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In response to biotic stresses, such as herbivore attack, plants reorganize their transcriptomes and reconfigure their physiologies
not only in attacked tissues but throughout the plant. These whole-organismic reconfigurations are coordinated by a poorly
understood network of signal transduction cascades. To explore tissue-based interdependencies in the resistance of Nicotiana
attenuata to insect attack, we conducted time-series transcriptome and metabolome profiling of herbivory-elicited source leaves
and unelicited sink leaves and roots. To probe the multidimensionality of these molecular responses, we designed a novel
approach of combining an extended self-organizing maps-based dimensionality reduction method with bootstrap-based
nonparametric analysis of variance models to identify the onset and context of signaling and metabolic pathway activations.
We illustrate the value of this analysis by revisiting dynamic changes in the expression of regulatory and structural genes of the
oxylipin pathway and by studying nonlinearities in gene-metabolite associations involved in the acyclic diterpene glucoside
pathway after selectively extracting modules based on their dynamic response patterns. This novel dimensionality reduction
approach is broadly applicable to capture the dynamic rewiring of gene and metabolite networks in experimental design with

multiple factors.

Plants adapt to environmental stresses through
large-scale transcriptional reprogramming, which in-
volves intricate signaling pathways (Hahlbrock et al.,
2003; Nakashima et al., 2009; Zeller et al., 2009; Walley
and Dehesh, 2010). These transcriptional adjustments
can be captured by studying changes in the expression
of genes in different tissues in order to elucidate the
influence of particular pathways as well as the relative
contribution of a given tissue to the whole-organism
response. Although poorly understood, signaling net-
works controlling these transcriptional responses have
been shown to be highly stress condition specific, as
clearly illustrated by the large number of studies that
have demonstrated differences in plant responses to
mechanical wounding and herbivory (Baldwin, 1990;
Alborn et al., 1997; Halitschke et al., 2003; Reymond
et al.,, 2004; Wu et al., 2007). Experiments designed to
study such intricate networks often have a complex
factorial structure, obtained from different conditions/
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treatments, tissue types, or genetic contexts. In addi-
tion, time-series experiments are often employed to
capture dynamic expression profiles that distinguish
primary from secondary responses to stress in gene
regulatory networks (GRN).

Basic statistical tests and clustering algorithms based
on Pearson correlation to analyze multifactorial ex-
periments are often plagued by the problem of gene
prioritization and large numbers of false positives
(Bittner et al., 1999; Getz et al., 2000). First, clustering
algorithms classify genes on the basis of their expres-
sion under all experimental conditions, whereas sig-
naling pathways underlying these gene expression
responses are generally affected only by a subset of the
experimental conditions (Swindell, 2006). Addition-
ally, connections in GRN computed by considering
all samples for different tissues, treatments, and time
points together in a single analysis fail to recognize
the transient gene associations found in early stress-
responsive pathways that only appear in a subset of
treatment types. Thus, the synchronous coregulation
of genes representing intermediate biological states
cannot be captured using collective information
studies, and this represents a major challenge for
the identification of the exact mechanisms of stress
adaption in many organisms. Bioinformatic approaches
such as mutual information (Priness et al., 2007) and
biclustering (Dharan and Nair, 2009) have been devel-
oped to address this limitation. Moreover, interaction
patterns deduced from these coexpression studies rep-
resent the static wiring of the network, whereas net-
works will assemble dynamically as the organism adapts
to external stimuli.
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To best capture the temporal dimension as a variable
affecting the structure of GRN, several efforts have
been published that identify patterns in time-series
data. Park et al. (2003) used a modified ANOVA ap-
proach taking time as a factor along with other con-
ditions. Wang and Kim (2003) used mixed-effect
ANOVA to identify genes with different temporal
profiles for different stress conditions in Caenorhabditis
elegans. Tai and Speed (2006) used an empirical Bayes
approach to introduce moderation, defined as the ef-
fect of moving gene-specific variances toward a com-
mon value estimated from a whole gene set, to reduce
the number of false positives and false negatives.
Storey et al. (2005) developed a statistical method that
identifies genes showing differential temporal expres-
sion profiles by assigning a statistic calculated using
spline-based methods. Zhou et al. (2010) developed a
method to simultaneously analyze experiments in-
volving more than one factor measured across time
series by finding the significant direction in the time
course across different conditions.

Nicotiana attenuata, a wild tobacco species native to
the Great Basin Desert in the United States, is among
the few model plants for which different omics tech-
nologies have been applied to understand its complex
ecophysiological responses (Halitschke et al., 2003; Giri
et al.,, 2006; Gaquerel et al., 2010). N. attenuata germi-
nates in the postfire environment from long-lived seed
banks to form monocultures in nitrogen-rich soils
(Baldwin and Morse, 1994; Baldwin et al., 1994). As a
consequence of its peculiar germination system, this
plant is an ideal model for understanding the traits
that native plants have evolved to cope with stresses
characteristic of the agricultural niche: intense intra-
specific competition and highly variable biotic and
abiotic stress regimes (Baldwin, 2001). By germinating
into the postfire environment, the plant becomes the
focus of herbivores that colonize open habitats. This
large and unpredictable herbivore community has
provided a major evolutionary selective pressure that
has likely sculpted many aspects of the plant’s GRN.
Some of the essential nodes in the plant’s tran-
scriptome and metabolome responses to attack from
larvae of the specialist lepidopteran herbivore, Man-
duca sexta, have been functionally characterized (for
review, see Wu and Baldwin, 2010). Feeding by this
herbivore or its simulation by the application of its oral
secretions (OS) into puncture wounds results in pro-
found reorganizations of the plant’s metabolic and
growth processes, in the de novo production of de-
fense compounds, such as the accumulation and mo-
bilization of nicotine (Steppuhn et al., 2004), phenolic
derivatives (Kaur et al., 2010), and acyclic diterpene
glycosides (Heiling et al., 2010), and in the activation
of tolerance mechanisms essential for survival (carbon
and nitrogen bunkering in roots; Schwachtje et al,,
2006). The jasmonic acid (JA) signaling cascade rep-
resents the core pathway controlling these responses
(Halitschke and Baldwin, 2003). Its activity mediates,
via a set of largely unknown pathway-specific
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transcription factors, profound changes in the expres-
sion of regulatory and structural genes (Halitschke and
Baldwin, 2003; Wang et al., 2008).

To investigate the dynamics of activation in time
and space of herbivory-induced changes in gene-to-
metabolite networks, we conducted replicated global
expression profiling using identically treated wild-type
N. attenuata plants for three tissues and two stress
conditions (mechanical wounding and simulated her-
bivory) with a regular time series of six time points for
both metabolomics and transcriptomics data. We then
employed a bootstrap-based nonparametric ANOVA
model to find the projected significant direction in the
time vector for two factors (stress and tissue type) for
both genes and metabolites (Zhou et al., 2010; Zhou
and Wong, 2011). To further characterize the coex-
pression modules of different tissues, we imposed the
structure using batch-learning (BL) self-organizing
maps (SOM). From this analysis, we framed the con-
cept of interactive motifs, which are defined as pat-
terns of interconnections between genes and metabolites
that are differentially perturbed in local and systemic tis-
sues in response to stress, with additional information of
their time of action obtained from projected data on time
series termed “ANOVA directions.” We extracted and
studied motifs defining gene-gene and gene-metabolite
interactions involved in early and late responses in sys-
temic leaf tissues. The premise of this approach is that
genes or metabolites with similar ANOVA directions and,
therefore, similar dynamic responses during herbivory are
likely to be involved in similar biochemical pathways
and/or are under the control of a common transcriptional
regulatory mechanism. This broadly applicable approach
allowed us to identify nonlinear relationships in gene-
metabolite interactions with a high level of accuracy and
robustness.

