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ABSTRACT
Direct detection of gravitational waves by pulsar timing arrays will become feasible over the next few years.
In the low frequency regime (10−7 Hz – 10−9 Hz), we expect that a superposition of gravitational waves from
many sources will manifest itself as an isotropic stochastic gravitational wave background. Currently, a number
of techniques exist to detect such a signal; however, many detection methods are computationally challenging.
Here we introduce an approximation to the full likelihood function for a pulsar timing array that results in
computational savings proportional to the square of the number of pulsars in the array. Through a series of
simulations we show that the approximate likelihood function reproduces results obtained from the full likeli-
hood function. We further show, both analytically and through simulations, that, on average, this approximate
likelihood function gives unbiased parameter estimates for astrophysically realistic stochastic background am-
plitudes.

1. INTRODUCTION

Gravitational waves (GWs) will very likely be detected
in the next few years. Pulsar timing arrays (PTAs) (Hobbs
et al. 2010) as well as ground-based interferometers such as
Advanced LIGO (Waldman 2011) are expected to make the
first direct GW detection on a similar time-scale, though they
are sensitive to different and complementary regions of the
GW spectrum. Ground-based instruments are most sensi-
tive around 100 Hz, and the most promising source at those
frequencies are binaries of compact objects such as neutron
stars and black holes (up to a few tens of solar masses). Pul-
sar timing arrays are most sensitive around 10−9 Hz, and the
most promising source at those frequencies are super-massive
binary black holes (SMBBHs) that coalesce when galaxies
merge.

All the SMBBH mergers that have taken place throughout
the history of our universe produce a stochastic background of
gravitational waves (Lommen & Backer 2001; Jaffe & Backer
2003; Wyithe & Loeb 2003; Volonteri et al. 2003; Enoki
et al. 2004; Sesana et al. 2008; Sesana 2012; McWilliams
et al. 2012), as well as individual periodic signals that may
be detectable as above the confusion noise (Sesana et al.
2009; Sesana & Vecchio 2010; Roedig & Sesana 2011; Ravi
et al. 2012; Mingarelli et al. 2012), and bursts (van Haasteren
& Levin 2010; Cordes & Jenet 2012). A number of tech-
niques have been implemented to search pulsar timing data for
the stochastic background (Detweiler 1979; Stinebring et al.
1990; Lommen 2002; Jenet et al. 2005, 2006; Anholm et al.
2009; van Haasteren et al. 2009a,b; Yardley et al. 2011; van
Haasteren et al. 2011; Cordes & Shannon 2012; Demorest
et al. 2012), as well as periodic signals (Jenet et al. 2004;
Yardley et al. 2010; Corbin & Cornish 2010; Lee et al. 2011;
Ellis et al. 2012b; Babak & Sesana 2012; Ellis et al. 2012c;
Petiteau et al. 2012), and bursts (Finn & Lommen 2010).

For stochastic background searches, evaluations of the full
likelihood are computationally challenging. PTAs are cur-
rently timing up to a few tens of pulsars, with several thousand
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points each. In addition, the likelihood function depends not
only on the relatively small number of parameters that charac-
terize GW stochastic background, but also on several intrinsic
red and white noise parameters for each pulsar. A number of
techniques have already been introduced to reduce the compu-
tational burden of such searches (van Haasteren 2012; Lentati
et al. 2012; Taylor et al. 2012), and we will discuss these re-
sults later in the paper.

Although the stochastic background produces random
changes in the times-of-arrival (TOAs) of an individual pul-
sar, the cross-correlation of its effects on two pulsars only de-
pends on the angular separation between pulsars (Hellings &
Downs 1983). In this paper we introduce an efficient approx-
imation to the likelihood by using an expansion to first or-
der in the amplitude of the cross-correlation terms introduced
by Anholm et al. (2009). This technique has already used to
analyze the first International Pulsar Timing Array Mock Data
Challenge (Ellis et al. 2012a). The approximation affords us
a computational savings quadratic in the number of pulsars in
the pulsar timing array, a factor of a one to three orders of
magnitude, depending on the size of the PTA.

This paper is organized as follows. In Section 2 we give
an overview of the timing model, in Section 3 we write the
likelihood function for the parameters of the stochastic back-
ground as well as intrinsic noise parameters of the pulsars, and
introduce the first order approximation in the amplitude of the
cross-correlations, in Section 4, we show the effectiveness of
our approximation using simulated gravitational wave back-
grounds, and that the level of bias introduced by our approx-
imation is negligible for astrophysically reasonable stochas-
tic background amplitudes. We conclude in Section 5 with
a summary of our results, compare our results to other work
to increase the computational efficiency of stochastic back-
ground searches (van Haasteren 2012; Lentati et al. 2012;
Taylor et al. 2012), and introduce a technique that can be
used to search for a combination of continuous wave signals
and stochastic backgrounds, a possibility suggested by recent
work (Ravi et al. 2012), which will be the basis for future
work.

2. THE TIMING MODEL
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In pulsar timing we measure the times-of-arrival (TOAs)
of radio pulses emitted from pulsars. These TOAs contain
many terms of known functional form (pulsar period, spin-
down, etc.), radiometer noise, pulse phase jitter, and possi-
bly red noise either from ISM effects, intrinsic pulsar spin
noise (Shannon & Cordes 2010), or a stochastic gravitational
wave background (GWB). Let the TOAs for a pulsar be given
by

tobs = tdet(ξtrue) + n, (1)

where tobs is the observed TOA, tdet is the deterministic mod-
eled TOA parameterized by timing model parameters ξtrue,
and n is the noise in the measurement which we will assume
to be Gaussian. We will discuss the exact form of the covari-
ance matrix for the noise n in the next section. Assuming we
have an estimate of the true timing model parameters, ξest (ei-
ther from information gained when discovering the pulsar or
past timing observations), then we can form the post fit resid-
uals as follows

