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ABSTRACT
The analysis of pulsar timing data, especially in pulsar timing array (PTA) projects, has
encountered practical difficulties: evaluating the likelihood and/or correlation-based statistics
can become prohibitively computationally expensive for large data sets. In situations where a
stochastic signal of interest has a power spectral density that dominates the noise in a limited
bandwidth of the total frequency domain (e.g. the isotropic background of gravitational waves),
a linear transformation exists that transforms the timing residuals to a basis in which virtually
all the information about the stochastic signal of interest is contained in a small fraction
of basis vectors. By only considering such a small subset of these ‘generalized residuals’,
the dimensionality of the data analysis problem is greatly reduced, which can cause a large
speedup in the evaluation of the likelihood: the ABC-method (Acceleration By Compression).
The compression fidelity, calculable with crude estimates of the signal and noise, can be used
to determine how far a data set can be compressed without significant loss of information. Both
direct tests on the likelihood, and Bayesian analysis of mock data, show that the signal can be
recovered as well as with an analysis of uncompressed data. In the analysis of International
PTA Mock Data Challenge data sets, speedups of a factor of 3 orders of magnitude are
demonstrated. For realistic PTA data sets the acceleration may become greater than six orders
of magnitude due to the low signal-to-noise ratio.
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1 IN T RO D U C T I O N

In the past several decades, pulsar timing has been successfully used
to study a wide range of science. Past successes include the con-
firmation of gravitational waves (GWs; Taylor & Weisberg 1982)
and very accurate tests of general relativity (Kramer et al. 2006).
The interesting science of these examples stems from the fact that
accurate measurements of the times of arrival (TOAs) of the radio
pulses allow for a precise determination of the trajectory of the pul-
sar relative to the Earth. This is possible because the TOAs can be
accurately accounted for by current models of the pulsar trajectory,
pulse propagation and pulsar spin evolution in relativistic gravity.

Among ongoing pulsar timing projects are pulsar timing arrays
(PTAs), which are programmes designed to detect low-frequency
(10−9 to 10−8 Hz) extragalactic GWs directly, by using a set
of Galactic millisecond pulsars as nearly perfect Einstein clocks
(Foster & Backer 1990). GWs perturb space–time between the pul-
sars and the Earth, and this creates detectable deviations from the
strict periodicity in the TOAs (Estabrook & Wahlquist 1975; Sazhin
1978; Detweiler 1979). One of the main source candidates for PTAs
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is an isotropic stochastic background of gravitational waves (GWB),
thought to be generated by a large number of massive black hole
binaries located at the centres of galaxies (Begelman, Blandford
& Rees 1980; Phinney 2001; Jaffe & Backer 2003; Wyithe &
Loeb 2003; Sesana, Vecchio & Colacino 2008), by relic GWs
(Grishchuk 2005), or, more speculatively, by oscillating cosmic-
string loops (Damour & Vilenkin 2005; Ölmez, Mandic & Siemens
2010; Sanidas, Battye & Stappers 2012).

The analysis of pulsar timing data, and even more so PTA data,
can become prohibitively time consuming for large data sets. This
is especially true for Bayesian data analysis methods, like the anal-
ysis of PTA data (van Haasteren et al. 2009, hereafter vHLML),
and the correction for dispersion measure variations (Lee et al., in
preparation). Typically, the computational cost scales as n3 or n2,
with n being the total number of observations; the computational
difficulties will increase sharply over time.

In this work, one possible solution for the computational dif-
ficulties is explored in the case, the signal of interest being a
time-correlated stochastic signal: the ABC-method (Acceleration
By Compression). The ABC-method is based on lossy linear
data compression. By significantly reducing the dimensionality of
the problem, the evaluation of computationally expensive quan-
tities can be greatly accelerated. We specifically focus on the
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International PTA (IPTA) Mock Data Challenge (released by M.
Keith, K. J. Lee and F. A. Jenet1), in which the GWB is a good
example of a compressible stochastic signal.

The outline of the paper is as follows. In Section 2, we briefly
review the relevant theory of pulsar timing observations, with a
special attention to the likelihood in the presence of time-correlated
stochastic signals. We introduce the ABC-method, and the com-
pressibility of data sets, in Section 3. In Section 4, we look into
some of the practicalities concerned with compression of PTA data,
and investigate the computational demand of different terms in
the evaluation of the likelihood. In that section, we provide and
test a method based on cubic spline interpolation to estimate the
compressed covariance matrix. This causes an extra speedup of a
few orders of magnitude. Finally, we present our conclusions in
Section 5.

2 PTA DATA A NA LY S I S

The typical data processing pipeline for pulsar timing observations
processes the raw baseband data in several data reduction steps,
where at each data reduction step the data volume is drastically
reduced. The data reduction steps condense the scientifically in-
teresting information into a significantly smaller number of data
points, sometimes mitigating noise in the process. At the end of the
pipeline we are left with TOAs.

