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Abstract

In this article, we propose a novel image segmentation method called the whole mesh deformation (WMD) model,
which aims at addressing the problems of modern medical imaging. Such problems have raised from the
combination of several factors: (1) significant growth of medical image volumes sizes due to increasing capabilities of
medical acquisition devices; (2) the will to increase the complexity of image processing algorithms in order to explore
new functionality; (3) change in processor development and turn towards multi processing units instead of growing
bus speeds and the number of operations per second of a single processing unit. Our solution is based on the
concept of deformable models and is characterized by a very effective and precise segmentation capability. The
proposed WMDmodel uses a volumetric mesh instead of a contour or a surface to represent the segmented shapes
of interest, which allows exploiting more information in the image and obtaining results in shorter times,
independently of image contents. The model also offers a good ability for topology changes and allows effective
parallelization of workflow, which makes it a very good choice for large datasets. We present a precise model
description, followed by experiments on artificial images and real medical data.
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1 Introduction
The image segmentation procedure is one of the most
important steps involved in the process of image analy-
sis. This refers to the task of partitioning a given image
into multiple regions and is typically used to locate and
mark objects and boundaries in input scenes. After seg-
mentation, the image represents a set of data far more
suitable for further algorithmic processing and decision
making. Image segmentation algorithms are a very broad
field and they have received significant amount of research
interest.
A very interesting family of image segmentation

algorithms, that has been gaining a lot of focus for many
years, is called deformable models. They are based on
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the concept of placing a geometrical object in the scene
of interest and deforming it until it assumes the shape
of objects of interest. This process is usually guided by
several forces, which originate in mathematical functions,
features of the input images, and other constraints of
the deformation process, like object curvature or con-
tinuity. A range of very desired features of deformable
models include their high capability for customization
and specialization for different tasks and also extensibility
with various approaches for prior knowledge incorpora-
tion. This set of characteristics makes deformable models
a very efficient approach, which is capable of delivering
results in competitive times and with very good quality of
segmentation, robust to noisy, and incomplete data.
Numerous examples of deformable models usage can

be found, starting from the earlier years of image pro-
cessing until the recent research efforts. The first work
about that subject has been presented by Kass et al. [1].
These authors have described a method called Snakes,
which proposed placing a single contour in the scene of
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interest and then subjecting it to deformations until it
assumes the shape of the objects present in that scene.
The deformations have been constrained by the external
and internal energies, which described the features of the
scene and of the contour itself, respectively. This idea has
caused a lot of interest in the field of image segmentation
in general and in relation to medicine. Numerous authors
started to propose their improvements and changes to the
original formulation, including the geometric active con-
tours models [2] (applied to magnetic resonance images of
brain) or active contours for segmentation objects without
strictly defined edges [3] (tested only on artificial images
and pictures) among the most noteworthy ones.
Solutions derived from the original method formulated

by Kass et al. [1] usually used an Euler differential equation
to determine the solution. A different approach has been
presented by Amini et al. [4] in their early publication,
where the authors proposed a solution based on dynamic
programming. The method allowed the introduction of
new type of constraints, called hard constraints, describ-
ing rules that could not be violated. It also guaranteed the
numerical stability of the solution, thus addressing a seri-
ous disadvantage of the Kass method, where the iterations
that formed the intermediate steps of execution showed
a large level of instability and for the final solution they
had to be considered meaningless. The drawback of the
Amini solution was a big overhead in terms of memory
requirements and execution times. The idea of algorith-
mic approach was further examined by Williams and
Shah [5], who have proposed a greedy algorithm approach
and also introduced some advances regarding the energy
function estimation. Their solution delivered a significant
improvement in terms of execution time and memory
needs, as by the definition it considers only local informa-
tion in each iteration. Therefore, this approach would not
guarantee that the found resulting solution would be the
globally lowest one. However, those authors argued that
the tests of their method have proven its ability to deliver
results of a very close quality to those of the dynamic
programming version. Tao et al. [6] have extended a very
popular formulation of external force, called the Gradi-
ent Vector Flow (GVF) [7]. Their formulation, called the
fluid vector flow, has improved some features of the GVF
that have been not optimal, namely insufficient capture
range and poor convergence for concavities. Xie [8] has
experimented with gradient vector interaction in order
to deal with the initialization dependency problem. An
interesting approach has been presented by De Santis
and Iacoviello [9]. These authors have experimented with
a discrete formulation of the energy function instead of
defining the algorithms in the continuum. Their exper-
iments have shown that using the said approach it was
possible to obtain more accurate segmentation with sig-
nificantly lower computational costs.

The ability to change topology of the shape has
been a very significant component of deformable mod-
els and numerous works have been presented with the
aim of classifying and describing different aspects of
topology changing [10,11]. McInemey and Terzopoulos
[12,13] have considered the incapability of the paramet-
ric deformable models for topological transformations
without additional mechanisms. They have introduced a
model called the T-snake, which was able to dynamically
adapt its topology to that of the target object, flow around
objects embedded within the target object, and/or auto-
matically merge with other models interactively intro-
duced by the user. A very important solution has been
proposed by Casselles [2], who presented a model based
on a curve evolution approach instead of an energy
minimization one. It allowed automatic changes in the
topology when implemented using the level-sets-based
numerical algorithm [14] and also naturally prevented
self-intersecting, which is a costly procedure in paramet-
ric deformable models. Their solution has served as the
base for numerous following works [15-17]. However, the
ability to change the topology is not always desired. Espe-
cially in the field of medical imaging, we are often dealing
with a situation when the topology of the object of interest
is known from anatomical knowledge and can be defined
upon algorithm execution. In order to provide such func-
tionality a topology-preserving formulation was proposed
[18]. It has however achieved the goal by imposing a
hard constraint on the number of connected components,
which had to be known before the segmentation and could
not be modified during it. This was too restrictive for
some applications, so a more subtle method was proposed
in [19]. The authors have formulated their solution in a
way that would allow the components of the segmented
shape tomerge, split or vanish without changing the genus
of the initial deformable model.
Due to their attractive features one of the fields in which

