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Abstract We compute the effective coupling of the Ma-
joron to W bosons at O(h) by evaluating the matrix element
of the (B—L) current between the vacuum and a WTW~—
state. The (B—L) anomaly vanishes, but the amplitude does
not vanish as a result of a UV finite and non-local contribu-
tion which is entirely due to the mixing between left-chiral
and right-chiral neutrinos. The result shows how anomaly-
like couplings may arise in spite of the fact that the (B—L)
current remains exactly conserved to all orders in %, lending
additional support to our previous proposal to identify the
Majoron with the axion.

1 Introduction

The cancellation of anomalies for the (B—L) current in the
Standard Model (SM) without right-chiral neutrinos is a re-
markable and well known fact (see e.g. [1, 2] and refer-
ences therein). In this paper we consider the inclusion of
right-chiral neutrinos into the SM and demonstrate that for
non-trivial mixing between left- and right-chiral neutrinos
the relevant triangle graphs with two external electroweak
vector bosons no longer sum up to zero, as they would if
only the (vanishing) (B-L) anomaly were taken into ac-
count. This result provides additional support for our pre-
vious proposal to identify the Majoron with the axion [3, 4],
and clarifies some issues that might be raised in connection
with this proposal.

Recall that for a spontaneously broken abelian global
symmetry, the total Noether current J# takes the general
form

J"'=J" - F,0"a ey

where a(x) is the Goldstone field and F, the parameter
characterizing the scale of spontaneous symmetry breaking,

2 e-mail: alatos @fuw.edu.pl

while J# is the partial symmetry current without sponta-
neous symmetry breaking. In the absence of global anoma-
lies the total current (1) is exactly conserved to all orders
in h. However, the equation 9, J" = 0 says nothing about
how the two contributions on the r.h.s. of (1) conspire to pro-
duce overall current conservation as a consequence of the
classical or quantum equations of motion. All it implies is
that, whenever Ua # 0, there must be a corresponding con-
tribution to 9, J* # 0 for (15) to be satisfied, viz.

Oa=F,'X & 8,J'=X )
Here the quantity
X =Xo+ hX) 4+ Xy + - 3)

encapsulates all (classical and quantum mechanical) contri-
butions to the equations of motion. While the tree level term
Xp is always local (and represents the violation of partial
current conservation d,J# with explicit symmetry break-
ing), the quantum mechanical higher order corrections X,
are in general non-local. Our main point here is to show
that there may arise anomaly-like contributions in this ex-
pansion. By definition, these correspond to UV finite and
non-local contributions to the effective action that reduce
to anomalous interactions oc a Tr.A*’ Ay, in the IR limit
(where A, can be any SM field strength). Such contribu-
tions may appear at various orders in h, and can mimic a
non-vanishing anomaly for topologically non-trivial gauge
field configurations and constant values of the Goldstone
field.

Specifically we will be concerned with (B—L) symmetry
current JH# =7 l’; ;. and the vertex describing the coupling
of the Majoron (axion) to two external W bosons at order A.
This is the simplest example for which one can establish
the existence of anomaly-like terms in the expansion (3);
these are entirely due to the mixing between left-chiral and
right-chiral neutrinos. The computation thus complements
our previous work [3, 4] where we calculated various higher
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loop diagrams contributing to X using the Yukawa interac-
tion rather than the matrix element of the (B—L) current. In
particular we derived the anomaly-like coupling of the Ma-
joron/axion to gluons at order /. As we argued there, this
anomaly-like coupling suffices to solve the strong CP prob-
lem and therefore removes the need for unobservable ultra-
heavy new scales, as would be required for a conventional
implementation of the Peccei—Quinn mechanism in the SM.

Our calculation furthermore establishes the equivalence
of the two field bases or ‘pictures’ in which the calculation
of the correction terms X,, can be performed, and which are
here related by the field redefinition (14). In one of these
‘pictures’, the interaction occurs via a Yukawa vertex (cf.
(4) below), while in the other (cf. (13) below) the interac-
tion is represented by a derivative coupling of the Goldstone
field to the (B—L) current. The first ‘picture’ was extensively
used in [3, 4], whereas the calculation based on the second
‘picture’ adopted here closely resembles the usual anomaly
computation. With both pictures, we obtain a finite deviation
from the vanishing result expected on the basis of the van-
ishing (B—L) anomaly. Independently of their possible rel-
evance to axion physics the present results are thus also of
interest for the explicit determination of effective Majoron
couplings which have not been calculated in such detail in
the literature.

