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A new model-independent method is presented for the analysis of pulsar timing data and the estimation

of the spectral properties of an isotropic gravitational wave background (GWB). Taking a Bayesian

approach, we show that by rephrasing the likelihood we are able to eliminate the most costly aspects of

computation normally associated with this type of data analysis. When applied to the International Pulsar

Timing Array Mock Data Challenge data sets this results in speedups of approximately 2–3 orders of

magnitude compared to established methods, in the most extreme cases reducing the run time from several

hours on the high performance computer ‘‘DARWIN’’ to less than a minute on a normal work station.

Because of the versatility of this approach, we present three applications of the new likelihood. In the low

signal-to-noise regime we sample directly from the power spectrum coefficients of the GWB signal

realization. In the high signal-to-noise regime, where the data can support a large number of coefficients,

we sample from the joint probability density of the power spectrum coefficients for the individual pulsars

and the GWB signal realization using a ‘‘guided Hamiltonian sampler’’ to sample efficiently from this

high-dimensional (�1000) space. Critically in both these cases we need make no assumptions about the

form of the power spectrum of the GWB, or the individual pulsars. Finally, we show that, if desired, a

power-law model can still be fitted during sampling. We then apply this method to a more complex data

set designed to represent better a future International Pulsar Timing Array or European Pulsar Timing

Array data release. We show that even in challenging cases where the data features large jumps of the

order 5 years, with observations spanning between 4 and 18 years for different pulsars and including steep

red noise processes we are able to parametrize the underlying GWB signal correctly. Finally we present a

method for characterizing the spatial correlation between pulsars on the sky, making no assumptions about

the form of that correlation, and therefore providing the only truly general Bayesian method of confirming

a GWB detection from pulsar timing data.
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I. INTRODUCTION

Millisecond pulsars (MSPs) have for some time been
known to exhibit exceptional rotational stability, with
decades-long observations providing timing measurements
with accuracies similar to atomic clocks (e.g. [1,2]). Such
stability lends itself well to the pursuit of a wide range of
scientific goals, e.g. observations of the pulsar PSR
B1913þ 16 showed a loss of energy at a rate consistent
with that predicted for gravitational waves [3], while
the double pulsar system PSR J0737� 3039A=B has pro-
vided precise measurements of several ‘‘post-Keplerian’’

parameters allowing for additional stringent tests of
general relativity [4].
By measuring the arrival times (TOAs) of the radio

pulses to high precision it is possible to construct a timing
model: a deterministic model that describes the physical
properties of the pulsar e.g. its binary period and spin
evolution, its trajectory, post-Keplerian terms, and so on.
A detailed description of this process is available in the
Tempo2 series of papers [5–7]. The timing model can then
be subtracted from the TOAs resulting in a set of residuals
that contain within them any physical effects not correctly
accounted for by the timing model.
In this paper we will be concerned with extracting

information from these residuals that results from time-
correlated stochastic signals. These can include additional*ltl21@cam.ac.uk
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red noise terms due to rotational irregularities in the
neutron star [8] or correlated noise between the pulsars
due to a stochastic gravitational wave background (GWB)
generated by, for example, coalescing black holes
(e.g. [9,10]) or cosmic strings (e.g. [11–13]). These could
be detected using a pulsar timing array (PTA), a collection
of Galactic millisecond pulsars from which the cross-
correlated signal induced by a GWB could be extracted.
Current methods for the analysis of PTA data are for the
most part extremely computationally expensive. This is
particularly true for existing Bayesian methods ([14,15],
henceforth vHL2013 and vH2009) with large dense matrix
inversions resulting in a scaling with the number of data
points of approximately Oðn3Þ. Recently new methods
have been proposed to speed up this analysis. In [16]
(henceforth vH2013), lossy data compression is used to
reduce the time these matrix inversions require, resulting in
a speedup of �3–6 orders of magnitude over previous
methods, while the authors of Ref. [17] make an approxi-
mation to the likelihood function that allows speedups
proportional to the square of the number of pulsars in the
array. As with other existing Bayesian techniques, how-
ever, these methods still assume specific models for the
properties of both the GWB and the intrinsic pulsar noise, a
statement of prior knowledge whose validity is unknown,
since as yet any GWB remains undetected.

In this paper we present an alternative, model-
independent approach to performing a Bayesian analysis
of PTA data that results in a speedup of between 2 and 3
orders of magnitude when compared to vHL2013, is not
limited by the number of free parameters fitted or system
memory, using <1 GB of system memory for the analysis
of the International Pulsar Timing Array (IPTA) data sets,
and critically at no stage requires the specification of any
prior form for the shape of the correlated power spectrum
induced by a GWB, or the red noise present in a particular
pulsar at the point of sampling. This represents a true
model-independent means of performing inference on the
shape of the power spectrum of a gravitational wave back-
ground, where we do not know the form that background
will take. We accomplish this in two ways. In the low
signal-to-noise regime (Sec. III) we sample directly from
the power spectrum coefficients of the GWB signal real-
ization. We show that for the IPTA data challenges, the
number of coefficients required to describe the signal is
roughly an order of magnitude less than the number of
data points in the time domain, and so correspondingly
the matrix inversions required in the likelihood are
�103 times faster to compute.

In the high signal-to-noise regime, when the number of
coefficients to be sampled is larger, these matrix inversions
once again become untenable, and so we sample from
the joint probability density of the power spectrum coef-
ficients for the individual pulsars and the GWB signal
realization. This allows us to eliminate all matrix-matrix

multiplications and costly matrix inversions from the like-
lihood calculation entirely, replacing them with matrix-
vector operations and sparse, banded matrix inversions,
so that this new likelihood scales as Oðn� n3pÞ with the

number of frequencies sampled n, and number of pulsars
np while still retaining the ability to make robust statistical

inferences about the white and red noise present in the
PTA data with the same precision as in vH2009/vHL2013.
We perform the sampling process in this case using a
guided Hamiltonian sampler (GHS) (Balan, Ashdown,
and Hobson [18], henceforth B13), which provides an
efficient means of sampling in large numbers of dimen-
sions (potentially> 106). This method of sampling, in
combination with the new, simpler likelihood function,
allows us to greatly extend what is computationally fea-
sible from a Bayesian analysis of pulsar timing data. This
includes the ability to parametrize the spatial correlations
between pulsars directly, without having to assume any-
thing about the form it might take. This spatial correlation
is the ‘‘smoking gun’’ of a signal from a gravitational wave
background, and so the ability to extract it directly from the
data is crucial for the credibility of any future detections
from pulsar timing data.
Finally, due to the versatility of this approach we show

that where desired, models for the power spectrum of the
GWB and additional red noise processes such as a single
power law can still be applied at the point of sampling.
In Secs. II and III we derive the new likelihood func-

tions. In Sec. IV we describe the guided Hamiltonian
sampler and how it can be applied to PTA data analysis.
In Sec. V we provide a way of estimating the number of
coefficients that are supported by the data in both the low
and high signal-to-noise cases. In Sec. VI we apply the
three different methods described thus far to the first IPTA
data challenge and compare the results with both the
established method described in vHL2013 and the updated
method described in vH2013. In Sec. VII we then describe
and analyze a set of more challenging simulated data sets
designed to represent better a future IPTA data release.
Finally in Sec. VIII we describe our method of parame-
trizing the spatial correlation between pulsars.
This research is the result of the common effort to directly

detect gravitational waves using pulsar timing, known as
the European Pulsar Timing Array, Janssen et al. [19,20].

II. ESTIMATING THE POWER SPECTRUM

For any pulsar we can write the TOAs for the pulses as a
sum of both a deterministic and a stochastic component:

ttot ¼ tdet þ tsto; (1)

where ttot represents the n TOAs for a single pulsar, with
tdet and tsto the deterministic and stochastic contributions
to the total, respectively, where any contributions to the
latter will be modeled as random Gaussian processes.
In estimating the timing model parameters for the pulsar,
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a standard weighted least-squares fit, as performed in
packages such as Tempo2, will model the stochastic
contributions purely as white noise characterized by the
TOA uncertainties. In doing so, a set of prefit timing
residuals �tpre are produced using an initial estimate of

the m timing model parameters �0i such that

�tpre ¼ ttot � tdet ð�0Þ: (2)

From here a linear approximation of the timing model can
be used such that any deviations from the initial guess of
the timing model parameters are encapsulated using the m
parameters �i such that

�i ¼ �i � �0i: (3)

We can therefore write the set of postfit residuals �t that
arise from this fitting process as

�t ¼ �tpre þM�; (4)

where M is the n�m ‘‘design matrix’’ which describes
the dependence of the timing residuals on the model
parameters. Thus any contribution to tsto not described
by the TOA uncertainties, such as the signal from a
GWB, will be absorbed by the timing model fit and so
when the timing model is subtracted from the data, any
attempt to characterize the power spectrum of the resulting
postfit residuals will be incorrect. While some methods
exist to model the intrinsic red noise at the point of fitting
the timing model (e.g. [21]), and indeed, one can use
Tempo2 in conjunction with the methods described in
this paper to simultaneously fit for the red noise and the
nonlinear timing model, this is not an approach we pursue
in the following work.

In order to account for this, we instead begin by follow-
ing the approach of vHL2013 that we describe in brief here
so as to aid subsequent discussion. We begin by assuming
that the effect of the additional noise processes beyond the
TOA uncertainties on the timing model fit will be small, so
that the linear approximation will still hold even in their
presence. By refitting for the set of parameters � we can
therefore write the stochastic component of the residuals as

�tsto ¼ �t�M�: (5)

We can then write the likelihood for the timing residuals as
(vH2009)

Prð�tj�;�Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�ÞndetCp

�exp

�
�1

2
ð�t�M�ÞTC�1ð�t�M�Þ

�
; (6)

where the n� n covariance matrix C describes the
stochastic contributions to the timing residuals such that

h�tstoi�tstoji ¼ Cij; (7)

and is described by a set of parameters �.

We can then marginalize over all variables � in order to
calculate the likelihood of a particular set of parameters �
for the stochastic contributions to the residuals, i.e.

Prð�tj�Þ ¼
Z

dm�Prð�Þ Prð�tj�;�Þ: (8)

In vHL2013 this marginalization is performed analyti-
cally assuming a uniform prior on � to give

Prð�tj�Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þðn�mÞdetðGTCGÞ

q

�exp

�
�1

2
�tTGðGTCGÞ�1GT�t

�
; (9)

where G is a positive-definite symmetric n� ðn�mÞ
matrix, the derivation of which will not be described here.
For the IPTA data challenge, data sets consisted of 130

residuals for 36 pulsars such that n ¼ 4680. G therefore is
�4500� 4500, and so the bottleneck in this calculation
comes from the matrix inversion that must occur for every
likelihood calculation, along with the set of matrix-matrix
multiplications required to calculate GTCG.
Our goal is to remove this obstacle by rephrasing the

likelihood such that its evaluation requires no matrix-
matrix multiplications and to either eliminate the need to
perform computationally intensive [i.e. Oðn3Þ] dense ma-
trix inversions, or to reduce the size of these matrices
sufficiently such that their inversion no longer dominates
the evaluation time of the likelihood function, while retain-
ing the ability to determine the power spectrum of the
stochastic contributions to the residuals.
We do this by first writing our timing residuals �t as the

sum of a signal s that we are interested in parametrizing,
which will include contributions from both intrinsic red
noise and the GWB signal, and some additional white
noise n so that we have

�t ¼ sþ n: (10)

We can expand s in terms of its Fourier coefficients a so
that s ¼ Fa where F denotes the Fourier transform such
that for frequency � and time t we will have both

F�;t ¼ sin

�
2�

T
�t

�
; (11)

and an equivalent cosine term. For a single pulsar the
covariance matrix ’ of the Fourier coefficients a will be
diagonal, with components

’ij ¼ haia�j i ¼ ’i�ij; (12)

where there is no sum over i, and the set of coefficients f’ig
represent the theoretical power spectrum for the residuals.
Note that, while this equation states that the Fourier

modes are orthogonal to one another, this does not mean
that we assume they are orthogonal in the time domain
where they are sampled, and we will show explicitly later
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that this nonorthogonality is accounted for within the like-
lihood. Instead, in Bayesian terms, Eq. (12) represents our
prior knowledge of the power spectrum coefficients within
the data. We are therefore stating that, while we do not
know the form the power spectrum will take, we know that
the underlying Fourier modes are still orthogonal by defi-
nition, regardless of how they are sampled in the time
domain. It is here then that, should one wish to fit a specific
model to the power spectrum coefficients at the point of
sampling, such as a broken, or single power law, the set of
coefficients f’ig should be given by some function fð�Þ,
where we sample from the parameters � from which the
power spectrum coefficients f’ig can then be derived.

