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Abstract
The spectral dimension is an indicator of geometry and topology of spacetime
and a tool to compare the description of quantum geometry in various
approaches to quantum gravity. This is possible because it can be defined not
only on smooth geometries but also on discrete (e.g., simplicial) ones. In this
paper, we consider the spectral dimension of quantum states of spatial geometry
defined on combinatorial complexes endowed with additional algebraic data:
the kinematical quantum states of loop quantum gravity (LQG). Preliminarily,
the effects of topology and discreteness of classical discrete geometries are
studied in a systematic manner. We look for states reproducing the spectral
dimension of a classical space in the appropriate regime. We also test the
hypothesis that in LQG, as in other approaches, there is a scale dependence
of the spectral dimension, which runs from the topological dimension at
large scales to a smaller one at short distances. While our results do not
give any strong support to this hypothesis, we can however pinpoint when
the topological dimension is reproduced by LQG quantum states. Overall, by
exploring the interplay of combinatorial, topological and geometrical effects,
and by considering various kinds of quantum states such as coherent states and
their superpositions, we find that the spectral dimension of discrete quantum
geometries is more sensitive to the underlying combinatorial structures than to
the details of the additional data associated with them.
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1. Introduction

The spectral dimension dS of quantum geometries has been a rather hot topic in recent quantum
gravity research. dS is one of the indicators of topological and geometric properties of quantum
spacetime as described by different approaches, as well as a way to check that an effective
semi-classical spacetime is obtained in appropriate sectors of the theory. One of the main goals
of any such analysis is to prove that, among all the states and histories that appear in the theory
(most of which far from describing any smooth spacetime geometry), configurations which do
so are either dominant or the approximate result of averaging over the others. A further goal
is to study whether the effective dimension of spacetime remains the same at different scales
or if it is subject to a dynamical reduction in the ultraviolet regime [1–3].

In dynamical triangulations [4, 5], the spectral dimension has been important as one of the
few observables available to classify phases of spacetime ensembles. In particular, in causal
dynamical triangulations (CDT) in four dimensions it was found that, while very close to the
spacetime topological dimension d + 1 = 4 at large scales, at least in the ‘geometric phase’,
it takes smaller values at short distances, approaching the value dS � 2 in the ultraviolet limit
[6, 7]. Similar results are obtained in three dimensions [8]. Two is, of course, an interesting value
for the effective dimension in the ultraviolet, because gravity is perturbatively renormalizable
in two dimensions. In fact, also in the asymptotic safety scenario [9, 10] one can find a
reduction of the spectral dimension from the topological dimension d + 1 to half of it under
the renormalization group flow using analytical methods [11–13]. Other formalisms manifest
similar behavior. Hořava–Lifshitz gravity has a built-in dynamical dimensional reduction, due
to the defining anisotropic scaling [13, 14]. Modified dispersion relations in non-commutative
spacetimes [15, 16], super-renormalizable non-local gravity [17], black-hole effective physics
[18] and other scenarios (including string theory [19]) give rise to a dimensional flow as well.

Apart from the intrinsic interest in this effect, its occurrence in approaches to quantum
gravity which are otherwise hard to compare has raised hope that the spectral dimension
might help to relate such approaches to one another, or at least to confront their results [20].
Although the spectral dimension is a rather coarse tool in comparison with more refined
geometric indicators [13, 21], its determination in full-fledged quantum geometries is still a
technically challenging problem.

All the above considerations gave good reasons to investigate the spectral dimension also
in loop quantum gravity (LQG) [22–26]. Using the spectrum of the area operator in LQG to
guess an effective dispersion relation for propagating particles, some evidence was found for
a dimensional flow of kinematical LQG states [27] and their spacetime spin-foam dynamics
[28, 29]. In the present work, we go beyond the arguments used in previous analyses and
investigate the spectral dimension of LQG states in detail, at least at the level of kinematical
states. In particular, we will study the spectral dimension for states defined on large graphs or
complexes.

LQG differs from all the above-mentioned approaches in that the degrees of freedom of
the theory are discrete geometric data, i.e., a combination of holonomies, fluxes or Lorentz
group representations [22, 30] associated with combinatorial structures such as graphs and
cellular complexes. This combination poses new challenges. So far, the spectral dimension
has been investigated in more or less traditional smooth settings, in terms of either modified
differential structures (multi-scale spacetimes [21]) or modified dispersion relations on a
smooth geometric manifold (asymptotic safety, where anomalous scaling is a general feature
at the non-Gaussian fixed point; non-commutative spacetimes, where modified dispersion
relations are a consequence of a deformed Poincaré symmetry; Hořava–Lifshitz gravity, where
the Laplacian is multi-scale by construction; and so on). Also previous work on the LQG case
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[27] has been limited to an approximation in which the scaling of the Laplacian is first extracted
from the area spectrum and then effectively treated as continuous. In other approaches, the
setting is purely combinatorial: such is the case of CDT (the dynamical degrees of freedom
are equilateral triangulations) or graph models [31].

