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Supporting Information

Basin Hopping Algorithm

Recent developments in computing power and the efficiency of electronic structure codes have

lead a number of groups to develop global optimization methods which directly explore the energy

landscape described by electronic structure methods1–4 rather than using a prescreening with an

empirical potential. We will not try to provide a comprehensive review of these developments

here, but give some details of the choices we made in extending basin hopping (BH) to use DFT

calculations for the local optimization and energy evaluation at each Monte Carlo step. Our basin

hopping program is written in Fortran 90 and interfaces to TURBOMOLE using the TMOLE
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script, versions are also available which work with TURBOMOLE’s DEFINE program or with

Gaussian, and extension to other electronic structure codes should be reasonably straight forward.

Code can be obtained from DJH (email: daniel.harding@mpibpc.mpg.de).

The greatest difference between BH with a model potential andDFT-BH is the computational

cost of the local optimization. A second, related, factor isthe sensitivity of the electronic wave-

function self consistent field (SCF) convergence to the cluster geometry. This typically manifests

itself in problems with the first step of the geometry optimization if any of the atoms are too close

together. The solution to both of these problems is to check that the interatomic distances in the

new candidate structure are reasonable, neither to close nor to far, which we also use to prevent the

cluster from fragmenting.

Figure 1: Flow chart showing the most important steps in the DFT-BH routine.

Figure 1 shows a flow chart of the most important part of the DFT-BH routine. We start a BH

run with a seed geometry rather than a completely random structure, the geometry is then written

to an input file for TURBOMOLE, where the functional, basis set and convergence criteria are

specified. All of the options available in TURBOMOLE can, in principle, be used, allowing mixed

clusters or ions to be investigated. In order to increase thenumber of MC steps we typically use
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relatively small basis sets with effective core potentialsand reduce the SCF convergence criteria

to 10−4 compared to the default 10−6. We found it less fruitful to lower the convergence threshold

for the geometry optimization and typically use the defaultsettings.

Following the DFT calculation the optimized coordinates and energy are extracted from the

output files of the electronic structure program, and a test is also made to ensure that the calculation

has converged. If the calculation has not converged, eitherduring an SCF step or the geometry

optimization, a new input geometry is generated and the optimization restarted. The energy of the

new, converged structure is compared to that of the current reference structure using the standard

Metropolis criteria.5 Given the relatively high cost of the DFT calculations and our interest in

exploring the full range of low energy isomers we save all of the converged structures to allow an

off line analysis.

A new candidate structure is then generated, using either a single atom move, where one atom is

moved around the cluster, or a ’jiggle’, where all of the atoms in the cluster are moved. We use the

significant structures variant of BH, where the current reference structure is perturbed to generate

the new candidate structure. The interatomic distances of the candidate are then checked and, if

they fall within the preset criteria, the structure is used to start a new DFT optimization, otherwise

another candidate is generated. It is sometimes necessary to go around this loop a relatively large

number of times, but the computational cost is insignificantcompared to the time savings made by

the increased success of the DFT optimizations.

The number of MC steps used varies depending on the system, for the small PtnC+ clusters

only a few hundred steps were used, but for larger systems thousands of steps are possible at

reasonable computational cost.

Pt2C+

Figure 2 shows the experimental and calculated spectra of Pt2C+. We were only able to measure

a high quality spectrum in a limited, low frequency, range. We clearly observed a strong band

at 276 cm−1 and possibly a weak band at 1110 cm−1. The primary cause of the low signal-to-
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Figure 2: Experimental spectrum of argon tagged Pt2C+ and calculated spectra of low-energy
isomers. The blue line shows the spectrum of isomer2A with two argon atoms included explicitly
in the calculation.
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noise ratio appears to be the low intensity of this species inthe cluster distribution, which was

optimized for the larger sizes. A second potential complication may be a low density of vibrational

states at higher energy in this small cluster, leading to relatively slow intramolecular vibrational

redistribution (IVR) following IR excitation of the high frequency mode around 1100-1200 cm−1.

Slow IVR may make it more difficult for the cluster to absorb the multiple photons necessary to

drive dissociation, in turn leading to a smaller apparent cross section. The calculated spectrum of

the linear isomer2A is a reasonable match to the band position in the experimental spectrum and

if the argon atoms are included explicitly the position of the low frequency band is matched very

well. The other isomers do not match the experiment so well, suggesting the linear structure is

present in the experiment.