RESULTS

Work Flow for Analyzing the N. attenuata Transcriptome
and Metabolome

The objective of this study was to identify tissue-
specific gene-gene and gene-metabolite associations
recruited in response to chewing insect herbivory in N.
attenuata plants. Therefore, we conducted time-course
transcriptome analysis and broadly targeted ultra-high
performance liquid chromatography coupled to a
quadrupole time-of-flight mass spectrometer (UHPLC-
qTOFMS) metabolome measurements of source/sink
transition leaves and roots (Fig. 1). Each sample was
harvested from an independent control or treated
plant every 4 h during a 21-h period to capture early
and late activity phases of OS-elicited responses. In
treated plants, M. sexta feeding was simulated by
wounding a leaf with a fabric pattern wheel on both
sides of the midrib of a source leaf and immediately
applying M. sexta OS to the fresh puncture wounds
(W+0S). This procedure, hereafter referred to as OS
elicitation, recapitulates most changes in the N.
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Figure 1. Work flow for analyzing changes in the transcriptome/
metabolome landscape of N. attenuata elicited by insect herbivory.
Leaf and root tissues of wild-type N. attenuata plants were harvested 1,
5,9,13,17,and 21 h after leaves were wounded with a fabric pattern
wheel and immediately treated with M. sexta (W+OS) to study her-
bivory-induced responses or with water (W+W) to study OS-specific
induction. Replicated transcriptomic and metabolomic data were an-
alyzed using multifactorial analysis, with both factors (tissue and
treatment) taken together across the time series to identify modules
showing differential OS elicitation. These modules were spatiotemporally
resolved using BL-SOM. Herbivory-elicited interactive effects among
transcript and metabolite levels were analyzed, with a special emphasis on
identifying short- and medium-term changes in metabolism. To this end,
interactive motifs from resolved maps were extracted and analyzed using
network properties. [See online article for color version of this figure.]

attenuata transcriptome and metabolome, which are
repeatedly activated during continuous insect feeding,
and provides a convenient means of accurately stan-
dardizing herbivore elicitation and dependent re-
sponses in N. attenuata plants (McCloud and Baldwin,
1997). This standardization of herbivore elicitations is
critical to conduct replicated microarray and metab-
olomics analyses. Additionally, this procedure allows
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inferring OS-specific responses. For this, we also
sampled plants with leaves similarly wounded but in
which the puncture wounds were treated with water,
referred to as the W+W treatment. Microarray and
metabolomics data sets were then preprocessed and
normalized using pipelines described in “Materials
and Methods.” A pivotal step in this work flow con-
sisted of analyzing processed transcript and metabolite
data for two factors using nonparametric ANOVA
models in order to generate distinct clusters, separated
by their combined treatment effects and time behav-
iors. Instead of modeling effects of the three factors
(time, tissue type, and treatment applied) together, we
used time-vector space to find the most significant ef-
fects from two-way ANOVA and used this informa-
tion to conduct explorative studies on tissue- and
treatment-specific responses.

Multifactorial Time Response Features of OS-Elicited
Gene Expression

The nature and amplitude of herbivore responses in
untreated leaves and roots are controlled by short- and
long-distance systemic signaling networks (Wu et al,,
2007). As response pattern and timing of activation
of individual genes likely underlie the differences ob-
served between systemic and localized herbivore re-
sponses, we simultaneously analyzed time series with
two binary factors (treatment and tissue type) using
bootstrap-based nonparametric ANOVA models,
according to the methods implemented in the R
package TANOVA. This method has been designed
specifically to handle multifactorial microarray exper-
iments with the aim of extracting gene-specific re-
sponses across time series based on their dependency
on experimental factors used for comparison (Zhou
et al., 2010). We conducted such dynamic response
analyses for two tissue comparisons: treated (source)
leaf versus untreated systemic (sink) leaf (TvS com-
parison), to explore differential gene expression pat-
terns activated during shoot systemic signaling; and
treated leaf versus untreated root (TvR comparison), to
obtain novel insights into root-specific responses.

Using a series of statistical tests on factor effects
(false discovery rate [FDR] = 0.05, bootstraps = 200),
we obtained five mutually exclusive groups of genes
showing their best ANOVA structure along optimal
directions in the time series (Fig. 2A). The four
resulting structures represent interactive (tissues be-
having differently in response to OS elicitation across
the time series), additive (herbivore responses inde-
pendent of tissue type), or corresponding main effects
(major treatment effects in both treated and untreated
tissue or significant differences in tissue type with no
response to treatment; Supplemental Fig. S1). Briefly,
ANOVA structures with main effects correspond to
the sets of genes that are influenced by only one of the
factors. The best-fit model for two-way ANOVA with
interaction is observed when the effect of level change
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Figure 2. Time series-dependent multifactorial classification of transcripts and encoded molecular processes. A, We employed
a bootstrap-based nonparametric ANOVA model to classify transcript levels based on combined significant responses in dif-
ferent tissues and for different treatments across the time series. Transcripts with no significant changes in expression across
different conditions were excluded from further analysis. B and C, Functional categorization of transcripts. GO classification
was performed for processes with a bin-specific enrichment statistic of F < 0.05. TCA, Tricarboxylic acid. D, Box plots of
ANOVA directions, described as a time-response metric representing the significant interactive effect along the time series
while comparing systemic tissues (unelicited leaves and roots) with the treated leaves. E, Temporal profiles of two representative
genes (NaLOX3 and NaPMT) obtained from clusters exhibiting interactive effects between treated and systemic tissues using

ANOVA model analysis on transcript time-response behaviors.

for one factor depends on the level of the other factor;
therefore, structures resulting from interactive models
correspond to the sets of genes with significant
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responses to OS elicitation that are different between
the two tissues compared. By contrast, the additive
model assumes that the effect of level change for one
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factor does not depend on the level of other factors
and, therefore, includes genes showing both main ef-
fects (treatment and tissue differences). The estimated
optimal direction was biased toward the time points
with strong effects estimated by fitting different
models. Figure 2E shows the temporal profiles of
representative genes from the sets of genes showing
interactive response patterns for the two different
comparisons between elicited and unelicited tissues.
NaLOX3, whose gene product catalyzes the first com-
mitted step in JA biosynthesis (Halitschke and Baldwin,
2003), shows a strong interactive effect for the TvS
comparison for the first two time points (1 and 5 h after
elicitation), while NaPMT1, consistent with its require-
ment for the formation of the pyrrolidine ring of nico-
tine in roots (Steppuhn et al., 2004), shows a strong
interactive effect for the TvR comparison at 5 and 9 h
after elicitation. The optimal direction for interactive
effects was estimated by finding the first eigenvector of
the residuals, obtained by eliminating the main effects,
using the following ANOVA model:

Yy = vy + ayy + By + ¥y + €y

where Y is gene expression vector, vy is mean expres-
sion vector, ay; and By are main tissue and treatment
effects, and €;; and ¥;; are residual and interactive ef-
fects between tissue and treatment type.