deformable models perform very well, and thus are a very
popular choice, is the area of medical image analysis. Dig-
ital image processing has successfully been applied to this
area for more than three decades. The numerous bene-
fits that it offers include, in particular, improvement in the
interpretation of examined data, full or nearly full automa-
tion of tasks normally performed by a physician, better
precision and accuracy of obtained results, and also possi-
bility of exploring new imaging modalities, leading to new
anatomical or functional insights.
Despite the large amount of work carried out in this

area, deformable models still suffer from a number
of drawbacks. Those that have been gaining the most
focus are:

• sensitivity to the initial position and shape of the
model—without a proper initialization the model



Lenkiewicz et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:55 Page 3 of 17
http://asp.eurasipjournals.com/content/2013/1/55

might get trapped in local minima and thus not reach
the objects of interest or not detect some of their
features correctly;

• sensitivity to noise in the input images and to flawed
input data;

• problematic topology changing—whenever the scene
of interest includes more than one object or when the
objects present in the scene contain discontinuities,
deformable models need to change the topology of
their shape. This is not straightforward in the
parametric formulation of the method and requires
specific algorithms;

• the need for user supervision over the process.

Some of the above drawbacks have successfully been
addressed in an interesting work that has been presented
by Barreira and Penedo [20] and further described in
[21]. They have formulated amodel called The topological
active volumes (TAV) which has been introduced as a gen-
eral model for automatic segmentation of 3D scenes. The
TAV model has differed from the first methods based on
deformable models, in which the segmentation was per-
formed using solely boundary information and the result
included only a contour or a surface describing the shape
of the objects of interest. In the case of TAV, the deformed
shape was represented with a volumetric mesh, with some
nodes being responsible for describing the boundaries
of objects and others for modeling their interior struc-
ture. The mesh was initialized over the entire image and
then converged towards the objects present in the scene.
Thanks to the mesh structure, the TAV model was able
to describe segmented scenes with more detail and more
resemblance to the real-world objects. It also showed a
very good potential for the topology changing capabili-
ties and solved the issue of initialization, thanks to the
presence of the nodes in the entire image. However, the
initialization of the mesh was done in a way, which could
be compared to initializing any other Active Contour
method over the entire input image. Although it assures
covering the entire area of interest, it also introduces dis-
advantages, like starting the segmentation process from
the the most distant location possible. This increases the
overall segmentation time and also raises the chances of
performing an error during segmentation, because more
irrelevant objects and noises are encountered during the
process.
Modern medical imaging is focused around high-

resolution image data, which is capable of delivering
increasingly more information to medical practitioners,
which in turn leads to improvement in detection rates and
increased precision of computer-aided surgeries and plan-
ning. However, processing such large sets of data presents
new challenges, which is partly a result of the current
advances in the field of microprocessors. No longer are

we witnessing significant growth of possibilities of single
processing unit, but rather a trend towardsmulti-unit pro-
cessing. Numerous attempts have been taken to parallelize
the workflow of medical image processing using computer
clusters [22-25].
In this article, we present our innovative model for

3D image segmentation, called whole mesh deformation
(WMD) model. It presents a set of very desired solu-
tions that successfully address the above-mentioned dis-
advantages: it eliminates completely any reliance on the
initialization of the process, it allows efficient topology
changes and shows low dependence on user interaction.
Comparing to the TAV solution it also offers a number
of significant advantages, namely much better computa-
tional efficiency, high suitability for effective paralleliza-
tion, andmuch better solving of the initialization problem.
Because of a flexible and parameterized implementation
of the energy function the WMD model can also easily
be extended with further possibilities, like the ability to
incorporate prior knowledge using, e.g., statistical mod-
els. The proposed method is designed in a way to be
highly suitable for modern applications of image process-
ing, which is a treatment of large datasets composed of
3D, high-resolution images and taking advantage of multi-
processor execution environments. The preliminary ver-
sion of this model has been presented in [26]. In this
article, we describe our model with more detail, propose
a new mechanism for topology changes and a method for
workload parallelization. We also present more experi-
ments using real images as the input.
The remainder of this article is organized as follows: in