δtpre = tobs
− tdet(ξest) = tdet(ξtrue) − tdet(ξest) + n

= tdet(ξtrue) − tdet(ξtrue + δξ) + n

≈ ∂tdet(ξtrue)
∂δξ

∣∣∣∣
δξ=0

δξ + n +O(δξ2)

≈ ∂tdet(ξtrue)
∂δξ

∣∣∣∣
δξ=0

δξ + n

= Mδξ + n,

(2)

where M is called the design matrix and we have assumed
that our initial estimate of the model parameters is sufficiently
close to the true values that we can approximate this as a lin-
ear system of equations in δξ. In standard pulsar timing anal-
ysis, it is customary to obtain the best fit δξ values through
a weighted least squares minimization of the pre-fit residuals.
In the most general case we should be performing a general-
ized least squares fit using a general covariance matrix for the
noise n; however, in most cases we have no a priori knowledge
of this covariance matrix and therefore assume that it is just
diagonal with elements σ2

i , where σi is the uncertainty of the
ith TOA. Previous work (Coles et al. 2011) has used an itera-
tive method to estimate the covariance matrix of the residuals
and apply a generalized least squares fit, however; for this
work we will only work with residuals that have been created
using a weighted least squares fit, since that is the standard
procedure in pulsar timing residual generation. The value of
chi-squared can be written in the following way (see Hobbs
et al. (2006))

χ2 =
N∑

i=1

(
δtpre

σi

)2

. (3)

Defining W = 1/σi we can minimize χ2

0 =
∂χ2

∂δξ
= W 2 (Mδξ + n)MT

⇒MTW 2n = −MTW 2Mδξ,
(4)

to obtain our best fit model parameters

δξbest = −
(
MTW 2M

)−1
MTW 2n. (5)

Here we have made the choice to include the weights, W ,
since TEMPO2 does a weighted fit and we want to reproduce

the fitting procedure as accurately as possible. Finally we ob-
tain the post fit residuals by substituting the best fit parameters
into Eq. 2

r ≡δtpost = Mδξbest + n
⇒ r = Rn,

(6)

where r is just shorthand notation for the post-fit residuals and

R = I− M
(
MTW 2M

)−1
MTW 2, (7)

is a an oblique projection operator that transforms pre-fit to
post-fit residuals and I is the identity matrix. All of the infor-
mation about any noise source or stochastic GWB is encoded
in n, however; we can never measure n directly because we
must perform the timing model subtraction. Because of this
we seek to work exclusively in terms of our observable quanti-
ties, r. It should be noted that in standard pulsar timing anal-
ysis this process must be iterated. In other words we form
pre-fit residuals from our initial guess of the parameters, we
then minimize the chi-squared to get our best estimates of the
parameters, however this may not be a good fit because we
have assumed that the pre-fit residuals are linear in the pa-
rameter offsets. Thus, we then form new parameter estimates
from the best fit parameter offsets and iterate until the fit con-
verges where the reduced chi-squared is used as our goodness
of fit parameter.

3. THE LIKELIHOOD FUNCTION

The likelihood function for the timing residuals may be de-
rived very simply from the likelihood of the underlying pre-fit
Gaussian random processes. In this section we will derive an
expression for the likelihood and introduce our approxima-
tion. We will also show that, in a frequentist sense, the maxi-
mum of the expectation value of the likelihood function is an
unbiased estimator of the noise parameters in the low-signal
regime.

Since we have assumed that our noise n is Gaussian and
stationary, for a pulsar timing array with M pulsars we can
write the probability distribution as the multi-variate Gaussian

p(n|~θ) =
1√

det(2πΣn)
exp
(

−
1
2

nTΣ−1
n n
)
, (8)

where where

n =


n1
n2
...

nM

 (9)

is a vector of the noise time-series, nα(t), for all pulsars, Σn is
the pre-fit noise covariance matrix and ~θ is a set of parameters
that characterize the noise. However, as we noted above, we
do not actually measure n, we measure the timing residuals
r = Rn where

R =


R1 0 . . . 0
0 R2 . . . 0
...

...
. . .

...
0 0 . . . RM

 . (10)

We compute the likelihood for r as follows. Let

p(r|~θ)dr = p(n|~θ)dn⇒ p(r|~θ) = p(n|~θ)
∣∣∣∣dn

dr

∣∣∣∣ , (11)
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where | · | represents the determinant. We evaluate the Jaco-
bian by assuming that R is invertible and writing n = R−1r,
therefore ∣∣∣∣dn

dr

∣∣∣∣ =
∣∣R−1

∣∣ =
1
|R| =

1√
det(RRT )

. (12)

Substituting this result into Eq. 11 we obtain

p(r|~θ) =
1√

det(2πRΣnRT )
exp
(

−
1
2

r(R−1)TΣ−1
n R−1r

)
.

(13)
The product RΣnRT is just the covariance matrix for the resid-
uals

Σ = 〈rrT 〉 = R〈nnT 〉RT = RΣnRT , (14)

so that the likelihood in terms of the timing residual data is
simply

p(r|~θ) =
1√

det(2πΣ)
exp
(

−
1
2

rTΣ−1r
)
. (15)

The inverse of Σ does not formally exist since we have re-
moved degrees of freedom by fitting out the timing model. In
practice, we can make use of a singular value decomposition
to compute the determinant and pseudoinverse to evaluate the
likelihood. Viewed in this way, the likelihood function for the
residuals is simply a change of coordinates where R is a linear
(but not invertible) map from n→ r = Rn.

The covariance matrix for the timing residuals is the block
matrix,

Σ =


P1 S12 . . . S1M
S21 P2 . . . S2M

...
...

. . .
...