This work proposes a method to compress the TOA data even
further to what we call generalized residuals. The data compression
is based on the likelihood for the TOAs and the Fisher information,
with information preserved only for a specific stochastic signal. To
this end, we review the theory of TOAs, the likelihood, and inclusion
of the timing model in this section.

2.1 The likelihood

We consider k pulsars, with n′
a TOAs for the ath pulsar, where the

n′ = ∑k
a=1 n′

a TOAs are described as an addition of a deterministic
and a stochastic part. In the observations, this distinction is blurred
because we cannot fully separate the stochastic contributions from
the deterministic contributions. In practice, we therefore work with
timing residuals that are produced using first estimates β0i of the m
timing-model parameters β i (i between 1 and m); this initial guess is
usually assumed to be accurate enough to use a linear approximation
of the timing model (Edwards, Hobbs & Manchester 2006). Here,
m = ∑k

a=1 ma is the sum of the number of timing-model parameters
of all the individual pulsars. In this linear approximation, the timing
residuals depend on ξ i = β i − β0i as

δ t ′ = δ tprf + Mξ , (1)

where δ t ′ are the timing residuals in the linear approximation to the
timing model, δ tprf is the vector of pre-fitted timing residuals, ξ is
the vector with timing-model parameters for all k pulsars and the
(n′ × m) matrix M is the so-called design matrix (see e.g. section
15.4 of Press et al. 1992; vHLML), which describes how the timing
residuals depend on the model parameters. As an example, for a
simple timing model which only contains quadratic spindown, the
matrix M is a (n′ × 3) matrix, with the jth column describing a
(j − 1)th order polynomial. The elements of M are then t

j−1
i , with

ti being the ith TOA.

1 http://www.ipta4gw.org/?page_id=214

Identical to vHLML and van Haasteren & Levin (2013, hereafter
vHL), we model the stochastic contributions to the TOAs as a
time-correlated stochastic signal, described by a random Gaussian
process. The corresponding likelihood is

P
(
δ t ′|ξ , φ

) =
exp

[
− 1

2

(
δ t ′ − Mξ

)T
C′−1 (

δ t ′ − Mξ
)]

√
(2π)n′ det C′ , (2)

where φ is the vector describing all the stochastic model parameters
and C′ = C′(φ) is the covariance matrix of the sum of all stochastic
signals. This includes the measurement uncertainties, the timing
noise (red spin noise) and a possible GWB.

2.2 Marginalizing over the timing model

Using equation (2) is computationally not very efficient because
of the large number of timing-model parameters. However, in the
case of uniform priors (vHLML) and Gaussian priors (vHL) it is
possible to analytically marginalize the posterior distribution over
the timing-model parameters. In the remainder of this work, we
assume no prior information about the timing-model parameters,
and use uniform priors.

In their search for a simplified representation of the analytic
marginalization procedure, vHL decomposed the design matrix into
an orthogonal basis based on the singular value decomposition M =
U�V∗, where U and V are (n′ × n′) and (m × m) orthogonal
matrices, respectively, and � is an (n′ × m) diagonal matrix. The
first m columns of U span the column space of M, and the last n =
n′ − m columns of U span the complement. We denote these two
subspace bases as F and G, respectively:

U = (F G).

In Section 3.1, we show that G is actually a lossless data compres-
sion matrix.

Now, integrating over ξ , our marginalized likelihood becomes
(vHLML)

∫
dmξP (δ t ′|ξ , φ) =

√
det

(
FTC′−1F

)−1√
(2π)n det C′

× exp

(
−1

2
δ t ′T C−1

P δ t ′
)

, (3)

with

C−1
P = C′−1 − C′−1F

(
FTC′−1F

)−1
FTC′−1 (4)

CP = GGTC′GGT,

where the singular matrix C−1
P is the inverse of CP in the non-

singular subspace of its basis. The singular matrix CP is the post-fit
covariance matrix of the timing residuals (vHL; Demorest et al.
2012, hereafter D12). D12 use a pseudo-inverse based on a singular
value decomposition of C′ to evaluate C−1

P in their evaluation of a
GWB detection statistic; this is equivalent to marginalizing over the
timing-model parameters (vHL).

3 TH E A B C - M E T H O D

Data compression is the encoding of information in a smaller data
volume than the original information data volume. This can be done
without losing information (lossless) or with losing information
(lossy) (Wade & Wade 1994). We would like to use data compres-
sion to reduce our data volume, with the aim of speeding up the
computations that are necessary for the analysis of PTA data. In this
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work, we compress the data in such a way to retain the sensitivity to
one stochastic signal (e.g. the isotropic GWB): the ‘ABC-method’.

In Section 3.1, we show that marginalization over the timing-
model parameters is equivalent to lossless data compression. In
Section 3.2, we expand the data compression formalism, and show
how to construct a basis in which sensitivity to a particular signal
is retained. We define the corresponding compression fidelity in
Section 3.3. Finally, in Sections 3.4 and 3.5, we discuss how to
interpret the compressed basis of generalized residuals, and how far
a data set can be compressed without significant loss of information.