Section 2, we describe our model for image segmentation,
the WMD model, and we describe how can it deal with
the most significant problems that can be encountered
during 3D image segmentation tasks. In Section 3 we
describe the numerical parameters that are used for con-
figuration of themodel and we explain the high robustness
of the method in case of selection of non optimal val-
ues. In Sections 2.5 and 4, we describe the process of
shape optimization along with the condition of segmenta-
tion finalization and recognition of irrelevant parts of the
images. In Section 5, we describe a very important part of
the segmentation techniques based on deformable mod-
els, namely the topology changes scheme. In Section 6, we
describe the parallelization of the model, namely how effi-
ciently it shares the workload when executed on a multi-
processing unit environment. In Section 7, we present our
experiments with the WMDmodel divided into following
parts: comparison of the segmentation time with the TAV
method using a set of artificial images, comparison of the
segmentation time using different levels of precision, per-
formance with real medical images, and the performance
gain when executed in a parallel environment. Finally, in
Section 8 we present our conclusions.
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2 Description of theWMD approach
2.1 General description of the ideas
As mentioned before, theWMDmodel has been designed
using the ideas of deformablemodels and the TAVmethod
as its foundation. Similar to TAV, the segmentation pro-
cess is carried out by constructing a three-dimensional
mesh structure that would cover the entire input image
data. Next, the mesh is deformed by moving its nodes
in order to detect the objects present in the scene of
interest. However, the mesh in the proposedWMDmodel
is defined in a different way and the process of han-
dling its deformations is built upon different assumptions.
The comparison of the two approaches is presented in
Figure 1.
In the original idea of TAV, the mesh was initialized

over the whole volume with all the nodes divided into two
groups: internal and external ones. The external nodes,
which in fact performed the vital part of the segmentation
process, were distributed only over the superficial layer
of the volume. The internal nodes would be distributed
in the whole area between the external nodes and their
function was reduced to model the internal structure of
the objects by maintaining an even distribution between
the external nodes. We consider this approach to be not
optimal for the following reasons:

1. The number of nodes that segment the boundary of
the object is usually significantly lower than the
number of nodes which model their interior
structure. This might not be the case in the
exemplary image given on Figure 1, but in real-world
scenarios the density of the mesh is significantly
higher, resulting in different proportions between the
external and internal nodes. Furthermore, because of
the mesh structure, every augmentation of the
number of external nodes would result in an even
bigger increase of the internal nodes number. As a

result, the computational power is not efficiently
used, because distributing the internal nodes inside
of objects of interest is a trivial task and the most
precision is required at the boundary detection part.

2. The segmentation process is completed not sooner
than when the external nodes place themselves on
the borders of objects of interest. This is a very
inefficient approach, because the distance that the
external nodes need to travel during the
segmentation process is relatively large. The mesh is
always instanced in a way to cover the entire image
(or volume) and the external nodes are instanced on
the edges of the mesh. This puts them in the most
distant location possible from the objects of interest,
which in turn results in longer segmentation times.

3. The shapes present in the scene of interest are
approached from image borders with a single layer of
external nodes. This makes the segmentation time
highly dependent on the contents of the image,
because the distance which the nodes need to travel
can be varying in different images or even in different
parts of a single image. This makes the segmentation
time very difficult to predict or to control. That is a
much undesired characteristic if we want to perform
a parallel implementation of the algorithm or to
segment a three-dimensional volume composed of a
number of slice images. Without the possibility of
predicting the segmentation time for each part of the
image it will be very hard or impossible to guarantee
an even distribution of workload and overall
segmentation time in these cases will always be
longer than necessary.

In order to take advantage of the great potential of the
TAV method but also to cope with the above-described
drawbacks, we have proposed the WMD Model, which
uses a different organization of the mesh in order to

Figure 1 Visualization of concepts of the TAV (top row) and the WMDmodels (bottom row).
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process the scene of interest. An exemplary segmentation
using the ideas of our model is presented on the bottom
row of Figure 1. The major difference is the lack of divi-
sion between internal and external nodes of the mesh.
All nodes are treated equally and their behavior depends
only on the image features in their nearest neighborhood.
However, no functionality of the segmentation method
is lost. The model maintains the ability to describe seg-
mented scenes with high detail and great resemblance to
the real-world objects, offers a very good potential for the
topology changing capabilities and independence of ini-
tialization. The overall idea is to simulate the behavior of
both types of nodes from the TAV model, but without
dividing them strictly in two groups. During the segmen-
tation process each node should discover by itself which
behavior should it carry out and proceed in the desired
way for the rest of the process. As a consequence of the
above-described difference, the segmentation process is
performed in a different manner: the nodes, which have
been instanced near the boundaries of the object, begin to
progress towards them, while the remaining nodes change
their positions only enough to maintain a stable, regular
structure of the mesh. In the end of the process, the nodes
that are irrelevant are discarded.
Enforcing the correct behavior on all nodes of the mesh

without dividing them strictly in two groups is obtained
with an innovative formulation of the energy function of
the mesh. The task of defining a single energy function
that could incorporate all necessary behaviors and per-
form a correct segmentation is naturally more complex
than in the case of two energy functions, but it opens a
possibility to address all of the above-described disadvan-
tages and offer a significant performance improvement.

2.2 Formulation of the energy function
The energy function of the model, which guides the seg-
mentation process, is defined in a way to assume its
minimal values when the nodes of the mesh position
themselves on the shape of interest. In order to simulate
the deforming behavior of themesh, the TAVmodel needs
two energy functions, one for each type of themesh nodes.
Naturally, the WMD model needs only one energy func-
tion, because the mesh is composed of only one type of
nodes.
The energy function consists of two groups of forces:

internal and external ones, which are responsible, respec-
tively, for preserving the structure of the objects and for
applying the features of input images. The division of
the energy function into two forces has a purely orga-
nizational purpose and it takes its origin from the first
publications about deformable models [1].
In order to calculate energy for a given model state, the

parameter domain [ 0, 1]×[ 0, 1]×[ 0, 1] is discretized as a
regular mesh defined by the internode spacing Gx, Gy, Gz,

and each of the contributing forces described in Sections
2.3 and 2.4 is calculated using the appropriate algorithm.