SM1 SM2 . . . PM

 , (16)

where

Pα = 〈rαrT
α〉, (17)

Sαβ = 〈rαrT
β〉|α 6=β , (18)

are the auto-covariance and cross-covariance matrices, re-
spectively, for each set of residuals. It is very important to
note that we work exclusively in the post-fit variables. As
above we use the post-fit residuals, rα = Rαnα and the post-
fit auto- and cross-correlation matrices, Pα = RαPprefit

α RT
α and

Sαβ = RαSprefit
αβ RT

β . Henceforth, we will drop any mention of
pre-fit or post-fit as we will only work with post-fit variables.

It is worth pointing out that this treatment is somewhat dif-
ferent from previous Bayesian analyses (van Haasteren et al.
2009a; van Haasteren & Levin 2010; van Haasteren et al.
2011) (VHML). We use a conditional pdf whereas VHML
used a marginalized pdf. In other words, we fix the best fit pa-
rameter offsets, δξbest through our use of the projection matrix
R, whereas VHML marginalizes over the parameter offsets δξ
(See Appendix A for more details).

We would like to use the likelihood to determine the spec-
tral index, γgw, and amplitude, Agw, of the stochastic back-
ground from our data. The GW parameters are the same for
all pulsars. In addition, each pulsar will have intrinsic noise
parameters as well. The intrinsic pulsar timing noise is nor-
mally parametrized with four parameters: an amplitude Aα

and spectral index γα for a power law red noise process, and
EFAC and EQUAD parameters, Fα and Qα, for white noise

processes. In general the EFAC parameter is a multiplicative
factor representing any systematic effects in the uncertainty in
each TOA based on the cross correlation of the folded pulse
profile with a template (Taylor et al. 1992). The EQUAD
parameter is an extra white noise parameter that is added to
the TOA error in quadrature and could represent the expected
pulse phase jitter (Cordes & Shannon 2010) and other white
noise processes that are un-accounted for. Therefore, we write
our auto-covariance as a sum of a common GWB term and a
pulsar dependent term

Pα = Nα + Saα, (19)

where Nα is the intrinsic noise auto-covariance matrix and Saα
is the common GWB auto-covariance matrix for pulsar α. It
is convenient to work in a block matrix notation where

Σ = N + Sa + Sc = P + Sc, (20)

where P is a block diagonal matrix with diagonals Pα and Sc is
block matrix with off diagonals Sαβ , and zero block matrices
on the diagonal.

We will now quickly show that, in a frequentist sense, the
maximum of the expectation value of the likelihood func-
tion is an unbiased estimator of our signal parameters ~θ =
{Agw,γgw,Aα,γα,Fα,Qα}. We write the log likelihood func-
tion as

ln L = −
1
2

[
Tr lnΣ+ rTΣ−1r

]
, (21)

where we have used the fact that lndet(A) = Tr ln(A) for a gen-
eral matrix, A. To show that the maximum of the expecta-
tion value of this likelihood function is an unbiased estimator
of the signal parameters, ~θ, we wish to show that it is maxi-
mized, on average, for signal parameters ~θ = ~θtrue. Taking the
expectation value we obtain

〈ln L〉 = −
1
2

Tr
[
lnΣ+ XΣ−1

]
, (22)

where X = 〈rrT 〉 is the covariance matrix of the data. Defining
∂i = ∂/∂θi we obtain

∂i〈ln L〉 = −
1
2

Tr
[
Σ−1∂iΣ− XΣ−1∂iΣΣ

−1
]
. (23)

Assuming that our noise model is correct, we have X = Σ and

∂i〈ln L〉 = −
1
2

Tr
[
Σ−1∂iΣ−∂iΣΣ

−1
]

= 0, (24)

where we have used the fact that Tr(AB) = Tr(BA) for general
matrices, A and B. Therefore, the maximum of the expectation
value of the likelihood function is an unbiased estimator of
our model parameters ~θ.

3.1. Likelihood with first order approximation
In practice the matrix Σ is quite large and therefore, compu-

tationally prohibitive to invert. Since many multi-frequency
residual datasets now have on the order of 103 points, for
many modern PTAs the matrix Σ will be of order 104× 104.
We would like to avoid inverting the full covariance matrix
if at all possible. First let us rewrite the cross-covariance as
Sc,αβ = ζαβSαβ , where Sαβ is the temporal cross covariance
between pulsar α and pulsar β. The coefficients represent the
spatial correlations and are given by the Hellings and Downs
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coefficients

ζαβ =
3
2

1 − cosξαβ
2

ln
(

1 − cosξαβ
2

)
−

1
4

1 − cosξαβ
2

+
1
2

+
1
2
δαβ ,

(25)

where ξαβ is the angular separation of pulsars α and β, and
δαβ is the Kronecker delta. We denote P = δαβPαβ as the
auto-covariance matrix of pulsar α describing the noise and
auto-covariance of the GWB. We then use the following no-
tation to form matrices from indexed quantities: P = {Pαβ}.
Now, we perform the expansion of Σ−1 in terms of the coeffi-
cients ζαβ

Σ−1 =
(
P +{ζαβSαβ}

)−1
=
(
I+ P−1{ζαβSαβ}

)−1 P−1

≈ P −

∑
β,µ

ζβµP−1
αβSβµP−1

µν


+

∑
β,µ,ν

ζβµζµνP−1
αβSβµP−1

µµSµνP−1
νσ

+O(ζ3).

(26)

It is also possible to expand the determinant term in a similar
fashion

lndetΣ = Tr lnΣ = Tr ln(P +{ζαβSαβ})
= Tr

[
lnP + ln(I+ P−1{ζαβSαβ})

]
≈ Tr

[
lnP + P−1{ζαβSαβ}

−

∑
β,µ,ν

ζβµζµνP−1
αβSβµP−1

µµSµνP−1
νσ


]

+O(ζ3).