3.1 Marginalization: lossless data compression

vHL showed that equation (3) can be rewritten as

∫
dmξP (δ t ′|ξ , φ) =

exp
[
− 1

2 δ t ′T G
(
GTC′G

)−1
GTδ t ′

]
√

(2π)n det
(
GTC′G

) , (5)

with notation as given in Section 2.2. This is an unmarginalized
likelihood of a random Gaussian process in n dimensions, with data
δ t = GTδ t ′ and covariance matrix C = GTC′G. The dimensional-
ity of the data is reduced from n′ to n due to the marginalization
process. From here onwards, we start the convention that a prime
superscript denotes that a vector or a covariance matrix lies in the
larger unmarginalized space, whereas no prime denotes that either
of them lies in the marginalized space. The vector δ t contains all
the information about all stochastic signals: marginalization over
the timing-model parameters is the same as lossless linear data
compression in this formalism. The matrix G is our linear data
compression matrix and δ t is our vector of reduced data.

3.2 Lossy linear data compression

We would like to compress the reduced data δ t even further, with-
out losing too much information about the stochastic signal of our
interest. We expect this to be possible, since usually the signal and
the noise differ in power spectral density. Only some parts of the
spectrum are dominated by the signal; other parts are dominated
by the noise. The data compression scheme in this work is based
on throwing away the parts of the data that are dominated by the
noise by using linear data compression: x = HTδ t , with x being the
compressed data, or ‘generalized residuals’ as we will call them and
H being the compression matrix. Here, the number of columns of H
is less than the number of rows, where we define the compression
to be the total number of timing residuals divided by the number of
compressed generalized timing residuals. We derive one possible
scheme to construct a suitable H in this section.

In order to determine how much information about our signal of
interest is in our data, we use the Fisher information. We acknowl-
edge that formally the Fisher information does not completely quan-
tify how well a parameter can be confined with a specific data set,
especially in the case of a low signal-to-noise ratio (e.g. Vallisneri
2008), but in this exploratory work we consider the Fisher infor-
mation as a sufficient first attempt. Denoting the log likelihood of
equation (5) as �, we find for the Fisher information

Iθφ =
〈

− ∂2�

∂θ∂φ

〉
= 1

2
Tr

(
∂C

∂θ
C−1 ∂C

∂φ
C−1

)
, (6)

where Iθφ is the Fisher information, and φ and θ are model pa-
rameters that affect the signal power spectral density. Suppose that
the stochastic processes in the reduced data δ t are described by the

covariance matrix C = � + a2S, where � is the covariance matrix
of the noise and S is the covariance matrix of the signal of interest
with amplitude a2. We would like to know which basis vectors have
the largest contribution to the Fisher information, which would be
easiest to determine if we could completely diagonalize the matrices
in the trace of equation (6). This is possible with a non-orthogonal
transformation. Even though the inner product is not preserved in
such a transformation, the trace remains invariant. We use a square
root of the noise matrix, �−1/2

w = �−1/2, to do this. For the mo-
ment, we assume that this estimate of �w is indeed correct, but in
Section 3.4 we argue that an inaccurate noise estimate still results
in a usable compression. In this new basis, the whitened data and
covariance become δ tw = �−1/2

w δ t and Cw = �−1/2
w C�−1/2

w . The
maximum sensitivity based on the Fisher information now has a
simple form

a2

Var(a)
≤ a2Iaa = 2

n∑
i=1

a2λ2
i

(1 + aλi)2
, (7)

where λi is the ith eigenvalue of Cw. The aλi should be interpreted as
signal-to-noise ratios. We can only evaluate equation (7) if we have
complete knowledge of the signal S, the signal amplitude a, and the
noise �. However, the λi and the corresponding basis vectors do
not depend on a, which means we can examine the sensitivity to a
as a function of the number of λi we include. Here, we do assume
to have knowledge of � and S.

In the limit where a is large, the strong signal limit, we can neglect
the one in the denominator of the sum of equation (7), which makes
all terms in the sum equal. This means that all generalized residuals
carry equal information as is expected in such a case: the noise
is negligible compared to the signal, so no parts of the signal are
buried under the noise. In the strong signal limit, data compression is
therefore not possible. Note that the sensitivity is then proportional
to the number of generalized residuals, as it should be.

In the limit that a is small, the low-signal limit (LSA), we can
neglect all terms aλi in the denominator of the sum, making the
sensitivity equal to the sum of all a2λ2

i . The distribution of values
of the λi eigenvalues is determined by the power spectral density of
the signal compared to the noise. If the signal spectrum is the same
as the noise spectrum, all λi will be identical. However, if the signal
has a different spectrum than the noise, λi can span a wide range
of values, where the large λi correspond to basis vectors where the
signal is relatively large compared to the noise. In this case, there
are nearly redundant data points, and compression is possible.