2.3 Internal energy formulation
The internal energy is composed of two forces, namely of
continuity and curvature [1], and it is defined as follows:

Eint(ν) = α

k∑
n=1

|mn − m| + β

k∑
n=1

∣∣∣arctanμn − π

2

∣∣∣ (1)

The parameter k stands for the total number of nodes
in the mesh. Parameterm represents the average distance
between the neighboring nodes (average edge length). The
parameters mn and μn are, respectively, the average dis-
tance and angle between the edges incident at a node
n and are calculated by dividing the sum of lengths (or
angles) of the links in the neighborhood of the node by
their number. Only those links that are not longer than the
flexibility parameter allows are considered for this step.
The flexibility parameter of the links is a feature used
for the task of topological changes of the WMD model.
This characteristic will be described in more detail in
section 5 of this article. The symbols α and β next to the
sum expressions represent their weights and serve to bal-
ance their impact on the whole equation. As we can see
from Equation (1), the continuity force attracts the nodes
of the mesh to maintain equal distances between each
other, whereas the curvature term attracts the nodes to
keep a 90-degree angle. This serves to preserve the initial
structure of the mesh based on regular, cubic elements.

2.4 External energy formulation
The external energy is composed of three forces and is
defined as follows:

Eext(ν) = γ

k∑
n=1

(1 − I(νn)) + δ

k∑
n=1

(1 − G(νn))+

+ ε

k∑
n=1

Edg(νn). (2)

The symbol I(v) represents the intensity values taken
directly from the input images. The G(v) symbol stands
for the GVF [7] values, which are calculated using the GVF
algorithm over the input images. Similarly, the Edg(v)
symbol represents the values from the edge detector,
which are defined using the Canny Edge Detector algo-
rithm [27] over the input images. Similar to Equation (1),
the symbols γ , δ, and ε represent the weights of particular
components.

2.5 Proposed optimization of the shape of the mesh
The segmentation process is performed by solving an
optimization task using the greedy algorithm approach
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[5]. The energy function is used as the optimized func-
tion and the current shape of the mesh is taken as its
input. During the procedure, the following is performed
for each node N of the mesh: if the coordinates (xn, yn, zn)
describe the position of the node N at the time t, then for
time t + 1 the coordinates of N would be described with
(xn+l, yn+k , zn) where k, l ∈ {−1, 0, 1} and correspond to
the lowest possible value of:

E(Nx+k,y+l,z) = Eint(N) + Eext(N) (3)

which is the energy of the node N calculated with
Equations (1) and (2) at these given coordinates. As it can
be seen, the node is moved in its nearest neighborhood in
X and Y planes and the position with the lowest energy is
chosen as the new position of the node. Those steps are
repeated for each node of themesh until the following rule
is satisfied:

∑
N : (N(x,y,z,t) �= N(x,y,z,t+1)) < μ (4)

where μ is a small value near zero. Equation (4) verifies
the number of nodes that have changed their position
in the last algorithm iteration. Whenever this number
is decreased to zero (or very near to zero) the mesh is
assumed to be in its stable position and the segmentation
is finished.

2.6 Complexity of the WMDmodel
The proposed WMD model follows a pattern of greedy
algorithm optimization for all the nodes of the mesh. The
steps performed in that pattern include: (a) calculation of
the energy (Equations 1 and 2) in all the neighbor loca-
tions of a given node; (b) definition of the location with
the lowest energy as a new location for the given node; (c)
repetition of steps (a) and (b) for all nodes of the mesh,
until the overall energy continues to decrease. From those
steps we can see that the execution time of the segmen-
tation task depends linearly on the number of the nodes
in the mesh and the necessary number of algorithm rep-
etitions (calculation of new position for each node of the
mesh). Furthermore, the number of necessary iterations
depends strictly on the distance which the nodes need to
travel during the optimization step. In the WMD model,
we have focused on decreasing this value as much as pos-
sible. As a result, the general complexity of WMD and
TAV models is similar but the pessimistic execution time
of the WMD model is severely lower than the pessimistic
execution time of the TAV-based algorithm.

3 Proposed numerical parametrization of the
energy function

The symbols α,β , γ , δ, and ε next to the sum expressions
in Equations (1) and (2) represent their weights and serve

to balance their impact on the whole equation. In order
to achieve the desired behavior of the mesh as shown in
Figure 1 we need to choose those values correctly. Our
experiments have allowed to establish a relation, which
stands correct for every tested execution scenario and
therefore highly reduces the risk of choice of incorrect
values for the parameters. The said relation is as follows:

β < α < δ < γ < ε (5)

Symbols starting from the left represent the weights of:
curvature, continuity, GVF, image intensity, and the edge
detector terms. The justification for the above assumption
is the following:

• The continuity and curvature terms need to be
weighted with values just high enough to maintain a
high regularity of the mesh. This will not decrease the
quality of segmentation as the majority of nodes will
have to travel only small distances during the entire
process.

• The nodes that are initialized in the proximity of
objects of interest need to be attracted to their
borders and they should be the only ones
attracted—nodes that are initialized farther should
maintain their positions and regularity of the mesh.
That is why we need to give the GVF force a weight
slightly higher than the continuity and curvature
ones, but keep the range of GVF on a low level.