(27)

Here, the order O(ζ) term is zero because P is block diagonal
and {Sαβ} is block traceless and the trace of the product of
a diagonal matrix and traceless matrix vanishes. If we ignore
all terms of ζ2 and higher order and return to our original
notation then we see that

Σ−1 ≈ P−1
− P−1ScP−1

+O(ζ2) (28)

lndetΣ≈ TrlnP +O(ζ2). (29)

This derivation may give us the sense that this expansion may
hold true for all GWB amplitudes; however, this is not true
as we will now show. Although we have written this approx-
imation in terms of an expansion in the Hellings and Downs
coefficients, it is also useful to think of it as an expansion in
the amplitude of the GWB. Indeed, that it how it was con-
ceived of in Anholm et al. (2009). We have not performed
a true first order expansion however, since the inverse of the
auto-correlations matrix P−1 = (N + A2

gwAa)−1 contains terms
of infinite order in the amplitude. We can essentially think of
theO(ζ) terms in Equations 28 and 29 as the corrections to the
amplitude parameter when we have a spatially correlated sig-
nal. Thus, we have truncated these correction terms atO(A2

gw)
and we would not expect this approximation to hold as Agw
becomes large with respect to the intrinsic noise in the pulsar
as we will show in Section 4. With these approximations, it is

now possible to write the approximate log-likelihood

lnL = −
1
2
[
TrlnP + rT P−1r − rT P−1ScP−1r

]
= −

1
2

M∑
α=1

[
TrlnPα + rT

αP−1
α rα

−

M∑
β 6=α

rT
αP−1

α SαβP−1
β rβ

]
.

(30)

In the second line we have explicitly written out the sum over
pulsars and pulsar pairs in order to highlight the fact that we
only need to invert the individual auto-covariance matrices
as opposed to the inverse of the full block covariance ma-
trix, thereby, significantly reducing the computational cost of
a single likelihood evaluation. Consider a PTA with M pulsars
with N TOAs each. For a full likelihood evaluation we must
perform one Cholesky inversion of the full covariance matrix
which scales like∼ α(MN)3 and∼M2 matrix multiplications
which scale like ∼ βN3. However, one evaluation of the first
order likelihood requires M Cholesky inversions which scale
like ∼ αN3 and M matrix multiplications which, again, scale
like ∼ βN3. Though benchmarking tests we have found that
β ∼ 10α and thus the matrix multiplications will dominate
both likelihood calls for a reasonable sized PTAs (M . 100)
resulting in a computation speedup factor of ∼ (α/β)M2.

It is possible to analytically show that the maximum of the
expectation value of this approximate likelihood is an unbi-
ased estimator in the same manner as above. First we take the
expectation value of the log-likelihood

〈lnL〉 = −
1
2

Tr
[
lnP + XP−1

− XP−1ScP−1] (31)

and then take a derivative with respect to a model parameter

∂i〈lnL〉 = −
1
2

Tr
[

P−1∂iP − XP−1∂iPP−1

+ XP−1∂iPP−1ScP−1
− XP−1∂iScP−1

+ XP−1ScP−1∂iPP−1
]
.

(32)

Here we will work in the small signal regime where A2
gw is

small compared to the amplitude of the intrinsic noise. As-
suming that we have modeled the covariance matrix correctly,
we have X = Σ. Writing out the explicit amplitude depen-
dence we assume

P = N + A2
gwA⇒ P−1 ≈ N−1

− A2
gwN−1AN−1 (33)

Σ = N + A2
gwA + A2

gwC, (34)

where N, A, and C are the auto-covariance of the noise, the
auto-covariance of the GWB and the cross-covariance of the
GWB, respectively. Then, to first order in A2

gw we have

∂i〈lnL〉 = −
1
2

Tr
[

N−1∂i(A2
gwA)

− N−1∂i(A2
gwA) −∂i(A2

gwC)N−1
]

= 0,
(35)

where the first two terms cancel and the third term is the trace
of the product of a diagonal matrix and a traceless matrix.
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Thus, to first order in A2
gw, the maximum of the expectation

value of this approximate likelihood is an unbiased estimator
of the our signal parameters θ in the weak signal limit.

4. SIMULATIONS

Here we will compare our first order likelihood approxi-
mation to the full likelihood of VHML and perform mock
searches of simulated data with and without an injected
stochastic GWB in order to demonstrate its efficacy. We
will also perform monte-carlo simulations to test the con-
sistency of our likelihood function. These simulations are
solely meant as a proof of principle and do not claim to repro-
duce all features of real PTA data (irregular sampling, jumps,
time varying DM corrections, etc.). However, our analysis
method makes no assumptions about sampling by operating
in the time domain and takes all timing model parameters
into account via the projection matrices introduced in Sec-
tion 2. The application of this method to real NANOGrav
and IPTA datasets will be the subject of future work. For all
simulations in the present work we use TEMPO2 and and the
fake, GWbkgrd, general2 and designmatrix plugins
to generate the residuals and the corresponding design matri-
ces. All simulated white noise is solely radiometer noise at
the level of 100 ns unless otherwise noted.

4.1. Mock searches
First we will perform a simple test to compare the first or-

der likelihood of this work and the full likelihood of VHML.
Here we use a PTA with 10 pulsars observed at a cadence of
20 TOAs per year for 5 years where we have fixed the EFAC
parameter to be one (all white noise is encompassed in error
bars as simulated) and assume that there is no intrinsic red
noise, resulting in a search over two parameter; the amplitude
of the stochastic GWB, A, and the power spectral index, γ.
For both cases a grid search was carried out with 100 points
in each dimension and A ∈ (0,1×10−14) for an injected value
of A = 1×10−15 and A ∈ (0,2×10−14) for an injected value of
A = 1×10−14, all the while we have γ ∈ [1,7]. The results are
presented in Figure 1 where the contours denote the one, two
and three sigma credible regions, the gray contours are from
the VHML likelihood function and the black contours are
from the first order likelihood. In Figure 1(a) we have injected
a stochastic GWB with A = 1×10−15 and γ = 13/3. First we
notice that the injected value (’×’ marker) is well within the
1-sigma credible regions for both likelihood functions. We
also see that the confidence contours are nearly identical, with
the first order likelihood preferring slightly larger amplitudes
and smaller spectral indices. This simulation indicates that
the first order likelihood is a very good approximation to the
full likelihood when our signal is relatively small, showing
no discernible bias and faithfully reproducing nearly identical
credible regions.