Genes displaying an interactive response pattern
were our major interest and were used for further
analysis. The set of genes showing interactive effects
between treated and untreated leaf tissues constituted
69% of the total probe set, while those showing inter-
active effects between treated leaf and untreated root
tissue constituted 66% (Supplemental File S1). We
analyzed the distribution of interactive effects detected
in leaf and root tissues using box plots and observed
larger effects at 1 and 5 h for the TvS comparison and
at 1, 5, and 13 h after elicitation for the TvR compari-
son (Fig. 2D). To assess the functional significance of
these gene clusters, we computed the enrichment of
Gene Ontology (GO) terms for genes within each
group defined by the multifactorial analysis using
hypergeometric tests (F < 10e-10; Fig. 2, B and C).
Consistent with previous transcriptomic studies (Hui
et al., 2003; Schittko and Baldwin, 2003; Schmidt et al.,
2005), the group of genes showing interactive effects in
shoots (TvS comparison) was highly enriched for
processes associated with signaling, stress responses,
hormone metabolism, and secondary metabolism. GO
term representations for groups of genes showing ad-
ditive and treatment effects clearly contrasted with sets
of genes with interactive effects. GO terms for these
gene classes likely reflect major reconfigurations, co-
ordinated between treated and systemic shoot tissues,
of transcriptional and cell cycle machineries. For the
TvR comparison, GO terms significantly enriched for
interactive effects were from signaling and secondary
and hormone metabolism; as expected from the root’s
highly specialized physiology, we also observed
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significant differences between tissue type for a large
set of genes with functional terms enriched for devel-
opment, transcription, and cell cycle machineries.

Biotic and abiotic stresses activate profound reor-
ganizations of the general phenylpropanoid metabo-
lism. Genes in this pathway were among those
exhibiting the largest interactive effects in shoots
(Supplemental Fig. S2). We evaluated the potential of
the time-response metric to improve the detection of
coexpression patterns among genes of this pathway
compared with the use of average expression data.
Supplemental Figure S2 presents Pearson correlation
coefficients between NaPALI, characterized for the
first committed step in the phenylpropanoid pathway,
and downstream functionally characterized genes.
More significant coexpression values between func-
tionally related genes were obtained when using the
response metric from the factorial analysis, which was
specifically biased at time points showing the best ANOVA
structure.

Interactive Time Response Analysis Highlights
Branch-Specific Functional Organization and Transition
Points in the Oxylipin Gene Network

Genes involved in a common biological process tend
to be coregulated and thus under the control of a
shared regulatory system (Saito et al., 2008). Since in-
teractive effect vectors capture as a whole the dynamic
response of a gene in more than one tissue, we hy-
pothesized that this information could be used as a
metric to assess the differential regulation of members
of a gene family based on their functional associations
with other known genes. To illustrate the value of this
approach in delineating pivotal signaling pathways for
herbivory responses, we extracted gene interactive
responses within the oxylipin pathway and analyzed
the activation transition points between the different
branches of this pathway (Fig. 3).

Oxylipins are bioactive lipids rapidly produced
from enzymatic and nonenzymatic fatty oxidation
cascades upon various stresses. Lipoxygenases (LOXs)
are iron-containing enzymes that catalyze the dioxy-
genation of fatty acids, the first committed step in
oxidation cascades connecting most oxylipin biosyn-
thetic pathways. In most plant systems, different LOX
isoforms with different tissue expression and cellular
compartmentalization control specific branches of the
oxylipin metabolic network. Three LOX genes re-
sponsive to OS elicitation have been functionally
characterized in N. attenuata (Halitschke and Baldwin,
2003). Activation of NaLOX1 leads in N. attenuata to
the production of fatty acid 9-hydroperoxides, which
serve as substrates for the formation of fatty acid
divinyl ethers by a divinyl ether synthase (Bonaventure
et al., 2011). NaLOX2 and NaLOX3 control the
biogenesis of two distinct chloroplastic linolenic acid
13-hydroperoxide (13-HPOT) pools (Allmann et al.,
2010). NaLOX2-based 13-HPOTs are cleaved by

Plant Physiol. Vol. 162, 2013
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Figure 3. Separation of LOX-dependent branches of the oxylipin pathway based on their ANOVA directions in the time
dimension. A, Schematic representation of the three main LOX-based branches of the oxylipin pathway. Free linolenic acid
released by the induced activity of a glycerolipase (NaGLAT) is oxygenated by NaLOX3 enzymes (LOX) and converted by a
multienzymatic cascade into JA. JA-lle formed after enzyme-dependent conjugation of JA to lle and is the bioactive jasmonate
interacting with the F-box receptor protein NaCOI1 and NaJAZ transcriptional repressor proteins. C12 and C6 aliphatic chains
are produced by the cleavage of NaLOX2-dependent hydroperoxides. Divinyl ether (DVE) oxylipins are produced by enzymatic
rearrangement of NaLOX1-dependent hydroperoxides. B, HCA of ANOVA directions for interactive effects for genes involved in
the two different branches of the LOX pathway. Elements of the NaLOX3 branch (red) exhibit differential regulation in leaf
tissues 1 h after OS elicitation. NaLOX2 and NaLOXT1 branches (green) exhibit high interactive effects 5 h after elicitation. C,
Temporal profiles for genes from the NaLOX3 pathway showing a high degree of coordination at 1 h and from the NaLOX2 and
NaLOX1 pathways showing a high degree of coordination at 5 h.

hydroperoxide lyase enzymes into C12 and C6 ali- the production of JA and its lle conjugate (JA-lle; Fig. 3A),
phatic chains, the latter ones being further metabolized the signaling molecules mediating most of the changes in

into a large array of green leaf volatiles. NaLOX3- gene expression occurring during OS elicitation (Wang
based 13-HPOTs are cyclized by the combined action et al., 2008).
of allene oxide synthase (NaAOS) and allene oxide Consistent with the functional diversification of

cyclase (NaAOC) enzymes to serve as precursors for these three LOXs, the temporal profiles of NaLOX1,
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NaLOX2, and NaLOX3 and functionally associated
genes showed distinct responses to OS elicitation in the
two leaf tissues that were compared (Fig. 3B): NaLOX3
exhibits interactive effects largely at 1 h after elic-
itation, while NaLOX1 and NaLOX2 show significant
interactive effects 5 h after elicitation. To assess the
organization of LOX-dependent oxylipin branches, we
also extracted the time-response patterns for genes that
had been functionally associated with each LOX
branch and assembled them using hierarchical clus-
tering analysis (HCA) based on Euclidean distance
measure (Fig. 3C). HCA revealed clearly distinguish-
able clusters, each with a high degree of coordination
among genes involved in the same LOX branch. In-
teractive effects for all genes of the LOX3 branch were
detected 1 h after elicitation, while downstream ele-
ments of the LOX1 and LOX2 branches showed sig-
nificant interactive effects at 5 h. Interestingly, within
the LOX3 branch, interactive responses between leaf
tissues were highly transient for most structural genes
as well as for NaJAZ transcriptional repressors, but
NaLOX3 and genes involved in the formation and ca-
tabolism of JA-Ile (NaJAR4, NaJAR6, NaCYP94C1, and
NaCYP94B3) showed more prolonged interactive ef-
fects. A striking observation was the coordination of
NaGLA1 (for glycerolipasel), the lipase controlling
wound- and herbivory-induced jasmonate levels in N.
attenuata leaves (Kallenbach et al., 2010) but not LOX1-
and LOX2-dependent oxylipin formation (Bonaventure
et al., 2011), with NaLOX3 and associated genes. This
pattern, which has not previously been detected in
correlational studies of gene expression data, is consis-
tent with the rapid conversion of fatty acid released
during herbivory into LOX3-dependent hydroperoxide
derivatives (Kallenbach et al., 2010).