When dealing with a signal from a stochastic gravita-
tional wave background, however, it is crucial to include
the cross-correlated signal between the pulsars on the sky.
We do this by using the Hellings-Downs relation [22]:

�mn ¼ 3

2

1� cos ð�mnÞ
2

ln

�
1� cos ð�mnÞ

2

�

� 1

4

1� cos ð�mnÞ
2

þ 1

2
þ 1

2
�mn; (13)

where �mn is the angle between the pulsars m and n on the
sky and �mn represents the expected correlation between
the TOAs given an isotropic background. With this addi-
tion our covariance matrix for the Fourier coefficients
becomes

’mi;nj ¼ hamia
�
nji ¼ �mn’i�ij; (14)

where there is no sum over i, which results in a band
diagonal matrix for which calculating the inverse is ex-
tremely computationally efficient.

We then write the joint probability density of the power
spectrum coefficients and the signal realization
Prðf’ig; aj�tÞ, where here a refers to the concatenated
vector of all coefficients ai for all pulsars, as

Prðf’ig; aj�tÞ / Prð�tjaÞPrðajf’igÞPrðf’igÞ (15)

and then marginalize over all a in order to find the posterior
for the parameters f’ig alone. For our choice of Prðf’igÞwe
use a uniform prior in log 10 space, as the scale of the
coefficients is largely unknown below some upper limit,
and draw our samples from the parameter �i ¼ log 10ð’iÞ
instead of ’i, which has the added advantage that we avoid
unnecessary rejections due to samples that have negative
coefficients in the sampling process. Given this choice of
prior the conditional distributions that make up Eq. (15)
can be written

Prð�tjaÞ / 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðGTNGÞp exp

�
� 1

2
ð�t� FaÞT

�GðGTNGÞ�1GTð�t� FaÞ
�
; (16)

where N ¼ hnnTi and represents the white noise errors in
the residuals, which follows from Eq. (9) with N replacing
C, and substituting �t� Fa for �t, and

Prðajf�igÞ / 1ffiffiffiffiffiffiffiffiffiffiffi
det’

p exp

�
� 1

2
a�T’�1a

�
: (17)

Note that we can calculate GðGTNGÞ�1GT before the
sampling starts and store it in memory, which eliminates
the need for any dense matrix inversions, or matrix multi-
plications within the likelihood calculation.

A. Estimating the white noise properties

When dealing with realistic pulsar timing data, the
properties of the white noise can be split into two
components.
(1) For a given pulsar, each TOA has an associated error

bar, the size of which will vary across a set of
observations. We can therefore introduce an extra
free parameter, an EFAC value, to account for pos-
sible miscalibration of this radiometer noise [7]. The
EFAC parameter therefore acts as a multiplier for all
the TOA error bars for a given pulsar, observed with
a particular system.

(2) A second white noise component, independent of
the size of the error bars, is also used to represent
some additional source of time-independent noise.
We call this parameter EQUAD.

In both the IPTA data challenges, and the simulations in
Sec. VII, the TOAs for a given pulsar are all assigned a
single value for the size of their error bars and so there is no
need to include both an EFAC and EQUAD in their analy-
sis, requiring only a single EFAC value per pulsar. Using
the likelihood in Eq. (16), despite precalculating the prod-
uct GðGTNGÞ�1GT , we are still able to make inferences
about the properties of this scaling factor. Denoting the
EFAC parameter for each pulsar p as wp, we can define a

diagonal matrix W such that, if pulsar p has a set of op
residuals, and a timing model described by mp model fit

parameters, the first o1 diagonal elements of W will equal
w1, the next o2 diagonal elements will equal w2, and so on,
we can rewrite the product GðGTWNGÞ�1GT . Exploiting
the fact that the G are block diagonal, we can then rewrite
this as

GðGTWNGÞ�1GT ¼ GðW0GTNGÞ�1GT

¼ GW0�1ðGTNGÞ�1GT

¼ W�1GðGTNGÞ�1GT; (18)

where W0 will be a diagonal matrix where the first
(o1 �m1) entries are equal to w1, the next (o2 �m2)
entries will be equal to w2, and so on. The determinant
of the inverted matrix is then given by
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det ðW0GTNGÞ ¼ YNp

p¼1

w
ðop�mpÞ
p det ðGTNGÞ; (19)

where Np is the total number of pulsars in the data set.

Thus we can store GðGTNGÞ�1GT and the determinant
det ðGTNGÞ in memory and the only additional overhead
in the likelihood calculation is the calculation of det ðW0Þ,
which is negligible.

For the sake of simplifying our notation we now redefine

~N�1 ¼ W�1GðGTNGÞ�1GT: (20)

For more realistic data, where the size of the TOA error
bars vary across an observation, and different observing
systems are used such that multiple EQUAD and EFAC
parameters are desired for the analysis, a slightly different
approach is required. Rather than marginalizing over the
timing model parameters for each pulsar analytically as in
Eq. (16), we can simply perform that marginalization
process numerically and so write

Prð�tja; �Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þn detNp exp

�
� 1

2
ð�t�M�� FaÞT

�N�1ð�t�M�� FaÞ
�
: (21)

In this way as many white noise parameters can be
included as needed; however, this approach will not be
pursued further in this paper given, as mentioned previ-
ously, the data sets under consideration can be analyzed
fully using Eq. (16).

B. Including additional red noise

In order to account for uncorrelated red noise in the
pulsar timing residuals we need only modify the covari-
ance matrix ’ in Eq. (14) by introducing an additional set
of parameters 	p� along the diagonal such that

’mi;nj ¼ �mn10
�i�ij þ 10	mi�mn�ij; (22)

where we then marginalize over all 	p�.

C. Performing the sampling

How we now perform the sampling depends entirely on
the number of Fourier coefficients we will be using to
describe the stochastic signal in the timing residuals. As
we shall see in Secs. VI and VII, even in data sets that
exhibit an extremely high signal-to-noise ratio, the number
of coefficients required to adequately describe the system
is much less than the number of data points in the time
domain, often by more than an order of magnitude. This is
because practically all the power in the data sets analyzed
in these sections comes from only a few low frequency
modes that are heavily oversampled in the time domain. In
this situation we can marginalize over the Fourier coeffi-
cients a analytically and sample directly from the power

spectrum coefficients f�;�g, a process we describe in
Sec. III. While this marginalized likelihood function will
still include the inversion of a dense matrix, if the number
of coefficients sampled is an order of magnitude less than
the number of time series data points, then the matrix to be
inverted will be an order of magnitude smaller than that in
Eq. (9) and will thus take a factor 1000 less time to be
inverted.
If, however, we wish to sample over a larger number of

Fourier coefficients, to include, for example, higher fre-
quencies where we might expect to observe gravitational
wave signals from bright individual sources, then in the
limit that we wish to extend our analysis to all frequencies
that are Nyquist sampled in the data, the matrix to be
inverted when performing the marginalization analytically
will be of the same size as that in Eq. (9), and we will have
the same computational burden as when performing the
analysis in the time domain. In this situation we can
perform the marginalization numerically, sampling di-
rectly from the high dimension, joint probability distribu-
tion described in Eq. (15), a process made possible through
the use of a GHS (B13), which we describe in the Sec. IV.

III. THE LOW SIGNAL-TO-NOISE REGIME:
ANALYTICAL MARGINALIZATION OVER

THE FOURIER COEFFICIENTS

In order to perform the marginalization over the Fourier
coefficients a, we first write the log of the likelihood in

Eq. (15), which denoting ðFT ~N�1Fþ’�1Þ as � and

FT ~N�1�t as d is given by

log L ¼ � 1

2
�tT ~N�1�t� 1

2
aT�aþ dTa: (23)

Taking the derivative of log L with respect to a gives us

@ log L

@a
¼ ��aþ dT; (24)

which can be solved to give us the maximum likelihood
vector of coefficients â:

â ¼ ��1dT: (25)

Reexpressing Eq. (23) in terms of â,

log L ¼ � 1

2
�tT ~N�1�tþ 1

2
âT�â� 1

2
ða� âÞT�ða� âÞ;

(26)

the third term in this expression can then be integrated with
respect to the m elements in a to give

I ¼
Z þ1

�1
da exp

�
� 1

2
ða� âÞT�ða� âÞ

�

¼ ð2�Þm det��1
2: (27)

Our marginalized probability distribution for a set of GWB
coefficients is then given as
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Prðf’igj�tÞ / detð�Þ�1
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð’Þdetð~NÞ
q

�exp

�
�1

2
ð�tT ~N�1�t�dT��1dÞ

�
; (28)

where we can still precalculate both FT ~N�1F and

FT ~N�1�t.
Equation (28) shows that the covariance matrix � both

acts to whiten residuals and fully describes the nonortho-
gonality in the Fourier modes due to uneven sampling in
the time domain. This, in combination with the margin-

alization over the timing model parameters included in ~N,
which includes a quadratic in t that describes the pulsar
spin-down, and acts to project out any contribution from
those frequencies lower than we can properly sample in the
data means that no additional prewhitening steps are
required by this method. Demonstrably this will be shown
to have the desired effect; even for the data sets described
in the Sec. VII, where we have large gaps in the data
(�5-yr gaps in a 20-yr data set) we extract the correct
power spectrum.

To perform the parameter estimation with this method
we will then use the MULTINEST algorithm [23,24], which
will simultaneously allow us to calculate the evidence for
increasing numbers of Fourier modes until a maximum is
reached, and to test whether or not the data supports the
inclusion of additional red noise parameters.

For large numbers of Fourier modes, however, perform-
ing this marginalization analytically and sampling using
MULTINEST no longer remains a viable option due to both

the scaling of the matrix inversions required and the per-
formance scaling of MULTINESTwith dimensionality. In the
following section we therefore describe a method for per-
forming this marginalization numerically using a GHS,
while in Sec. V we describe two possible options for
estimating the evidence for different numbers of Fourier
modes in order to find the optimal set.

We note that, in principle, one could also use the GHS
when marginalizing analytically, where the superior scal-
ing of the GHS with dimensionality when compared to
MULTINEST could allow for the inclusion of greater num-

bers of power spectrum coefficients. Ultimately, however,
this approach is still limited by the scaling of the matrix
inversions and so we do not pursue this idea further.