In Figure 1(b) we have injected a stochastic GWB with
A = 1× 10−14 and γ = 13/3. Again, the injected value lies
within the 1-sigma credible region, however; now we do no-
tice a difference between two credible regions from the full
and first order likelihoods. The first order likelihood is biased
towards lower amplitudes and lower spectral indices. In fact
we can almost see where the first order approximation begins
to break down. Notice that the contours are nearly identical
for lower amplitudes and deviate more with increasing ampli-
tude. This behavior is not surprising in that we know that this
likelihood is only unbiased to first order in the amplitude as

shown in Section 3. In fact, it is impressive that this approx-
imation performs this well with only a small bias in the large
signal limit (even with timing residuals lower than 100 ns in
many pulsars, the signal-to-noise-level of the data simulated
here is well above any reasonable estimates for future PTA
sensitivities.). This bias will be discussed further in Section
4.3.

The simulations used in the work have been quite ideal
and do not contain any systematic effects such as clock er-
rors which can manifest as a correlated noise source with uni-
form correlation coefficients (Yardley et al. 2011), errors in
solar system ephemerides, which can manifest as dipole sig-
nals in the residuals, or new physics such as non-gr polariza-
tion modes (Lee et al. 2008; Chamberlin & Siemens 2012)
or massive gravitons (Lee et al. 2010) which would change
the shape of the Hellings and Downs curve. We have, for the
most part, also assumed that the intrinsic pulsar noise can be
assumed to be white gaussian noise with no discernible red
noise. While previous work suggests that there will be red
noise present in many MSPs (Shannon & Cordes 2010), anal-
yses of the present timing data (van Haasteren et al. 2011;
Perrodin et al. 2013; Ellis et al. 2013) suggest that the data
is white noise dominated and there is little to no evidence for
red noise. However further study of the model selection prob-
lem taking in to account the aforementioned effects is crucial
to present detection efforts and will be the subject of a future
paper.

4.2. The detection problem
We now turn to the question of detection. In a Bayesian

analysis we would like to compute the odds that there is a
GWB present in our data. Not surprisingly, the tool normally
used to this end is the Odds ratio of Bayes factors. Consider
two models that we will label M1 and M2, then the Odds ratio
is defined as

O = B(M1,M2|r)
p(M1)
p(M2)

, (36)

where

B(M1,M2|r) =
∫

d~θ1 p(r|~θ1,M1)p(~θ1)∫
d~θ2 p(r|~θ2,M2)p(~θ2)

(37)

is the Bayes factor (i.e the ratio of the marginalized likelihood
functions over parameters ~θ1 and ~θ2 corresponding to models
M1 and M2 respectively), r is our data and p(M1) and p(M2)
are the a priori probabilities on models M1 and M2 respec-
tively. Note that the Bayes factor is the data dependent part
of the odds ratio where the a priori probabilities of the models
is somewhat subjective, and as such, we will only consider
Bayes factors when discussing detection in the this work 3.
For our purposes, we would like to compare at least three dif-
ferent models when weighing the odds of a stochastic GWB
in our data:

1. Mgw: A power law stochastic GWB with spatial correla-
tions described by the Hellings and Downs coefficients
ζαβ , amplitude Agw and power spectral index γgw, in-
dividual power law red noise processes for each pul-
sar with amplitude Aα and power spectral index γα and

3 It is possible to use astrophysical information such as the expected level
of the stochastic background compared to our noise or the expectation num-
ber of single sources to construct the a priori probabilities. Here we will
quantify our ignorance by considering equal a priori probabilities of all tested
models.
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Figure 1. Comparison of full likelihood (gray) of van Haasteren et al. (2009a) and the first order likelihood (black). (a): 10 pulsars A = 1×10−15, (b): 10 pulsars
A = 1×10−14

white noise for each pulsar characterized by an EFAC
parameter Fα and EQUAD parameter Qα.

2. Mcorr: A common red noise process among pulsars (as
suggested in Shannon & Cordes (2010)) with no spa-
tial correlations and individual intrinsic red and white
components as in model Mgw.

3. Mnull: Only intrinsic red and white noise processes with
no common red or white noise components among pul-
sars.

Comparing models Mgw and Mnull will tell us whether or not
there is evidence for any common red noise in our data but it
will not necessarily tell us that this common noise is due to
the stochastic GWB or some other common red noise source.
Hence, a large Bayes factor B(Mgw,Mnull|r) is necessary but
not sufficient for detection. However, the comparison of mod-
els Mgw and Mcorr can really give us information about the
nature of the common red noise signal. As the two aforemen-
tioned models are identical except for the spatial correlations,
a large Bayes factor B(Mgw,Mcorr|r) will give us the odds that
there is a common red noise process described spatial correla-
tions ζαβ . Since these spatial correlations are the signature of
a stochastic GWB, the condition that this Bayes factor be large
is both the necessary and sufficient condition for detection. In
fact, this Bayes factor is closely related to signal-to-noise ra-
tios in previous detection schemes (Jenet et al. 2005; Anholm
et al. 2009; Yardley et al. 2011; Chamberlin et al. 2013) that
measure the significance of the cross correlations.