3.3 The compression fidelity

We define the fidelity F ∈ [0, 1] to be the fraction of the total
sensitivity we retain in our compressed data. We choose the number
of generalized residuals that we keep, l, to be the smallest number
such that∑l

i=1 λ2
i / (1 + aλi)

2∑n
i=1 λ2

i / (1 + aλi)
2 ≥ F , (8)

where we have ordered λi to have the largest values for the lowest
indices. We typically work with F ≥ 0.99, which in favourable
cases like the IPTA Mock Data Challenge allows for compressions
greater than 10: less than 10 per cent of the original data volume is
kept.

Computationally, we suggest to use a singular value decompo-
sition to produce the eigenvalues and eigenvectors of Cw, where
our fidelity criterion, equation (8), keeps only l of the n generalized
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residuals δtw
i . We construct the (n × l) matrix W as consisting of

the columns of the l eigenvectors that belong to the selected eigen-
values. The data compression matrix is now H = �−1/2

w W. Using
equation (5), we now find for the likelihood of the compressed data
x = HTδ t:

P (x|φ) =
exp

[
− 1

2 xT
(
HTCH

)−1
x
]

√
(2π)l det (�w) det

(
HTCH

) , (9)

where the extra determinant of �w comes from the whitening and
can be ignored in practice as it is absorbed in the overall normal-
ization constant. This equation is the basis of the ABC-method, as
the computationally expensive inversion has been replaced with a
lower dimensional one.

Equation (9) is completely general, and can be readily applied
to realistic data sets. As in van Haasteren et al. (2011), all timing-
model parameters and jumps can be included in the likelihood, and
are therefore by design part of the data compression scheme. We
therefore expect not to encounter any difficulties in applying data
compression to realistic data sets, even though in this work we only
test the effectiveness on the Mock Data Challenge.

3.4 Interpreting the compressed basis

As we have discussed in Section 3.1, marginalizing over the timing
model is the same as linear data compressing the subspace of the
original data δ t ′ orthogonal to the columns of the design matrix
M. Similarly, the data compression we suggest in Section 3.2 is
equivalent to marginalizing over vectors that lie in the subspace
orthogonal to the column space of H with uniform priors. By con-
sidering the data in the basis orthogonal to the column space of H
to be nuisance parameters with uniform priors, the resulting likeli-
hood of the compressed generalized residuals becomes independent
of the value of the data in the orthogonal complement (we have not
found another prior with the same property). This interpretation of
data compression in terms of marginalization ensures us that we are
not introducing any biases or unwanted systematics in our analy-
sis. The difference with the marginalization over the timing model
is that we do not marginalize over physical nuisance parameters;
we are throwing away information. The data compression matrix
H as constructed in Section 3.2 guarantees that we throw away as
little information about the signal amplitude a as possible. This is
not true for the other parameters this signal may also depend on:
optimal sensitivity to those parameters possibly requires a different
basis, construction of which is the subject of an ongoing follow-up
research. We ignore this issue in the rest of this exploratory work,
and assume that sensitivity to the signal amplitude is sufficient for
our purposes.

The interpretation of data compression in terms of marginalizing
over non-physical parameters ensures us that the likelihood of the
compressed data in equation (9) is also valid if we do not provide
good estimators for �w and S. We may be throwing away more
information than we thought if our estimators are not accurate,
but we do not introduce any bias or systematics in our likelihood.
It is therefore not imperative to be thorough in the estimates of
the signal and the noise; a reasonable guess may be sufficient for
practical purposes.

It is instructive to inspect the compressed basis vectors GH for
highly compressible signals. We choose the IPTA Mock Data Chal-
lenge as an example, since the GWB signal strongly dominates
the noise at the lowest frequencies in these data sets. In Fig. 1 we
present the first three compressed basis vectors for J0030+0451

Figure 1. The first three compressed basis vectors of J0030+0451 and
J0437−4715 of IPTA Mock Data Challenge open 1. These basis vectors are
the first three columns of the matrix GH. The basis vectors are normalized, so
we have ignored the scaling on the y-axis. The basis vectors of J0437−4715
have more high-frequency structure due to the fact that J0437−4715 is in a
binary.

and J0437−4715 of Mock Data Challenge open 1. We observe that,
roughly, the first basis vector corresponds to a third-order poly-
nomial: start negative, then ascend to a maximum, descend to a
minimum and finally end positive. The other two basis vectors dis-
play a similar behaviour with the order of the polynomial equal
to the order of the basis vector +2. Note that the zeroth, first and
second order are missing due to the removal of quadratics in our
marginalization over the timing-model parameters.

We note that the compressed basis vectors for both pulsars in
Fig. 1 are similar, except that those of J0437−4715 display more
high-frequency behaviour. This is because J0437−4715 resides in
a binary, and the timing model therefore includes parameters for
binary motion.

3.5 Compressibility: how far can we go?

A natural question that arises in data compression is how much
we can compress the data without losing a significant amount of
information. To answer this question, we consider the fidelity as
a function of the number of generalized residuals in the data set.
For compressible data sets we expect the fidelity to stay close to
1, only to drop for high-compression rates. One possible measure
of compressibility, which we use in our application of the ABC-
method, is the maximum compression for which the fidelity stays
above 0.99. This maximum compression depends on the signal
amplitude and power spectral density compared to that of the noise.