IV. GUIDED HAMILTONIAN SAMPLING

For a detailed account of both Hamiltonian Monte Carlo
(HMC) and GHS refer to (B13); or Appendix A, here we
will describe only the key aspects of each. HMC sampling
[25] has been widely applied in Bayesian computation [26]
and has been successfully applied to problems with ex-
tremely large numbers of dimensions (�106 see e.g. [27]).
Where conventional Markov Chain Monte Carlo methods
move through the parameter space by a random walk and

therefore require a prohibitive number of samples to ex-
plore high-dimensional spaces, HMC draws parallels be-
tween sampling and classical dynamics. By exploiting
techniques developed for describing the motion of particles
in potentials, it is possible to suppress random walk be-
havior. Introducing persistent motion of the chain through
the parameter space allows HMC to maintain a reasonable
efficiency even for high-dimensional problems.
We define a ‘‘potential energy’’ � that is related to our

posterior distribution PrðxÞ by
�ðxÞ ¼ � ln ðPrðxÞÞ; (29)

where x is the N-dimensional vector of parameters to
be sampled. Each parameter xi must be assigned a mass
mi and a momentum pi so that we can write our
Hamiltonian as

H ¼ X
i

p2
i

2mi

þ�ðxÞ: (30)

The sampler is given a start point x and a set of initial
momenta p, which are drawn from a set of N-uncorrelated
Gaussian distributions of width mi in dimension i. The
system can then evolve deterministically from then for
some length of time 
 using Hamilton’s equations.
After it has reached its new position ðx0;p0Þ, that point

will be accepted with a probability

p ¼ min ½1; exp ð��HÞ�; (31)

where �H ¼ Hðx0;p0Þ �Hðx;pÞ. A new set of momenta
can then be drawn and the process repeats. This implies
that if we are able to integrate Hamilton’s equations exactly
then, as energy is conserved along such a trajectory, the
probability of acceptance is unity. In practice, however,
numerical inaccuracies mean that this is not the case.
In order to perform the integration along the systems

trajectory at each state we use a ‘‘leapfrog’’ method as is
common practice. Here ns steps are taken of size � such
that ns� ¼ 
 such that

pi

�
tþ �

2

�
¼ piðtÞ � �

2

@�ðxÞ
@xi

��������xðtÞ
; (32)

xiðtþ �Þ ¼ xiðtÞ þ �

mi

pi

�
tþ �

2

�
; (33)

piðtþ �Þ ¼ pi

�
tþ �

2

�
� �

2

@�ðxÞ
@xi

��������xðtþ�Þ
; (34)

until t ¼ 
 where 
 is varied to avoid resonant trajectories.
HMC thus requires a large number of adjustable parame-
ters, the massmi, step size �i, and the number of steps ns in
the trajectory. Adjusting the step size or the mass produces
similar effects [28] and so one is usually fixed and the other
tuned during sampling.
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GHS is designed to eliminate much of the remaining

tuning aspect by using the Hessian Ĥ of the joint proba-
bility distribution calculated at its peak to set the step size �
for each parameter. The massesmi are then set to unity and
the only tunable parameter that remains is a global scaling
parameter for the step size � that is chosen such that the
acceptance rate for the GHS is �68%.

Therefore in order to perform sampling we need the
following:

(i) the gradient of � for each parameter xi
(ii) the peak of the joint distribution, and
(iii) the Hessian at that peak.

The gradients of our parameters are given by the following:

@�

@a
¼ �ð�t� FaÞT ~N�1Fþ aT’�1; (35)

@�

@wi

¼ 1

2wi

ðoi �miÞ � 1

wi

ð�ti � FiaiÞT ~N�1ð�ti � FiaiÞ;
(36)

@�

@�i

¼ 1

2
Tr

�
’�1 @’

@�i

�
� 1

2
aT’�1 @’

@�i

’�1a; (37)

and the components of the Hessian are

@2�

@a2
¼ FT ~N�1Fþ’�1; (38)

@2�

@w2
i

¼ 1

w2
i

ðoi �miÞ þ 2

w2
i

ð�ti � FiaiÞT ~N�1ð�ti � FiaiÞ;

(39)

@2�

@�2
i

¼ aT’�1 @’

@�i

’�1 @’

@�i

’�1a� 1

2
aT’�1 @

2’

@�2
i

’�1a;

(40)

@2�

@�i@a
¼ �’�1 @’

@�i

’�1a: (41)

For a set of power spectrum coefficients f�i; 	ig
and white noise coefficients f�ig we can solve for the
maximum set of Fourier coefficients amax analytically
using Eq. (25) so when searching for the global maximum
we need only search over the subset of parameters
f�i;�i; 	ig. This is achieved by using either a particle
swarm algorithm ([29,30] and for uses in cosmological
parameter estimation see e.g. [31]; for a description of
the particle swarm method applied to PTA data in this
context see [32]) or using a gradient search optimization
[33]. In the work to follow we use the former method and
take an iterative approach, passing the maximum likeli-
hood value at the end of a search to one of the particles as a
starting point for the next iteration, enabling us to find the
maximum using only 1 core per �10 free parameters.

V. DETERMINING THE OPTIMAL
NUMBER OF FOURIER MODES

In the low signal-to-noise regime, where we need only
sample small numbers of Fourier coefficients, we are able
to use MULTINEST to calculate the evidence directly and
thus determine the optimal number of frequencies to
describe the data by choosing the set for which the
evidence is maximized. When we wish to sample greater
numbers of Fourier coefficients, so the dimensionality of
the problem is large, this approach is no longer computa-
tionally practical. While in principle we could ensure that
we always include a sufficient number of coefficients so
that our model is able to correctly describe the data simply
by including all possible Fourier coefficients, this will in
most cases be suboptimal. Therefore we would like to
perform model selection between models where we
include different sets of frequencies fwg prior to sampling
by maximizing an approximation to the evidence with
respect to the set fwg, and use that set for the analysis
that follows.
We do this in two ways: first by considering the Laplace

approximation (e.g. [34]) of the marginalized posterior
given by Eq. (28), and second by considering the analytical
evaluation of the evidence for an approximate likelihood
function. We then compare the results of applying these
two approaches to the result calculated using MULTINEST

for each of the IPTA data challenges in Sec. VI.

A. Laplace approximation

Given a model with a set of m maximum likelihood
parameters �̂ we can approximate the likelihood around
the peak using a Gaussian such that given a different set of
parameters � we can write

Prð�tj�; mÞPrð�; mÞ
� Pð�̂ÞPrð�̂; mÞ exp

�
� 1

2
ð�� �̂ÞTĤð�� �̂Þ

�
; (42)

where Ĥ is the Hessian of the negative log likelihood
evaluated at the peak as before. This can be integrated
with respect to � to give the Laplace approximation to
the evidence given the set of model parameters m:

Prð�tjmÞ / ð2�Þm=2 det Ĥ�1=2Pð�̂ÞPrð�̂; mÞ: (43)

Denoting ðFT ~N�1Fþ’�1Þ�1 as ��1 and FT ~N�1�t as d
as before, we can write the first derivative of � ¼
� log Prðf�igj�tÞ as

@�

@�i

¼ 1

2
Tr

�
’�1 @’

@�i

���1’�1 @’

@�i

’�1

�

� 1

2
dT��1’�1 @’

@�i

’�1��1d: (44)

In order to estimate the number of coefficients � to be used,
we then assume that all the signal in the data for the set of
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Np pulsars is the result of a GWB so that this simplifies

slightly to

@�

@�i

¼ 1

2
log ð10ÞNp � 1

2
Tr

�
��1’�1 @’

@�i

’�1

�

� 1

2
dT��1’�1 @’

@�i

’�1��1d: (45)

Writing �dT ¼ dT��1’�1 our Hessian is therefore
given by

@2�

@�2
i

¼ 1

2
Tr

�
���1’�1 @’

@�i

’�1��1’�1 @’

@�i

’�1

þ��1’�1 @
2’

@�2
i

’�1

�
� �dT @’

@�i

’�1��1’�1 @’

@�i

�d

þ �dT @’

@�i

’�1 @’

@�i

�d� 1

2
�dT @

2’

@�2
i

�d; (46)

@2�

@�i@�j

¼ 1

2
Tr

�
���1’�1 @’

@�i

’�1��1’�1 @’

@�j

’�1

�

� �dT @’

@�i

’�1��1’�1 @’

@�j

�d: (47)

We can thus use Eqs. (46) and (47) to evaluate expression
(43) and approximate the evidence. While this calculation
requires that we calculate the maximum likelihood values
for incremental numbers of parameters m, we believe that
in any practical data set this will still prove less costly than
performing the analysis using the full set of Fourier coef-
ficients present in the data.

B. Approximating the likelihood

We now take a second alternate approach to the subject
of model selection, by considering a simpler problem for
which we can calculate the evidence directly. We begin
with a simple example where for some time series data d of
length N with uniform white noise we would like to
determine the number of basis functions that the data can
support as derived in [35]. We include the complete deri-
vation of the results given in this section in Appendix B;
however, below we include only a brief outline.

1. Uniform white noise

Suppose we have a single realization of some time series
data d of length N. We then define a set of hypotheses fHg
such that each Hi purports that our data d is described by
some function fi where

fiðtÞ ¼
Xm
k¼1

bkMkðt;wÞ; (48)

with Mk a set of general basis functions. The number of
functions m, the parameters that describe them (e.g. their
frequencies) w, and the model coefficients bk are allowed

to vary for each fi. We then transform this set of basis
functions into an orthonormal set Fk through the
transformation

FkðtÞ ¼ 1ffiffiffiffiffiffi
�k

p Xm
j¼1

ekjMjðtÞ; (49)

where ekj is the kth element of the jth eigenvector and �k is

the kth eigenvalue of the covariance matrix MTM. Our
function fi can now be written in terms of these new basis
vectors,

fiðtÞ ¼
Xm
k¼1

akFkðt;wÞ; (50)

where the coefficients a in the orthonormal basis are
related to the coefficients b in the original basis through

bk ¼
Xm
j¼1

akejkffiffiffiffiffi
�j

p : (51)

The probability of the data given a model fi, assuming that
the noise is described by a zero mean random Gaussian
process with variance 
 is given by

Prðdja;w;
;fiÞ¼ð2�
2Þ�N=2 exp

�
1

2
2

XN
k¼1

½dk�fiðtkÞ�2
�
:

(52)

We begin by integrating over both the set of coefficients a
and frequencies w. We assume that the two parameters are
logically independent, in so far as we can write the priors:

Prða;wÞ ¼ PrðaÞPrðwÞ: (53)

For the amplitude coefficients, we choose an uninformative
Gaussian prior given by

Prðaj�Þ ¼ ð2��2Þ�m=2 exp

�
�Xm

k¼1

a2k
2�2

�
; (54)

with � � 
. For our frequencies, we consider that for any
given model fi we are selecting a set of frequencies chosen
from an evenly spaced grid. Therefore we will have a delta
function prior for each frequency wj in the set w and thus

arrive at the expression

Prðdj�;
;fiÞ¼ ð2��2Þ�m=2ð2�
2Þ�ðN�mÞ=2

�exp

�
d2�hðwiÞ2

2
2

�
exp

�
hðwiÞ2
2�2

�
: (55)

We are now in a position to integrate over our unknown
variances
 and �. As in [35], we set an upper boundH and
lower bound L to this integral, which will therefore be of
the form

1

log ðH=LÞ
Z H

L
ds

s�a exp ½� Q
s2
�

s
: (56)
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Making a substitution u ¼ Q=s2, this becomes