This first order likelihood approximation has already been
tested on the open and closed (Ellis et al. 2012a) IPTA Mock
Data Challenge, where all challenges consisted of 130 data
points per pulsar with 36 pulsars. For the closed data chal-
lenge, we have computed the Bayes factors mentioned in the
previous section. In Ellis et al. (2012a) we have shown that
we do indeed see very strong evidence for both a common red
noise signal and a red noise signal with spatial correlations
described by the Hellings and Downs coefficients. However,
as we mentioned above, although in this case, the evidence
for both models Mgw and Mcorr is very high, as we expect, the
Bayes factor B(Mgw,Mnull) is much larger than B(Mgw,Mcorr).
For this reason, we expect that in analysis of real PTA data
we will begin to see strong evidence for common red noise
before we are able to see strong evidence for the expected

cross correlations. In other words, as we gain more sensitiv-
ity, the first two terms in Eq. 30 will dominate the likelihood
function and the third term will only play a significant role as
our sensitivity increases further. A full analysis of this feature
along with projected sensitivity curves based on future pulsar
timing campaigns and hardware upgrades will be explored in
future work.

closed MDCs. The open datasets, in particular open MDC1,
act as illustrative cases where the first-order approximation
breaks down and shows a large bias in parameter estimation.
(Show plot or Rutger’s results along with ours).

4.3. The Empirical Distribution Function
Here we will test the consistency and unbiasedness of our

model through injections. Simply put, it is a type of hy-
pothesis testing similar to the Kolmogorov-Smirnov test. In
this test the null-hypothesis, our analysis method is internally
consistent, is accepted when for x% of realizations, the true
injected parameter lies within the inner x% of the marginal-
ized posterior distribution. A similar test was done recently
in van Haasteren & Levin (2012) in one dimension through
the use of the empirical distribution function (EDF). Here
we will review this method and generalize it to two dimen-
sional marginalized posterior distributions. We define the
inner high-probability region (HPR) of the two-dimensional
marginalized posterior distribution as∫

W
p(θ1,θ2)dθ1dθ2 = a

W = {θ1,θ2 ∈ R : p(θ1,θ2)> La},
(38)

where La is some value > 0 unique to each a that corresponds
to a curve of equal probability in the two-dimensional pa-
rameter space. In practice we lay down a grid in this two-
dimensional parameter space and perform our search over the
two parameters of interest (for the stochastic background we
search over A and γ, the dimensionless strain amplitude and
power spectral index of the GWB). We then define a set of
points {Ai,γi} ∈ Sa : p(Ai,γi) > La, that is to say we find all
points in our grid that correspond to posterior values that lie
inside our contour curve La. To determine if the injected val-
ues of {Atrue,γtrue} lie within the HPR we simply check to see
if the injected values are consistent with the set Sa. To do this
we first define the complementary set to be S̄a such that points
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that are in this set are outside or the HPR. Now we define two
chi-squared functions in the parameter space

χa(Ai,γi)2 =
(

Ai − Atrue

Atrue

)2

+

(
γi −γtrue

γtrue

)2

(39)

χ̄a(A j,γ j)2 =
(

A j − Atrue

Atrue

)2

+

(
γ j −γtrue

γtrue

)2

, (40)

where {Ai,γi} and {A j,γ j} are elements of the sets Sa and
S̄a, respectively. Finally, we define the empirical distribution
function (EDF) as

Fk(a) =
1
k

k∑
n=1

Θ(min χ̄2
a − minχ2

a), (41)

where Θ(x) is the Heaviside function. The term inside the
sum indicates an event when the injected values are “closer”
(in the chi-squared sense) to one of the elements of Sa than to
any of the elements of S̄a, therefore we can say that the values
{Atrue,γtrue} join the set Sa and lie within the HPR defined in
Eq. 38. Now that we have defined our EDF, the rest of the
analysis mimics van Haasteren & Levin (2012).

For this analysis we simulated 1000 datasets for 6 differ-
ent scenarios. In all cases we chose the white noise level
to be 100 ns while we chose GWB amplitudes of 1× 10−15,
2× 10−15, and 3× 10−15 for PTAs with both 10 and 15 pul-
sars with a 5 year baseline. Figure 2 shows the EDF for the
six models outlined above. The thick lines denote a 10 pulsar

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

F
1
0
0
0
(a

)
−
a

Figure 2. Empirical distribution function for 6 scenarios. The thick lines
denote a 10 pulsar PTA and the thin lines denote a 15 pulsar PTA and the
solid, dashed and dotted lines denote injected stochastic GWB amplitudes of
1× 10−15, 2× 10−15, and 3× 10−15, respectively. The solid lines at ±0.052
represent the value at which we should reject the null-hypothesis that our
analysis method is consistent and unbiased.

PTA and the thin lines denote a 15 pulsar PTA and the solid,
dashed and dotted lines denote injected stochastic GWB am-
plitudes of 1× 10−15, 2× 10−15, and 3× 10−15, respectively.
The solid lines at ±0.052 represent the value at which we
should reject the null-hypothesis that our analysis method is
consistent and unbiased. Firstly, we note that for both the
10 and 15 pulsar PTA, our analysis method is consistent for
an injected amplitude of A = 1× 1015. We obtain similar re-
sults in the 10 pulsar case for amplitudes of A = 2× 10−15

and A = 3× 10−15. Here we do see that our method is in-
deed slightly biased for these larger amplitudes but the degree

of bias is almost negligible. However, for these same am-
plitudes in the 15 pulsar case there is a significant bias. Even
though there is a bias present in these scenarios, the EDF does
not give information about how this bias presents itself in the
two dimensional parameter space. In Figure 3 we show the
two-dimensional scatter plot of the maximum likelihood pa-
rameters from our Monte-Carlo simulations. It is clear that
the bias in our two-dimensional parameter space of interest is
practically very small. In fact the means of the distributions
for A and γ for the 10 pulsar case are (1.6,2.25,3.14)×10−15

and (4.17,4.24,4.23), respectively and for the 15 pulsar case
we obtain (1.56,2.29,3.22)×10−15 and (4.11,4.12,4.13), re-
spectively. In the first row of Figure 3 we show the 10 pulsar
case with increasing GWB amplitude and the second row we
show the same for the 15 pulsar case. In the cases where
there is a bias present, the likelihood function prefers slightly
lower spectral indices and slightly larger amplitudes. How-
ever, from our experience with the MDC this bias can also
present itself by preferring a slightly higher spectral index and
lower amplitude. It should be noted that even the smallest of
the amplitudes tested here are near the upper range of the ex-
pected level of the stochastic GWB (Sesana 2012) and that
the white noise rms of the pulsars is slightly unrealistic in our
current PTA regime. In fact we expect to have maybe five
or six pulsars that time at or below the 100 ns level while we
have many others that have much larger white noise rms. Thus
we can conclude that even though our likelihood is somewhat
biased at larger amplitudes (as is expected), for realistic astro-
physically likely stochastic GWBs this method is effectively
consistent and unbiased. In fact, in terms of setting upper
limits on the stochastic GWB amplitude, this method is prac-
tically identical to using the full likelihood, while much more
computationally efficient.