The present work is part of a wider program in the con-
text of the so-called Conformal Standard Model (CSM) [5]
which seeks to solve the hierarchy problem via conformal
symmetry, rather than low energy supersymmetry or large
extra dimensions, by exploiting the remarkable fact that,
with the exception of the explicit mass term in the Higgs po-
tential, the SM is classically conformally invariant (see also
[6-19] for related proposals exploiting conformality or par-
tial conformality of the SM). In such a framework, no inter-
mediate scales of any kind are allowed to occur between the
electroweak scale and the Planck scale. In addition small-
ness of couplings must be explained via loop corrections
rather than by fine-tuning explicit couplings by hand to very
large or very small values.

2 Lepton and baryon number symmetry

First we briefly recall some facts about the global symme-
tries of the CSM, namely lepton and baryon number sym-
metry, see [3, 4]. The CSM enlarges the usual SM by right-
chiral neutrinos and one extra electroweak singlet complex
scalar field ¢. By definition, it is classically conformally in-
variant because no dimensionful (mass) parameters are ad-
mitted in the classical Lagrangian [3—-5]. The terms most rel-
evant to our discussion concern the Yukawa sector whose
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contribution to the CSM Lagrangian reads
—Ly=L'oY E/ + Q'Y D/ + Q'cd*Y U/
_. . 1 . .
+ L'e@* YN/ + §¢N’TCYZ.’;?’NJ +h.c. )

Here the bi-spinors Q' and L' are the left-chiral quark and
lepton doublets,

i_ y i_ vy
Q_(d2>’ L‘<ez> ®

while U’ and D' are the right-chiral up- and down-like
quarks, E' are the right-chiral electron-like leptons, and
N = vﬂe the right-chiral neutrinos (we suppress all indices
except the family indices i, j = 1, 2, 3). @ is the usual Higgs
doublet, and ¢ is the new complex scalar field, such that
in particular all fermion mass terms are generated by spon-
taneous symmetry breaking via non-vanishing expectation
values for the scalar fields and the Yukawa matrices Yl.t..
As is evident from (4) the electroweak singlet field ¢ does
not directly couple to the other SM fields, but only to right-
chiral neutrinos. However, couplings to the ‘observable’ sec-
tor of the SM will arise through left-right neutrino mixing
and higher loop effects.

In addition to the (local) SU(3), x SU(2)y x U (1)y sym-
metries, the CSM Lagrangian admits two global U (1) sym-
metries, lepton number symmetry U (1); and baryon num-
ber symmetry U (1) g. These are, respectively, generated by
the vector-like Noether currents

- . - . - . . <~
Jl=L'y"L' + E'y"E' + N'y*N' —2i¢" 9" ¢

= yte + vyt —2ipt 9t ¢

Lo
= Ji —2ip" 9" ¢ (6)
and
wo_Lsi i 1= i 1a i
Jp =30 "o +3U yHu +3D y*D
l—iui l‘iui
=§uyu+§dyd @)

where by u',d', e and v’ we here denote the full Dirac 4-
spinors. From (6) it follows that the scalar ¢ carries two units
of lepton number charge, hence lepton charge can ‘leak’
from the fermions into the scalar channel.

Writing

¢ (x) = (x) exp(ia(x)//2u) (8)

we see that for (@) # 0, lepton number symmetry is spon-
taneously broken, and the phase a(x) becomes a Goldstone
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boson, the ‘Majoron’ [20]. Like ¢ (x), the field a(x) cou-
ples only to right-chiral neutrinos at tree level, but not to
any other SM fields. For spontaneously broken lepton num-
ber symmetry the fotal current 7, If‘ remains classically con-
served, i.e. 9, f = 0, but this relation is violated at the
quantum level by the anomaly. The fermionic current J ‘z is
not even conserved at the classical level. In particular, if we
replace the last term in (4) by a Majorana mass term

1 . .
EMajorana = EMileTCNJ +h.c. 9)
lepton number is violated explicitly, and we get
9, = —iM;N''Cy NI #0 (10)

This violation of current conservation is entirely analogous
to the explicit mass dependence o m.éy>e of the diver-
gence of the axial current ey°y*e in QED [1]. It is also
present if the Majorana mass term is generated by sponta-
neous symmetry breaking when M;; = ((p)Yg[ . Using (8)
with u = (¢) = —v/2F, # 0, the full lepton number current
assumes the universally valid form (1). Therefore the con-
servation of the full current generally implies a violation of
conservation for the partial fermionic current J’If unless the
field a(x) is a free field (obeying Ua = 0).