Therefore, the first important step is a definition of the spectral dimension on the type
of discrete geometries LQG is built on3. This preliminary work has already been carried
out in [33, 34], where we have generalized discrete exterior calculus [35] to be applicable
to such discrete geometries, and we have given explicit expressions for the Laplacian (the
basic geometric operator the spectral dimension depends on) in terms of the variables relevant
for LQG.

Unless stated otherwise, from now on by ‘spectral dimension’ we always mean the one of
spatial (not spacetime) geometries. Also, by quantum spectral dimension of a quantum state
of geometry we indicate the spatial spectral dimension as derived from the expectation value
of the heat kernel trace on the quantum geometry. In the usual interpretation, this heat kernel is
the solution of the diffusion equation for a test pointwise particle propagating on the quantum
geometry, where the differential variable is an abstract ‘diffusion time’ τ . One can employ a
different and perhaps more convincing interpretation [19, 36], where the diffusion equation is
a running equation with respect to the resolution 1/

√
τ at which geometry is probed. We will

explain why, in the case of discrete quantum gravity, for a well-defined notion of quantum
spectral dimension the quantum expectation value has to be taken at the level of the heat
kernel, and not directly of the Laplacian.

The combination of combinatorial discreteness and additional (pre-)geometric data
obviously must result in an interplay of their respective effects. To the best of our knowledge,
the latter have never been classified in the literature. A major aim of this paper is to understand
this interplay in the case of kinematical LQG states. We first study systematically the
topological and geometric effects in the spectral dimension of smooth spheres and tori as
well as the discreteness effects of combinatorial complexes with geometric realizations as
(hyper-)cubulations or triangulations of these. This groundwork having been done, we can
then compare the spectral dimension of quantum states with that of the discrete geometries
they are semi-classical approximations or superpositions of. As a general tendency, we find
that the effect of the underlying combinatorics dominates and that a relatively large size of the
base complexes is needed for the spectral dimension to behave as a spatial dimension at all.

To construct explicit LQG states on large complexes and calculate the corresponding
expectation values of global observables is a major and seldom accepted challenge. In the
case of the spectral dimension, however, this becomes inevitable. As a line of attack, we set
up a way to numerically construct large abstract simplicial complexes and define geometries
thereon. We follow [37] to derive their combinatorial properties needed for studying the action
of the Laplacian operator.

While the preparatory work on the classical geometries is done in arbitrary dimensions,
we restrict the quantum analysis to kinematical states of (2+1)-dimensional Euclidean LQG.
There are two reasons for this restriction.

The first is merely technical. The number of degrees of freedom for given assignments
of algebraic data grows with the combinatorics of the complex as n ∼ pd , where d and p
are, respectively, the topological dimension and the size of the combinatorial complex. The
Laplacian operator defined thereon is an n × n matrix, which makes the computational effort

3 There are approaches to quantum gravity where spacetime structures are even more peculiar, but where notions of
dimension nevertheless still can be defined: In causal sets dimension estimators such as the so called Myrheim–Meyer
or the midpoint dimension are used to determine, via the local Minkowski structure, the dimension of the curved
spacetimes which causal sets can be faithfully embedded into [32].
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more severe as d increases. Thus, for a given p one can calculate much larger d = 2 discrete
geometries than in d = 3. On the other hand, a sufficient combinatorial size turns out to
be crucial for the physical interpretation of the spectral dimension as a notion of positive-
definite dimension somewhere close to d. This limitation could be easily overcome by using
a more powerful computational environment for numerical analysis.

The second reason lies in the structure of quantum gravity itself. In 2+1 dimensions, the
spin-network basis of LQG simultaneously diagonalizes all edge-length operators, permitting
a straightforward definition of the Laplacian and a direct identification of deviations of the
quantum spectral dimension from its classical counterpart as quantum corrections. In 3+1
dimensions, one would have to deal further with effects due to the non-commutativity of the
full set of geometric operators needed to define the Laplacian, as well as with the role of
non-geometric configurations which we know are present in the standard SU (2)-based Hilbert
space of the theory. Its construction thus becomes much more involved and it is much harder
to be implemented efficiently for numerical calculations. While these challenges do not pose
any obstacle in principle, we prefer to concentrate here on the more straightforward 2+1 case.
Once the general influence of quantum geometric effects (discreteness, quantum fluctuations,
and so on) on the spectral dimension is understood, one can move on to study the additional
complications that are present in the four-dimensional case.

This paper is quite explorative in nature. There are no constraints on the kind of
combinatorial manifolds LQG states could be defined on. Thus, the only guidance may come
from classical geometries one might want to approximate semi-classically by coherent states.
Furthermore, there is no unique way to parametrize the ‘quantum-ness’ of states. In fact, to
search for genuine quantum effects of LQG states, it is not enough to pick one state and look
only at the value of its spectral dimension at small scales, as is usually done when some kind
of dimensional flow is expected. Instead, we compute the spectral dimension for those states
we consider as ‘more quantum’. These are coherent spin-network states peaked at smaller
representation labels and with larger spread and, more generally, states highly randomized in
the intrinsic geometry or superposed with respect to various geometric degrees of freedom.
Moreover, in order to explore quantum effects of the combinatorial structure and to compare
with CDT, we consider superpositions of these structures as well.