Q�a=2

2 log ðH=LÞ
Z Q=L2

Q=H2
duua=2�1 exp ½�u�: (57)

If we assume that H is sufficiently large, and L is
sufficiently small that we may write Q=H2 � 1 and
a=2� 1 � Q=L2, then the integral will evaluate to
approximately �ða=2Þ. Therefore we can finally write the
probability of the data D given a model fi as

PrðdjfiÞ ¼ �ðm=2Þ
2 log ðR�Þ

�
hðwÞ2
2

��m=2 �ððN �mÞ=2Þ
2 log ðR
Þ

�
�
d2 � hðwÞ2

2

��ðN�mÞ=2
: (58)

2. Nonuniform white noise

In general when dealing with pulsar residuals the white
noise level across a data set for a single pulsar will vary
with time, where for example different instruments have
been used to collect data for the same pulsar. In this case
the expansion of our likelihood function is not so simple,
because the covariance matrix GTNG will no longer
reduce to a diagonal matrix. If we define C ¼ GTNG
where we consider C to be a general dense covariance
matrix, Eq. (52) will take the form

Prðdja;w; fiÞ
¼ ð2�Þ�N=2jCj�1=2 exp

��1

2
ðd� FaÞTC�1ðd� FaÞ

�
:

(59)

As in Sec. II A, we would like to fit for a global scaling
factor that modifies the overall noise level in the data set,
i.e. we would like to write C0 ¼ GTð�2NÞG where � is a
constant to be determined. Taking the same priors as the
uniform noise case described previously, and following a
similar process to integrate over the Fourier coefficients a,
frequencies w, and variances � and �, we arrive at the final
probability for a set of m functions fi:

PrðdjfiÞ ¼ �ðm=2Þ
2 log ðR�Þ

�
1

2

Xm
k¼1

�
dTC0�1Fi

Fi
TC0�1Fi

�
2
��m=2

� �ððN �mÞ=2Þ
2 log ðR�Þ

�
� 1

2
ðdT �C�1dÞ

��ðN�mÞ=2
;

(60)

where we have defined

�C�1 ¼ C0�1 �C0�1FðFTC0�1FÞ�1FTC0�1: (61)

VI. THE IPTA DATA CHALLENGE

We will now apply the three methods discussed thus far
to the first IPTA data challenge. Henceforth we will refer
to the numerical marginalization using the GHS as
method (A), the analytical marginalization using

MULTINEST as method (B), and the approach of fitting

directly for a model power spectrum, where we use a power
law model of the form PðfÞ ¼ Af��, as method (C). Each
of these methods will therefore be sampling a different
number of parameters, which for clarity we outline explic-
itly below:
Method (A): With the exception of closed data set 3, we
are simultaneously parametrizing the white noise for
each pulsar (Np dimensions), a set of n GWB coeffi-

cients, and (Np � n� 2) Fourier coefficients. For

closed data set 3 we also include an additional set of
(Np � n) coefficients to allow for red noise parametri-

zation such that we allow different pulsars to have
different red noise spectra.
Method (B): For method (B) we are parametrizing a set
of nGWB coefficients only, with the exception of closed
data set 3 where we include an additional n parameters
to describe the average red noise across the pulsars,
where we assume the data set has used a single power
spectrum model for all pulsar realizations as in the open
3 data set. In all cases we assume the level of the white
noise in the data set is consistent with that given for the
TOAs in the data files.
Method (C): For method (C) we directly parametrize the
slope and amplitude of the gravitational wave signal in
the data using a power law model of the form PðfÞ ¼
Af��, resulting in only two dimensions per data set,
with the exception of closed data set 3 where we include
an additional two parameters to describe the average
amplitude and slope of the red noise properties in the
data. In all cases we assume the level of the white noise
in the data set is consistent with that given for the
TOAs in the data files.
In total there are six data sets in the IPTA data challenge,

three of which comprise the ‘‘open’’ challenge, where the
properties of the injected signals are known prior to analy-
sis, and three which make up the ‘‘closed’’ challenge,
where at the time of analysis the details were unknown.
We will outline the properties of these data sets below.
Where present in the data, the injected GWB power

spectrum has a characteristic strain spectrum given by

hcðfÞ ¼ Ag

�
f

1 yr�1

�
�
; (62)

with Ag a dimensionless amplitude at a frequency of ðyr�1Þ
and � a power law index. Parametrizing the spectral den-
sity as in vHL2013,

SðfÞ ¼ A2

�
1

1 yr�1

��
f

1 yr�1

���
; (63)

the strain spectrum will result in an observed spectral
density within the residuals of

SðfÞ ¼ A2
g

12�2
1 yr3

�
f

1 yr�1

���
; (64)
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where in both instances � ¼ 2�� 3. The parameters of
the open and closed data sets are listed below.

Open challenge 1: 36 pulsars with 130 observations each
evenly sampled in time. Each data set has white noise
with an amplitude of 10�7 s and an injected GWB signal
with Ag ¼ 5� 10�14 and � ¼ 13=3.

Open challenge 2: As open challenge 1, but the sampling
in the time domain is no longer even, and the amplitude
of the white noise varies between different pulsars in the
range �10�8 ! 10�6 s.
Open challenge 3: As open challenge 2, but now Ag ¼
10�14, and there is an additional red noise signal present
in each data set of the form PðfÞ ¼ Af��red where A ¼
5:77� 10�22 s1:3 and �red ¼ 1:7.
Closed challenge 1: As open challenge 1, with the
injected GWB signal parameters changed to Ag ¼ 1�
10�14 and � ¼ 13=3.
Closed challenge 2: As open challenge 2, with the
injected GWB signal parameters changed to Ag ¼ 6�
10�14 and � ¼ 13=3.
Closed challenge 3: As open challenge 3, but now Ag ¼
5� 10�15, and the red noise signal present in each data
set is given by A ¼ 3:66� 10�18 s1:8 and �red ¼ 1:2.
In analyzing the data, we chose a fundamental frequency

f0 to be equal to 1=Tmax , where Tmax represents the great-
est observing time span for any of the pulsars in the data
set. Defining fn ¼ n=Tmax , we then fit for the coefficients
corresponding to some set of fng Fourier modes.

In order to determine the optimal set of Fourier modes to
include for each data set for method (A) we use both the
Laplace approximation and analytic approximation meth-
ods described in Secs. VA and VB, respectively. Figure 1
shows an example of the analytic approximation applied to
one pulsar from each of the three open data sets. The red
line shows how the evidence changes as the number of
frequencies in the model increases, while the blue dotted
and green dashed lines show the injected level and the best
estimate of the rms amplitude for the white noise in the
data for each model, where the latter is calculated using the
expression in [35] as

h
2i ¼ 1

N �m� 2
ðd2 � h2Þ: (65)

In all three cases the evidence can be seen to reach its
maximum when the change in the estimated rms amplitude
no longer justifies an increase in the number of model
parameters. Since we wish to include all relevant frequen-
cies, we therefore choose the maximum number of fre-
quencies supported by any single pulsar as the set of
frequencies to sample for the GWB.
The values for these approaches are given in Table I for

the three open and three closed IPTA challenge data sets
where those data sets for which the evidence supported the
inclusion of additional red noise are marked with an ðrÞ.
A comparison of the three methods shows that while the

analytical estimate performs well in four of the six data
sets, for both closed 2 and open 3 there is a marked
underestimate in the optimal number of coefficients sug-
gested. The change in the log evidence calculated using
MULTINEST going from 13 to 17 coefficients in closed data

set 2 is � logE ¼ 13 while going from 6 to 9 coefficients
in open data set 3 resulted in an increase of � logE ¼ 7,
both representing significant losses of information for not
including the additional coefficients. While the analytical
approximation to the likelihood would likely hold in the
case where the signal is dominated by uncorrelated red
noise in the individual pulsars, here we see that the addi-
tional information gained through the coherence between
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FIG. 1 (color online). Calculated using the analytical approximation to the likelihood described in Sec. VB we plot the evidence
(red solid line) for models with different numbers of frequency modes, and the rms residuals (green dashed line) compared with the
injected value (blue dotted line) for those models. Examples are given for open data set 1 (left), 2 (middle), and 3 (right) where the
evidence is maximized for 11, 1, and 4 frequencies for each, respectively.

TABLE I. Number of frequencies supported by the evidence
for the IPTA data challenges.

Optimal Number of Frequencies

Data set Laplace Analytic MULTINEST

Open 1 11 9 9

Open 2 15 12 11

Open 3 9 6 9

Closed 1 6 5 6

Closed 2 17 13 17

Closed 3 9 8 8 ðrÞ
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pulsars is enough to warrant additional Fourier coefficients
in the analysis. In comparison, the Laplace approximation
agrees well with the results found using MULTINEST in all
six data sets. For the later simulations we will therefore
take this approach; however, for the IPTA data sets all the
results in the following section are derived using the num-
ber of Fourier modes found to be optimal via the numerical
analysis using MULTINEST.

A. Results

Table II summarizes the results for the six IPTA data sets
for methods (A), (B), and (C) described in this paper, and
also the method described in vHL2013. For methods (A)
and (B) we give the best fit values and errors for both the
dimensionless amplitude Ag and the power law index �

that results from a weighted least squares fit to the 1D
GWB power coefficients for each of the IPTA data sets,
while for method (C) and that from vHL2013 we give the
values of Ag and � estimated directly from the data and the

errors returned by MULTINEST. For comparison we also
include the injected values of the GWB spectrum for
each data set. Figures 2–4 then show a more detailed
representation of the results from the open data challenges.
In each figure the top left panel shows a log-log plot of the
parametrized GWB power spectrum coefficients for that
data set. The red and green bars represent the marginalized
values of the fitted GWB power coefficients f�ig and their
errors for methods (A) and (B), respectively. For clarity we
have offset the frequency position for method (B) but for
the analysis both methods were evaluated for the same
frequencies. The blue points represent the injected values
for those coefficients, while the dashed blue and purple
lines show the best fit power spectrum to the marginalized
coefficients for methods (A) and (B), respectively. The top
right panel then shows the parametrized values for the
white noise in each pulsar in that data set. For open data
set 2 and 3, where the pulsars each have a different white
noise level, the injected value is indicated by the green
crosses while the parametrized values are shown by the red
points with their respective errors. The lower plot in each
figure shows the one- and two-dimensional marginalized
posteriors for the GWB power spectrum coefficients f�ig
frommethod (B) fitted for that data set with vertical lines in

the 1D distributions representing the power in the injected
background at the frequency of that coefficient. Contours in
the 2D plots represent 68% and 95% confidence levels. For
the 3 closed data we show only the parametrized GWB
power spectrum coefficients from methods (A) and (B) in
red (solid) and green (dashed), respectively, for each data set
in Fig. 5, and the injected values for each coefficient in blue.
The predominant message from these results is that

for all the data sets methods (A)–(C) are all able to extract
the correct power spectrum from the data with the same
fidelity as the method in vHL2013. Comparing our results
with those in [36], where the data compression method of
vH2013 is applied to the IPTA closed data sets, we likewise
see consistency between the values and precision of the
inferred parameters. This is true despite the fact that meth-
ods (A) and (B) at no stage prescribe any form for the shape
of the power spectrum, which we believe is the only correct
way to perform an analysis of this kind where the true
shape of the power spectrum is unknown.