SOM-Based Spatiotemporal Resolution of Interactive
Responses Identifies the Sequential Activation of
Functional Gene Associations

As seen above, clustering genes using their interac-
tive responses as an associative metric clearly delin-
eates the multiple branches of a biological process. To
further resolve the temporal distribution of OS-elicited
processes, we supplemented the time-response metrics
with additional information from the differences in
fold change between the two tissues that were com-
pared in factorial analysis as described in “Materials
and Methods.” We then used BL-SOM (Hirai et al.,
2004) to impose structure on the scaled data. With
grids of size 40 X 16 and 40 X 18 for comparisons
between treated leaf and systemic tissues (leaves and
roots), nodes were mapped into a six-dimensional
space, initially based on principal component analy-
sis. On subsequent iterations (200), a data point was
selected and its nearest nodes were adjusted by mov-
ing toward the selected point, finally converging to
distinctive and tight clusters (Fig. 4A). Maps produced
for each comparison were colored so that red clusters

1048

represent major up-regulated elements in treated
leaves and minor down-regulated elements in un-
treated systemic tissue. Similarly, blue clusters repre-
sent major up-regulation in untreated systemic tissue
with minor down-regulated elements in treated leaves.
Each cluster, termed an interactive motif, contains a set
of nodes with genes showing interactive responses of
similar amplitude (Fig. 4B). Since regulation patterns
could differ slightly for genes involved in one particular
process, functionally associated genes tend to localize
not necessarily within the same node but within a
common interactive motif. The nodes in these spatio-
temporally resolved motifs with similar ANOVA di-
rections along time series may be biologically related, as
their dynamic responses are highly coordinated.

Examination of major interactive motifs extracted
from the SOM grid underscored fundamental trends in
the spatiotemporal activation of OS-elicited transcrip-
tional rewiring. Consistent with the interactive effect
concept, gene assemblies according to interactive effect
metrics appeared highly tissue specific and greatly
plastic over time (Fig. 4A). Thus, we observed few to-
pological overlaps between interactive motifs formed
at each time point and in different tissues. For the TvS
comparison, we observed a clear reduction in the size
of the treated leaf interactive motifs (red clusters) along
the time series, suggesting a rapid dampening of local
herbivory responses concomitant with an increase in
the size of the systemic leaf interactive motifs (blue
clusters) starting after 1 h and attaining maximum
values 9 h after OS elicitation. A similar trend of
dampening of responses in treated leaves was observed
for the TvR comparison, except for 13 h after OS elici-
tation in the middle of the dark phase. Mapping genes
known to be regulated by fatty acid-amino acid conju-
gates (FACs; Gilardoni et al, 2010), well-established
elicitors contained in M. sexta OS (Halitschke et al.,
2001), revealed significant enrichment of these FAC-
regulated genes in motifs labeled as 1a, 5a, and 5c for
the TvS comparison and rla, r5a, rlb, and r5b for the
TvR comparison, indicating that FAC signaling had a
strong contribution to the activation of these interactive
motifs. GO enrichment analyses for these motifs (1a, 1b,
5a, 5b, rba, and r5b) are well represented by processes
involved in signaling cascades and secondary metabo-
lism (Supplemental Fig. S4).

Plant tissue-specific responses to insect herbivory
are thought to be controlled by tissue-specific activa-
tion and interaction between hormone gene networks
(Meldau et al., 2012). Consistent with this view, our
factorial analysis revealed significant differences in the
amplitude and timing of the activation of hormone
gene networks between damaged and systemic leaf
tissues. Thus, the intensity of the ANOVA signals for
genes encoding for JA (maximum at 1 h; Fig. 3), eth-
ylene (1, 5, and 9 h), auxin (1, 5, and 9 h), cytokinin
(1 h), and brassinosteroid (1 h) synthesis and connected
signaling components was higher in treated leaf tis-
sues (Supplemental Figs. S3 and S4). Additionally, we
observed specific sets of genes encoding notably auxin-
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presented in Supplemental Figure S4.

and ethylene-related signaling processes that displayed
high responses to OS elicitation in untreated systemic
leaf tissues (Supplemental Figs. S3 and S4).

Studying OS Responses in Systemic Leaf Tissues Using
Interactive Motifs: the Acyclic Diterpene Glycoside
Pathway as a Case Study

Coordinated pattern analysis based on dynamic re-
sponse information from factorial analysis suggested
better clustering with fewer false positives and separated
components of biological machineries deployed at dif-
ferent times after elicitation. Next, we analyzed gene-
gene networks to understand how different biological
functions are orchestrated. To understand the perfor-
mance of entire parts of the OS-elicited transcriptome, we
isolated interactive motifs from the SOM grids and an-
alyzed their dynamic behaviors using network analysis.

We used this network-based approach to analyze
the regulation of OS-elicited changes in the acyclic

Plant Physiol. Vol. 162, 2013

diterpene glycoside pathway. 17-Hydroxygeranyllinalool
diterpene glycosides (17-HGL-DTGs) are a group of
sugar-containing defense metabolites active against a
wide spectrum of herbivores (Heiling et al., 2010). The
high abundance of these metabolites and their rapid de
novo production in systemic tissues during herbivory
are controlled by important transcriptional changes that
are not completely understood (Heiling et al., 2010).
Three experimentally validated genes, NaDXS, NaDXR,
and NaGGPPS2, of the nonmevalonate pathway (the
2-C-methyl-p-erythritol 4-P/1-deoxy-D-xylulose 5-P
pathway) involved in the biosynthesis of geranylger-
anyl pyrophosphate (GGPP), forming the backbone of
17-HGL-DTGs (Jassbi et al., 2008), as well as three other
genes (NaHDR, NaHDS, and NalSPD) predicted based
on their homology to Arabidopsis (Arabidopsis thaliana)
isoprenoid genes, were mapped to the SOM grid and
found to be localized in the same interactive motif (5c),
the largest one showing a huge response to OS elicita-
tion in systemic leaves. GO terms enriched (F < 10e-10)
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for this motif are overrepresented by those involved in
photosystem, hormone metabolism, secondary metab-
olism, and stress, with a major section of them having
unknown functions.

Using a module-centric approach, we extracted this
interactive motif to construct a gene-gene network
using a statistically sound two-stage coexpression de-
tection algorithm with FDR = 0.05 and a minimal ac-
ceptable strength of 0.7 using the GeneNT package in
R (Fig. 5A). We found that this network shares prop-
erties of other biological networks. The scale-free to-
pology is of 0.96, which suggests that the network is
composed of many genes with few connections but
a few genes with many connections. Additionally, the
clustering coefficient, which provides a measure of
cliquishness (0.516), and the measure of network het-
erogeneity, which reflects the tendency of a network
to contain hub nodes (1.40), are within ranges expected
for biological networks (Supplemental Fig. S5). Inter-
estingly, we observed the highest degree of connec-
tivity for the six genes of the nonmevalonate pathway
(Supplemental Fig. 56), suggesting tight coregulation

Figure 5. OS elicitation selectively
activates interactive motif formation in

A Spatial-temporal distribution at 5h
(treated vs systemic leaves)

unelicited systemic leaves. A, Distri- .ﬂ
bution of enriched GO for a gene set ‘u
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played major transcriptional changes ";
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between this process and a large array of gene net-
works activated in untreated systemic leaves or sup-
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from secondary metabolite and phytohormone me-
tabolism, reinforcing the conclusion that OS-based sig-
naling controls the recruitment and coherent activation
of molecular processes otherwise loosely connected.