1.1. Outline

In section 2.1, the spectral dimension is introduced by the common definition on Riemannian
manifolds. We present then a definition on discrete geometries. This is the basis whereupon
to define the quantum spectral dimension in general, and explicitly in the case of (2+1)-
dimensional LQG, which we review.

In section 3, geometric and topological features are discussed, both analytically and
numerically, in particular for the simple examples of spheres and tori. In section 4, we study
the features of the spectral dimension on discrete structures, exemplified through various
cases. These preliminary considerations are carried out also in higher dimensions. This part
of the paper classifies phenomena which can appear in all contexts where a discrete spacetime
structure is employed, both in analytic and numerical applications; hence, it may be of interest
also for the general reader not specialized in quantum gravity.

In section 5, the expectation value of kinematical quantum space states in 2+1 LQG
is analyzed. Here the focus is on investigating the relevance, for the spectral dimension, of
the geometric data additional to the geometry coming from purely combinatorial structures.
The spectral dimension of semi-classical states is compared with the classical one to identify
quantum corrections, which turn out to be rather small. Furthermore, superpositions of coherent
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states peaked at different spins will be discussed; the spectral dimension of these configurations
will be found via a certain averaging procedure.

Complementary to these superpositions in geometry, in section 6 we analyze the spectral
dimension of superpositions of states on two classes of torus triangulations. It turns out that
the quantum spectral dimension in LQG is more sensitive to the underlying graph structure of
states than to the associated geometric data.

2. Definition of discrete and quantum spectral dimension

In this section, we start by introducing the concept of spectral dimension in the usual
context of Riemannian manifolds. We show how this definition can be transferred to discrete
pseudo-manifolds, i.e., abstract finite simplicial complexes with manifold properties. It is
straightforward then to define the quantum spectral dimension in terms of expectation values
on quantum states. For kinematical states of LQG in 2+1 dimensions, we argue that this
expression is well defined under rather mild conditions.

2.1. Spectral dimension of Riemannian geometries

The definition of the spectral dimension is related to the scaling of the propagator of a massless
test particle field (or, equivalently, to a diffusion process on the spatial manifold). dS is defined
via the heat kernel K(x, x′; τ ), which describes the diffusion of the particle in fictitious ‘time’
τ from point x′ to x. K is the solution of the diffusion equation

∂τ K(x, x′; τ ) − �xK(x, x′; τ ) = 0, (2.1)

where � is the Laplacian with respect to the underlying space. Actually, τ has dimension of a
squared length since we set the diffusion parameter in front of the Laplacian to 1. Alternatively,
equation (2.1) can be regarded as a running equation establishing how much we can localize
the point particle, placed at some point x′, if we probe the geometry with resolution 1/

√
τ

[36]. The length scale
√

τ represents the minimal detectable separation between points. While
in the diffusion interpretation K is the probability to find the particle at point x after diffusing
for some time τ from point x′, in the ‘beta-function’ interpretation K is the probability to
see the particle in a neighborhood of point x of size ∼ √

τ if the geometry is probed with
resolution 1/

√
τ . For infinite resolution (τ = 0) and a delta initial condition, the particle is

found where it was actually placed (at x′), while the smaller the resolution (i.e., larger diffusion
time) the wider the region where it can be seen. There is no practical difference between the
two interpretations but the latter is more suitable in diffeomorphism-invariant theories where
the notion of diffusion time makes no sense (while a Lorentz-invariant scale does).

A formal solution to the problem is provided by

K(x, x′; τ ) = 〈x′| exp(τ�)|x〉, (2.2)

where the initial condition is incorporated as the definition of the inner product 〈·|·〉 of particle
states. Usually, the particle is taken to be concentrated at τ = 0 in the point x′, but it could
start with other distributions.

In the usual context of a Riemannian d-manifold (M, g), the Beltrami–Laplace operator
is (on 0-forms the connection Laplacian and Hodge Laplacian agree)

�g = Tr ∇2 = gμν∇μ∇ν = gμν
(
∂μ∂ν − �ρ

μν∂ρ

) = 1√
g
∂μ

√
ggμν∂ν. (2.3)

With the initial condition

K(x, x′; 0+) = 〈x′|x〉 = 1√
g
δ(x − x′), (2.4)
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the heat kernel is

K(x, x′; τ ) = e− D2 (x,x′ )
4τ

(4πτ )
d
2

, (2.5)

with D(x, x′) the geodesic distance. On (M, g) there is a well-defined (the so called Seeley–
DeWitt) expansion of the heat kernel around the solution on a flat manifold K0(x, x′; τ ) with
the metric distance being the Euclidean norm D(x, x′) =

√
|x − x′|2,

K(x, x′; τ ) = K0(x, x′; τ )

∞∑
n=0

bn(x, x′) τ n, (2.6)

where the bn(x, x′) are computable in terms of geometric invariants [38].
The spectral dimension probed by the particle can now be defined as the scaling of the

trace of the heat kernel

P(τ ) = Tr K(x, x′; τ ) =
∫

M
ddx

√
gK(x, x; τ ), (2.7)

called return probability.
While in the flat case P(τ ) = (4πτ )−d/2V , where V = ∫