While J;* and Jp are anomalous separately, the full
(B-L) current

oF o (¢)
Th =Ty =T =T, +2ip" 3“¢=J§_L_Eaua

(11
is quantum mechanically conserved, that is,
O T, =0 (12)

to all orders in /. Alternatively, this relation follows by vari-
ation of the Lagrangian

V2

@auajg_L (13)

1
LGoldstone = _zauda“a +
w.r.t. to the Goldstone field a(x). Neglecting terms not rel-
evant for this discussion, the very same Lagrangian is ob-
tained from the CSM Lagrangian with Yukawa interactions

(4) by performing the U (1) p_;, redefinition

(L'(x), E'(x), N'(x))

= exp — 14 (L (x), E' (x), N' (x)),
221

(Q'(x), U'(x), D' (x))

(14)

— exp da(x) (Q'(x), U'(x), D' (x))
6321

on the fermionic fields, thereby eliminating the non-deriva-
tive Yukawa coupling of a(x). Because the (B—L) current
is anomaly free, the redefinition (14) is in fact well-defined
quantum mechanically. Therefore the change of variables
(14) does not affect the fermionic functional measure, en-
suring the mutual consistency of the two formulations also
at the quantum level.

Because of quantum mechanical current conservation
(12) we can take up the arguments of the introduction: to
satisfy the equation

@Da =0, | (15)

V2
with Oa 5 0, there must exist a corresponding contribution
to 3;1“]];1;%’ Viz.

Oa = Qx & gl =X (16)
()

At the classical level this claim can be easily checked by

making use of the equations of motion following from the

CSM Lagrangian and by using the fermionic equations of

motion to calculate BMJ%_L. To compute the higher order

corrections in (3) one needs to evaluate the matrix elements

(Wlad,J ;la)ipr 17

where |¥) can be any (multi-particle) state involving exci-
tations other than a, and where the subscript indicates that
we amputate the external legs in the usual fashion.

3 Matrix elements of the leptonic current

We now exemplify the general arguments of the foregoing
section by determining the couplings of a(x) to W bosons
at order /i from (17). In [3, 4] this coupling was calculated
directly from the Yukawa vertex in (4), whereas it will be de-
rived here from the current coupling by evaluating the matrix
element

(Wrw~[a,J%_,10) (18)

which follows from (17) by factoring out the matrix element
involving a(x). As for the usual anomaly this calculation re-
duces to the evaluation of the triangle diagrams shown in
Fig. 1. Indeed, for the quarks the calculation is just the stan-
dard one giving the quark contribution to the baryon num-
ber anomaly [1]. By contrast, the leptonic contribution is
modified by the left/right neutrino mixing in such a way that
the amplitude (18), and hence the coupling of a(x) to W
bosons, is different from zero for non-trivial mixing angle
(whereas it would vanish without this mixing, see below).
The present calculation thus confirms our previous calcula-
tion of the axion couplings which was based on the Yukawa
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Fig. 1 Lepton number current
coupling to W bosons

Lagrangian (4), but now in the ‘rotated picture’ (14) where
the Lagrangian assumes the form (13).

For simplicity, we consider only one family of leptons
with right-chiral neutrinos. Furthermore, as in our previous
work, we will use SL(2, C) (Weyl) spinorsl to express the
4-component neutrino spinor N = (v, vg) = (Vy, N @) and
its conjugate. After spontaneous symmetry breaking the free
part of the neutrino Lagrangian is

i 4 .
L= E(u“aaﬁvﬁ +N%J,4NP) +he.

_ . M M - _.
—mv¥Ny —migN® — ENOZND’_?N&N“ (19)
where we have included both Dirac and Majorana mass
terms, taking both parameters real without loss of generality.
As before, the fermionic lepton number current is classically

not conserved for M £ 0, viz.
9, =iM(N* Ny — Ny N¥) (20)

The standard procedure to deal with (19) consists of di-
agonalizing the mass matrix, with rotated fields

v cosf —sinf || v
|:N’] - |:sin9 cosf i| |:N] @h
in terms of which the Lagrangian (19) becomes diagonal

L= %(v’“aaﬂ-f)”é + N’“aalgl\_]”é) +c.c.