To further support this conclusion, we conducted a
single-time-point differentially expressed genes analysis
for 5-h elicitation samples of both tissues independently
and detected a large number of genes uniquely up-
regulated in systemic leaves and down-regulated in
treated leaves (Fig. 5B). As expected, major processes
highlighted by this analysis included secondary metab-
olism and hormone metabolism as up-regulated path-
ways in untreated systemic leaf tissue and genes from
photosynthetic pathways as down-regulated processes
in treated leaf tissue. The biosynthesis of plastid isopre-
noids by the nonmevalonate is essential for photosyn-
thesis and chloroplast function (Vranova et al., 2012).
Dense connectivities were shared between the non-
mevalonate/17-HGL-DTG pathways and photosynthetic
genes, suggesting yet-unknown coordination mech-
anisms between these two processes and consistent with
the previously reported transcriptional down-regulation
of photosynthesis (Halitschke et al., 2001; Hui et al., 2003;
Mitra and Baldwin, 2008) as an integral part of the
mechanisms facilitating defense compound production.

Factorial Analysis Reveals OS-Elicited Metabolic Changes
with Diverse Response Patterns

To facilitate the interpretation of the large tran-
scriptomic differences observed between elicited and
unelicited tissues, we profiled downstream metabolite
responses using a broadly targeted UHPLC-qTOFMS
metabolomic approach (Gaquerel et al., 2010). Often in
such large-scale profiling, several compounds are not
completely chromatographically resolved or are ob-
served with shifts in their retention times, so mathe-
matical procedures involving deconvolution and
retention time corrections need to be applied to extract
accurate mass spectra with resolved chromatographic
peaks for further comparisons. These procedures re-
quire samples with somewhat similar metabolomes;
therefore, we only processed treated leaf and untreated
systemic leaf tissues for all time points, and the two
conditions together for both positive and negative modes,
using the XCMS package in R.

The first stage in the identification of differences
between local and systemic responses is the projection
of the ANOVA structure obtained by fitting the same
ANOVA models used in the transcriptomic analysis.
The experimental factors used were treatment (control
and W+OS) and tissue type (treated and untreated
leaves). As with the transcriptomic analysis and using
the same parameters (FDR = 0.05, bootstraps = 200),
the sampling time was not taken as another factor but
was used to find the best ANOVA structure along the
optimal direction resulting in response metrics. In
addition to the induced changes in responses to OS
(treatment effect), a set of metabolites of interest also
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showed small differences between the two leaf tissues
(tissue effect); hence, they were classified in an addi-
tive bin. Therefore, in order to increase metabolite
coverage, we combined both bins of ions showing in-
teractive and additive effects for further analysis. A
total of 19.2% (1,610 of 8,357) of mass-to-charge ratio
(m/z) signals from the positive mode and 26.9% (720 of
2,676) of m/z signals from the negative mode showed
major differences in induced responses between leaf
tissues for at least one time point in the series
(Supplemental Files S2 and S3). This is severalfold
fewer than the transcriptomic differences observed
between the responses of the two leaf tissues. One
reason for this lower coverage could be the use of a
targeted approach for profiling major classes of sec-
ondary metabolites; moreover, some metabolites
showed large constitutive biological variation, which
thwarted the detection of significant differences be-
tween control and W+OS conditions with FDR = 0.05.
For further analysis, we also combined positive and
negative mode m/z lists. We extracted and plotted re-
sponse metrics obtained from the factorial analysis
for both bins and observed larger differences between
elicited and unelicited leaves at 9 and 13 h after elici-
tation (Fig. 6A, box plots). Finally, we scaled the in-
teractive response metrics with additional data of the
fold change differences between elicited and unelicited
leaf tissue, as described in “Materials and Methods,”
and visualized these differences using HCA. We ob-
served a large number of small clusters showing very
diverse patterns across combinations of time points
after elicitation. Larger accumulation of metabolites in
systemic tissues was observed at 9, 13, and 17 h after
elicitation, reflected by the red part of the color scheme
used in the HCA. This difference in the timing of ac-
tivation of transcriptomic changes in systemic tissues
(1 and 5 h after elicitation; Fig. 4, blue motifs 1b and
5b) and metabolic changes (Fig. 6A) was likely due to a
time lag in the biosynthesis of metabolites compared
with underlying gene expression or to the transport of
metabolites from treated to untreated leaf tissues.

To identify major classes of compounds showing
larger differences between the two leaf tissues, we
included the additional information of retention time
and mapped interactive effects onto the chromato-
graphic scale. Figure 6B highlights three main regions
of the chromatogram showing differential OS re-
sponses in treated and systemic leaves at 9 h after
elicitation for both positive and negative modes,
corresponding to phenolic derivatives, 17-HGL-DTGs,
and O-acyl sugars, well-studied classes of defense
metabolites. Next, we ordered ions by their retention
time and visualized the scaled data obtained from
factorial analysis using heat maps. Since we reduced
the number of ions based on the ANOVA model for
their differential behavior between the two tissues, we
created bins of retention times for these selected ions to
match the chromatogram for visualization. To further
illustrate the application of this approach, we focused
on responses detected at 9 h after OS elicitation. This
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exploratory analysis covers the spanned red regions
across the classes of 17-HGL-DTGs and O-acyl sugars
for 9 h after elicitation, which suggests tandem in-
duction and/or metabolic cross talk among several of
the metabolic pathways affected by OS elicitation in
systemic tissues. To understand such concerted in-
creases in metabolites, we constructed metabolite net-
works based on associations among metabolites
(Pearson correlation = 0.98; Fig. 6C). We mapped
scaled data on the network to visualize distinctly oc-
cupied branches of the network in which the red re-
gions spanned, containing different sets of ions with
high OS responses in systemic leaves at 9 and 13 h. We
isolated a branch enriched with m/z signals showing
induction in systemic leaves at 9 h and detected the
presence of different known 17-HGL-DTGs; interest-
ingly, in the same network branch, we also found
several m/z signals corresponding to O-acyl sugars
(Supplemental Fig. S7). Consistent with the power
of this approach to cluster biochemically connected
metabolites, we additionally observed highly coordi-
nated dynamic responses between shikimate pathway-
derived amino acids and downstream metabolites
produced within the phenylpropanoid pathway
(Supplemental Fig. S2).