As an example, we plot the fidelity of the mock data of
J0030+0451 from the open Mock Data Challenge versus the com-
pression in Fig. 2, where the signal of interest is the gravitational-
wave background. In these data sets the noise is white. Open data
set 3 does formally contain some extra (mildly) red noise which we
do include in these plots, but the level of red noise is so low that
it is negligible in practice. Because the signal is of such a different
spectral shape than the noise, data compression is very efficient. In
such a case, the higher the noise level compared to the signal, the
more compressible the data set is.

In Fig. 2, we plot the fidelity for open data set 3 in the LSA.
Data compression is most efficient in the LSA. As a comparison we
show the fidelity for an incompressible signal in Fig. 2 as well. This
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Figure 2. The fidelity of the GWB signal as a function of the compression
for the pulsar J0030+0451 of all IPTA open data challenge sets. Open data
set 3 contains more redundant information than the other two sets because
the GWB is smaller, and the GWB signal is therefore buried under the noise
at a larger portion of the spectrum. Open data set 2 contains more redundant
information than open data set 1 because the error bars for J0030+0451
observations were set higher in open data set 2 than in open data set 1.
We have also plotted the fidelity of the low-signal approximation (open
three LSA) for open data set 3, and the fidelity of an incompressible signal
(incompressible).

corresponds to the high-signal limit. We see that an increase in the
compression results in an equal decrease in the fidelity.

3.6 Compressing realistic data sets: a prescription

For realistic data sets we generally do not know the details of the
signal and the noise. The noise typically has to be characterized
from the data, and we may not even be certain of the presence of
a signal of interest. Since the fidelity depends on estimates of the
signal and the noise, it is not clear how far exactly we can compress
the data set without losing information from the signal. Here, we
therefore recommend a conservative approach when preparing the
ABC-method.

aλi in the denominator of equation (8) represents the signal rela-
tive to the noise. The larger it is relative to 1, the less likely we will
discard that generalized residual. Therefore, if we are sure not to
overestimate the noise, and if we are sure not to underestimate the
signal, the compression fidelity will not be overestimated. Specifi-
cally, we recommend to calculate the fidelity as follows.

1) Construct the noise covariance estimate �w such that it only
consists of the TOA uncertainties.
2) Choose a suitable spectral form for the signal of interest. For
example, this consists of fixing the spectral index γ = 13/3 for the
GWB.
3) Use the estimates of vHL (equations 22 and 24 of vHL) to
estimate the signal amplitude. For a GWB signal, this is

σGWB = 1.37 × 10−9

(
Ah

10−15

) (
T

yr

)5/3

, (10)

where T is the duration of the experiment, Ah is the dimensionless
GWB amplitude and σ GWB is the rms residual due to the GWB in
the data. For other power spectral densities a similar calculation to
vHL is required.

By completely ignoring other effects like red spin noise in these
estimates, we are ensured that we do not throw away more informa-

tion than we should. Indeed, more noise in this calculation would
mean a higher compression. This conservative approach is therefore
also guaranteed to work in the presence of (strong) red noise.

We note that this approach can overestimate the fidelity if the TOA
uncertainties have been overestimated, or when the shape of the
signal power spectral density has been estimated incorrectly with,
for instance, an incorrect spectral index. The TOA uncertainties
depend on complex details of the data reduction pipeline prior to
the formation of the TOAs and of the cross-correlation of the pulse
profile with a template (Taylor 1992). However, underestimation
of the TOA uncertainty is uncommon in practice. How to choose
a suitable basis to be sensitive to the spectral index is a subject
of ongoing follow-up research. Here, we assume that we know the
spectral index of the signal of interest.

In the open Mock Data Challenge, shown in Fig. 2, high com-
pressions of over 50 still yield a fidelity close to F = 1 in the LSA.
Since realistic data sets are expected to be in the LSA – we have not
detected a GWB yet – we expect high compressions in realistic data
sets to be possible as well. However, realistic data sets can have far
more TOAs per pulsar than the 130 TOAs per pulsar in the Mock
Data Challenge. Since in the low-signal limit only a few generalized
residuals per pulsar are enough to reach F ≥ 0.99, we expect very
high compressions, possibly up to c = 1000 depending on the size
of the data set, to be realistic for initial PTA applications.

4 LI NEAR DATA C OMPRESSI ON I N PRAC TICE

Although the raw data of pulsar observations can be quite volumi-
nous, the pulsar TOA data files are typically several kilobytes in
size. It seems quite unlikely that data volume at this stage of the
analysis is ever going to be a problem; the only reason to resort
to data compression is that it can greatly accelerate the analysis of
pulsar timing data. In this section, we discuss the computational
costs of evaluating the likelihood function with the ABC-method,
and we present some computational shortcuts. A straightforward
application is a Bayesian analysis (e.g. vHLML), but other analy-
sis methods described in the time domain are expected to see an
equally large acceleration (e.g. D12). Special attention is given to
power-law signals, for which we present a convenient approxima-
tion of the compressed covariance matrix, thereby maximizing the
effectiveness of data compression.

