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ABSTRACT

Motivation: When analyzing solid-state nuclear magnetic resonance

(NMR) spectra of proteins, assignment of resonances to nuclei and

derivation of restraints for 3D structure calculations are challenging

and time-consuming processes. Simulated spectra that have been

calculated based on, for example, chemical shift predictions and

structural models can be of considerable help. Existing solutions are

typically limited in the type of experiment they can consider and diffi-

cult to adapt to different settings.

Results: Here, we present Peakr, a software to simulate solid-state

NMR spectra of proteins. It can generate simulated spectra based on

numerous common types of internuclear correlations relevant for as-

signment and structure elucidation, can compare simulated and ex-

perimental spectra and produces lists and visualizations useful for

analyzing measured spectra. Compared with other solutions, it is

fast, versatile and user friendly.

Availability and implementation: Peakr is maintained under the GPL

license and can be accessed at http://www.peakr.org. The source

code can be obtained on request from the authors.

Contact: robert.schneider@ibs.fr or mako@nmr.mpibpc.mpg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

In recent years, solid-state nuclear magnetic resonance (NMR)

has made significant progress in studying structure and function

of biomolecules such as membrane proteins and protein fibrils

(for reviews, see McDermott, 2009; Renault et al., 2010; Judge

and Watts, 2011; Tycko, 2011). However, especially for larger

proteins, resonance assignment and determination of restraints

for 3D structure calculations are still difficult and time-consum-
ing processes owing to often limited spectral resolution and

chemical shift ambiguity, as well as complex relationships

between internuclear distances and signal intensities. These prob-

lems especially apply to through-space correlations that cannot

be traced along the chemical bond network (Manolikas et al.,

2008).
For the assignment of resonances and the extraction of re-

straints, it has been proven helpful to have simulated spectra

(sometimes referred to as spectrum ‘predictions’) at hand.

Simulated spectra can be calculated based on amino acid se-

quences, known or modeled 3D structures, chemical shift assign-

ments or predictions from tools such as SHIFTX (Neal et al.,

2003) and the type of correlation probed in the respective experi-

ment. This way, cross-peak assignments can be suggested, and,

for example, it can be investigated whether an experimental spec-

trum can be explained by a given structural model (Wasmer

et al., 2008; Schneider, et al., 2010b). Simulated spectra can

also be used in an iterative process of obtaining shift assignments

and refining the molecular structure at the same time (Matsuki

et al., 2007).

Existing software for the simulation of NMR spectra is usually

tailored to calculating spectra of small molecules in solution

(Golotvin et al., 2007; Binev and Aires-de-Sousa, 2004; ACD/

Labs NMR Predictors, 2007) or to specifically simulate NOESY

spectra in the context of NMR protein structure determination

(Gronwald and Kalbitzer, 2004, and references therein). Some

NMR data analysis software packages such as Sparky (Goddard

and Kneller), NMRPipe (Delaglio et al., 1995) and CcpNmr

(Vranken et al., 2005) contain routines for simulation of protein

NMR spectra, but these are often not straightforward to use or

do not work in a stand-alone manner. Moreover, with the ex-

ception of recent additions to CcpNmr (Stevens et al., 2011), they

are usually more adapted to solution-state NMR correlation

types. Thus far, spectrum simulation has typically been carried

out using general-purpose tools like spreadsheet software or

custom-made programs limited in flexibility and usability.
Thus, it would be desirable to be able to simulate a wide range

of solid-state NMR experiments commonly used for resonance

assignment and structure elucidation with a single software tool

that is flexible enough to swiftly handle changes in input data

such as chemical shift values, structural models or labeling pat-

terns. We implemented Peakr, a software package that fulfills

these requirements. Based on chemical shifts provided by the

user or predicted by built-in third party software tools, spectra

for 2D (15N,13C) and (13C,13C) intra- and inter-residue as well as

through-space correlations can be computed quickly and can

easily be adapted to specific needs. Using the calculated spectra,
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visual and numerical comparisons between simulated and
measured data are possible. Peakr is available through a web

interface (www.peakr.org).

2 METHODS

The higher abstracted parts of Peakr are implemented in the object-ori-

ented programming language Ruby (http://www.ruby-lang.org) using the

BioRuby library (Goto et al., 2010). The more data-intensive bookkeep-

ing is done using a PostgreSQL database (http://www.postgresql.org).