M ddx, the general heat-kernel
expansion yields a power series

P(τ ) = V

(4πτ )
d
2

∞∑
n=0

anτ
n (2.8)

where V = ∫
M ddx

√
g and the coefficients an = Tr bn consist of geometric invariants averaged

over the manifold.
The spectral dimension dS can be implicitly defined as the scaling of the heat trace in

some limit of τ ,

P(τ ) � τ− dS
2 , (2.9)

such that dS = d for the flat case, while in general there are corrections related to global
properties described by the geometric invariants an. The implicit definition (2.9) can be
generalized as

dS(τ ) := −2
∂ ln P(τ )

∂ ln τ
. (2.10)

By definition (via heat trace P, heat kernel K and Laplace operator �) the spectral dimension
is a functional of the geometry [g] on the given manifold M.

In most of the literature on quantum gravity, equation (2.1) is taken on Euclideanized
spacetime but, as stressed in the introduction, we will strictly confine our analysis to spatial
geometries. Consequently, d = 3 is the case that fits large scale, semi-classical observations.

2.2. Spectral dimension of discrete geometries

From a quantum gravity perspective, the spectral dimension is particularly interesting because
it can be rather easily extended to discrete geometries as well. Discrete geometries constitute
the degrees of freedom of LQG, spin foams and group field theory (and of CDT in the purely
combinatorial case, that is when the graph distance is chosen to specify completely the
geometry).

Let us briefly recapitulate the framework of discrete calculus needed for the definition of
the spectral dimension on discrete geometries provided in [33]. In the most general context we
deal with combinatorial complexes, in particular abstract finite simplicial d-pseudo-manifolds
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K, with additional (pre-)geometric data, i.e., volume variables associated with simplices or
cells. If K has a geometric realization |K| on some metric space, it can be thought of as the
triangulation of a smooth geometry (M, g). But this needs not be the case.

In this setting, there is a definition of the Laplace operator in terms of discrete exterior
calculus, giving a precise meaning to the formal expression (2.2). To this end, we take the
diffusing scalar test particle field φ as a field living on the d-simplices σ , or equivalently on the
vertices of the combinatorially dual complex. Then, the action of the Laplacian on φ evaluated
at some simplex σ takes the form

− (�φ)σ = 1

Vσ

∑
σ ′∼σ

Vσ∩σ ′

lσ∩σ ′
(φσ − φσ ′ ), (2.11)

where the sum runs over neighboring simplices and Vσ , Vσ∩σ ′ and lσ∩σ ′ are, respectively, the
d-volume of σ , the (d − 1)-volume of the common face and a dual length through that face.

By definition, this Laplacian has most of the properties of the continuum Laplacian.
That is, it obeys the null condition, it is self-adjoint (which relates to the symmetrizability
of its matrix) and it is local, i.e., the action on a given position depends only on neighboring
positions. In [33] we have also argued for the convergence to the continuum Laplacian under
refinement of triangulations. Nevertheless, there are properties which are further dependent on
the definition of the volumes. We have argued that a definition in terms of a barycentric dual
interpretation of the volumes should be preferred to a circumcentric one in the field theoretic
context because only the former preserves positivity of the Laplacian. For this reason, we will
adhere to this convention throughout this paper.

If we further assume that the volumes associated with the finite simplicial complex
K are finite and non-degenerate, in particular non-vanishing, the matrix elements of the
Laplacian are finite and well defined. The Laplacian is then diagonalized by its eigenfunctions
eλ corresponding to eigenvalues λ,

(−�eλ)σ = λeλ
σ , (2.12)

and these form a complete orthonormal basis defining momentum space. Using the
transformation to momentum space the heat trace of φ turns out to be [33]

P(τ ) = Tr〈σ ′|eτ�|σ 〉 =
∑

λ∈Spec(�)

e−τλ. (2.13)

Since � is symmetrizable, for real geometric volume coefficients in equation (2.11) the
spectrum Spec and thus the heat trace are real valued.

In the trivial case of constant volumes over the complex, e.g., equilateral triangulations,
the Laplacian is just proportional to the combinatorial graph Laplacian of the dual 1-skeleton
of the complex K.

2.3. Spectral dimension of quantum states of geometry

In a quantum theory of geometry, the metric or other classically equivalent variables are
promoted to operators. The spectral dimension as an observable is a functional of these
operators and we are now interested in its expectation value for a given state ψ of space
geometry (using the heat trace (2.7)). One possibility is to take the heat trace as the primary
observable to be quantized. Formally,

dψ

S (τ ) := −2
∂ ln〈P̂(τ )〉ψ

∂ ln τ
= −2

∂ ln〈Tr ̂K(x, x′; τ )〉ψ
∂ ln τ

. (2.14)
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Suppose the quantum Laplacian �̂, operator on the Hilbert space of geometry states, is
diagonalizable with orthonormal eigenbasis |s〉 (later we will take the states |s〉 to be the
spin-network basis of the kinematical LQG Hilbert space). Then every state can be expanded
in this basis, |ψ〉 = ∑

s
ψ(s)|s〉, and the heat trace simplifies:

〈P̂(τ )〉ψ = 〈ψ |Tr eτ�̂|ψ〉 =
∑

s

|ψ(s)|2〈s|Tr eτ�̂|s〉 (2.15)

=
∑

s

|ψ(s)|2Tr eτ 〈s|�̂|s〉. (2.16)

An explicit expression of the spectral dimension (2.14) is thus

dψ

S = −2τ

∑
s
|ψ(s)|2Tr〈s|�̂|s〉 eτ 〈s|�̂|s〉∑

s
|ψ(s)|2Tr eτ 〈s|�̂|s〉 . (2.17)

In the following, we will drop the superscript ψ in the spectral dimension.
Alternatively, one might consider the Laplacian instead of the heat kernel as the

fundamental observable for the spectral dimension. This would give a different result with a
product instead of the sum over the eigenbasis. From

∂τ K(x, x′; τ ) = 〈�̂〉ψK(x, x′; τ ), (2.18)

there follows

Pψ (τ ) ∝ Tr e
τ
∑

s
|ψ(s)|2〈s|�̂|s〉 = Tr

∏
s

eτ |ψ(s)|2〈s|�̂|s〉. (2.19)

On states s with discrete support, e.g., on the simplicial complexes considered here, this formal
expression makes sense only if all states live on the same discrete structure. Otherwise, the
product of e〈s|�̂|s〉 and e〈s′ |�̂|s′〉 is not defined, since it would amount to a sum of matrices
of different size in the exponent. In theories of quantum gravity with discrete geometries as
degrees of freedom, such as LQG, the full Hilbert space usually contains states (including
superpositions) on various distinct combinatorial structures. For this reason, the possibility of
defining the quantum spectral dimension as derived from the expectation value of the Laplacian
has to be excluded.

A similar issue arises when taking the expectation value at the level of the heat kernel K,
since it is a function of positions on the (discrete) manifold. It can only be avoided by tracing
over the manifold. Therefore, we will take the expression in terms of the expectation value of
the heat trace, equation (2.14), as the proper definition of quantum spectral dimension. This
is the same as used in CDT [6–8], while in the smooth approaches where this issue does not
arise [11–15, 27–29] the expectation value is taken at the level of the Laplacian.

As a side remark, notice that using the ‘normed’ heat trace

P̃(τ ) := 1

V
P(τ ) = 1

V
Tr K(x, x′; τ ) (2.20)

instead of P(τ ) would lead to a classically equivalent definition of the spectral dimension
(2.10), as its scaling is independent of proportionality factors. This definition is very often
used for effective continuous spacetimes in quantum gravity, as it gets rid of an infinite volume
prefactor in P. However, at the quantum level and in the case of superposition states, there is
a notable difference. For the volume-normed heat trace (2.20),

〈 ̂̃P(τ )〉ψ =
∑

s

|ψ(s)|2〈s|V̂ −1|s〉Tr eτ 〈s|�̂|s〉, (2.21)

8
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states are weighted by an additional inverse-volume factor 〈s|V −1|s〉. Since for quantum
geometries this factor might have singular behavior (for instance, on states of degenerate
geometry where the volume operator is not densely defined and has 0 as an eigenvalue), we
prefer equation (2.7) to define the quantum spectral dimension.

2.4. Heat-trace operator on 2+1 kinematical LQG states

LQG states are functions of spatial geometric variables (holonomies, flux variables or
representation labels) smeared over graphs � which we restrict to be dual 1-skeletons of
a discrete pseudo-manifolds K, to be able to use the discrete Laplacian (2.11). Furthermore,
as anticipated and motivated in the introduction, we will restrict here to (2+1)-dimensional
LQG.

Now, the elements of Hkin = ⊕
� H� are functions of the holonomies on the links of the

dual graph � = (�K)1 of a simplicial complex K corresponding to a d = 2 spatial slice4.
Since � is 3-regular, i.e., all nodes are 3-valent, the gauge-invariant spin-network basis {s�, j}
is given by contraction of the link representations { ji} with the unique trivial intertwiners, i.e.,
Clebsch–Gordan symbols.

In 2+1 dimensions the spin-network basis diagonalizes the length operators with a
spectrum given in terms of the SU (2) Casimir operator [40, 41]:

l̂2
i |s〉 = l2

i |s〉 = l2( ji)|s〉 = l2
γCji |s〉 = l2

γ [ ji( ji + 1) + c]|s〉, (2.22)

where the scale lγ = lPlγ is set by the Planck length and the Barbero–Immirzi parameter and
c is a constant dependent on the quantization map chosen for the Casimir operator [41, 42]. If
c > 0, the Clebsch–Gordan conditions

| j1 − j2| � j3 � j1 + j2, (2.23)

implicit in the intertwiners on vertices of � yield triangle inequalities on the primal complex,

l1 + l2 > l3. (2.24)

This can be seen from the inequality√
j1( j1 + 1) + c +

√
j2( j2 + 1) + c >

√
( j1 + j2)( j1 + j2 + 1) + c �

√
j3( j3 + 1) + c.