B. Discussion

1. Run times

Table III shows a comparison of the run times for the
three different sampling methods presented in this paper,
and for the method described in vHL2013, when using a
single 16 core Sandy Bridge node on the high performance
computer ‘‘DARWIN’’. For our implementation of the
method in vHL2013 we use the same number of free
parameters as for method (C) described at the start of
Sec. VI. In every case method (C) is 100–1000 times faster
than the method described in vHL2013, precisely what we
would expect given the order of magnitude decrease in the
size of the covariance matrix that requires inverting when
compared to the time domain analysis. Comparing the run
times between methods (A) and (B) we can see at what
point the numerical marginalization becomes favorable
over the analytical form. Below�15 coefficients perform-
ing the marginalization analytically is clearly the preferred
choice, being a factor of a few faster than performing the
process numerically; however, the increase in the number
of calculations required for convergence, combined with
the Oðn3Þ scaling of the matrix inversion means that be-
yond this point it rapidly begins to lose out, ultimately

TABLE II. IPTA data challenge results.

This paper (A) This paper (B) This paper (C) vHL2013 Injected values

Data set Ag � 10�14 � Ag � 10�14 � Ag � 10�14 � Ag � 10�14 � Ag � 10�14 �

Open 1 5:1	 0:2 4:34	 0:10 4:62	 0:19 4:30	 0:08 4:6	 0:2 4:32	 0:09 4:82	 0:18 4:4	 0:08 5 4.333

Open 2 5:2	 0:3 4:36	 0:12 5:1	 0:3 4:36	 0:11 5:4	 0:3 4:29	 0:12 5:5	 0:3 4:30	 0:09 5 4.333

Open 3 1:08	 0:12 4:2	 0:2 1:08	 0:12 4:17	 0:2 1:09	 0:13 4:13	 0:20 1:17	 0:13 4:13	 0:19 1 4.333

Closed 1 1:07	 0:05 4:2	 0:2 1:12	 0:13 4:36	 0:08 1:07	 0:11 4:25	 0:19 1:11	 0:09 4:31	 0:15 1 4.333

Closed 2 5:6	 0:3 4:40	 0:12 5:6	 0:3 4:36	 0:08 5:59	 0:28 4:4	 0:11 6:32	 0:15 4:27	 0:05 6 4.333

Closed 3 0:32	 0:09 4:5	 0:4 0:32	 0:09 4:2	 0:3 0:44	 0:08 4:0	 0:3 0:5	 0:16 4:2	 0:4 0.5 4.333
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degrading to become the slowest method with which to
perform the analysis for the closed 2 data set.

While the comparisons in Table III have all been made
with the method of vHL2013, it is of interest to see how the
speedup compares with the data compression method

presented in vH2013. We therefore used a dummy
likelihood function that contained all the computational
overhead associated with the data compression algorithm
and set the number of pulsars, the number of observations,
and the level of compression used to represent those values
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FIG. 2 (color online). (a) Log-log plot of the parametrized GWB power spectrum in open data set 1. The red and green bars represent
the marginalized values of the fitted GWB power coefficients f�ig and their errors for methods (A) and (B), respectively. For clarity we
have offset the frequency position for method (B); however, for the analysis both methods were evaluated for the same frequencies.
The blue points represent the power of the injected power spectrum at the sampled frequencies, while the dashed blue and purple lines
show the best fit power spectrum to the marginalized coefficients for methods (A) and (B), respectively. (b) Parametrized values for the
white noise in each pulsar in open data set 1 from the IPTA data challenge. Each Pulsar has a white noise component to their residuals
with an amplitude of 
p ¼ 10�7 s. Averaging across all pulsars we find an rms value for the white noise of �avg ¼ �6:999	 0:005,

which is thus consistent with the value in the data set to within 1
 errors. (c) 1D and 2D marginalized posteriors for the nine GWB
power spectrum coefficients f�ig for method (B). The vertical line in the 1D distribution represents the power in the injected
background at the frequency of that coefficient. Contours in the 2D plots represent 68% and 95% confidence levels.
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that would be chosen for an analysis of the IPTA open 1
data set. This function was then compiled and linked to the
same libraries used in the analysis of the previous section,
at which point 10 sets of 1000 iterations each were per-
formed and timed. We then used the likelihood function of
methods (A) and (C), for which the latter provides the most
direct comparison to the approach of vH2013, once again
set the model parameters to be the same as those used in
our analysis of open data set 1, and performed the same
test. We found that the average computation time for
1000 evaluations of the three likelihood functions were

approximately 45, 1.5, and 47 s for vH2013, method (A),
and method (C), respectively. The consistency between
vH2013 and method (C) is not surprising, the computa-
tional burden for each likelihood evaluation is still in the
matrix inversions, which are of similar order, with the data
compression method resulting in 10 data points per pulsar,
and method (C) utilizing nine Fourier coefficients to
describe the signal.
One important consideration when discussing the run

times of these different methods is howwell they scale with
the inclusion of more parameters. While the method
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FIG. 3 (color online). (a) Log-log plot of the parametrized GWB power spectrum in open data set 2. The red and green bars represent
the marginalized values of the fitted GWB power coefficients f�ig and their errors for methods (A) and (B), respectively. For clarity we
have offset the frequency position for method (B); however, for the analysis both methods were evaluated for the same frequencies.
The blue points represent the power of the injected power spectrum at the sampled frequencies, while the dashed blue and purple lines
show the best fit power spectrum to the marginalized coefficients for methods (A) and (B), respectively. (b) Parametrized values for the
white noise in each pulsar in open data set 2 from the IPTA data challenge. Each pulsar has a different white noise component marked
by the green crosses; red data points show the estimated white noise level from the analysis. (c) 1D and 2D marginalized posteriors for
the 11 GWB power spectrum coefficients f�ig for method (B). The vertical line in the 1D distribution represents the power in the
injected background at the frequency of that coefficient. Contours in the 2D plots represent 68% and 95% confidence levels.
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FIG. 4 (color online). (a) Log-log plot of the parametrized GWB power spectrum in open data set 3. The red and green bars represent
the marginalized values of the fitted GWB power coefficients f�ig and their errors for methods (A) and (B), respectively. For clarity we
have offset the frequency position for method (B); however, for the analysis both methods were evaluated for the same frequencies.
The blue points represent the power of the injected power spectrum at the sampled frequencies, while the dashed blue and purple lines
show the best fit power spectrum to the marginalized coefficients for methods (A) and (B), respectively. (b) Parametrized values for the
white noise in each pulsar in open data set 3 from the IPTA data challenge. Each pulsar has a different white noise component marked
by the green crosses; red data points show the estimated white noise level from the analysis. (c) 1D and 2D marginalized posteriors for
the 9 GWB power spectrum coefficients f�ig. The vertical line in the 1D distribution represents the power in the injected background at
the frequency of that coefficient. Contours in the 2D plots represent 68% and 95% confidence levels.
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described in vHL2013 is shown here to have comparable
run times to method (A), we have only been using it to
evaluate a two- or four-dimensional case. If for example
one increases the dimensionality from 2 to 38 in order to
include white noise estimation for each pulsar, the run time
increases from 2 h, to over 100. Including white noise
estimation in method (A), where the increase in dimen-
sionality (36) is small compared to the total (�1000)
results in a similarly small increase in the total run time
of �15 min . This is one of the key advantages of the

numerical marginalization coupled with the guided
Hamiltonian sampler and one that we exploit in Sec. VIII
as we introduce an additional 630 dimensions to parame-
trize the spatial correlations between pulsars. Even this
though is still an extremely small parameter space com-
pared to the greater than 106 dimensional problems that it
has been used to solve in other work (B13). This therefore
leaves a practically unlimited space in which to expand,
with the inclusion of additional parameters such as simul-
taneous dispersion measure correction or even the full
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FIG. 5 (color online). Log-log plots of the parametrized GWB power spectrum in closed data sets 1 (a), 2 (b), and 3 (c). The red and
green bars represent the marginalized values of the fitted GWB power coefficients f�ig and their errors for methods (A) and (B),
respectively. For clarity we have offset the frequency position for method (B); however, for the analysis both methods were evaluated
for the same frequencies. The blue points represent the injected values for those coefficients, while the dashed blue and purple lines
show the best fit power spectrum to the marginalized coefficients for methods (A) and (B), respectively.
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nonlinear timing model that have previously been not
thought feasible.

2. Frequencies of 1 yr�1

Perhaps one of the most striking features of the 1D and
2D confidence contours in Figs. 2–4 is that without ex-
ception the GWB coefficient �5 is totally unconstrained.
All of the data sets in the IPTA data challenge are approxi-
mately 1820 days in length, and so in every case �5

corresponds to a frequency of �1 yr�1. That this should
occur at such a distinct frequency is no coincidence; as part
of the timing model fit performed by Tempo2 the pulsar’s
position and proper motion are all included as free parame-
ters. Inaccuracies in the fitted values of these parameters
can result in power being introduced to the residuals at
frequencies of 1 yr�1 (see e.g. [2]). When we perform the
analytic marginalization over all the model timing parame-
ters, we therefore effectively project out contributions to
the signal from components with these periods. The model
Fourier coefficients corresponding to frequencies of 1 yr�1

therefore have no effect on the likelihood when the linear
approximation to the timing model holds, and therefore the
very way in which we account for the timing models for
each pulsar results in us being able to make no inferences
on the properties of the power spectrum at this frequency.

That this is so clear in the results is a testament to the
success of the method; by not assuming any form for the
power spectrum and simply asking in the most general way
how the power is distributed in the signal, we are able to
infer much more information than simply by fitting for a
power law. In this instance that extra information is that we
are unable to constrain anything about the spectrum at
frequencies of 1 yr�1; however, where the true power
spectrum is unknown this approach is the only way of
ensuring an optimal estimate of that power spectrum and
of extracting the maximal amount of information possible.

VII. A MORE REALISTIC SIMULATION

While the IPTA data challenges serve as a good introduc-
tion to analyzing PTA data, they still represent comparatively
simplistic data sets when compared to genuine observations.

For example, while some of the challenge data sets featured
uneven sampling in the time domain, all pulsars within a data
set shared the same TOAs, and thus also shared the same
total time span. Similarly, when included, the properties of
the red noise were the same for all the pulsars in the data sets.
There were also no gaps in the data greater than a few weeks,
whereas jumps of more than a year can be expected when
analyzing real data. We have therefore constructed two
simulations designed to represent better a potential future
IPTA data release and thus provide a more difficult test for
the analysis method presented in this paper.

A. Generating the residuals

The simulations are generated using the time domain
covariance matrix CGW

ðaiÞðbjÞ between observations i and j

and pulsars a and b for a GWB given in vH2009:

TABLE III. Comparison of run times for different sampling methods.

Method

This paper (A) This paper (B) This paper (C) vHL2013

Data set Dimensionality

Run time

(minutes) Dimensionality

Run time

(minutes) Dimensionality

Run time

(minutes) Dimensionality

Run time

(minutes)

Open 1 702 35 9 10 2 <1 2 145

Open 2 839 55 11 35 2 <1 2 130

Open 3 702 40 9 10 2 <1 2 140

Closed 1 474 30 9 2 2 <1 2 140

Closed 2 1277 110 17 180 2 4 2 160

Closed 3 908 130 16 145 4 3 4 235

TABLE IV. Parameters for simulation one and two.