The Ruby on Rails framework (http://rubyonrails.org) is used for the

web application, which drives the web interface. Calculated and experi-

mental spectra are visualized by a Peakr-plugin to the PyBiomaps library

(http://http://pypi.python.org/pypi/PyBioMaps/). The workflow of the

software is outlined in Figure 1. Briefly, chemical shifts supplied by the

user or predicted using one of several shift prediction programs (see

below) are assigned to the nuclei of a user-provided protein sequence.

Based on these shifts and an optionally provided protein structure, vari-

ous 2D spectra can be calculated. For visualization, either all or a subset

of the residues and nuclei of the protein can be selected. Simulated spectra

can be superimposed on and compared with experimental spectra.

2.1 Protein sequences

In Peakr, proteins and their constituent amino acids are represented by

protein object models. A protein is either created from a user-provided

protein sequence or from a Protein Data Bank (PDB) structure Ele
(Berman et al., 2007).

2.2 Chemical shifts

Chemical shifts are added to the nuclei in the amino acids of a protein

from user-provided shift lists, computer-generated shift estimations, data-

base values or a combination of these methods. User-provided lists of

shifts are currently accepted in Sparky (Goddard and Kneller), SHIFTX

(Neal et al., 2003) and comma-separated value formats. Output from

other software can be converted to one of these formats using, for ex-

ample, WeNMR (Vranken et al., 2005). If a PDB file is provided, chem-

ical shifts can directly be estimated using either SHIFTX (Neal et al.,

2003), SHIFTX2 (Han et al., 2011), SPARTA (Shen and Bax, 2007),

SPARTAþ (Shen and Bax, 2010), SHIFTS (Xu and Case, 2001),

shAIC (Nielsen et al., 2012) or CamShift (Kohlhoff et al., 2009).

Alternatively, average chemical shifts from the Biological Magnetic

Resonance Database (BMRB, http://www.bmrb.wisc.edu; Markley

et al., 2008; Ulrich et al., 2007) can be assigned to nuclei. These methods

can also be combined, in which case user-provided data from a chemical

shift list are given priority over chemical shift values predicted by third-

party software, which in turn is prioritized over average database values.

Thus, for example, user-provided shifts from a Sparky-format list are

used where available; nuclei unassigned in this list the chemical shifts of

which are predicted by SHIFTX are assigned SHIFTX prediction values;

finally, nuclei unassigned in the Sparky-format list the chemical shifts of

which are not predicted by SHIFTX, such as side-chain carbons beyond

CB, are assigned BMRB database values. Each nucleus can have multiple

shifts to account for possible cases of conformational polymorphism

sometimes seen in solid-state preparations of proteins (Seidel et al., 2005).

2.3 Conformations

Conformations represent a set of coordinates of the atoms of a given

protein. Each protein can have several conformations. This way, an en-

semble of structures or different conformations of the same protein under

different experimental conditions can be represented. Conformations are

obtained from models as included in PDB Eles. Protons have to be al-

ready present in the PDB file if they are required for the spectrum to be

simulated (see through-space correlations below). Protons can be added

to a structure using standard software such as WHATIF (Vriend, 1990)

or PyMOL (the PyMOL Molecular Graphics System).

2.4 Correlations

Correlations represent the type of experiment conducted to obtain a spe-

cific spectrum (see Fig. 2 for typical correlations used in resonance as-

signment). They are applied to all or selected residues of the protein

sequence to yield a list of cross-peaks. The following six types of correl-

ations are available.

2.4.1 Intra-residue (13C,13C) correlations For defining (13C,13C)

correlations within residues, the user can select which nuclei should be

considered, depending on their distance from the protein backbone (e.g.

all carbons or only CO, CA and CB nuclei). It can also be specified by

how many bonds two carbon nuclei may be separated to be included in

the simulated spectrum (yielding, for example, only one-bond correlations

Fig. 1. Workflow of the Peakr web application

Fig. 2. Scheme of the protein backbone. Two amino acid residues i and

i-1 with side-chains symbolized by Ri and Ri-1 are shown. Possible (solid-

state) NMR correlations for sequential resonance assignment are indi-

cated by arrows. Red: (13C,13C) correlations; blue: (15N,13C) correlations;

solid lines: denote intra-residue transfer; dashed lines: inter-residue

transfer
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or correlations between all carbons separated by up to three bonds). This

way, the user can select correlations of interest and avoid overcrowding of

the simulated spectrum with peaks that might not be present in a mea-

sured spectrum owing to, for example, increased side-chain mobility or

short mixing time.