• A high weight of the image intensity values serves to
impose the correct behavior on the nodes of the mesh
that have been initialized inside the objects of interest.
The weight needs to be higher than the one of GVF,
as the nodes inside the objects should not be attracted
by the GVF force. Instead, they should be distributed
near their initial locations and maintain a stable
structure, thanks to the continuity and curvature
forces. This scenario assumes that the objects present
in the images are bright and the background is dark.
However, this can easily be modified whenever
required by the scenario of application.

• The weight of the edge detector energy parameter
needs to be set to the highest value, as it will serve to
fix permanently the position of the nodes that reach
the edges of objects of interest.

During the process of establishing and confirming the
correctness of (5), we have also noted that the proposed
WMD model proves to be robust and not highly sensitive
to changes in the values of the numerical parameters, as
long as they follow (5). Each segmentation scenario has a
certain choice of optimal values of the parameters, but in
most cases within the margin of 2.5% of the optimal values
it was not possible to notice any change in the delivered
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result. The margin of 3.5% introduced small changes but
still delivers correct and precise results.

4 Recognition of the unwanted parts of themesh
As may be seen in Figure 1 some groups of nodes should
be discarded at the end of the segmentation process.
These would be the parts of the mesh that have been
instanced outside of any objects present in the scene of
interest. As shown in Figure 1, the behavior that we would
want them to maintain would be to reside at their ini-
tial positions (or near to them) and gradually disconnect
from the parts of the mesh that are attracted to bound-
aries of object. That would be obtained using the topology
changing capabilities of the WMD model. As soon as the
optimization step is finished the unwanted parts of the
mesh would be recognized and discarded from the result
(as shown in Figure 1, bottom right image). To do this,
the mesh is divided into sub-meshes that are isolated from
each other, using the information about links that are
marked as broken by the topology changing mechanism
and the flexibility term. For each sub-mesh, the following
values are calculated:

σ =
√√√√1

n

n∑
i=1

(
I(νi) − I(ν)

)2
(6)

NE =
n∑

i=1
Ni : Edg(νi) = 1, (7)

where σ represents the standard deviation of the image
intensity values in the sub-mesh and NE stands for the
number of nodes finalized on the edges of objects of inter-
est, n is the total number of nodes in the mesh, I(Vi) is the
intensity value of the input image at the point occupied
by the node Vi and I(ν) is the average intensity value for
the whole input image. The parts that we want to discard
from the final result would show very low values given by
those two equations, because most of the nodes in those
sub-meshes would be residing over a background area.
Therefore, a simple clustering procedure into two groups
is enough to separate the relevant from the irrelevant
parts.

5 Proposed dynamic topology changesmodel
The proposed WMD model requires an efficient and pre-
cise scheme for the topology changes. This is due to the
fact that some parts of the mesh can become irrelevant
during the segmentation process and as a consequence
they need to be disconnected from the relevant part and
discarded. To cope with those needs we have developed
a topology changes mechanism as a component of the
WMDmodel. It allows to change the topology of the mesh

during the segmentation process and to create disconti-
nuities in the mesh structure while the optimization step
progresses. Whenever a need for mesh reconfiguration
would be encountered during the shape optimization, the
model should react in a desired way and start creating
discontinuities in the mesh structure. On the other hand,
the said topology changes feature should be constrained
at all times by the mesh energy function, which would
guarantee that it will not cause it to progress out of its sta-
ble state. This twofold dependency between two processes
would assure the correct behavior of the mesh and a stable
progression towards its optimal shape. This is performed
in contrast to the TAV method, where the task of topol-
ogy changing is a separate step of the whole segmentation
process [20,21].
In principle, the change of topology is carried out by

removing connections between nodes of the mesh. Dur-
ing the shape optimization step each node of the mesh can
change its position due to the energy minimization pro-
cess and as a result the lengths of links connecting it with
its neighbors are also altered. What follows is the initial-
ization of the topology changing mechanism in order to
verify if any discontinuities in the mesh should be created.
This is done with the following steps: the lengths of the
links between the given node and its neighborhood are
checked with the following term:

|Ln| ≤ Gx + Gy
2

× flex (8)

where |Ln| represents the length of the current link, Gx
and Gy are the lengths of the links in initial distribution
of the mesh, and flex is the flexibility parameter, which is
defined automatically upon segmentation execution in the
range of

flex ∈ (1.8; 2.1) (9)

taking into consideration the size of discontinuities in the
input images. This range has been established experimen-
tally using 30 artificial images as the input. Whenever a
certain link fails to satisfy (8) it is marked as broken. We
can safely assume that this process is carried out only
when desired because the mesh is defined to have a rigid
and stable structure and as a consequence the majority of
the links of the mesh extend their lengths only by small
values during the whole process. When the situation of
a link breaking occurs, we know that this is a result of
attracting the given node to a border of an object present
in the scene of interest and thus the connection breaking
should be called.
The broken link will no longer be considered when cal-

culating the continuity term of the energy function in the
next iteration. As a result, the node will show a behavior as
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if this link did not exist at all and it will progress away from
its current location more freely. This will usually cause
extending and possibly breaking the links of its neighbors,
as shown in Figure 2.
This sort of chain reaction is much desired as it will trig-

ger the movement of nodes and breaking of connections
in a small neighborhood. This will in turn lead to a suc-
cessful detection of the entire discontinuity in the mesh
structure. Such process will be stopped at the right loca-
tions, namely where the nodes of the mesh encounter the
edges of objects of interest. This is guaranteed by defining
the energy of the edge detector to a high value, which will
always stop the progression of nodes.