5. DISCUSSION AND CONCLUSIONS

Here will will briefly discuss future prospects of conducting
a simultaneous search for continuous GWs and the stochastic
GWB. We will also compare our work to other recent efforts
to speed up PTA GW data analysis and discuss the importance
of our first-order likelihood method.

5.1. Simultaneous Detection of Continuous GWs and a
Stochastic GWB

One very important feature of the first order likelihood
method is that it can also be applied to searches for con-
tinuous GWs. This will allow us to simultaneously search
for a correlated stochastic background and resolve individ-
ual sources that are bright enough to stand out above such a
background. In standard continuous GW searches using PTAs
(Babak & Sesana 2012; Ellis et al. 2012c; Petiteau et al. 2012)
the assumption is made that any detectable single source will
be bright enough such that the noise (e.g stochastic GWB)
can be approximated as a gaussian process that is uncorre-
lated among pulsars. However, recent work (Ravi et al. 2012)
has shown that we are likely to see a few single sources per
frequency bin that will stand out from the typical isotropic
stochastic background, thus in order to resolve the weakest
of these it is crucial to simultaneously search for a correlated
stochastic background as well as the continuous source. We
can then write down a combined likelihood function assuming
a deterministic source of functional form s(~λ)

p(r|~θ,~λ) =
1√

det2πΣ
exp
(

−
1
2

(r − s)TΣ−1(r − s)
)
, (42)
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Figure 3. Here we show the scatter of the maximum likelihood values of the GWB amplitude and spectral index from the Monte-Carlo simulations. From left
to right the injected amplitudes are 1×10−15, 2×10−15, and 3×10−15 with spectral index 13/3 for a 10 pulsar PTA (top row) and 15 pulsar PTA (bottom row).
We can see that nearly all of these distributions display minimal bias.

where our noise (including the stochastic background) param-
eters are ~θ and our single source parameters are ~λ. Using our

first order likelihood approach we can approximate Eq. 42 as

ln p(r|~θ,~λ) =≈ −
1
2
[
TrlnP + (r − s)T P−1(r − s) − (r − s)T P−1ScP−1(r − s)

]
= −

1
2

M∑
α=1

TrlnPα + (rα − sα)T P−1
α (rα − sα) −

M∑
β 6=α

(rα − sα)T P−1
α SαβP−1

β (rβ − sβ)

 . (43)

As in the stochastic background case, this again will speed up
computations because we only have to invert the individual
auto-covariance matrices as opposed to the full data covari-
ance matrix. Although there have been proposed methods to
speed up the computation of the stochastic likelihood func-
tion of Eq. 15 (van Haasteren 2012), this is not applicable to
continuous sources because it relies on essentially applying a
low pass filter to the data. However, since we expect continu-
ous sources across the entire frequency band (with higher fre-
quency sources possibly standing out above the background)
we must keep all frequency information. Therefore our first
order likelihood approximation is a viable option when look-
ing to significantly speed up computation time while losing
minimal information about potential GW signals.

As always, to claim a detection we must do some sort of
model comparison, be it a Neyman-Pearson test for Frequen-
tist statistics or an odds ratio or Bayes factor for Bayesian
statistics. For example if we want to assess the likelihood of
that a continuous GW is in our data we want to compute the
following Bayes factor

B =
ZCW

Znoise
=
∫ ∫

d~λd~θp(r|~θ,~λ)p(~λ)p(~θ)∫
d~θp(r|~θ)p(~θ)

, (44)

where ZCW and Znoise are the evidence for the gravitational
CW and noise models, respectively. However, notice that ~θ
depends on our stochastic GWB parameters as we treat all
stochastic processes as “noise” in this analysis. If we do not
include the GWB parameters in the model then we could mis-
take a low frequency GWB for a single continuous source,
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thus including the GWB stochastic background in both mod-
els is crucial to detection and eventually characterization of
a single GW source. We should also mention that the bi-
ases mentioned in section 4.3 are not as important if we sim-
ply wish to let the noise parameters vary along with the sin-
gle source parameters since these noise parameters will be
marginalized over in the end. An exploration of these com-
bined searches will be the subject of a future paper.

5.2. Comparison with Other Work
Recently there have been three studies devoted to mak-

ing the analysis of PTA data more computationally efficient.
First, van Haasteren (2012, hereafter vH12) have developed
a method dubbed Acceleration By Compression (ABC) to
speed up this analysis. The main point of this work is to write
the data in a compressed basis, keeping the minimum num-
ber of basis vectors to maximize the ability to characterize
a correlated red signal. This work also makes use of an in-
terpolation scheme to compute the covariance matrix which
further improves the efficiency of the algorithm at the cost
of large memory usage. This method has proved to be very
efficient and accurate in setting upper limits on the stochas-
tic GWB and characterizing injected signals. However, since
this method relies on a reduced basis that essentially “throws
away” high frequency information it is impossible to obtain a
reliable Bayes Factor when comparing models that allow for
varying white noise components. Since our first-order likeli-
hood function makes use of all the information in the data we
can indeed compute reliable Bayes factors and make confi-
dent statements about detection. We note however that the
first-order likelihood of this work and the ABC method of
vH12 are complementary. The two methods can in principle
be combined for even greater efficiency.