4.1 Computational demand

The computational demand of equation (5) scales as n3 (vHL) due
to the inversion operation of an (n × n) matrix. With linear data
compression, we have decreased the size of the inversion matrix,
which will therefore also decrease the computational demands. The
computational demand of the inversion in equation (9) scales as
l3. Depending on the compression, this l3 operation may or may
not be the computational bottleneck. For large enough compression
factors, the computational bottleneck will either be the computation
of C (n2 operation), or the multiplication HTCH (ln2 operation). In
the case of an array of pulsars, the matrix H will be block diagonal
if the data compression has been done per individual pulsar. Then,
the computation of HTCH can be accelerated with a factor of the
number of pulsars by blockwise multiplication (vHL).

In this assessment of computational demand, we have neglected
the construction of the data compression matrix H. A computation-
ally expensive singular value decomposition of a full covariance
matrix is required for this. However, this only needs to be done
once: we do not change the compressed basis during subsequent
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likelihood evaluations, even if we vary the noise/signal parameters
during a Markov chain Monte Carlo simulation. Since the com-
pressed basis can be calculated for each pulsar individually, we
therefore do not expect the construction of the data compression
matrix H to be a computational bottleneck in the foreseeable future.

4.2 Testing the acceleration of the likelihood

We test the performance of the ABC-method on the IPTA Mock Data
Challenge: all challenges consist of 130 observations per pulsar,
with 36 pulsars. Our likelihood contains the following deterministic
and stochastic signal contributions:

(i) the TEMPO2 (Hobbs, Edwards & Manchester 2006) timing-
model parameters,

(ii) error bars for every TOA,
(iii) power-law red timing noise for every pulsar and
(iv) a correlated GWB.

Evaluation of the likelihood of equation (3) took on average
38.3 s,2 where most of that time comes from inverting the full co-
variance matrix.

We compare the efficiency of equation (3) to that of the data
compression likelihood of equation (9), where the latter equation
becomes equation (5) when the compression is 1. In the evaluation
of the compressed likelihood, three terms take up the majority of
the computational cost.

(i) CGW, the evaluation of the (n × n) elements of the covariance
matrix of the GWB.

(ii) HTCGWH, the matrix multiplication to obtain the compressed
covariance matrix.

(iii) (HTCH)−1, inversion of the compressed covariance matrix.

All other operations are negligible compared to these three. In
Fig. 3 we present the computational cost of these three terms, to-
gether with the sum of the three, in the bottom panel. The uncom-
pressed likelihood is given as a single point. We see that the inversion
of the compressed covariance matrix is the dominant term for low-
compression factors: if roughly 70 or more generalized residuals
per pulsar are kept. For higher compression factors, the evaluation
of CGW is the most time-consuming part of the evaluation of the
likelihood. Because this is an n2 operation that does not depend on
the compression, compressing the data to less than 50 generalized
residuals per pulsar does not gain us any computational efficiency
in this configuration.

4.3 Signals with unknown amplitude

As explained in the previous section, in the case where a data set is
highly compressible, the computational bottleneck becomes eval-
uating C, which contains CGW in the example of Section 4.2, at
each step of the likelihood function. If we label the contributions to
the compressed covariance matrix as HT�iH, then in some cases
it is possible to greatly accelerate the evaluation of HT�iH. The
simplest type of stochastic signal is the type where the power spec-
tral density shape is known completely, but the amplitude Ni is an
unknown model parameter. Examples of signals of this type in-
clude the stochastic behaviour due to TOA uncertainties (with an

2 All computations in this work are performed on a single workstation,
code linked with an Automatically Tuned Linear Algebra System (ATLAS)
library that came with the GNU/Linux distribution.

Figure 3. The computational cost of the dominating terms in the com-
pressed likelihood, as a function of the number of compressed generalized
residuals per pulsar. An array of 36 pulsars was used, with 130 observations
per pulsar. The dominating terms are as follows. (1) CGW, (dashed line), the
evaluation of the (n × n) elements of the covariance matrix of the GWB.
Only present in the lower panel. (2) HTCGWH, (dotted line), the matrix mul-
tiplication to obtain the compressed covariance matrix. Only present in the
lower panel. (3) Interpolation, (grey solid line), the construction of the (l ×
l) compressed covariance matrix HTCH by cubic spline interpolation. Only
present in the upper panel. (4) (HTCH)−1, (dash-dotted line), inversion of
the compressed covariance matrix. The total computational cost is shown as
a solid line, and the uncompressed likelihood of equation (3) is shown as an
upper limit at 130 generalized residuals per pulsar. In the lower panel, these
terms are evaluated for the compressed likelihood of equation (9), without
any computational shortcuts. For high-compression factors (low number
of compressed generalized residuals), the evaluation of CGW is dominant,
which means that further compression does not buy one more computational
time. In the upper panel, the compressed likelihood is evaluated, where the
cubic spline interpolation method of Section 4.4 is used to evaluate CGW.
In this case, the inversion (HTCH)−1 is always the dominant term, and data
compression is most efficient. Note how the line for (HTCH)−1 is (nearly)
identical in both panels.