2.4.2 Double quantum correlations (13C,13C) double quantum cor-

relations represent intra-residue correlations seen in 2D double quantum–

single quantum (INADEQUATE-type) correlation spectra (Bax et al.,

1980; Menger et al., 1986), where the resonance frequency of a cross-

peak in the indirect dimension corresponds to the sum of the chemical

shifts of the two interacting nuclei. Double quantum correlations are

created in the same way as regular intra-residue correlations; however,

only one-bond correlations are considered, as only these are normally

observed in experimental spectra.

2.4.3 Inter-residue (13C,13C) correlations For (13C,13C) correla-

tions between neighboring residues, again, it can be specified which

nuclei to consider, depending on their distance from the backbone. In

addition, the desired unique or maximum residue number difference for

nuclei to be correlated can be chosen.

2.4.4 (15N,13C) correlations (15N,13C) correlations can be defined as

intra-residue N(i)–CA(i)–CX(i) or sequential N(i)–CO(i-1)–CX(i-1) cor-

relations (with CX representing any other carbon nucleus in the respective

residue). It can be specified whether all or only a subset of the 13C nuclei

should be included in the simulation, depending on their distance from

the backbone (yielding, for example, only N(i)–CA(i) or also N(i)–CA(i)–

CB(i) correlations, etc.).

2.4.5 Through-space correlations Through-space correlations are

created by specifying a set of residues, a set of conformations with

atom coordinates and a pairwise distance cutoff up to which correlations

should be taken into account. This type of correlation can act in different

modes, allowing either direct distances between heteronuclei to be con-

sidered (yielding C–C or N–C through-space correlations) or the dis-

tances between protons directly attached to heteronuclei, yielding

NHHC and CHHC correlations (Lange et al., 2002; 2003). A minimum

distance threshold and a minimal residue number difference can also be

specified.

Peakr can also simulate intermolecular through-space correlation spec-

tra if a PDB file with multiple protein chains is provided. For example,

symmetry equivalents can be generated from known crystal structures

using programs such as SwissPDBViewer (Guex and Peitsch, 1997) or

PyMol. These can then be analyzed as different chains in Peakr. In this

way, intermolecular cross-peaks arising because of crystal packing inter-

actions can be identified. In the context of multimeric proteins or protein

fibrils, the simulation of intermolecular correlations can be particularly

useful (Wasmer et al., 2008). Currently, the simulation of intermolecular

through-space correlations requires the presence of two or more copies of

the same protein in the PDB file; however, the generalization to hetero-

multimeric protein complexes could be implemented as well.

2.5 Calculated spectra

Spectra represent a set of cross-peaks that are generated by applying a

correlation object to a protein, using the experimental or estimated che-

mical shifts assigned to its nuclei as discussed in Section 2.2. It is worth

noting that the resultant simulated spectrum is not a ‘prediction’ in the

strict sense of the word. All internuclear correlations possible under the

selected correlation type, subject to further selections (see below), give rise

to cross-peaks in a Peakr-simulated spectrum, as long as chemical shift

values have been assigned to the corresponding nuclei in the underlying

protein object. In this sense, Peakr-simulated spectra are idealized repre-

sentations of which peaks will be present in an experimental spectrum if

all underlying data (chemical shift values, protein structure, etc.) are

correct, the experiment exhaustively and exclusively probes the desired

internuclear correlations and no further effects affecting cross-peak

appearance (signal to noise, local mobility, etc.) are present. It is thus

up to the user to decide whether any differences between a simulated and

an experimental spectrum are significant and what their origin might be

(see Section 3 for an example).

By default, spectra are calculated for all amino acids in the protein. If a

provided PDB file contains several chains and/or models, calculated spec-

tra can be displayed for each of these separately. In addition, the user can

select subsets of residues to be displayed in a spectrum. One option is to

select a certain sequence range based on residue number. Another possi-

bility is to select residues within particular secondary structure types. If a

PDB file is provided, secondary structure is assigned to individual resi-

dues using Stride (Frishman and Argos, 1995); otherwise, it is predicted

from the sequence using PsiPred v3.0 (Jones, 1999). Furthermore, any

subset of amino acid types can be selected. This option can be used to

simulate spectra of proteins that were expressed using forward or reverse

labeling of certain amino acids (Vuister et al., 1994; Heise et al., 2005).