Pulsar No. Tspan years Nobs �red log 10½Ag�
1 3.18 22 3.3 14.3

2 14.86 1057 2.1 15.1

3 17.10 343 1.6 13.8

4 14.45 814 1.1 13.3

5 15.89 692 2.3 14.6

6 17.01 368 1.5 14.2

7 9.90 721 4.2 13.8

8 15.31 289 1.8 13.5

9 14.96 427 2.4 16.0

10 17.79 940 1.9 14.5

11 18.37 1291 1.6 14.0

12 17.80 422 2.2 14.2

13 8.04 153 5.1 15.0

14 16.96 728 3.4 14.6

15 5.75 164 2.6 13.9

16 4.75 35 3.5 14.0

17 9.02 728 1.5 13.4

18 10.46 284 2.3 14.4

19 15.42 293 2.8 14.1

20 17.54 914 1.2 13.7

21 14.95 402 3.4 14.0
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CGW
ðaiÞðbjÞ ¼

�abA
2
gyr

3��

12�2f��1
L

�
�ð1� �Þ sin

�
��

2

�
ðfL
Þ��1

� X1
n¼0

ð�1Þn ðfl
Þ2n
ð2nÞ!ð2nþ 1� �Þ

�
; (66)

where �ab is the Hellings-Downs coefficient between pul-
sars a and b, fL is a low frequency cutoff, chosen only so
that 1=fL is much greater than the observing time span, and

 ¼ 2�ðtai � tbjÞ with tai the ith TOA for pulsar a. The

covariance matrix for the included red noise CRN
ðaiÞðbjÞ is

identical; however, the term �ab is replaced with a delta
function �ab as it will be uncorrelated between pulsars.
Finally denoting the white noise covariance matrix
CW

ðaiÞðbjÞ ¼ 
2
w�ab�ij we can write the total covariance

matrix describing our simulated residuals CT
ðaiÞðbjÞ as

CT
ðaiÞðbjÞ ¼ CGW

ðaiÞðbjÞ þCRN
ðaiÞðbjÞ þCW

ðaiÞðbjÞ: (67)

We then take the Cholesky decomposition of this matrix
and use it to generate the residuals. A quadratic is then
fitted to and subtracted from each of the pulsar residuals
independently to mimic the effect of subtracting the timing
model. The design matrix used to generate the matrix G in
Eq. (9) and beyond will then simply be that of a quadratic
polynomial.

B. The simulations

Both simulations use a set of 21 pulsars with observa-
tions spanning periods of between 4 and 18 years, with
spacings between observations ranging from less than a
day up to 5 yr. Simulation one then injects a gravitational
wave background with parameters � ¼ 4:33 and dimen-
sionless amplitude Ag ¼ 10�14 and white noise with an

amplitude 
w ¼ 10�7 s. The second simulation uses the
same sampling times as the first; however, the background
now has an amplitude of Ag ¼ 5� 10�15, and red noise is

included for each pulsar, with �red covering a range from
1:1 ! 5:1 and amplitudes extending from Ag ¼ 10�16 !
5� 10�14. Table IV gives a more complete overview of the
simulated data listing the total time span Tspan for each

pulsar, the number of observations Nobs in that observation
window, and the red noise parameters �red and Ag present

in simulation two.
In analyzing the data we chose a fundamental frequency

f0 to be equal to 1=Tmax, where Tmax represents the great-
est time span for any of the pulsars in the data set, which for
both simulations is �18:4 yr. We then use the Laplace
approximation method described in Sec. V to determine
the number of frequencies to be used in the analysis.
We find that 21 coefficients should be sufficient to describe
the first simulation while a maximum of 12 Fourier modes
are required for the second. We then apply method (A) to
the two data sets. In the first case we parametrize only the
Fourier coefficients for the 21 pulsars, their white noise,
and the set of 21 GWB power spectrum coefficients, while
for the second data set we also include red noise parame-
ters for each of the pulsars resulting in 264 and 903
dimensional spaces for each, respectively. The results are
shown in Table V while we plot the GWB coefficients in
both cases in Fig. 6 with the blue points representing the
theoretical power at the sampled frequency given the in-
jected spectrum. In the case of simulation 2 we plot only

TABLE V. Results from the two simulations in Sec. VII.

Method (A) Injected values

Data set Ag � 10�14 � Ag � 10�14 �

Sim. 1 1:1	 0:2 4:2	 0:1 1 4.333

Sim. 2 0:61	 0:07 4:0	 0:2 0.5 4.333

-10

-9

-8

-7

-6

-5

-4

-3

-2

-4 -3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4

Lo
g 1

0[
S

(f
) 

(s
3

)]

Log10[Frequency (days-1)]

Estimated GWB Power Spectrum Coefficients for Sim 1

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-3.9 -3.8 -3.7 -3.6 -3.5 -3.4 -3.3 -3.2 -3.1 -3 -2.9

Lo
g 1

0[
S

(f
) 

(s
3

)]

Log10[Frequency (days-1)]

Estimated GWB Power Spectrum Coefficients for Sim 2

FIG. 6 (color online). Log-log plot of the parametrized GWB power spectrum in simulations one (left) and two (right). The green
bars represent the marginalized values of the fitted GWB power coefficients f�ig and their errors derived using method (A) applied to
that data set. The blue points represent the injected values for those coefficients, while the green line shows the best fit power law
spectrum to the marginalized coefficients.
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a subset of the frequency coefficients as only those
corresponding to frequency modes 1–3 and 6–9 resulted
in detections of a correlated signal within the data.

We see the results are once again consistent with the
injected values, demonstrating that even in extremely chal-
lenging data where there is a great deal of additional red
noise and highly irregular sampling we are able to correctly
parametrize the GWB signal.

VIII. FITTING FOR THE CROSS CORRELATION

Thus far we have parametrized the angular correlations
between different pairs of pulsars using the Hellings-
Downs curve; the result derived assuming an isotropic
background of gravitational waves when only those polar-
ization states predicated by general relativity are consid-
ered. Different metric theories of gravity, however, predict
different angular correlations, and anisotropies in the back-
ground due to bright individual sources can lead to devia-
tions in this description [37]. Furthermore, terrestrial clock
errors and inaccuracies in the solar system ephemeris can
also generate spatial correlations within pulsar residuals,
the latter for example would result in the residuals taking
on a dipole signature [38]. As such, performing the analy-
sis of PTA data assuming the Hellings-Downs curve ex-
plicitly could result in a false detection if there is a spatially
correlated component, even if the form of that correlation
is better described by something other than a GWB.

Methods for generalizing the Hellings-Downs curve at the
point of sampling are relatively new, for example the authors
of [39] present two possible approaches. First they fit for the
angular correlation at a set of 5 angular separations and then
use cubic splines to interpolate between those points in order
to determine the angular correlations at intervening values,
and second, they use a generalized Hellings-Downs model
to parametrize the correlation. These methods were success-
fully able to extract the form of the Hellings-Downs curve in
the case of the first IPTA open challenge; however, we
would like to generalize this approach further and fit for
the correlations between all pairs of pulsars directly. This
therefore relieves us of the assumption that the background
is isotropic, with pairs of pulsars at the same angular sepa-
ration able to have different correlation coefficients, and still
at no point assume any prescribed form of the correlation
that might bias the end result in order to test whether or not
the Hellings-Downs curve is distinguishable in simulated
data from, for example, a dipole.

When fitting for the cross correlations between the
pulsars, we must ensure that the covariance matrix describ-
ing those correlations remains positive definite. Many
methods exist where the elements of the upper-triangular
elements in the covariance matrix are reparametrized such
that the resultant covariance matrix is ensured to be posi-
tive definite [40].

For any positive definite covariance matrix � we are
able to take a Cholesky decomposition such that the matrix

can be represented as the product � ¼ LLT. In general,
however, such a decomposition is not unique. If L is the
Cholesky decomposition of � then so is any matrix ob-
tained by multiplying a subset of the rows ofL by�1. This
can therefore give rise to multimodal distributions that will
increase the complexity of the sampling process unneces-
sarily. This problem can be circumvented by ensuring that
the diagonal elements of L are positive, in which case L is
unique for a given �, which can be achieved by fitting for
the log of the diagonal elements. In this form, however,
there is no straightforward way of fixing the elements of
the matrix �, such that the diagonal elements are equal to
unity. We therefore use a spherical parametrization of the
elements in L as in [40], which we describe below.

A. Spherical parameterization

If we denote the jth element of the ith column of the
upper triangular matrixL as Lij, and define a second upper

triangular matrix l that contains the spherical parametriza-
tion of L, we can write any element of L in the form

Li;1 ¼ li;1 cos ðli;2Þ;
Li;2 ¼ li;1 sin ðli;2Þ cos ðli;3Þ;
Li;3 ¼ li;1 sin ðli;2Þ sin ðli;3Þ cos ðli;4Þ;
..
.

Li;i�1 ¼ li;1 sin ðli;2Þ . . . sin ðli;i�1Þ cos ðli;iÞ;
Li;i ¼ li;1 sin ðli;2Þ . . . sin ðli;i�1Þ sin ðli;iÞ:

The diagonal elements of the covariance matrix �ii are
then given by �ii ¼ l2i;1, and so we can trivially ensure a

unit diagonal by setting all li;1 ¼ 1. Therefore for an n� n
covariance matrix we need only fit for nðn� 1Þ=2 ele-
ments, which for 36 pulsars, results in an increase of
dimensionality of Ncorr ¼ 36� 35=2 ¼ 630.
The uniqueness of the spherical parametrization is then

ensured by defining a new set of parameters � such that

li;j ¼
� exp ð�i;jÞ
1þ exp ð�i;jÞ : (68)

While in principle this choice of parametrization should
guarantee positive definiteness, in practice machine preci-
sion requires that we limit the values that �i;j can take.

Allowing � to vary beyond 	1:5 results in erroneous
behavior due to this limitation, and so we require that �
lie within the range f�1; 1g, and therefore introduce a final
set of parameters X such that

�i;j ¼ 2

�
exp ðXi;jÞ

1þ exp ðXi;jÞ � 0:5

�
: (69)

Figure 7 shows the ability for this parametrization, with
these limits in place, to reproduce the Hellings-Downs
curve, zero correlation, and cos�=2 between the pulsars.
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We show the analytical expressions in red, while the best fit
results are in blue. For clarity we have offset the two lines
by 0.1 on the y axis, as the two forms are completely
indistinguishable to within machine precision at all points.

B. Performing the sampling using the GHS

As before, in order to perform the sampling with the
guided Hamiltonian sampler we will need both the
gradients and the Hessian for our new likelihood function.
By necessity we are sampling uniformly in the parameter
X; however, we would like to be sampling uniformly in the
parameter space of the correlation coefficients C. As such
we must make a probability transformation so that the prior
on our parameters X will be given by

PrðXÞ ¼ PrðCÞjJðX ! CÞj; (70)

where writing the cross-correlation coefficient Ci in terms
of its position in the cross-correlation matrix Cmn, the
Jacobian can be written

Jiq ¼ @Ci

@Xq

¼
�
@ðLLTÞ
@lq

�
mn

@lq
@�q

@�q

@Xq

: (71)

This gives us our new log likelihood expression, which as
in Sec. IV we write as the negative log,�, so that ignoring
constant terms

� ¼ 1

2
j~Nj þ 1

2
j’j þ 1

2
ð�t� FaÞT ~N�1ð�t� FaÞ

þ 1

2
aT’�1a� jJj: (72)

At first sight calculating the gradient of such an
expression with respect to the parameters X for every
likelihood evaluation would seem a formidable computa-
tional task. However, because the @L=@lq are all extremely

sparse, featuring at most Ncorr elements the scaling goes as
�OðN2

corrÞ and thus does not significantly impact the evalu-
ation time. The gradient and second derivative of � with
respect to X are then of similar form to Eqs. (37) and (40)
with extra terms corresponding to the derivatives of the
Jacobian.