/

!
. n; (v/av/ +V/ /(X)_MT(N/QN(;—’—N&N/Q) (22)

A simple calculation gives

2m b4
tan260 = — 0<6<— form, M>0 (23)
M 4
Defining the mass parameter M := /M2 + 4m?2, the mass
eigenvalues are given by the seesaw formula [22-26]
m' = —M sin®#, M’ = M cos*6 (24)
All formulas below can then be expressed in terms of M

and the mixing angle 0, and, of course, the mass parameters

I'Usage of this formalism is crucial for our calculations, whose pre-
sentation would be much more cumbersome in terms of 4-component
spinors. For an introduction see [21].
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of other fields. The angle 6 therefore interpolates between
two special limits, namely 8 =0 when m =0 or M — o0
in (19) and the right-chiral neutrino components decouple,
and 0 = /4 when m' = —M’ [or M =0 in (19)], and the
neutrino becomes a Dirac fermion. We note that if the see-
saw mechanism were indeed realized ‘in real life’, the value
of the mixing angle & would have to be very small, of order
107° or less, depending on the model.

After the rotation (21) the propagators take the standard
diagonal form for Majorana fermions

(v OV () —1/ oyt pzp“ﬂ P _emiptey)

/ / _ d*p meap (x—y)
EIAIEE I —— ple=y (25)
I _ d*p m’edﬁ' —ip(r—y)
(Vo'z(x)vﬁ'()’))—— Wme Py

with analogous expressions for the N’ propagators after re-
placing m" — M’. With the redefinitions (21) the SM inter-
action vertices now involve both neutrino components. The
vertex relevant for our calculation is the one involving W-
bosons which reads

£int [ W[,L ELO[O'M
W:[coseﬁ‘; +5singN, 5" ey (26)

ﬁ[oos@vl’g + sin@N},]

_ﬁ

where g; is the weak coupling constant. Likewise, after the
rotation (21), the lepton number current becomes, in terms
of two-component spinors,

le = éde_r“dﬂeLﬁ —éRd(}“dﬂeng
+ cos(20) 0,5 1Py, —cos(29)N/6’“"ﬁNﬁ
+sin(20)[ 956" P Ny — Nja" P 27)

As already mentioned, we can take over the known
(anomalous) result for the matrix element (W W~13,,J ’é |0},
and thus need only consider the matrix element
(W+W_|8HJ]€|O); at one loop this matrix element corre-
sponds to the triangles shown in Fig. 1.? Due to the mixing,

2There is a similar matrix element (ZZ |3MJZ |0) with two external Z-
bosons, for which one of the triangles is ‘purely neutrino’. That calcu-
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there are altogether 12 terms, which can be evaluated by
standard methods (for instance, using dimensional regular-
ization). The final result for the amplitude is
M (g = B2 0T (g0 0 4 g )
- .q) = — .
P9 o 2ol F1 (8" p" + 8"
+ Fy - g™V pP + F3 - 1"t p,

+ Fy- p*p"p”/p*] + O(q?) (28)

The functions F; depend on the neutrino masses m’ and M’,
as well as on the electron mass m, and the external momen-
tum,

F; = sin29c05291{i"’(p2,me, M, M/)

—sin® 20K (p*, me,m', M)

— cosZGCOSZGKi‘"(pZ,me,m’,m’)

+sin 0K (p?, M, me, m,)

+cos20Kf(p2,m/,me,me) (29)
wherei =1, 2, 3,4 and
Ki=h—-h+h+1L
Ky=-L-L¥h+1
Kf=L-3L+hL+14
Kf=—4I

(30)

The functions I; are given by the integrals

2 ! =& A
II(P ,01,02,03) =/ délf délog —
0 0 2

. L s A
h(p ,al,az,a3)=f da/ d&26 log =
0 0 123

) 1 1-¢; 1— %-1
I3(p°, a1, a2, a3) =aza3f dSl/ dé
0 0 A

! =6 g0 -&)
L(p* a1, a2, a3) =P2/ dél/ dgy2———
0 0 A

where
AP ai, &) = g1a} + 603+ (1 —& —E)a3 — &1 (1 &) p?
31)

and p is a normalization parameter that drops out in the
final result. In (28) the coefficient function F3 represents

lation proceeds analogously, and with similar results, and we therefore
do not discuss it here.

the anomaly-like part of the amplitude, while the other co-
efficient functions reflect the breaking of SU(2),, x U(1)y
gauge invariance.

Using symbolic algebra, all integrals can be done in
closed form, but the explicit formulas (especially for p? =
0) are rather cumbersome, and by themselves not very il-
luminating. Let us therefore concentrate on the important
qualitative features. First of all, it is easily seen that for fixed
M the coefficient function F3 of the anomaly-like amplitude
in (28) varies non-trivially with the mixing angle 6, and fur-
thermore depends on the masses of the fermions circulat-
ing in the diagram, unlike the standard triangle anomaly [1].
Secondly, there are gauge non-invariant terms parametrized
by the functions Fi, F> and Fy in (28), whose presence for
generic values of 6 can likewise be verified numerically.
Such terms are to be expected because electroweak symme-
try is broken, and the external vector bosons are massive.