In addition, the user can select one of several more complex isotope-

labeling schemes. In the current implementation, Peakr provides
13C-labeling patterns as obtained from protein expression using

1,3-13C-glycerol, 2-13C-glycerol, 1-13C-glucose and 2-13C-glucose as sole

carbon sources (Hong, 1999; Castellani et al., 2002; Lundström et al.,

2007). The probabilities of individual carbon nuclei to be isotope labeled

as listed in these publications are translated into opacity values in Peakr’s

spectrum display. Thus, a correlation between two nuclei that are less

likely to be both 13C labeled in the selected labeling scheme appears

correspondingly less intense in the simulated spectrum.

It is particularly helpful for analysis and interpretation of spectra if

subsets of the same protein sequence are displayed at the same time, but

with different colors or markers. Therefore, we provide a ‘Clone’ button

to copy every spectrum as often as needed. For each of these identical

spectra, the user can then, for example, select different sets of residues and

update the displayed spectra accordingly.

2.6 Experimental spectra

Processed experimental spectra can be read in and displayed, alone or

overlaid with simulated spectra. Peakr accepts processed spectra in

Bruker (XWinNMR or Topspin; Bruker Biospin, Karlsruhe,

Germany), Varian/Agilent (Vnmr or VnmrJ; Agilent Technologies,

Santa Clara, CA) and NMRPipe (Delaglio et al., 1995) formats.

2.7 Output

2.7.1 Data storage The generated simulated and experimental spectra

can be downloaded as file archives referenced by a checksum string for

further external investigation. Unmodified file archives can again be

uploaded to Peakr for further analysis, including the generation of addi-

tional simulated spectra based on the previous settings. The individual

checksum provides for security of the user’s data. In addition, all data are

automatically deleted from the server 24 hours after creation, to avoid

long-term storage of potentially sensitive research data.

2.7.2 Lists The cross-peak lists of simulated spectra can be retrieved as

tab-delimited files that can be directly read into the Sparky program.

When comparing with an experimental spectrum, lists are generated

that contain the intensity of the measured spectrum at the positions of

the simulated cross-peaks or in a defined region around them. This pro-

vides for a straightforward numerical comparison between simulation

and experiment, which can be useful for model validation or generation

of restraint lists for structure calculation. These peak lists are searchable,

and sub-selections of peaks can be made based on, for example, spectral

intensity or interatomic distance. Then, the spectrum display can be mod-

ified to show only the selected peaks.
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2.7.3 Graphics Peakr generates spectra with cross-peaks as PNG files

that can be zoomed and browsed, providing the functionality known

from applications like Google Maps. Visualized spectra (covering all

simulated peaks or a region selected by the user) can be downloaded in

PNG, PDF or SVG format. Simulated and experimental spectra can

be combined in one plot. Cross-peaks from different spectra are distin-

guished by color. If a specific 13C-labeling scheme is chosen, the

probabilities of the correlations are displayed as opacities. Tooltips on

every peak indicate the contributing nuclei and corresponding chemical

shifts.

3 RESULTS AND DISCUSSION

Peakr is available via a web interface (Fig. 3). The workflow has

been designed to provide the highest possible flexibility in terms

of correlation types as well as protein regions and conformations

that can be chosen for comparison and analysis. The user can

provide a protein sequence or a structural model; can choose

between providing chemical shift lists, predicting shifts using

different third-party software or combining these data; and can

select various types of correlations that are used in experimental

setups. During spectrum simulation, Peakr first calculates corre-

lations for all residues. Subsequently, any combination of resi-

dues can be selected for display, also from different chains or

models that may be present in a PDB file (Fig. 4). Here, the

‘clone’ function provides an easy way to visualize various selec-

tions of residues and nuclei while using the same settings for

shifts and correlations.
Typical spectrum calculations with Peakr are relatively fast, on