unknown scaling, or ‘EFAC’, parameter), pulse phase jitter (e.g.
Cordes & Shannon 2010), or a GWB with a known spectral index.
For these types of signal we can evaluate HT�iH just once for unit
amplitude, and store this in memory. Then, each time we need to
evaluate the likelihood function, we can multiply this stored matrix
with the amplitude Ni to obtain the compressed covariance matrix
without having to recalculate such matrices every time. Especially
when l � n, this greatly reduces the time necessary to evaluate
HT�iH.

4.4 Power-law signals

Most stochastic signal models have more free parameters than only
an amplitude, and the acceleration method of Section 4.3 is not
applicable. In this section, we present a practical solution for signals
with two free parameters: an amplitude, and some other parameter.
We focus only on signals with a power-law power spectral density,
but we expect that the method is also appropriate for other signals
with a parametrized power spectral density.

Power-law signals are used in various ways in pulsar timing, both
as a model for noise sources (i.e. red spin noise; Cordes & Shannon
2010; Shannon & Cordes 2010), and as signal sources (i.e. the
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istotropic GWB; Phinney 2001; vHLML. We use the following
definition for the power spectral density of a power-law signal:

S(f ) = a2

(
1

1yr−1

) (
f

1yr−1

)−γ

, (11)

where f is the signal frequency, a is the signal amplitude and γ is the
spectral index that describes the steepness of the spectrum. The rms
in the timing residuals of such a signal is given by σ 2

rms = ∫ ∞
0 df S(f).

Because this is an unphysical power spectrum that diverges at the
low frequencies, in practice a third parameter is used to describe a
power-law signal that represents a lowest frequency fL below which
the signal is assumed to be zero. The reduced data δ t and therefore
also the compressed data x are not affected by fL (vHL; Blandford,
Romani & Narayan 1984; Lee et al. 2012).

For highly compressed data, the compressed covariance matrix
HTCH contains far less elements than C: the number of unique
elements for this matrix is l(l + 1)/2. For a single pulsar power-
law noise covariance matrix, this is typically only of the order of
a hundred elements, depending on the number of observations and
the compression. We propose to use an interpolation approximation
for each element of the matrix HTCH as a function of γ , with 1 <

γ < 7. The elements of the covariance matrix diverge at both ends
of the interval. In the case of a single pulsar, this means we have
l(l + 1)/2 functions on the interval 1 < γ < 7 that we want to
write an interpolation approximation for. We choose a cubic spline
interpolation method for this, where the domain of the function is
divided in subintervals in which the function is approximated by a
third-order polynomial. We construct all polynomials such that their
values and derivatives match at the edges. The only free parameter
in this approach is the number of cubics used in total. This number
needs to be tuned for performance.

In Fig. 4 we show the difference between the true value and the
interpolated value of an arbitrary element of HTCH as a function
of γ for J0030+0451 of Mock Data Challenge open 2. These re-
sults are typical; we find a similar plot for every element, where the
difference between the true value and the interpolated value always
inflates near the boundaries of the interval. We also show the differ-
ence between the accompanying log-likelihood � as a function of
γ for the same data set. Here, we also see that the difference inflates
near the boundaries. The precision of the interpolation depends on
the number of cubic splines used in the interpolation. For lower
numbers of splines in the approximation, we saw that the accuracy
quickly decrease near the boundaries. This caused the compressed
covariance matrix to become non-positive definite or singular close
to the boundaries. In our simulations, 100 equally spaced cubic
splines were enough on a slightly reduced interval 1.09 < γ < 6.91
to not run into numerical issues.

The cubic spline interpolation removes the necessity to calcu-
late the total covariance matrix C. In the top panel of Fig. 3, we
present the computational cost of the computationally dominant
terms in the compressed likelihood, in the case where we use cubic
spline interpolation for the elements of HTCH. The computation-
ally dominant term is the inversion (HTCH)−1 for the whole range
of possible compressions, which means that data compression is
maximally efficient. We almost reached full capacity of Random
Access Memory (RAM) of our workstation for very low compres-
sions. For large data sets with an incompressible signal, this may
cause problems for the cubic spline interpolation method. However,
for current applications, we do not believe this to be an issue. For
the Mock Data Challenge, the total typical speedup at 99 per cent
fidelity is almost three orders of magnitude.