Time-Lag-Corrected Correlation on the Interactive
Response Metric Supports the Reconstruction of
Gene-to-Metabolite Networks

The nature of the coregulation of functionally related
genes and metabolites could vary depending on the
biological activity of the studied metabolic class and the
experimental conditions applied. The patterns of cor-
relation between metabolite and transcript data have
been successfully analyzed in a few studies using high-
resolution time-course analyses (Hirai et al., 2004), but
most studies in this field, including our work (Fig. 7),
have reported significant differences in the temporal
dynamics of transcriptomes and metabolomes (Walther
et al, 2010; Takahashi et al.,, 2011). Considering the
complex interdependencies between metabolites and
transcripts, we sought to detect and interpret gene-
metabolite interactions at the level of isolated pathways
for TvS comparisons using the interactive responses of
genes and metabolites as associative metrics and used
this approach to study previously reviewed oxylipin and
17-HGL-DTG pathways.

Although a tight correlation pattern is usually not
expected for metabolites that are rapidly consumed by
subsequent reactions, as is the case for jasmonate pro-
duction, we observed that genes of the LOX3 pathway
correlated well with JA levels as well as associated
metabolic intermediates, based on the interactive

Herbivory-Activated Gene-Metabolite Networks

response patterns observed while comparing two leaf
tissues together (Fig. 2; Supplemental Fig. S8). We
observed a fundamentally different picture for the
17-HGL-DTG pathway. Figure 7A shows expression
profiles with their time-response metric for interactive
effects in a color-coded scheme of known genes and
metabolites of this pathway. A comparison of averaged
interactive responses suggests a shift in the observed
interactive effect behavior of 17-HGL-DTG metabolites
compared with that of their underlying genes. There-
fore, to address this time lag, we applied lagged Pear-
son correlation (PC), estimated as follows:

PC(G,M) = PC{(gl, '--7gT-1)7 (T’I’lz, ...,mT)}

Where (g, ..., g1.;) indicates gene expression from 1 h
onward and (m, ..., mp) indicates metabolite level
from 5 h onward.

We constructed a gene-to-metabolite network using
lagged time-specific data with Pearson correlation =
0.98. Figure 7B presents a magnification of the network
region containing the first neighbors of the six known
genes of the nonmevalonate/17-HGL-DTG pathways
in strong associations with m/z signals derived from
17-HGL-DTGs. We observed strong coordination be-
tween 17-HGL-DTGs, O-acyl sugars, genes from the
nonmevalonate/17-HGL-DTG pathways, and photo-
synthetic genes. Unknown m/z signals reported in this
network represent potential molecular fragments of
the aforementioned compounds that will need to be
confirmed by additional mass spectrometry-based
fragmentation analysis.

DISCUSSION

The comprehensive classification of leaf and root
herbivory-activated gene expression levels presented
here significantly expands our knowledge of the mul-
tidimensionality of herbivory-activated transcriptional
and metabolic reprogramming. The use of SOM on in-
teractive effect-response metrics derived from factorial
analysis, instead of raw expression signatures, enabled
a reconstruction of gene-gene, metabolite-metabolite,
and gene-metabolite associations with a high degree
of predictive power. Spatiotemporal maps produced in
this study not only underscore the high plasticity of OS
elicitation responses but also provide a powerful data
platform for the functional genomics of novel regulatory
and structural genes involved in antiherbivory pro-
cesses. The two metabolic routes investigated in greater
detail in this study, oxylipin signaling and 17-HGL-DTG
pathways, illustrate fundamental working aspects of
gene-metabolite networks in terms of activation and

Figure 6. (Continued.)

and aligned with heat maps representing scaled interactive effect data ordered by retention time. C, Visualization of systemic
responses occurring 9 and 13 h after elicitation localized on different branches of the metabolite-metabolite network. D, Partial
network representations of the first neighbors of known 17-HGL-DTG and O-acyl sugar m/z signals extracted from the same

branch of the network. AA, amino acid; TIC, total ion current.
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Figure 7. Gene-metabolite associations underlying the formation of 17-HGL-DTG in N. attenuata. A, Temporal profiles for
identified acyclic 17-HGL-DTG and known hub genes in the biosynthetic network of these metabolites, with the schematic of
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GL-DTG in N. attenuata. The cluster represents the strong con-

nectivity between 17-HGL-DTG metabolites and known biosynthetic genes in N. attenuata. Other previously characterized m/z
features present in this cluster are enriched for O-acyl sugar-associated signals. BAHD, acyltransferase; GLS, geranylinalool
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transition points during herbivory and shared patterns
of regulation with other physiological processes.
Elucidating groups of genes involved in the se-
quential reorganization of biological networks is ex-
tremely challenging using the available bioinformatics
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approaches, but we successfully studied such a reor-
ganization by systematically combining information
about when to respond (time points) with information
about how to respond (fold changes). This method
could be used to query different gene families of
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interest as input or to discover regulatory motifs for
each separated module from the SOM grid. The ap-
plicability of this method can be further extended to
study diurnal rhythms perturbed in response to her-
bivore attack (Kim et al., 2011) by considering the
ordering of time points before deriving the optimal
direction for the best ANOVA structure. Here, we
demonstrate that SOM-based herbivory-elicited inter-
active motifs are highly tissue specific, highly versatile,
and decrease in size for later time points, reflecting
specific sequential responses deployed in different
tissues. We speculate that this increased modularity in
time reflects the functional specialization of the se-
quential responses deployed in the different tissues.
These observations are in line with smaller scale
transcriptional screens published by several groups
indicating that insect herbivory results in major shifts
in almost every aspect of a plant’s physiology
(Hermsmeier et al., 2001; Schmidt et al., 2001). The fact
that large-sized interactive motifs are more pro-
nounced in systemic tissues at 5, 9, and 13 h after
elicitation indicates the involvement of organismic-
level responses specifically triggered by OS-based sig-
naling, with a large proportion of these also attributable
to unexplored root-specific processes. Previous work
has shown that the elicitation in N. attenuata shoots of
defense-related transcriptional and metabolic programs
relies on the rapid translocation, specifically triggered
by OS perception, of signaling molecules from the sites
damaged by insects to systemic undamaged tissues
(Wu et al., 2007). Jasmonate signaling through the plant
vasculature has major functions in this process and is
controlled by rapid transcriptional and posttranscrip-
tional changes (Wu and Baldwin, 2010).

Analysis of interactive effects and response timings
for jasmonates and oxylipin genes illustrates that the
extraction of multifactorial statistical information in
terms of response patterns not only facilitates the
clustering of genes involved in similar biochemical
pathways, as also shown for the phenylpropanoid
(Supplemental Fig. S2) and 17-HGL-DTG pathways
(Figs. 6 and 7), but also the identification of transition
points in the activation of certain pathways (Fig. 3).
Most structural genes involved in the biogenesis of
jasmonates (NaAOS, NaAOC, and B-oxidation com-
ponents), associated upstream signaling components
such as mitogen-activated protein kinase (NaSIPK and
NaWIPK), posttranslationally activating linolenic acid
release and hydroperoxidation by NaLOX3 (Kallenbach
et al., 2010), and downstream signaling components
such as transcriptional repressors (NaJAZs) and
NaMY(C2, show transient interactive responses. In clear
contrast, metabolic systems involved in the initiation
of JA synthesis (NaLOX3), its conjugation to form bio-
active JA-Ile (NaJAR4/NaJARG6), and the catabolism of
this signaling molecule (NaCYP94C1 and NaCYP94B3;
Koo et al., 2011; Heitz et al., 2012) exhibited a prolonged
interactive effect. Experimental work supported by
mathematical modeling (Banerjee and Bose, 2011) has
demonstrated that the transient nature of the jasmonate
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pulse and most of the underlying gene expression is an
outcome of two opposing influences. Jasmonate accu-
mulation activates a positive feedback loop in which
the expression of jasmonate biosynthesis genes is acti-
vated after degradation of a specific set of JAZ proteins
inhibiting MYC2 transcriptional activity (Chung et al.,
2008). This positive loop is counterbalanced by the
MYC2-dependent increased expression of JAZs repres-
sing jasmonate signaling transduction (Chini et al.,
2007). Prolonged interactive responses for certain genes
that contrast with the pulse effects, however, are con-
sistent with the existence, as suggested by different
experimental efforts (Howe et al., 2000; Strassner et al.,
2002), of additional regulatory loops modulating tran-
sition points in pathway activation.