6 Parallel implementation
The WMD model has been designed since the beginning
with the aim for execution on parallel architectures. We
have implemented a parallel image segmentation algo-
rithm using our model as the foundation. It is able to
take advantage of several processing units by dividing
the segmentation task into equal parts, which would be
carried out by the said units simultaneously. In such a
scenario, the workload distribution is performed in the
following way: all the nodes of the mesh are divided in
as many groups as there are processing units available.
Each of the units will have full access to the input data
in order to allow full mesh deformation and avoid a situ-
ation when the given node is not able to move outside a
specific region, because its processing unit does not hold
any information about the necessary image data. Naturally
this approach imposes the drawback of time required to
propagate the input data between all the processing units,
but our tests with a computer cluster have shown that this
time is not very significant in terms of the whole segmen-
tation time. In a scenario with multi-core machine being
the execution environment, this time would be even less
considerable.
The general idea of the parallel algorithm is presented

in Figure 3. Each of the processing units will create a
temporary set of variables to use while the segmentation
progresses. Those values will be representing the current

state of the model on a given processing unit and will
not be shared nor synchronized with other participants.
This is done to eliminate any dependencies between the
processing units and avoid the need for synchronization,
which could severely increase the time required for the
segmentation. The possibility of performing the optimiza-
tion in an independent manner is guaranteed by the fact
that most of the calculations carried out when minimiz-
ing the energy function are performed using only the local
data. The only values that are defined as global for the
entire model are the average distances and angles between
the nodes of the mesh. However, numerous experiments
have shown that due to the high rigidity of theWMDmesh
structure, their values are modified very slightly during
the entire segmentation process and thus there is no need
to track their changes very precisely. Therefore, it is safe
to assume that the locally calculated value describes well
the state of the entire mesh.
The processing units perform the mesh optimization

simultaneously using the steps described in Section 2.5
and test Equation 4 in order to decide when to conclude
the segmentation.
It is important to note that in the case of TAV the equal

distribution of the workload would not be as straightfor-
ward as dividing the nodes in equally large groups. This
possibility of our model is a result of the approach that
we have taken, namely the lack of division between inter-
nal and external nodes and by implementing the dynamic
topology changes scheme.
Thanks to these feature, as stated before, the time

required to perform segmentation with our method
depends very little on the contents of the input image.
As a consequence, this time is very uniform for different
parts of the mesh. On the other hand, in the case of TAV,
the distance that the external nodes need to travel dur-
ing the segmentation task depends highly on the contents
of the image, which results in a big variation of the seg-
mentation times for different parts of the mesh. This is the
reason why our method is much more suitable for paral-
lelization than TAV or any method based on the concept
of contour evolution.

Figure 2 Example of a chain reaction during discontinuity detection in the structure of an object.
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Figure 3 General flowchart representation of the parallel algorithm implementation.

7 Experiments and results
7.1 Performance experiments
Wehave performed our experiments using two algorithms
introduced in the previous section. One of them was an
implementation of the TAV model [20] and the other
was based on the WMD model. Both models include the
ability to perform topological changes. The values of the
numerical parameters of energy function that have been
used for all the following experiments are the following:
α = 0.4,β = 0.1, γ = 0.7, δ = 0.5, ε = 0.9. As it
can be seen, they follow the general rule specified in (5).
The algorithm was implemented in C#. The execution

environment included a machine equipped with 3-GHz
processor and 2 GB of RAM. The following tests have
been prepared in order to test the most low-level features
of the model, i.e., the energy formulation, the process of
shape optimization and the definition of the mesh, which
are the unique features of theWMDmodel when compar-
ing to the TAV solution or other similar approaches.

7.2 Comparison of segmentation time
As the first input data we have used a set of ten artifi-
cial shapes presented in Figure 4. They have been created
with the aim of representing features that are often

Figure 4 A set of artificial images used for the performance experiments.
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Figure 5 Results of the performance experiments.

encountered in real-world segmentation tasks, i.e., several
objects present in the scene, objects placed inside one
another or non-isometric distribution of objects in the
image.
In each experiment, the 2D image has been used twice,

which resulted in a 2-slice 3D volume. The results of our
experiments are presented in Figure 5. As we can see,
the WMD method shows a noteworthy improvement in
the segmentation performance. The execution time was
always significantly lower than in the case of TAVmethod,
reaching 5.3 times shorter in Scenario 3. The accuracy of
segmentation was exactly the same for both approaches.
Examples of the segmentation progression, together with

the created output, can be seen in Figures 6 and 7. The
consecutive images present how the mesh is attracted to
the edges of objects and as the result how it deforms and
creates discontinuities. The final images present the result
with unwanted mesh nodes discarded.
This confirms our expectations described in the previ-

ous section. What is also very notable is that the WMD
model delivered very similar segmentation times in all the
scenarios, whereas the TAV model showed a much higher
variety in this value. This shows that the segmentation
time and the number of iterations are nearly independent
from the contents of the images. To explain this let us
consider the following.

Figure 6 Consecutive steps of segmentation algorithm execution using an image with artificial shape as the input. The input image
included a simple teapot shape.
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Figure 7 Consecutive steps of segmentation algorithm execution using an image with artificial shape as the input. The input image
included Shape 1 from Figure 4.