Figure 4. The likelihood and the covariance matrix HTCH as a function of
γ . For the pulsar J0030+0451, with data as in IPTA Mock Data Challenge
open 2, we used the interpolation technique of Section 4.4 to approximate
the elements of the compressed covariance matrix HTCH. In the upper
panel, we have plotted log|δx/x| of element x (row 1, column 4) of the
compressed covariance matrix as a function of the spectral index γ . Here, x
is the true value of the element of HTCH, and δx is the difference between
the true value of x, and the interpolated value. This plot looked similar
for all elements. In the bottom panel, we have plotted the corresponding
quantity for the log likelihood: log|δ�/�|, with � being the log likelihood,
and δ� being the difference between the true and interpolated value. We
initialized the cubic spline interpolation with 100 points, evenly distributed
on the interval (1, 7). We see that the discrepancy between the interpolated
and the true values grows steeply near the boundaries of the interval. At the
boundaries, the elements of the compressed covariance matrix diverge.

4.5 Tests on the IPTA Mock Data Challenge

We test the ABC-method with the cubic spline interpolation tech-
nique on the open Mock Data Challenge. We present the results
here of Mock Data Challenge open 1 because the noise level was
the same for all pulsars in that challenge. That makes it easier to
compare the results we see here with the fidelity levels of Fig. 2:
they are approximately the same for all pulsars. In Fig. 2 we see that
for a compression of 6, we start to approach F ≈ 0.99. This corre-
sponds to 22 compressed generalized residuals per pulsar. In Fig. 5
we present the likelihood credible regions for Mock Data Challenge
open 1 both for the full array of pulsars and for pulsar J0030+0451,
with different compression levels. We see that with 22 generalized
residuals per pulsar, the compressed likelihood is practically equal
to the uncompressed likelihood, as predicted by Fig. 2. With less
than 22 generalized residuals per pulsar, the likelihood credible re-
gions are broader, with significant covariance between the GWB
amplitude and the spectral index. This covariance may partially be
a result of the compressed basis being optimal only for the injected
value of the spectral index γ = 4.33; this dependence is the subject
of follow-up work.

The results of this section hold for all three of the open Mock
Data Challenge data sets: when the fidelity F ≥ 0.99, the likeli-
hood credible regions were almost indistinguishable from the un-
compressed likelihood credible regions. With a compression such
that the fidelity is significantly less than that, the credible regions
were broader, with a covariance between the amplitude and spectral
index.
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Figure 5. The compressed likelihood as a function of the GWB amplitude
and spectral index γ for IPTA Mock Data Challenge open 1. No parameters
are numerically marginalized over. The timing-model parameters are ana-
lytically marginalized over as part of the data compression. On the left-hand
panel, the likelihood is plotted for only pulsar J0030+0451, with compres-
sion to 10 generalized residuals (top) and compression to 22 generalized
residuals (bottom). On the right the likelihood is plotted for the full array
of pulsars, with compression to 6 generalized residuals per pulsar (top) and
compression to 22 generalized residuals per pulsar (bottom). In each panel,
the blue lines represent the credible regions of the compressed likelihood,
the red lines, labelled ‘ref’, represent the reference credible regions of the
uncompressed likelihood of equation (5). The contours represent the 1σ (68
per cent), 2σ (95 per cent) and 3σ (99.7 per cent) credible regions. The
injected values are marked with a ‘x’.

5 C O N C L U S I O N S

We investigate the acceleration of the analysis of pulsar timing data
by compressing the data with a linear transformation, without los-
ing a significant amount of information of a particular stochastic
signal of interest: the ABC-method. In this formalism, marginal-
ization over the timing-model parameters is equivalent to lossless
linear data compression. We show that when the stochastic signal
of interest has a significantly different spectrum than the noise, the
data is highly compressible. The ABC-method is most efficient in
the LSA, where the signal is buried under the noise over most of the
frequency range. Data compression is not possible in the strong-
signal limit, where the signal dominates the noise in the whole
frequency range. The likelihood function of the compressed signal
is computationally more efficient and unbiased.

We introduce the concepts of compression and compression fi-
delity, where the compression is the total number of timing residuals
divided by the number of generalized timing residuals that are kept
in the compression, and the fidelity is a measure of the amount of in-
formation about the signal of interest that is kept in the compression.
For the IPTA Mock Data Challenge, we show that the compression
is of the order of 10, at a fidelity F = 0.99, if one is interested in
the isotropic stochastic GWB.

When applied to highly compressible data sets, computational
shortcuts are required to optimally accelerate the evaluation of the
compressed likelihood. We present a practical method based on
cubic spline interpolation of the compressed covariance matrix.
When this interpolation approximation is used, the total acceleration
of the evaluation of the compressed likelihood is c3, with c being

the compression. We test the cubic spline interpolation method, and
conclude that it works well for the purposes of the IPTA Mock Data
Challenge. The total acceleration is about three orders of magnitude
for a compression of 10, with results almost identical to an analysis
without the ABC-method.

The ABC-method can be readily applied to realistic data sets,
without any adjustments. Realistic data sets of current PTAs are
expected to reside in the low-signal approximation: no stochastic
gravitational-wave background has been detected as of now. There-
fore, a high compression factor of several hundred is realistic for
such data sets, which yields a total acceleration of over six orders
of magnitude. We expect linear data compression to become one of
the key solutions for the issues related to computational cost in PTA
data analysis.
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