(2.25)

Only for c = 0 there are degenerate spin configurations where the inequality on the
lengths is not strict (e.g., ( j1, j2, j3) = (0, 1, 1)). Even in this case one could obtain the
triangle inequalities by restricting to those states in Hkin corresponding to non-degenerate
configurations. We do not expect this to be a significant restriction in the calculation of
the quantum spectral dimension. In the following we take c = 1/4, although calculations of
the spectral dimension with different values indicate that dS is not so much sensitive to such
choice. In fact, we have tested the c = 0 case with very similar results.

Now, an obvious choice is to take an explicit form of the discrete Laplacian in terms of
edge-length variables (see [33, equation (63)]). As an operator, it acts on a spin-network state
{s�, j} as

�̂ = �̂
(
l2
i

) = �
(
l̂2
i

) = �(Cji ) = �( ji). (2.26)

While the form of the primal volumes in the Laplacian, i.e., the triangle areas Aσ (l2
i ) and the

edge lengths themselves, is straightforward, there is in principle some freedom in choosing

4 Labeling the spaces H� by the dual graphs � instead of the corresponding simplicial pseudo-manifolds is allowed
because their relation is one-to-one. This can be easily seen since dual 1-skeletons of simplicial pseudo-manifolds are
colorable and colorable graphs are dual to simplicial pseudo-manifolds [39].
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the form of the dual edge lengths as functions of primal lengths. We choose an expression
related to a barycentric dual as argued for above and in [33].

Let us now check whether the formal expression for the heat-trace expectation value is
well defined in this context, i.e., if the heat trace is a self-adjoint operator. More precisely,
the question is the following: Is the heat-trace operator P̂(τ ) = T̂r eτ� self-adjoint on the
kinematical Hilbert space Hkin? That is, for s, s′ ∈ Hkin,

〈s|P̂(τ )s′〉 ?= 〈P̂(τ )s|s′〉. (2.27)

With the above Laplacian, the left-hand side is

〈s�, j|P̂(τ )s�′, j′ 〉 = 〈s�, j| Tr eτ�̂s�′, j′ 〉 = Tr eτ�( j)δ�,�′δ j, j′ , (2.28)

where δ�,�′ is the identity of graphs up to automorphisms (taking the usual inner product of
LQG, states defined on distinct graphs are orthogonal). This is equal to the right-hand side of
(2.27) if, and only if, the spectrum of P(τ ) is real:

〈P̂(τ )s�, j|s�′, j′ 〉 = 〈Tr eτ�̂s�, j|s�′, j′ 〉 = [Tr eτ�( j)]∗δ�,�′δ j, j′ . (2.29)

In general, since the entries of � consist of lengths and areas, they are real on geometric
states where triangle inequalities (2.24), or equivalently closure constraints (which are
geometricity conditions) are satisfied. Then, Tr eτ� is real as well. Hence P̂(τ ) is a good
quantum observable on the kinematical states of 2+1 gravity with the operator ordering of l̂
chosen [41, 42] such that c > 0 which we are considering here.

So far, we have given and discussed the definition of spectral dimension in the smooth,
discrete and quantum cases, in particular for quantum states of geometry in 2+1 LQG, thereby
setting the stage for its calculation. Since the quantum properties of such observable depend
on their interplay with classical topological and discreteness effects, in the next two sections
we will first investigate these effects separately before addressing the quantum case.

3. Simple examples for effects of topology and geometry: sphere and torus

In this section, we calculate the spectral dimension of spheres and tori and discuss the role
of topology and geometry in these examples. In preparation for the actual LQG calculations
(where these topologies are chosen), it is important to have these effects under control.

At large diffusion scales τ , the dominant effects in the behavior of the heat trace and the
spectral dimension are due to the topology of M. Qualitatively, a compact topology leads to
a fall-off of dS(τ ) to zero. The scale at which this happens is related to the geometry (i.e.,
the curvature radii). In the light of the heat-trace interpretation in terms of random walks, this
can be easily understood: the return probability approaches one after diffusion times τ larger
than the circumferences (closed geodesics). The beta-function interpretation is also easy to
spell out: as the resolution is lowered, one cannot distinguish different points but, due to the
limited compact geometry of the set, the particle does not spread over an infinite manifold and
it roughly appears localized in the same region.

To clarify these topological and geometric features, we discuss the case of the circle S1

and the generalization to the d-torus T d and the d-sphere Sd . For T d , we even find analytic
solutions in closed form for the heat trace.

On a circle of radius R, the spectrum of the Laplacian is −(k/R)2, k ∈ Z, yielding a heat
trace

PS1 (τ ) =
∑
k∈Z

e−( k
R )

2
τ = θ3

(
0, e− 1

R2 τ
)

= θ3

(
0

∣∣∣∣ 1

R2

iτ

π

)
(3.1)

10



Class. Quantum Grav. 31 (2014) 135014 G Calcagni et al

1 2 5 10 20 50 100
0.0

0.2

0.4

0.6

0.8

1.0

τ

dS

d

Figure 1. Spectral dimension of Sd rescaled to volume VSd = 1, for comparison divided
by d, for d = 1, 2, 3, 4 (S1 dashed line, S2 solid, S3 dot-dashed and S4 dotted). The
inverse square of the corresponding radii sets the scale of the topological effect. At the
same time, it is a comparison with the case of T d with radii R = 1/(2π) as these tori
are equivalent to the case of S1.

in terms of the third theta function5. While dS(τ ) = d = 1 for τ < R−2, due to the periodicity
there is a fall-off to zero for τ > R−2 (figure 1).