C. Results

We use this approach on the first open data challenge
fitting for both the set of 630 cross-correlation coefficients
between the 36 pulsars in the data set and 9 GWB coef-
ficients. Figure 8 shows the cross-correlation coefficients
and their associated errors as a function of the angular
separation between pairs of pulsars in red, along with the
analytical value for the Hellings-Downs curve at those
values in blue. Fitting both the Hellings-Downs curve
and no correlation as potential models results in �2 values
of 630 and 1061, respectively, heavily favoring the pres-
ence of the Hellings-Downs curve, without having as-
sumed its presence at the point of sampling.
Clearly this represents the simplest possible case, with

no red noise present in the data. Where red noise is present
the ability to recover the Hellings-Downs curve in this
manner will inevitably degrade, and it might not prove

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  20  40  60  80  100  120  140  160  180

C
or

re
la

tio
n

Angular Seperation (degrees)

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  20  40  60  80  100  120  140  160  180

C
or

re
la

tio
n

Angular Seperation (degrees)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  20  40  60  80  100  120  140  160  180

C
or

re
la

tio
n

Angular Seperation (degrees)

FIG. 7 (color online). Demonstration of the parametrization described in Sec. VIII A given the constraints on the parameter space
imposed to ensure positive definiteness to reproduce the Hellings-Downs curve (left), no correlation (middle), and cos�=2 (right). In
each case the red line is the analytical evaluation, while the blue line is the best fit result. For clarity we have offset the blue line by 0.1
on the y axis.
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FIG. 8 (color online). Cross correlation coefficients between
pairs of pulsars as a function of their angular separation parame-
trized using the approach in Sec. VIII. The blue points represent
the analytical values that the Hellings-Downs curve takes for
those angular separations. Fitting both the Hellings-Downs curve
and no correlation as potential models results in �2 values of 630
and 1061, respectively, heavily favoring the presence of the
Hellings-Downs curve.
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possible to extract the cross correlation signal in such a
completely general way. In such cases one might wish to
reduce the number of free parameters by either assuming a
model that has only an angular dependence and binning the
coefficients up in angular separation as in [39] or by fitting
some more general model that allows for spatial variation;
in either case, the extrapolation of this method to these
cases is straightforward.

IX. CONCLUSIONS

We have presented a newmodel-independent method for
analyzing pulsar timing array data and estimating the
spectral properties of a gravitational wave background.

We have shown that this method results in a speedup of
approximately 2 orders of magnitude when compared to
methods found in vHL2013 and, where the signal-to-noise
ratio of the GWB is low, can reduce run times from several
hours on a high performance computer to minutes on a
regular workstation. We have accomplished this by sam-
pling either directly from the power spectrum coefficients
of the GWB where the number of coefficients to be
sampled is small compared to the number of data points
in the time domain, or, where the number of coefficients to
be sampled increases, from the joint probability density of
the power spectrum coefficients for the individual pulsars
and the GWB signal realization, rephrasing the likelihood
function to eliminate all matrix-matrix multiplications and
costly dense matrix inversions. This latter approach there-
fore scales as Oðn� n3pÞ where n is the number of frequen-

cies sampled, and np is the number of pulsars, as opposed

toOðn3oÞwhere no is the total number of observations in the
data set across all pulsars.

We have shown this method requires no prior assumptions
to be made regarding the shape of the power spectrum of the
GWB. This is therefore currently the only method that
provides a general approach to extracting a GWB signal
from pulsar timing data, which we suggest is the only correct
way of approaching the problem while we have no prior
knowledge of the form of the power spectrum. We have also
shown the ability for this method to parametrize correctly the
correlation between pairs of pulsars. This correlation is
the defining feature of a GWB signal, and extracting it
from the data without first assuming that it is present will
thus be a necessary step in any detection process.

Finally we have applied this method both to the first
IPTA data challenge, as well as a more realistic pair of
simulations and have shown that in all cases it correctly
parametrizes the properties of the injected signals where
they are known and is consistent with other established
methods where they are not known.
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APPENDIX A: GUIDED
HAMILTONIAN SAMPLING

The following is a description of both Hamiltonian
Monte Carlo and the Guided Hamiltonian Sampler as
described in (B13).

1. Standard Hamiltonian Monte Carlo sampling

In HMC, one begins by defining the potential energy
c ðxÞ of the target density PrðxÞ as its negative logarithm,
namely,

c ðxÞ ¼ � ln PrðxÞ: (A1)

For each parameter, xi we then introduce a ‘‘momentum’’
parameter pi and a constant ‘‘mass’’ mi and construct a
kinetic energy term that, when added to the potential, leads
to the Hamiltonian

H ðx;pÞ ¼ X
i

p2
i

2mi

þ c ðxÞ: (A2)

Our new objective is to draw samples from a distribution
that is proportional to exp ½�H ðx;pÞ�. The form of the
Hamiltonian is such that this distribution is separable into a
Gaussian in p and the target distribution, i.e.

exp ½�H ðx;pÞ� ¼ PrðxÞY
i

exp

�
� p2

i

2mi

�
: (A3)

We can then obtain samples from PrðxÞ by marginalizing
over p.
To find a new sample we first draw a set of momenta

from the distribution defined by our kinetic energy term,
i.e. an N-dimensional uncorrelated Gaussian with a
variance in dimension i of mi. We then allow our system
to evolve deterministically from our starting point ðx;pÞ in
the phase space for some fixed time 
 according to
Hamilton’s equations,

dx

dt
¼ rpH ðx;pÞ; (A4)

dp

dt
¼ �rxH ðx;pÞ ¼ �rxc ðxÞ: (A5)

At the end of this trajectory we have reached the point
ðx0;p0Þ and we accept this point with probability

pA ¼ min ½1; exp ð��H Þ�; (A6)

where

�H ¼ H ðx0;p0Þ �H ðx;pÞ: (A7)
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This implies that if we are able to integrate Hamilton’s
equations exactly then, as energy is conserved along such a
trajectory, the probability of acceptance is unity. In prac-
tice, however, numerical inaccuracies mean that this is not
the case. After a new proposed sample is generated the
momentum variable is discarded and the process restarts by
randomly drawing a new set of momenta as described
above.

In fact the method is more general than outlined above
since, provided one uses the Metropolis acceptance crite-
rion [Eq. (A6)], it is permitted to follow any trajectory to
generate a new candidate point. However, only trajectories
that approximately conserve the value of the Hamiltonian
[Eq. (A2)] will result in high acceptance rates. For some
problems it may be advantageous to generate trajectories
using an approximate Hamiltonian that can be computed
rapidly, and bear the cost of lowering the acceptance
probability.

To integrate the equations of motions it is common
practice to use the leapfrog method [28]. This method
has the property of exact reversibility that is required to
ensure the chain satisfies detailed balance. It is also nu-
merically robust and allows for the simple propagation of
errors. We make n steps with a finite step size �, such that
n� ¼ 
, as follows:

p

�
tþ �

2

�
¼ pðtÞ þ �

2

dp

dt

��������t
; (A8)

xðtþ �Þ ¼ xðtÞ þ �
dx

dt

��������tþ�
2

; (A9)

pðtþ �Þ ¼ p

�
tþ �

2

�
þ �

2

dp

dt

��������tþ�
; (A10)

until t ¼ 
. Substituting for the time derivatives using
Hamilton’s equations (A4), one thus obtains explicit rela-
tions for the leapfrog steps, which read

p

�
tþ �

2

�
¼ pðtÞ � �

2
rxH jt; (A11)

xðtþ �Þ ¼ xðtÞ þ �rpH jtþ�
2
; (A12)

pðtþ �Þ ¼ p

�
tþ �

2

�
� �

2
rxH jtþ�: (A13)

The interval 
 must be varied, usually by drawing n and �
randomly from uniform distributions, to avoid resonant
trajectories; we therefore draw n and � from Uð1; nmax Þ,
Uð0; �max Þ, respectively. The leapfrog method may be
replaced by higher-order integration schemes provided
exact reversibility is maintained; such methods yield
greater accuracy, although generally incur significant addi-
tional computational costs.

2. Setting masses in HMC

HMC can be extremely sensitive to the choice of masses,
in particular, when the marginal distributions of different
parameters show considerable variation in the width of
their posterior distributions. Reference [41] suggests that
one should set the mass associated with each parameter to
be approximately equal to the variance of that parameter in
the target density. This is an attempt to circularize the
trajectories in the ðx;pÞ space. Interestingly, [28] suggests
precisely the opposite approach, where the mass for a
parameter is inversely proportional to the width of the
distribution.
The authors of Ref. [27] follow the latter suggestion and

justify it by generalizing the framework in [26] to describe
the application of the leapfrog method. In particular, for the
case where the N-dimensional target distribution PrðxÞ is
(well approximated by) a multivariate Gaussian with
covariance matrix C, they show that the leapfrog method
is stable if M ¼ C�1 and � 
 2, where M is the N � N
‘‘mass matrix’’ that appears in the generalized kinetic term
1
2p

tM�1p of the Hamiltonian.

If the dimensionality of the problem is such that it is
impractical to perform the required matrix inversion and
decomposition of M (to compute the Hamiltonian and to
draw new values for the momentum variables, respec-
tively) then simple approximations must be employed.
Typically one might construct a diagonal mass matrix
with the mass associated with each parameter inversely
proportional to the variance of that parameter.
Moreover, if the target distribution is not Gaussian, it

seems reasonable to use some appropriate measure of the
width of the distribution, such as the curvature at the peak
[28], to set the masses.

3. Guided Hamiltonian sampling

Guided Hamiltonian sampling builds on the ideas
explored in [27] to produce an HMC algorithm with just
a single adjustable parameter, thereby eliminating the need
for tuning masses. In particular, GHS takes advantage of,
although does not rely on, the fact that one often wishes to
sample from a target distribution that is unimodal, albeit, in
general, non-Gaussian and high dimensional.
In GHS, one first sets the mass matrix in the kinetic term

of the Hamiltonian to the identity, M ¼ I. For the target
distribution PrðxÞ, one then locates the peak x̂, typically
using some iterative gradient-search optimization algo-
rithm starting from, in general, some random initial point.

One then calculates the Hessian (or curvature) matrix Ĥ of
ln PrðxÞ ¼ �c ðxÞ (i.e. the negative of the potential energy,
for convenience of sign conventions) at the maximum,
either analytically or using numerical differentiation; this
thereby defines a Gaussian approximation to PrðxÞ in the
neighborhood of the peak x̂.
Once the Hessian at the peak has been calculated, one

then determines its N eigenvalues �i and N normalized
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eigenvectors êi. Denoting the matrix containing these
normalized eigenvectors as its columns by S, one first
defines a new set of variables x0 ¼ Stx in which the
Hessian becomes diagonal with the eigenvalues �i as its
diagonal entries. One then rescales each x0i to obtain a new
set of variables yi ¼

ffiffiffiffiffi
�i

p
x0i=�, where the scaling factor �

is the single adjustable parameter in GHS, which we will
discuss later. It is straightforward to show that the new
variables are related to the original variables by

y ¼ 1

�
Ĥ1=2x: (A14)

Consequently, in the new variables, the Hessian at the peak
has the trivial form �2I. One then performs Hamiltonian
sampling employing the standard leapfrog method
[(A11)–(A13)] but in terms of the new variables y, rather
than x. Thus, GHS may be considered simply as standard
HMC but performed in a set of variables (or coordinates)
that are tailored to the target distribution, namely, the
scaled eigendirections of the Hessian at its peak.
Consequently, although GHS may take advantage if PrðxÞ
possesses a single well-defined peak (with zero gradient), it
does not rely on this, since it retains the generality of
standard HMC.