Cartesian coordinates

The Cartesian coordinates of the structures discussed in thearticle are available in a plain text file

PtCarbides.xyz.
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4 
3A  Energy = -395.8389680936 
Pt    0.0000000    0.0000000    2.0730384  
Pt   -1.2972727    0.0000000   -1.0449103  
Pt    1.2972727    0.0000000   -1.0449103  
C     0.0000000    0.0000000    0.272568 
4 
3B  Energy = -395.8379863883 
Pt    1.7933737    0.0000110   -0.6800214  
Pt   -1.7933737    0.0000110   -0.6800214  
Pt    0.0000000    0.0000023    1.3900547  
C    -0.0000000   -0.0003941   -0.4874398 
4 
3C Energy = -395.7526487619   
Pt   -1.2418655   -0.7972345   -0.0000015  
Pt    1.2396553   -0.8015301   -0.0000015  
Pt    0.0019418    1.4092290    0.0000069  
C     0.0043606    3.0783574   -0.0000642 
5 
4A Energy = -515.2185847258  
Pt   -1.3242707   -0.3086384   -0.2567829  
Pt    0.2242605   -2.4492416    0.1809690  
Pt    1.6141266    0.7817250   -0.1532202  
Pt   -0.5452560    2.0177770    0.2370600  
C     0.5057586   -0.6760060   -0.1303519 
5 
4B Energy = -515.2158134890 
Pt   -0.8666550   -1.0104557   -1.0290655  
Pt   -0.5164093    1.6951142    1.0174199  
Pt    0.8658784    1.0135710   -1.0286744  
Pt    0.5169978   -1.6982141    1.0139045  
C     0.0030557   -0.0002496    0.4290294 
5 
4C Energy = -515.2125605238 
Pt    0.4623572    0.0750242    1.4430768  
Pt   -1.2453318   -1.3208131   -0.2731600  
Pt    1.9772007   -0.0556470   -0.7460843  
Pt   -1.2031933    1.3041303   -0.3925567  
C     0.1456413   -0.0437598   -0.5079686 
6 
5A Energy = -634.5990477496 
Pt    1.6438854   -0.3206175    1.2104761  
Pt   -0.5417503   -1.1911622    0.0473782  
Pt    0.3569045    1.6909336    0.0347072  
Pt   -2.9016293    0.0798178    0.0024449  
Pt    1.5141928   -0.2955859   -1.2982264  
C    -1.1629473    0.5946693    0.0522985  
6 
5B Energy = -634.5975063465  
Pt    1.9378800   -0.5260637   -0.4594585  
Pt   -0.2231987    0.5029804   -1.4998436  
Pt   -0.2363175   -1.4413782    0.6559629  
Pt    0.9737174    1.2623617    1.1252514  
Pt   -2.4172722    0.1748650    0.1535523  
C    -0.5653529    0.4423357    0.3984962 
6 
5C Energy = -634.5928935568 
Pt    0.2862498    1.3678242    1.7003578  
Pt    0.4641295   -1.2164649    1.3344169  
Pt    0.5060920   -1.2470390   -1.2793549  
Pt    0.2790146    1.3249573   -1.7374520  
Pt   -1.5140982   -0.3041391   -0.0170862  
C    -0.3473699    1.2158683   -0.0143163 
3 
2A Energy = -276.4584721518  
Pt    0.0000000    0.0000000   -1.7385707  
Pt    0.0000000    0.0000000    1.7385707  
C     0.0000000    0.0000000    0.0000000 
3 
2B Energy = -276.3618977930 

Pt    1.8065988    0.0002533    0.0000000  
Pt   -1.8066020    0.0002533    0.0000000  
C     0.0000513   -0.0082269    0.0000000 
3 
2C Energy = -276.3638495908  
Pt    1.3243400   -0.6015995    1.1811428  
C    -2.1604197   -0.5620866    0.5684195  
Pt   -0.6803383   -0.5214634   -0.2504771 
5 
2a-Ar2 Energy = -1331.593224710 
Pt   -1.7491548    0.0000000    0.0000000  
Pt    1.7491712    0.0000000   -0.0000000  
C     0.0000149   -0.0000000    0.0000000  
Ar   -4.3379071    0.0000000    0.0000000  
Ar    4.3379480   -0.0000000   -0.0000000  
2 
PtC+ doublet Energy = -156.9390086443 
Pt   -0.1012879    0.0000000    0.0000000  
C     1.6450745    0.0000000    0.0000000 
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