The two limiting values & = 0 and 6 = & /4 are special,
because for them the calculation reduces to the standard re-
sult for the anomaly of the lepton number current in the SM.
Namely, for arbitrary values of the external momentum p*
and the mass parameters M and m,, we have

lim Fi= lim F,= lim
6—0,% 6—0,% 6—0,%

Fs=0 (32)
For the anomaly-like amplitude we get

2
lim F3== (33)
6—0,% 3

This limit value equals the contribution from the quarks con-
firming the vanishing of the amplitude (18) for 6 = 0 and
0 = /4, in agreement with the vanishing (B—L) anomaly.
The special role of these two values can be seen as follows:
for them, and only for them, the integrands of the triangle
diagrams in Fig. 1 can be re-expressed with Dirac propa-
gators o (y* py + m)~! on the internal fermion lines, and
with chiral projectors P = %(1 — p7) at the W-vertices.
More specifically, for & = 0 the right-chiral component N,
decouples, and we can effectively use the massless Dirac
propagator for v, because of the chiral projectors P at the
vertices. For & = 7 /4, on the other hand, the neutrino be-
haves like a massive Dirac fermion, only one chiral half of
which [corresponding to the combination (v}, + NJ)] cou-
ples to the W bosons in (26). With Dirac propagators, it is
straightforward to see that the sum of the two diagrams in
Fig. 1 reduces to the difference of two linearly divergent
integrals, precisely as for the usual anomalous triangle in
QED, cf. p. 199 ff. in [1]. The result is well known not
to depend on the fermion masses and not to contain gauge
non-invariant contributions, and is therefore the same with
or without electroweak symmetry breaking, that is, propor-
tional to TrA/“’fI,w (where A, is the SU(2),, x U(l)y
Yang—Mills field strength). In technical terms, the deviation
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of the result from the customary value that we have identi-
fied here, is thus a consequence of the fact that the neutrino
propagators with SL(2, C) spinors cannot be combined into
a Dirac propagator for a 4-spinor in the diagrams if 0 is dif-
ferent from O or 7 /4.

The modification of the anomaly by a finite deviation de-
pending on 6 can also be directly understood in terms of the
(classical) non-conservation of the partial current (20), and
using the off-diagonal neutrino propagators introduced in [3,
4]. From (20) we deduce

(WHEW™|8,J% ,10) = —iM(WTW~|(N* Ny — No N¥)[0)
(34)

Clearly, the r.h.s. vanishes if M =0 (0 = 7 /4). Less obvi-
ously, it also vanishes for M — oo (6 = 0): this is because
the off-diagonal propagators converting N into v come with
extra factors of M~! such that the matrix element of the
rh.s. of (34) decays at least as M~2 for large M. There-
fore the source of the effect is a collusion of the classical
non-conservation (20) and quantum mechanics: for any state
|¥) containing SM particles other than neutrinos, the matrix
elements (¥ |N N|0) vanish at tree level, such that the non-
vanishing contributions are entirely due to loop corrections,
and thus always of O(h).

In Sect. 2 we briefly presented an extension of the SM
containing (among other fields) a Goldstone boson asso-
ciated with the spontaneous breaking of U(1)p_; symme-
try. The results presented in this section show that due to
the loop corrections, this field acquires an effective inter-
action with the SU(2) gauge bosons, in spite of the van-
ishing anomaly coupling two SU(2),, vector bosons to the
U(1)p_ current. The strength of this interaction is con-
trolled by the value of 6, and thus very small for realistic
models. In [3, 4] we showed that at higher number of loops,
effective ‘anomaly-like’ interactions with photons and glu-
ons are generated as well, so this field could be a viable can-
didate for an axion.

4 Conclusions

The main result of this paper can be summarized as follows:
the loop diagrams of the fermionic (B—L) current coupled
to SM particles do not vanish in presence of non-trivial mix-
ing between left- and right-chiral neutrinos, in spite of the
vanishing (B—L) anomaly. Furthermore we have shown that
the phase of the scalar field carrying lepton number charge
is not a free field, and that the amplitude obtained for small
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momenta does contain anomaly-like terms. This effect de-
pends crucially on the simultaneous presence of Dirac and
Majorana mass terms, and disappears if either of them van-
ishes.
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