i.e. ρij = 0.

The family-wise error rate (FWER) would be highly inflated
with 2692 × 2691/2 possible tests between all nodes. Thus we ap-
plied the FDR with q = 0.01 under a weak assumption of depen-
dency. If the resulting FDR-threshold is given by s, the adjacency
matrix A = (aij) is given by aij = 1 if zij ≥ s and aij = 0
otherwise, with the diagonal terms aii = 0.

2.4. ε-neighbor graph simplification

Though the obtained adjacency matrices via the FDR thresholding
are sparse, almost ten thousands edges still encumber biological in-
terpretation. Furthermore, isolated single connections consisting of
two nodes are more likely false positives. Therefore, we need to
perform a network simplification without distorting underlying net-
work topology. For this purpose, we have adapted the ε-neighbor
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Fig. 2. Schematic illustration of the ε-neighbor updating scheme.
(a) Initially the graph G1 consists of one edge e11e12 (black). At the
next stage, we determine how to connect the new edge e21e22 (red)
to the existing graph G1. The node e21 is within the ε radius (blue)
of the node e12. So e21 is the ε-neighbor of G1 and has to be merged
with e12. (b) The coordinates of the merged node e12 is updated to
e12
′ (green) and the new edge e12′e22 is included in G2.

scheme [11], which was originally applied in constructing network
graphs out of numerous white matter tracts obtained from DTI. The
algorithm condenses a given complex graph to a much simpler graph
iteratively.

From the FDR-thresholding, we obtain collection of significant
edges ei1ei2 linking two nodes ei1 and ei2. Suppose we have
constructed the graph Gk−1 using edges e11e12, · · · , ek−1,1ek−1,2

only. Then at the k-th iteration, we construct the graph Gk using
ek1ek2 somehow. In order to do this, we need to define the ε-
neighbor of a graph. Let us define the distance d(p,Gk) of a node p
to the graph Gk as

d(p,Gk) = min
q∈Vk

‖p− q‖. (5)

If d(p,Gk) ≤ ε for some radius ε, the node p is called the ε-neighbor
of Gk.

Initially the graph G1 = {V1, E1} starts with two nodes V1 =
{e11, e12} and a single edge E1 = {e11e12}. At the 2nd iteration,
we check if the new nodes e21 and e22 are the ε-neighbor of G1. We
will merge a new node to the existing node in V1 if the new node is
the ε neighbor of a node in V1. The idea is best illustrated with a toy
example given in Fig. 2.

Suppose e21 is the ε-neighbor of G1. We assume that e12 is the
closet node to e21. Then we merge e21 to e12 and update the ver-
tex and edge sets as V2 = {e11, e12, e22}, E2 = {e11e12, e12e22}.
Other possible scenarios are given in [11]. This merging and deletion
process is iteratively performed. However, the original ε-neighbor
construction method as presented in [11] does not produce a unique
graph and it depends on the initial choice of edge set E1. To guar-
antee the stability, we decided to update the coordinates of the pre-
existing node when a merging occurs. In the toy example, the coor-
dinates of e12 are updated to e12

′as

e12
′ ← e12n

1
12 + e21

n1
12 + 1

(6)

where nk
ij is the total number of nodes that are merged to the existing

node eij at the k-th iteration. If the merging happens, we have to
update nk

ij as well. So we have n2
12 = n1

12 +1. For this study, ε was
set to be 21 mm to investigate the connectivity at macro-scale level.

3. RESULTS

The FRD-thresholding produces graphs with 2692 nodes. The ε-
neighbor method simplifies the graphs with only 88 nodes and 241
edges for the PIs, and 86 nodes and 276 edges for the NCs. In terms

Fig. 3. Permutation tests on degree distributions. (a) Degree dis-
tributions. The significant differences between the PIs and the NCs
marked with green asterisks with p-values (Bonferroni corrected at
α=0.05). (b) The null distribution obtained by 2000 permutation
tests. X-axis is for the difference of degrees between the PIs and the
NCs. Y-axis is for the number of counts. Red vertical lines note the
actual differences.

of the number of nodes, the ε-neighbor method achieves the com-
pression rate of 3.27 % while still preserving the overall topological
structures in the graphs with 2692 nodes.

We used the degree of nodes as a discriminating feature between
the two groups. The degree distributions of ε-neighbor graphs are
shown in Fig. 3. The counts in the high degrees are prone to noise
thus those exceeding degree 14 are summed into a single bin [1].
Since the underlying distribution is unknown, the significance was
tested using a non-parametric permutation test. We randomly per-
muted the group identifiers for 2000 times and proceeded with the
graph construction procedures. Since we need to perform multi-
ple tests for 15 degree bins simultaneously, Bonferroni correction
threshold for an individual test was set at 0.05/15 = 0.0033. There
are significantly more nodes with the low degrees (1, 3 and 4) in the
PIs than the NCs and more nodes with the high degrees (7 and 12)
in the NCs than the PIs. Since the numbers of nodes are expected
to be similar across groups, it suggests that the nodes with the high
degrees are affected in the PIs resulting more low degree nodes. It
also implicates weakened connectivity in the PIs in accordance with
the previous literature [7].

The anatomical patterns of the ε-neighbor graphs are shown in
Fig. 4. While the inter-hemispherical edges connecting homologous
sub-cortical regions are commonly found in the both groups, the dif-
ferences in the edge concentration are observed in the regions that
include the cerebellar, the brainstem and the regions around the ante-
rior cingulate gyri. In addition, the extension of the edges that reach
to the dorsal lateral prefrontal cortex and the medial temporal cortex
seems to be limited in the PIs than the NCs suggesting consistency
with the reduced local volume in those regions [6].



Fig. 4. Local connectivity patterns of the ε-neighbor graphs. Only positive correlations are shown in a lateral view. Edges are color-coded
by the number of merged connections implying the strength of connections. The gray shading of nodes indicates the degree and the size of
nodes represents the number of nodes that are merged.

4. DISCUSSIONS

We have presented a novel structural connectivity mapping tech-
nique that uses only T1-weighted MRI. The constructed partial cor-
relation maps (Fig.1) look very similar to the probabilistic connectiv-
ity maps obtained from DTI. Further research is needed for validat-
ing the closeness of the partial correlation maps to the probabilistic
connectivity maps.

The network graphs showed significantly different degree distri-
butions in the PIs implying abnormal connectivity. The anatomical
pattern of the white matter connectivity seems to be locally different
across groups. However, it should be more thoroughly validated in a
further study.

In this paper, we have mainly focused on developing the connec-
tivity mapping technique via the TBM framework and the ε-neighbor
graph simplification.
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