Rather than working in terms of the new variables y, one
can, if desired, return to using the original variables x, in
which case the relation (A14) shows that the leapfrog steps
take the modified form

p

�
tþ �

2

�
¼ pðtÞ � �

2
�Ĥ�1=2rxH jt; (A15)

xðtþ �Þ ¼ xðtÞ þ ��Ĥ�1=2rpH jtþ�
2
; (A16)

pðtþ �Þ ¼ p

�
tþ �

2

�
� �

2
�Ĥ�1=2rxH jtþ�: (A17)

Using the original variables x or the new variables y, it is
necessary to calculate either the (inverse) square root of the

N � N Hessian matrix Ĥ at the peak or (equivalently) its
eigendecomposition (and, subsequently, the calculation of
the square roots of its eigenvalues). Performing the above
calculations can be computationally expensive, particu-
larly for large N, although it should be noted that one
need only perform these calculations once.

In summary, GHS aims to increase the efficiency of
standard HMC, particularly for high-dimensional, uni-
modal target distributions, by performing the sampling in
the principal coordinates defined by the Gaussian approxi-
mation at its peak. In this way, one may largely eliminate
the tuning aspect of HMC: the single remaining adjustable
parameter is the scaling �, the optimal value of which
depends on the dimensionality of the parameter space,
and should be chosen such that the acceptance rate is
approximately 68%.

APPENDIX B: ANALYTICAL APPROXIMATION
TO THE LIKELIHOOD

1. Uniform white noise

Suppose we have a single realization of some time series
data d of length N. We then define a set of hypotheses fHg
such that each Hi purports that our data d is described by
some function fi where

fiðtÞ ¼
Xm
k¼1

bkMkðt;wÞ (B1)

with Mk a set of general basis functions. The number of
functions m, the parameters that describe them (e.g. their
frequencies) w, and the model coefficients bk are allowed
to vary for each fi. We then transform this set of
basis functions into an orthonormal set Fk through the
transformation

FkðtÞ ¼ 1ffiffiffiffiffiffi
�k

p Xm
j¼1

ekjMjðtÞ; (B2)

where ekj is the kth element of the jth eigenvector and �k is

the kth eigenvalue of the covariance matrix MTM. Our
function fi can now be written in terms of these new basis
vectors,

fiðtÞ ¼
Xm
k¼1

akFkðt;wÞ; (B3)

where the coefficients a in the orthonormal basis are
related to the coefficients b in the original basis through

bk ¼
Xm
j¼1

akejkffiffiffiffiffi
�j

p : (B4)

The probability of the data given a model fi, assuming that
the noise is described by a zero mean random Gaussian
process with variance 
 is given by

Prðdja;w;
;fiÞ¼ð2�
2Þ�N=2 exp

�
1

2
2

XN
k¼1

½dk�fiðtkÞ�2
�
:

(B5)

Writing the projection of the data onto our basis
functions as

hi ¼
XN
k¼1

dkFiðtkÞ; (B6)

and writing d2 ¼ dTd, Eq. (B5) can be written

Prðdja;w; 
; fiÞ

¼ ð2�
2Þ�N=2 exp

�
� 1

2
2

�
d2 �Xm

l¼1

2alhl þ a2l

��
:

(B7)
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We begin by integrating over both the set of coefficients a
and frequencies w. We assume that the two parameters are
logically independent, insofar as we can write the priors

Prða;wÞ ¼ PrðaÞ PrðwÞ: (B8)

For the amplitude coefficients, we choose an uninformative
Gaussian prior given by

Prðaj�Þ ¼ ð2��2Þ�m=2 exp

�
�Xm

k¼1

a2k
2�2

�
(B9)

with � � 
. Therefore, our probability, marginalized over
a and w can be written

Prðdj�;
; fiÞ ¼
Z

dw PrðwÞð2��2Þ�m=2ð2�
2Þ�N=2

�
Z þ1

�1
da1 . . . dam exp

�
�Xm

k¼1

a2k
2�2

�

� exp

�
� 1

2
2

�
d2 �Xm

l¼1

2alhl þ a2l

��
:

(B10)

We have chosen � such that the prior term
exp ½�P

m
k¼1 a

2
k=2�

2� is constant where the likelihood is

large but goes to zero sufficiently quickly outside this
region so as to be normalizable. Therefore, if we define
âi to be the maximum likelihood value for the parameter
ai, we can write our probability as

Prðdj�;
;fiÞ

¼
Z

dwPrðwÞð2��2Þ�m=2ð2�
2Þ�N=2 exp

�
�Xm

k¼1

âk
2

2�2

�

�
Z þ1

�1
da exp

�
� 1

2
2

�
d2 �Xm

l¼1

2alhl þ a2l

��
:

(B11)

If we take the elements of a to be independent on our
orthonormal basis, then we can write the expectation value
of a single element ai as

haii ¼
Rþ1
�1 daiai exp ½�1

2
2 ½�2aihi þ a2i ��Rþ1
�1 dai exp ½�1

2
2 ½�2aihi þ a2i ��
; (B12)

which evaluates to haii ¼ hi, i.e. the expectation value of
the basis vector coefficient is just the projection of the data
onto that basis. Substituting this into our equation for the
probability in the place of â and performing the Gaussian
integral over a, we arrive at the expression

Prðdj�;
; fiÞ ¼
Z

dw PrðwÞð2��2Þ�m=2ð2�
2Þ�ðN�mÞ=2

� exp

�
d2 � h2

2
2

�
exp

�
h2

2�2

�
: (B13)

For our integral over our frequencies, we are for any given
model fi considering a set of frequencies chosen from an
evenly spaced grid. Therefore we will have a set of delta
function priors for each frequency wj in the set w and the

integral can be simply evaluated:

Prðdj�;
; fiÞ ¼ ð2��2Þ�m=2ð2�
2Þ�ðN�mÞ=2

� exp

�
d2 � hðwiÞ2

2
2

�
exp

�
hðwiÞ2
2�2

�
:

(B14)

We are now in a position to integrate over our unknown
variances 
 and �. As in [35] we set an upper boundH and
lower bound L to this integral, which will therefore be of
the form

1

log ðH=LÞ
Z H

L
ds

s�a exp ½� Q
s2
�

s
: (B15)

Making a substitution u ¼ Q=s2 this becomes

Q�a=2

2 log ðH=LÞ
Z Q=L2

Q=H2
duua=2�1 exp ½�u�: (B16)

If we assume that H is sufficiently large, and L is
sufficiently small that we may writeQ=H2 � 1 and a=2�
1 � Q=L2 then the integral will evaluate to approximately
�ða=2Þ. Thus our integral over � will become

1

logðH=LÞ
Z H

L
d�

��mexp½� h2

2�2�
�

� �ðm=2Þ
2logðR�Þ

�
hðwÞ2
2

��m=2
;

(B17)

and similarly for 
 the integral evaluates to approximately

�ððN �mÞ=2Þ
2 log ðR
Þ

�
d2 � hðwÞ2

2

��ðN�mÞ=2
: (B18)

Therefore we can finally write the probability of the dataD
given a model fi as

PrðdjfiÞ ¼ �ðm=2Þ
2 log ðR�Þ

�
hðwÞ2
2

��m=2 �ððN �mÞ=2Þ
2 log ðR
Þ

�
�
d2 � hðwÞ2

2

��ðN�mÞ=2
: (B19)

2. Nonuniform white noise

In general when dealing with pulsar residuals the white
noise level across a data set for a single pulsar will vary
with time, where for example different instruments have
been used to collect data for the same pulsar. In this case
the expansion of our likelihood function is not so simple,
because the covariance matrix GTNG will no longer re-
duce to a diagonal matrix. If we define C ¼ GTNG where
we consider C to be a general dense covariance matrix,
Eq. (B5) will take the form

HYPER-EFFICIENT MODEL-INDEPENDENT BAYESIAN . . . PHYSICAL REVIEW D 87, 104021 (2013)

104021-23



Prðdja;w;fiÞ¼ð2�Þ�N=2jCj�1=2

�exp

��1

2
ðd�FaÞTC�1ðd�FaÞ

�
: (B20)

In this case, writing Fi
TC�1Fi ¼ C�1

i the maximum like-

lihood value of a particular coefficient ai will be given by

haii ¼
Rþ1
�1 daiai exp ½� 1

2 ½aiC�1
i ai � 2dTC�1Fiai��Rþ1

�1 dai exp ½� 1
2 ½aiC�1

i ai � 2dTC�1Fiai��
(B21)

and evaluates to

haii ¼ dTC�1Fi

C�1
i

: (B22)

In the case thatC once again describes uniform white noise
across the observation, this will reduce to haii ¼ dTFi ¼
hi as before. Using the same uninformative prior on our
coefficients as in Eq. (B9), we can then write our integral
over the basis coefficients as

Prðdj�;fiÞ¼ ð2�Þ�N=2jCj�1=2ð2��2Þ�m=2

� exp

�
� 1

2�2

Xm
k¼1

�
dTC�1Fi

Fi
TC�1Fi

�
2
�

�
Z þ1

�1
daexp

��1

2
ðd�FaÞTC�1ðd�FaÞ

�
:

(B23)

If we define

� ¼ ðFTC�1FÞ�1FTC�1d; (B24)

then we can reexpress this probability as

Prðdj�;fiÞ¼ð2�Þ�N=2jCj�1=2ð2��2Þ�m=2

�exp

�
� 1

2�2

Xm
k¼1

�
dTC�1Fi

Fi
TC�1Fi

�
2
�

�exp

�
�1

2
dTC�1d

�
exp

�
1

2
�TFTC�1F�

�

�
Z þ1

�1
daexp

�
�1

2
ða��ÞTFTC�1Fða��Þ

�
;

which evaluates to

Prðdj�; fiÞ ¼ ðð2�ÞN�mjCjjFTC�1FjÞ�1=2ð2��2Þ�m=2

� exp

�
� 1

2�2

Xm
k¼1

�
dTC�1Fi

Fi
TC�1Fi

�
2
�

� exp

�
� 1

2
dTC�1d

�
exp

�
1

2
�TFTC�1F�

�
:

(B25)

Thus far we have assumed that we know the level of the
noise in C exactly; however, in general we would like to fit
for a global scaling factor that modifies the overall noise
level in the data set, i.e. we would like to write C0 ¼
GTð�2NÞG where � is a constant to be determined.
Including this in our probability we can write

Prðdj�;�;fiÞ¼ðð2��ÞðN�mÞjCjjFTC0�1FjÞ�1=2ð2��2Þ�m=2

�exp

�
� 1

2�2

Xm
k¼1

�
dTC0�1Fi

Fi
TC0�1Fi

�
2
�

�exp

�
� 1

2�2
ðdTC0�1d��TFTC0�1F�Þ

�
:

(B26)

We can then finally proceed as before integrating over both
� and � to arrive at the final probability

PrðdjfiÞ ¼ �ðm=2Þ
2 log ðR�Þ

�
1

2

Xm
k¼1

�
dTC0�1Fi

Fi
TC0�1Fi

�
2
��m=2

� �ððN �mÞ=2Þ
2 log ðR�Þ

�
� 1

2
ðdT �C�1dÞ

��ðN�mÞ=2
;

(B27)

where we have defined

�C�1 ¼ C0�1 �C0�1FðFTC0�1FÞ�1FTC0�1: (B28)
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