the order of a few seconds to about half a minute for intra- and

inter-residue correlation spectra for small- to medium-sized pro-

teins used in NMR studies (5300 residues, Intel Xeon E5405

2.0GHz, Supplementary Data). Through-space correlation spec-

tra are more computationally intensive and can take a minute or

more to calculate for proteins of this size, depending on the

upper internuclear distance threshold chosen. However, these

values include the time spent by the interfaced third-party soft-

ware tools to calculate chemical shift predictions, as well as the

graphical output generation. Also, given the ease of use of Peakr,

the times mentioned here nearly correspond to the total time to

arrive at a simulated spectrum and will thus nevertheless be

considerably shorter than with any other existing or custom-

written method.
As an example for using Peakr, we demonstrate the simulation

of intra-residue (13C,13C) correlation spectra of solid ubiquitin

and their comparison with experimental data. The experimental

dataset consists of a (13C,13C) correlation spectrum of micro-

crystalline uniformly [13C,15N] isotope-labeled ubiquitin pre-

pared as described (Seidel et al., 2005). It was recorded on a

700MHz spectrometer (Bruker Biospin, Karlsruhe, Germany)

using 7.8ms of dipolar-assisted rotational resonance (DARR)
13C–13C mixing (Takegoshi et al., 2001). Simulated spectra

were generated in Peakr based on the ubiquitin amino acid

sequence in plain one-letter code format and using chemical

shift assignments for this solid-phase ubiquitin preparation as

reported (Seidel et al., 2005) in Sparky list format. We generated

three different (13C,13C) spectrum simulations based on these

data using Peakr’s intra-residue (13C,13C) correlation option,

including side-chain nuclei up to CD and allowing for one-,

two- or three-bond correlations. Then, we compared these simu-

lated spectra with the experimental data by listing the intensities

at the positions of the simulated peaks in the experimental spec-

trum. Based on visual inspection of the experimental spectrum,

an intensity cutoff of 3000 was chosen to differentiate between

signal and noise. Based on this cutoff value, 53.4% of one-bond,

17.9% of two-bond, and 2.4% of three-bond simulated correla-

tions were found to be present in the spectrum, showing that the

experimental spectrum yielded mainly one-bond and to some

extent two-bond correlations under the conditions chosen.
With this approach for comparing simulation with experiment,

spectral intensities at exactly the position of simulated peaks are

returned. It can be useful to allow for more variability in peak

Fig. 3. Screenshot of the Peakr web application. The part in which spec-

tra can be simulated is shown divided into the sections: Protein, Chemical

shifts and Correlations. The example dataset provided on the website,

with solid-state chemical shifts of ubiquitin as published in Seidel et al.

(2005), is shown here as input

Fig. 4. The screenshot shows the list of simulated spectra after cloning

the first spectrum using the Clone function (third icon from left).

Different parts of the protein sequence were selected (see Start and End

values). The spectra show resonances from the first 20 residues and from

residues 30 to 76. For the second spectrum, only some of the amino acid

types present in the sequence were selected, which are thus highlighted in

orange
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positions to account for, for example, small variations in sample

conditions such as temperature or pH. To do so, Peakr can

return the maximum intensity in a defined region of the experi-

mental spectrum around each simulated peak. Allowing for �0.2

parts per million (p.p.m.) variation in peak position when com-

paring the above one-bond (13C,13C) simulated spectrum with

experiment, 74.5% of simulated one-bond correlations are

found above the selected threshold, indicating good agreement

between simulation and experiment (Fig. 5, green dots).

For comparison, we simulated the same one-bond (13C,13C)

correlation spectrum of ubiquitin using assignments reported for

a different microcrystalline ubiquitin preparation (Igumenova

et al., 2004), adjusted for the referencing offset of 2.01 p.p.m.

between these assignments and the values used above. For this

ubiquitin preparation using 2-methyl-2,4-pentanediol as precipi-

tant, rather than poly-(ethylene glycol; Seidel et al., 2005), sig-

nificant chemical shift differences were reported in some regions

of the protein (Seidel et al., 2005; Schneider et al., 2010a).