The geometry defined by the constant curvature radius R governs only the scale at which
the topological effect takes place. In that sense, the fall-off of the spectral dimension can be
understood as due to the combination of geometry and topology.

3.1. The torus T d

The torus T d = (S1)×d with radii Ri generalizes the case of the circle straightforwardly with
spectrum −∑d

i=1 ki/Ri, �k ∈ Zd , such that

PT d (τ ) =
∑
�k∈Zd

e
−∑(

ki
Ri

)2
τ = θ

⎛⎜⎝0

∣∣∣∣∣ iτ

π

⎛⎜⎝R−2
1

. . .
R−2

d

⎞⎟⎠
⎞⎟⎠ , (3.2)

where θ is the (multi-dimensional) Riemann θ -function [43]. The spectral dimension of the
case where all radii are equal turns out to be just d times the spectral dimension of T 1 = S1,
since

PT d (τ ) ∝ [PS1 (τ )]d . (3.3)

On the other hand, with more geometric parameters given by the constant curvature radii Ri, one
can see that the geometry affects not only the scale at which the decay starts, but also accounts
for various geometric regimes (figure 2). If the radii are ordered as R1 � R2 � . . . � Rd ,
the spectral dimension is constantly the topological dimension for τ < 1/R2

1 and zero
for τ > 1/R2

d . In intermediate regimes, it can have plateaux at heights corresponding to
intermediate integer dimensions, if the radii are of sufficiently different order. This can be
easily understood: When k radii are much smaller than a given scale, the d-torus effectively
appears as a (d − k)-torus for the diffusion process at that scale.

5 Here and in the following we use the notation for theta functions as defined in [43].
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Figure 2. Spectral dimension of T 2 with various geometries, (R1, R2) = (1, 1),
(R1, R2) = (1,

√
3/2), (R1, R2) = (3, 1/3) (solid, dash-dotted and dashed curve).

3.2. The sphere Sd

The spectrum of the Laplacian acting on functions on the sphere S2 ∼= SU (2)/U (1) of radius R
is proportional to the SU (2) Casimir, −C( j)/R2 = − j( j+1)/R2, for j ∈ N with (2 j+1)-fold
degeneracy, leading to a heat trace [15]

PS2 (τ ) =
∞∑
j=0

(2 j + 1) e− j( j+1)

R2 τ
. (3.4)

More generally, for the d-sphere Sd , d � 1, the spectrum is given by the eigenvalues
− j( j + d − 1)/R2 with multiplicities such that

PSd (τ ) = 1 +
∞∑
j=1

[(
d + j

d

)
−

(
d + j − 2

d

)]
e− j( j+d−1)

R2 τ
. (3.5)

The spectral dimension of Sd has a slower fall-off in comparison with the torus T d , with d � 2.
Thus, d-spheres are examples where the topological dimension is only obtained in the limit
τ → 0. In contrast with the torus, spheres do not exhibit any multi-scale behavior since they
are governed by only one geometric parameter.

In this section, we have discussed the generic effects of spherical and toroidal topology
and of the geometric curvature parameters. All compact topologies have a spectral dimension
going to zero at scales of the order of the curvature radii. Below this scale, dS agrees with the
topological dimension in the case of the tori, while for spheres such an accordance holds only
in the small-scale (or infinite resolution) limit τ → 0 (figure 1). Furthermore, in general a
d-torus is given by d geometric parameters setting the intermediate scales at which the torus
has an effective lower-dimensional behavior (figure 2).

4. Discreteness effects

Now we consider classical effects of space discreteness in the spectral dimension. To this
aim, we calculate the spectral dimension of various examples of hyper-cubulations and
triangulations. This is preliminary to the quantum case in a twofold way. First, it is important for
the distinction of effects of the underlying discrete structure from additional quantum effects.
Second, from a practical perspective, one can then choose those complexes with smaller and
more controllable discreteness features. They are more appropriate for analyzing quantum

12
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effects of states thereon. We find that regular torus triangulations are the best candidates for
this purpose.

4.1. Hypercubic lattice

As a simple, purely combinatorial case to start with, we consider finite and infinite hypercubic
lattices.