To analyze the metabolic output of these large tran-
scriptional changes, we also profiled metabolites for the
same experimental conditions and tissue types (Fig. 6).
Even though instrumental in highlighting the breadth of
the complete metabolic profile being affected by the
treatment, the mining of these data are extremely chal-
lenging, notably due to compound-specific in-source
fragmentation resulting in redundant signal detection
(Dettmer et al., 2007) and also because of the scarcity of
methods available for analyzing such complex factorial
time-series data. Here, we demonstrate the advantage of
constructing a dynamic correlation network based on
response features captured by the factorial analysis. This
conclusion is based on the inference of compound-
family-wise grouping of m/z signals exhibiting similar
interactive effects (e.g. for 17-HGL-DTG and O-acyl
sugar fragmentation patterns) and on the detection of a
significant coexpression, after time-lag correction of in-
teractive effect metrics, of structural genes and metab-
olites of the 17-HGL-DTG pathway (Fig. 7). To our
knowledge, this analysis represents the first success-
ful example of spatiotemporal categorization on a path-
way scale of induced changes in plant transcriptomics
and metabolomics data.

The analysis of OS-specific interactive motifs acti-
vated in systemic tissues as well as network recon-
structions placed known genetic elements of the
nonmevalonate pathway at the center of the largest
gene network formed in systemic leaf tissues following
OS elicitation (Fig. 5). This is consistent with the role of
the nonmevalonate pathway as a central metabolic
provider for the production of structurally diverse
plastidic isoprenoids such as carotenoids, phytol (a
side chain of chlorophylls), isoprene, and monoter-
penes and diterpenes (Vranova et al., 2012). In N.
attenuata, this plastidial metabolic route also supplies
the production of 17-HGL-DTG, an important defen-
sive molecule increasing in concentration during insect
herbivory (Heiling et al., 2010). The organization of the
molecular processes within this OS-specific gene net-
work supports known metabolic interactions between
the nonmevalonate pathway, photosynthesis, and
chloroplast functions (Vranova et al., 2012) and, more
importantly, highlights that the induction of 17-HGL-
DTG structural genes represents one of the major
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reorientations of the gene network dynamics triggered
by OS elicitation. The de novo production of 17-HGL-
DTGs during OS elicitation documented in this study
relies on the biogenesis of the GGPP backbone by a
specific GGPPS, NaGGPPS2 (Jassbi et al., 2008). Here,
we show that expression of the gene coding for this
protein is part of the hub region of a gene network,
while the two other NaGGPPS copies (NaGGPPS1 and
NaGGPPS3) exhibit reduced connectivity with this hub
region. We predicted the subcellular location of these
three proteins based on the presence of chloroplast
transit peptide, mitochondrial targeting peptide, or se-
cretory pathway signal peptide (Emanuelsson et al.,
2007). Therefore, NaGGPPS2 and NaGGPPS3 with high
chloroplast transit peptide scores (0.369 and 0.457) are
most likely localized in the chloroplast, while NaGGPPS1
showed insignificant scores for chloroplast transit pep-
tide, mitochondrial targeting peptide, and secretory
pathway signal peptide. These predictions further sup-
port our findings on the differential activation of these
three GGPPS genes in response to OS elicitation.

The ability to reconstruct tissue-specific gene-to-
metabolite dynamics with high confidence underscores
the importance of extracted time-response patterns for
features of interest, which single-point analysis or pooled
data using time series as a third factor would fail to
identify (Supplemental Fig. S6). This novel method of
combining multifactorial analysis with the information
extracted from time-series data is broadly applicable to
investigate signaling/metabolic pathways in other bio-
logical systems with time-series data to deduce the acti-
vation times of particular response elements required
for understanding complex physiological processes. This
strategy can further be used for improving clustering
analyses by applying a dimension reductionist approach,
for different cell/tissue types, developmental stages, or
genetic backgrounds, based on the time-response metric.

MATERIALS AND METHODS
Plant Material

Wild-type Nicotiana attenuata from an inbred line in its 30th generation was
used for all gene expression and metabolite profiling experiments. All seeds
were first sterilized and incubated with diluted smoke and 0.1 M GA,, as
described (Krugel et al., 2002), and then germinated on plates containing
Gamborg B5 medium. Ten-day-old seedlings were transferred to small pots
(TEKU JP 3050 104 pots; Péppelmann) with Klasmann plug soil (Klasmann-
Deilmann), and after 10 d, seedlings were transferred to 1-L pots with sand to
facilitate the sampling of roots. Plants were grown in the glasshouse with a
day/night cycle of 16 h (26°C-28°C)/8 h (22°C-24°C) under supplemental
light from Master Sun-T PIA Agro 400 or Master Sun-TPIA Plus 600-W
sodium lights (Philips Sun-T Agro).

Plant Treatment Experimental Design

A scheme for plant treatments and the work flow for data collection/analysis
are shown in Figure 1. Briefly, plant treatments (no treatment, mechanical
wounding, and simulation of Manduca sexta feeding) were randomly applied to
plants in the early elongating stage of growth. To simulate M. sexta feeding, the
laminas of three leaves per plant (two source leaves at nodes +2 and +1 and one
source-sink transition leaf at node 0) were mechanically wounded with a fabric
pattern wheel on both sides of the midrib, and immediately, 20 uL of M. sexta OS
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(diluted 1:10 in water) was applied to the fresh wounds (W+OS). This procedure,
which is referred to as OS elicitation, has been shown to recapitulate most of the
reconfigurations occurring in the leaf transcriptome, proteome, and metabolome
during M. sexta feeding (for review, see Wu et al., 2010). M. sexta OS were col-
lected from third to fourth instar larvae reared on N. attenuata wild-type leaves
as described (Roda et al., 2004), and eggs of this insect species were obtained
from North Carolina State University. Responses inherent to the mechanical
damage were monitored by applying 20 uL of deionized water onto the wounds
(W+W). For each time point (1, 5, 9, 13, 17, and 21 h after treatment), treated
leaves or control ones at the same nodal positions, systemic leaves (two sink
leaves at nodes —1 and —2), and the complete root system were collected from
six plants and immediately flash frozen in liquid nitrogen. Roots were washed
in a water tank for a few seconds to remove sand.