Most recently there have been two analyses of the IPTA
MDC that aim to make the PTA data analysis more efficient.
First, Lentati et al. (2012) have developed a novel model-
independent method for the estimation of the spectral prop-
erties of an isotropic stochastic GWB. This method uses a
frequency domain approach and is extremely efficient and re-
sults in computational speedups of two to three orders of mag-
nitude over the full likelihood implementation. It has also
been extensively tested on the MDC datasets and has proved
to be very accurate in characterizing the stochastic GWB. Our
first order likelihood method is indeed complementary to this
work as it provides a way to efficiently evaluate the likelihood
function in a full time domain analysis which will be vital for
cross-checks for real-life detection candidates.

Finally, Taylor et al. (2012) have implemented the full
VHML likelihood function and have made it more effi-

cient through the use of optimized linear algebra libraries
with multithreading and parallelization resulting in significant
speedups in the likelihood evaluation. However, all of these
methods could just as well be applied to the first-order likeli-
hood which would still be more efficient than the full likeli-
hood by a factor proportional to the number of pulsars in the
array.

This work and recent work have shown that there has indeed
been significant progress on making the likelihood evaluation
more efficient for pulsar timing arrays. All of these methods
are complementary and will provide important cross checks
for future stochastic GWB detection candidates.

5.3. Summary

In this paper we have introduced a novel way to speed up
the computation of the likelihood function for PTAs when
searching for a stochastic GWB. This was accomplished by
expanding the likelihood function to first order in the Hellings
and Downs correlation coefficients expected for a stochastic
GWB leading to a computational speedup on the order of the
square of the number of pulsars in the PTA. For typical PTAs
this results in a speed-up of a few hundred to about a thousand.
We have briefly discussed the implementation of this tech-
nique on the first IPTA Mock Data Challenge and showed that
this algorithm performs well in extracting the injected GWB
parameters and making a significant detection through vari-
ous Bayes factors. Though this is indeed an approximation to
the full likelihood function we have shown through extensive
simulations that the bias introduced in the estimation of GWB
parameters is minimal and negligible in many cases. This
was accomplished through an analytical computation of the
expectation value of the maximum likelihood, direct compar-
isons of the full and first-order likelihood functions on simu-
lated data sets and through a statistical Monte-Carlo approach
based on the Empirical Distribution Function. Although this
work has focused solely on the detection and characterization
of a stochastic GWB, this likelihood function can also be used
to estimate the intrinsic red and white noise parameters of in-
dividual pulsars simultaneously with the GWB parameters.

We would like to thank the members of the NANOGrav de-
tection working group for their comments and support, espe-
cially Paul Demorest and Joe Romano. We would also like to
thank Jolien Creighton for useful conversations. This work
was partially funded by the NSF through CAREER award
number 0955929, PIRE award number 0968126, and award
number 0970074.

APPENDIX

RELATIONSHIP TO VHML LIKELIHOOD

Making use of Eq. 6, the likelihood function for the noise can be written as

p(n|~θ) = p(r|~θ,δξbest) =
1√

det(2πΣn)
× exp

(
−

1
2

(r − Mδξbest)
TΣ−1

n (r − Mδξbest)
)
. (A1)

This can be thought of as a conditional pdf, where the values of δξbest are fixed. In van Haasteren & Levin (2012) it was shown
that the marginalized likelihood can be written as

p(r|~θ) =
∫

dδξ p(r|~θ,δξ) =
exp
[
−

1
2 rT GT

(
GTΣnG

)−1 GT r
]

√
det2πGTΣnG

, (A2)
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where G is the matrix constructed from the final (N − Nfit) columns of the matrix U in the singular value decomposition of the
design matrix, M = USVT .

We will now explore the G matrix and the R matrix obtained from the marginalized and conditional pdfs, respectively. As
mentioned above, R can be thought of as an oblique projection operator that projects the pre-fit residuals into the post-fit residual
space, whereas GT can be thought of a projection operator that projects our data onto the null space of M, that is, it projects the
data into a subspace orthogonal to the timing model fit. Since R is not generally symmetric and therefore is an oblique projection
operator, it does not have such a simple mathematical interpretation. However, we can recast our problem in terms of “weighted”
residuals then we have the following transformations: r→Wr, M→WM, and R→W −1RW , where W is the weighting matrix
defined above. In this case minimizing the chi-squared becomes an unweighted least squares problem and we obtain the exact
same estimates of δξbest and likelihood function as before. In this case R is symmetric and can be thought of as an orthogonal
projection operator that projects our weighted data onto the null space of the weighted timing model (WM). However, in order
to compute the likelihood we still have to invert the covariance matrix Σr = RΣnRT which is singular. To do this we rely on the
pseudo-inverse. The pseudo-inverse of Σr is easiest defined in terms of its eigen-decomposition Σr = EDET , with E the matrix
of eigenvectors of Σr, and D the diagonal matrix with Dii = λi the eigenvalues of Σr. It so happens that for a symmetric positive
semi-definite matrices like these, the eigen-decomposition is also the singular value decomposition (SVD). The pseudo-inverse
of Σr is then

Σ−1
r = ED−1DT , (A3)

where the overbar indicates that we are taking a pseudo-inverse and D−1
ii = 1/λi for λ> 0 and D−1

ii = 0 otherwise. Note that when
all the error bars are the same (i.e. W = σ−1I with σ constant), the matrix GTΣnG has the same eigenvalues as the non-singular
part of RΣnRT and we have

(RΣnRT )−1 = G(GTΣnG)−1GT . (A4)

Thus we have obtained a very interesting result that in the case of uniform uncertainties, the conditional pdf making use of a
pseudo-inverse is equivalent to the marginalized pdf making use of the projection matrix GT . However, in general this is not true
and the two methods are indeed different. Although, in many cases the uncertainties are similar on a majority of the TOAs, thus
the two methods will not differ much in practice.
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