The size of the mesh in those experiments was 16 ×
16 pixels, which results in 16 pixels of maximum possi-
ble distance needed for each node to travel during the
segmentation process. This is true if we assume that the
segmentation parameters are chosen correctly and every
given edge would be approached only by the nodes ini-
tialized in their nearest neighborhood. As we can see,
the maximum travel distance of a node can be estimated
with high confidence without any information about the
contents of the input images.
The size of the two input images was 512 × 512 pixels,

which results in mesh of the size 33 × 33 nodes for each
image, giving total number of 1,089 nodes, constructing
1,024 cells of the mesh. The number of mesh cells is rela-
tively high, which lets us assume with high probability that
at least in one of the cells a node would have to travel the
maximum possible distance. And since the whole segmen-
tation time is defined by the node that has to move for the
largest distance of all the nodes, we can assume that this
pessimistic scenario is the factual scenario for majority
of algorithm executions. Tracing the segmentation pro-
cess iteration by iteration we have confirmed that the
above assumption is correct. Through the initial 16 itera-
tions the nodes are progressing towards the object borders
and after that the step of breaking unwanted connec-
tions between nodes is taken in order to perform topology
changes and separate unwanted parts from the mesh. This
part shows to be less predictable and presents some varia-
tion, which is mainly responsible for the small differences
in required iterations for different scenarios. What can be
seen from these experiments is that theWMDmodel is by
definition not highly dependent from the contents of the
segmented image and delivers identical results in much
shorter times.

7.3 Dependence between the grid density and
segmentation speed

We have also compared how the two approaches per-
form in scenarios of different sizes of the mesh. We have
executed the segmentation using Shape 10 from Figure 4
together with 13 different values of inter-node spacing,
namely from 20 × 20 pixels to 8 × 8 pixels (in x and y-
axis). As it can be seen in Figure 8(left), the TAV method
requires exactly the same number of iterations to fin-
ish the segmentation, regardless the density of the mesh.
In turn, the number of iterations required by the WMD
method is decreasing along with the growth of mesh den-
sity. The explanation for this behavior lies in the fact that
with smaller initial distances between mesh nodes the
number of pixels that each node needs to travel is also
decreasing, resulting in faster progression towards bound-
aries of objects. The optimal value of this parameter can
be noticed around the initial distance between the nodes
of 12 × 12 pixels. After that threshold the number of nec-
essary iterations starts to depend more on the step of
connections breaking and recognition of unwanted parts
of the mesh, so further increase in the mesh density will
not result in significant decrease of necessary iterations.
The values of execution times for all those scenarios are

depicted in Figure 8(right). The time required to carry out
segmentation using the TAV method is growing severely
with the growth of mesh complexity, whereas in case of
WMD we can notice only a very slight growth of the
execution time. As we can see, the smaller number of iter-
ations is balanced with the increased number of nodes to
process in the wholemesh. As a result, the execution times
are maintained on nearly constant level until the optimal
value is reached (12×12 pixels). Then we can see a slightly
faster increase of the execution time, as the growing
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Figure 8 Results of segmentation experiments using different values of inter-node spacing, number of necessary iterations (left) and
execution times in seconds (right).

number of nodes in the mesh is no longer balanced by
smaller number of iterations.
This low dependance of the segmentation time from

mesh density is a much desired feature of the WMD
model, as it allows performing precise segmentations
of very complex shapes, having almost no drawback of
increased execution times. With most of the known seg-
mentation methods, including the TAV, increase of the
segmentation accuracy imposes also a significant growth
of the segmentation time.

7.4 Performance with real-world medical images
Finally, we wanted to assess the potency of our method
when dealing with real-world images. For this purpose,
we have used two large 3D volumes presented in part
in Figures 9 and 10. The former volume presents a CT
scan of human skull. It is composed of 320 slices, 512 ×
512 pixels each. The latter volume presents an X-Ray scan

of a spinal column area and is composed of 380 slices, each
of them also of 512×512 dimensions. During the segmen-
tation tasks the mesh density was defined to 8×8 pixels in
all the scenarios.
It is important to notice the large difference in the con-

tents of the consecutive slices in each of the sets. In every
case of 3D volume segmentation the whole execution time
will highly be dependent from the slice, which requires the
biggest amount of time to be processed. In our CT skull
scan example, as well as in many similar real-world medi-
cal images, we can see that the last slices of the sets contain
very little data, located far from the image borders. Per-
forming the volume segmentation using the assumptions
of the TAV we would need the nodes of the mesh to
travel through nearly the entire image to reach this data.
Therefore, the whole segmentation would be very time
consuming.We have examined the last slice of the CT vol-
ume and found out that the longest distance from the edge

Figure 9 A sample of image slices from the 320-slice CT scan volume.
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Figure 10 A sample of image slices from the 380-slice X-Ray scan volume.

of the image to object of interest is 220 pixels. This means
that the number of iterations required by the TAVmethod
to complete the segmentation should be around 220. On
the other hand, our WMD method is nearly independent
from the contents of the image, so the segmentation times
should be almost equal for all the slices and the total
segmentation time should significantly be lower.
The execution times and the number of iterations for

the two test cases are depicted in Figures 11 and 12,
respectively. As it can be seen, the WMD model outper-
forms the TAV model significantly in all the scenarios.