Analysis of Leaf Metabolites by UHPLC-ESI/qTOFMS

Metabolites were extracted from all local and systemic leaf samples. We used a
40% methanol extraction procedure optimized for the recovery of a wide range of
metabolites of interest in N. attenuata (Gaquerel et al., 2010). Approximately
100-mg aliquots of liquid nitrogen-ground leaf powder were extracted by add-
ing 1 mL of acidified 40% methanol prepared with 0.5% acetic acid water to each
sample in 2-mL microcentrifuge tubes with metal balls. The samples were ho-
mogenized in a ball mill (Genogrinder 2000; SPEX CertiPrep) for 45 s at 250
strokes min~'. Homogenized samples were then centrifuged at 16,000¢ and 4°C
for 30 min, and supernatants were transferred into 1.5-mL microcentrifuge tubes.
Two microliters of the extracts prepared as above was separated using a Dionex
rapid separation liquid chromatography system equipped with a Dionex Ac-
claim 2.2-um, 120-A, 2.1- X 150-mm column, applying the following binary
gradient: 0 to 6 min, isocratic 70% A (deionized water, 0.1% [v/v] acetonitrile
[Baker; HPLC grade], and 0.05% formic acid), 30% B (acetonitrile and 0.05%
formic acid); 6 to 13 min, isocratic 20% A, 80% B and 70% A, 30% B; 13 to 18 min,
isocratic 70% A, 30% B. Flow rate was 200 uL min™". Eluted compounds were
detected by a MicroToF quadrupole time-of-flight mass spectrometer (JTOFMS;
Bruker Daltonics) equipped with an electrospray ionization source. To maximize
metabolome coverage, mass spectral detection was performed in both positive
and negative ionization modes. Typical instrument settings were as follows:
capillary voltage, 4,500 V; capillary exit, 130 V; dry gas temperature, 200°C; and
dry gas flow, 8 L min™". m/z values were detected within a range from m/z 200 to
1,400 at a repetition rate of 1 Hz. Mass calibration was performed using sodium
formate clusters (10 mm solution of NaOH in 50:50 [v/v] isopropanol:water
containing 0.2% formic acid).

Microarray Data Analysis

Three biological replicates from six harvested replicates were used for RNA
isolation. Total RNA was isolated with TRIZOL reagent and labeled copy RNA
with the Quick Amp labeling kit (Agilent). Each sample was hybridized
on Agilent single-color technology arrays (4X44K 60-mer oligonucleotide
microarray designed for N. attenuata transcriptome analysis; http://www.
agilent.com; accession no. GPL13527). All microarray data with each probe
name were deposited in the National Center for Biotechnology Information
Gene Expression Omnibus database (accession no. GSE30287). Raw intensities
were log, and baseline transformed and normalized to their 75th percentile
using the R software package, prior to statistical analysis.

Processing of Metabolomics Data

Raw data files were converted to netCDF format using the export function of
the Data Analysis version 4.0 software (Bruker Daltonics) and processed using the
XCMS package in R (Smith et al., 2006). Peak detection was performed using the
centwave algorithm with the following parameter settings: ppm = 20, snthresh =
10, peakwidth = c(5,18). Retention time correction was accomplished using the
XCMS retcor function with the following parameter settings: mzwid = 0.01,
minfrac = 0.5, bw = 3. Areas of missing features were estimated using the fill-
Peaks method. Annotation of compound spectra derived from in-source frag-
mentation during ionization and corresponding ion species was performed with
the BioConductor package CAMERA (version 1.9.8; Kuhl et al., 2012). Com-
pound spectra were built with CAMERA according to the retention time simi-
larity, the presence of detected isotopic patterns, and the strength of the
correlation values among extracted ion currents of coeluting m/z features.
CAMERA grouping and correlation methods were used with default parame-
ters. Clustered features were annotated based on the match (+5 ppm) of
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calculated m/z differences versus an ion species and neutral loss transitions rule
set (Supplemental File S2). Consistent mass features that were at least present in
four out of the six biological replicates with a retention time greater than 1 min
were considered for further analysis. Zero values, which remained after appli-
cation of the “filling in” function in XCMS, were replaced by one-half of the
minimum positive value of the ion across all time points and conditions in the
original data. Raw intensity values were 75th percentile normalized before sta-
tistical analysis. Metabolite fragmentation patterns were annotated as described
in Supplemental Materials and Methods S1.

Statistical Analysis and Data Visualization

Multifactorial analysis was carried out using the methods implemented in
the R package TANOVA (Zhou and Wong, 2011). Genes and ions were filtered
by fitting the following models in sequential order for identifying nonconstantly
expressed elements, elements showing interactive effects, and elements showing
major effects of tissue or treatment type:

Yy =vy + €y 1)
Yy =vy +ay+ By + ¥y + € (2
Yy =vy +ay + €y (3)
Yy =vy + By + €y 4)

where Yj; is gene expression vector, vy, is mean expression vector, a;; and Sy
are main tissue and treatment effects, and €;; and ¥; are residual and inter-
active effects between tissue and treatment type. To mine the major biological
processes perturbed in response to OS elicitation, we functionally annotated
probe sets using the best BLASTX hit of The Arabidopsis Information Re-
source 6 proteome with an e-value cutoff of le-15. Next, using MAPMAN
classification of biological processes for Arabidopsis (Arabidopsis thaliana), we
assigned classes to each probe identifier of our microarray data set. Enrich-
ment analysis of GO biological processes based on a hypergeometric test was
performed using R.

Significant enrichments were those with F < 10e-10. For spatial categori-
zation, we applied the following scaling method for time-response metrics
obtained from factorial analysis for genes and m/z signals, filtered for their
interactive effect:

where E; is scaled expression, F; is difference in fold changes (OS elicitation/
control) between treated and untreated tissues, and R; is response timing.

BL-SOM for transcriptomic data were constructed using BL-SOM software
(http:/ /prime.psc.riken.jp/?action=blsom_index) with X coordinates sized 40.
Networks representing associations between genes and metabolites were vi-
sualized with Cytoscape (http:/ /www.cytoscape.org/) using organic layouts.
Topological properties of the networks were analyzed using the NetworkAnalyzer
plugin in the Cytoscape software. HCA for all heat maps is based on Euclidean
distance measures and average linkage aggregation methods. All heat maps and
box plots were created using R.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Examples of the structures obtained (interactive,
additive, and major effects) by fitting ANOVA model.

Supplemental Figure S2. Interactive effect responses of phenylpropanoid
pathway genes are highly coordinated.

Supplemental Figure S3. SOM-based classification of FAC-responsive and
hormone and secondary metabolism genes in leaves.

Supplemental Figure S4. Enriched GO terms for a few important motifs
extracted from SOM analysis unravels large OS-specific gene expression
responses in treated leaves and untreated systemic tissues (leaves and
roots).

Supplemental Figure S5. Power law distribution plot of the network rep-
resentation obtained for genes extracted from motif 5c, showing
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many genes with few connections but a small set of genes with many
connections.

Supplemental Figure S6. Gene-gene Pearson correlation for six genes from
the nonmevalonate pathway using five different metrics.

Supplemental Figure S7. Temporal profiles for m/z signals corresponding
to the class O-acyl sugars exhibit high correlation and colocalize with
those of 17-HGL-DTG in the network.

Supplemental Figure S8. Temporal profiles of NaLOX3, functionally char-
acterized for the production of JA and m/z signal of JA.

Supplemental File S1. Multifactorial analysis and BL-SOM results for gene
expression data.

Supplemental File S2. UHPLC-TOFMS metabolomic positive and negative
mode data.

Supplemental File S3. Multifactorial analysis results for metabolomic data.

Supplemental Materials and Methods S1. Identification of metabolites
from UHPLC-TOFMS data.
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