Correspondingly, Peakr only finds 66.0% of all simulated one-

bond peaks within a range of �0.2p.p.m. of a spectral intensity

above the selected threshold (Fig. 5, blue dots). Whether such a

difference in the percentage of simulated peaks above an inten-

sity threshold is significant is of course up to the user to decide,

as there is no universal way to judge whether a peak can be

considered present in an experimental spectrum and what per-

centage of simulated peaks needs to be present in an experimen-

tal spectrum to constitute good agreement between them. Such

judgements always also depend on, for example, accuracy of

third-party chemical shift prediction algorithms used as well as

signal to noise and resolution in the experimental spectrum and

are beyond the scope of Peakr. However, this example illustrates

the utility of Peakr to quickly make qualitative assessments

about quality and state of a protein sample as well as to compare

different alternative hypotheses to explain a spectrum. Expected

peaks that are absent from an experimental spectrum, weaker

than expected or shifted may hint at conformational differences

or local motion (Schneider et al., 2010a). Thus, Peakr can

directly point the user to spectral regions that merit further

investigation.
Several specific 13C-labeling schemes that have been used in

solid-state NMR studies in recent years are also implemented in

Peakr. Labeling patterns obtained from using 1,3-13C- or 2-13C-

glycerol (Castellani et al., 2002) as well as 1-13C- or 2-13C-glucose

as sole carbon sources (Hong, 1999; Lundström et al., 2007) can

be selected for spectrum simulation. This feature is demonstrated

in Figure 6 for the same one-bond (13C,13C) correlation spectrum

of ubiquitin as shown in green in Figure 5, using the 1,3-13C-

glycerol–labeling scheme. Peakr calculates opacity values of indi-

vidual peaks according to the 13C-labeling probabilities of the

nuclei that give rise to the correlation. For the glycerol-based

schemes, detailed labeling probabilities and isotopomer patterns

are available (Castellani et al., 2002) and implemented in Peakr,

while the simplified scheme as shown in (Lundström et al., 2007)

is used for simulating spectra with 1-13C- and 2-13C-glucose-

based labeling. Such simulated spectra should be very helpful

in assigning spectra of proteins expressed with one of these

Fig. 5. Screenshot of the Peakr spectrum display window showing the example discussed in Section 3. Light grey (orange): Orange: experimental DARR

(13C,13C) spectrum of microcrystalline ubiquitin; Light grey and dark grey circles (green and blue, respectively): green and blue: simulated one-bond

(13C,13C) correlations based on assignments reported in Seidel et al. (2005) (light grey; green) (green) and based on assignments from Igumenova et al.

(2004) (dark grey; blue) (blue)
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labeling patterns, effectively circumventing the need for the user

to consult tables of labeling schemes manually. In addition to the

option to select only certain amino acid types for spectrum simu-

lation, the selective 13C-labeling option in Peakr allows to assess

which labeling method would best reduce spectral crowding for

larger proteins with sizable spectral overlap. Complementary to

approaches such as the UPLABEL algorithm (Hefke et al.,

2011), this offers a fast and convenient way to guide protein

expression strategies for further experiments.

4 CONCLUSIONS

The Peakr software presented here can be of considerable help

when analyzing solid-state NMR spectra of proteins. It can simu-

late 2D spectra for many common experimental setups. The

simulated spectra can be helpful for guiding the resonance

assignment process and for deriving restraints for 3D structure

calculations. As demonstrated in the case study, basic assump-

tions about a measured spectrum can be made in a matter of

seconds, which can be useful in quality control of samples. In

contrast to existing solutions, Peakr is very flexible and can use

subsets of residues or nuclei to define spectra. This is especially

valuable when reverse or selective labeling methods are used or

when only a portion of the protein, for example, the N-terminus,

is of interest. Here, Peakr spectrum simulations can, for example,

be used to assess which isotope-labeling patterns would be opti-

mal for a given protein to reduce spectral crowding. Peakr’s

ability to rapidly simulate intra- and intermolecular through-

space correlation spectra, with the same flexibility in choosing

protein regions as well as upper distance limits to be considered,

should be especially valuable in solid-state NMR structural stu-

dies. The option to compare simulated with measured spectra

allows for estimating the degree of agreement between simulation

and measurement. In this context, the percentage of simulated

cross-peaks with a measured intensity above a given threshold

can be seen as a simple figure of merit.
The Peakr framework is itself highly flexible and can accom-

modate extensions desired by its users. Future versions may thus,

for example, be extended to simulate 3D correlation spectra or

proton-detected experiments, which are increasingly used in

solid-state NMR (Habenstein et al., 2011; Linser et al., 2011),

as well as to incorporate solution-state NMR correlation types.
In summary, Peakr has the power and flexibility to become a

useful tool for routine analysis of solid-state NMR spectra. It is

thus hoped that the community will adopt it and provide active

feedback for further improvement and extension.
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