The segmentation time of the CT scan volume equalled
689 s for the WMD model and 3320 s for the TAV model.
This results in 481% efficiency growth ratio. The num-
ber of necessary iterations for WMD and TAV models
equalled 45 and 239, respectively. The very large num-
ber of iterations required by the TAV model confirms our
observations about the required way that the pixels need
to travel under the assumptions of this model. The results
of the second experiment are of yet higher difference, the
execution times equalled 818 s for the WMD model, and
6284 s for the TAVmodel, which results in 768% efficiency
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Figure 11 Results of the experiments with real medical images—execution times of the segmentation algorithms.
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Figure 12 Results of the experiments with real medical images—iterations required to perform a full segmentation.

growth ratio. The required iterations equalled respectively
47 and 382. The WMD model maintained a similar num-
ber of iterations comparing to the previous experiment
and the increased execution time is the result of a larger
input volume. The TAV model required a significantly
larger number of iterations. This of course resulted in
a much longer execution time, which was even further
increased by the larger number of slices in the input vol-
ume. The higher number of iterations for the TAV model
in the second experiment is justified again with the place-
ment of objects of interest in the input volume. In some
input slices of the X-Ray volume (corresponding to the
second row of images in Figure 10) we can see that parts of
the bone structures are located in the lower-right regions
of the image. To close the mesh and to finish the segmen-
tation process, the TAV model needed to move the nodes
of the mesh from the top-left corner of the image for the
distance of around 370 pixels.

These experiments shows how well suited is our model
for real-world scenarios, where similar situations can
occur often—the slices of a single volume can show a
big variety of sizes, which can lead to unreasonably long
execution times. Examples of segmentation results can
be seen in Figures 13, 14, and 15. The first one presents
the result corresponding to the 320-slice CT scan volume
data. Figures 14 and 15 both present the results corre-
sponding to the 380-slice X-Ray scan volume, the former
one presents the results of bone structure segmentation,
which was obtained by segmenting the brightest zone
of the image, the latter presents the organs, which were
obtained by setting the algorithm to segment the medium
intensity ranges in the image. It can be seen that results
delivered by the WMD model are very precise and reli-
able, small details are detected successfully. Complex parts
of the input images have been segmented correctly and
described with surfaces that are smooth and precise. Both

Figure 13 Result of the 320 slice CT scan segmentation.
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Figure 14 Results of the 380 slice X-Ray scan segmentation–bone structure segmentation.

Figure 15 Results of the 380 slice X-Ray scan segmentation–segmentation of organs.



Lenkiewicz et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:55 Page 16 of 17
http://asp.eurasipjournals.com/content/2013/1/55

1 

10 

100 

1000 

1 2 4 6 8 10 12 

E
xe

cu
tio

n 
tim

e 
(m

s)
 

Processing units 

WMD 

WMD ideal 
0 

2 

4 

6 

8 

10 

12 

1 2 4 6 8 10 12 

S
pe

ed
up

 

Processing units 

Ideal scenario 

WMD 

Figure 16 Execution times and speedup gained with execution of the parallel algorithm onmulti-processing unit environment.

WMD and TAV methods present the same level of qual-
ity. The change of the shape optimization scheme did
not introduce any drawbacks or flaws in the segmenta-
tion outcome. WMD model was also much more suitable
for working with very high densities of the mesh and
very high resolutions of the input images, which results
in very precise segmentation results. In fact, there is no
reason for which the TAV model could deliver results
that are superior to the WMD model, as the segmenta-
tion process of these two methods offers exactly the same
functionality.

7.5 Parallel implementation results
The implementation of our parallel algorithm has been
performed using the MS-MPI [23] message passing inter-
face. The experiments have been executed on a computer
cluster constructed from 12 processing units of 3GHz
each, running the Microsoft HPC Server 2008 operat-
ing system. As the input image we have used the CT
brain scan presented in Figure 9. The times required to
carry out the segmentation with different numbers of
processing units are presented in Figure 16 left. Further-
more, Figure 16 right presents the speedup obtained with
the parallel implementation. This metric is obtained by
dividing the execution time of segmentation using single
processing unit by the execution time with multiple pro-
cessing units. The charts show that the parallelization of
the method is performed efficiently and the resulting per-
formance improvement is very close to ideal. By this we
mean half the execution time for two processing units,
quarter for four processing units, and so on. This is a result
of the fact that our method does not need any synchro-
nization or exchanging any data between participating
processes and also of the fact that the segmentation pro-
cess takes almost exactly the same time for any part of the
input volume.

8 Conclusions and future work
In this article, we have presented a novel model for
3D image segmentation, called the WMD Model. This

method shows to be highly efficient, giving good segmen-
tation results in short times. More accurately our model
shows the following desired features:

• The segmentation procedure is significantly faster
than other similar approaches like TAV, thanks to
allocation of more nodes into the boundary detection
process and to their more optimal distribution.

• The segmentation procedure is predictable and
stable. This allows a very efficient parallelization,
which is very hard to obtain with other popular
methods based on deformable models framework.

• The segmentation time is virtually independent from
the density of the mesh. This is a very desirable and
also unique feature of our method, as it allows to
obtain high-quality results without the drawback of
increased segmentation time.

• Segmentation time depends also very little from the
distribution of the objects in the input image—the
only factor that defines the time in a noteworthy
manner is the resolution of the input image, but also
that has much less impact on the segmentation time
than in the case of the TAV model.

• The dependency on user interaction and on
initialization of segmentation is significantly lower in
the WMDmodel than in the TAV model.

• Execution on a multi-processing unit environment is
straightforward and offers nearly linear performance
gain.

Tests on real-world images have proven that those fea-
tures allow our solution to perform very well in medi-
cal applications. It has been able to detect and segment
objects in CT, MRI, and X-Ray scans of different parts of
human body. The WMD model can be implemented on
any simple multi-core platform, which makes it very easy
to apply in any medical office.
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