On a toroidal lattice (Zn)
d , the spectral dimension can be calculated analytically. For the

cycle graph Cn, which corresponds to the d = 1 case Zn, the eigenvalues of the Laplacian are
known to be [44]

λk = 1 − cos

(
2πk

n

)
= 2 sin2

(
πk

n

)
, k = 1, . . . , n, (4.1)

such that

Pd=1(τ ) = e−τ

n∑
k=1

eτ cos
(

2πk
n

)
(4.2)

and

dd=1
S (τ ) = 2τ

⎡⎣1 −
∑

k cos
(

2πk
n

)
eτ cos

(
2πk

n

)
∑

k e2τ cos
(

2πk
n

)
⎤⎦ . (4.3)

Using trigonometric relations, a given sum over exponentials of cosines can be further
simplified to a sum over hyperbolic cosines; e.g., for n = 8

dd=1
S (τ ) = 2τ

[
1 − sinh(2τ ) + √

2 sinh(
√

2τ )

1 + cosh(2τ ) + 2 cosh(
√

2τ )

]
. (4.4)

As in the case of smooth tori, for the general case of arbitrary dimension d

Pd (τ ) =
d∏

j=1

Pd=1(τ ), (4.5)

yielding just a pre-factor of d for the spectral dimension:

dd
S (τ ) = d dd=1

S (τ ). (4.6)

This can be compared with an infinite lattice Zd . For d = 1, because of translational
symmetry one can consider only the heat kernel φn = K0n for the sites (0, n), satisfying [45]

dφn

dτ
= φn+1 + φn−1 − 2φn

2
, (4.7)

with initial condition φn(0) = δn0. The solutions are [45]

φn(τ ) = e−τ In(τ ), (4.8)

where In(τ ) is the hyperbolic Bessel function. One can use translational symmetry (Kmn =
Km+i,n+i) to get the return probability

P(τ ) = Tr K(τ ) ∝ K00(τ ) = φ0(τ ) = e−τ I0(τ ) ∼ 1

τ 1/2
[1 + O(1/τ )]. (4.9)

Therefore, only for τ � 1 the topological dimension dS = 1 is obtained, while in general

dS(τ ) = 2τ

[
1 − I1(τ )

I0(τ )

]
, (4.10)

with a maximum of dS,max ≈ 1.22 at τ ≈ 1.70.
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Figure 3. Analytic dS for infinite 1d lattice, compared with the finite Z8 (dotted curve),
Z64 (dot-dashed) and Z512 (dashed).

We can generalize the solution of [45] to d-dimensional lattices where the heat equation is

dφn

dτ
=

d∑
i=1

φn+ei + φn−ei − 2φn

2d
, (4.11)

for a generic lattice labeling n and shifts ±ei in the i-direction. A more useful labeling is a
multi-index n = n1n2...nd :

dφn1...nd

dτ
=

d∑
i=1

φn1...ni+1...nd + φn1...ni−1...nd − 2φn1...nd

2d
. (4.12)

The solution is

φn1...nd (τ ) = e−τ

d∏
i=1

Ini

(τ

d

)
; (4.13)

in particular,

K00(τ ) = φ00...0(τ ) = e−τ

d∏
i=1

I0

(τ

d

)
=

[
e− τ

d I0

(τ

d

)]d
. (4.14)

The heat trace scales as d times the heat trace of the one-dimensional case.
The small-τ behavior of the finite lattice is exactly the same, as one can easily see

numerically (figure 3).
Extending the discrete spectrum (4.1) to one parametrized by a continuous parameter

p ∈ [0, π [⊂ R in the same interval,

2 sin2

(
πk

n

)
→ 2 sin2 p, (4.15)

the same result can also be shown by computing the heat trace analytically:

P(τ ) = Tr e−τ2 sin2 p ∝
∫ π

0
dp e−τ2 sin2 p = e−τ I0(τ ). (4.16)

The straightforward extension to d dimensions is given by

�(p) =
d∑

i=1

2 sin2 pi, (4.17)
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Figure 4. dS of equilateral triangulations of S2 in terms of the boundary of the (triangular)
platonic solids, icosahedron, octahedron and tetrahedron (solid, dashed and dash-dotted
curve) and of the dipole (dotted curve).

so that

P(τ ) = Tr e
−τ

d∑
i=1

2 sin2 pi ∝
∫ π

0
dd p e

−
d∑

i=1

τ
d 2 sin2 pi

(4.18)

=
d∏

i=1

(∫ π

0
dpi e− τ

d 2 sin2 pi

)
=

[
e− τ

d I0

(τ

d

)]d
. (4.19)

Incidentally, the use of a continuous parameter p allows one to connect these results to the
continuous case, Zd → Rd . Introducing a lattice spacing a (compare with lattice gauge theory,
e.g., [47]) compatible with this spectrum,

�(p) = 2

(
2

a
sin

ap

2

)2
a=2= 2 sin2 p, (4.20)

where now p ∈ [0, 2π
a [, the usual continuum limit is

2

(
2

a
sin

ap

2

)2

→
a→0

2p2. (4.21)

The formulæ for the heat trace and spectral dimension are modified accordingly.

4.2. Simplicial complexes

The type of combinatorial structures that are most relevant for the quantum-gravity applications
below are simplicial complexes. In order to avoid having to deal with the difficult problem of
constructing quantum-geometry states on infinite spaces, we restrict to simplicial manifolds
with compact topology.

Triangulations of S2. Obvious triangulations of the 2-sphere are the boundaries of the three
triangular platonic solids (tetrahedron, octahedron, icosahedron). These are the only regular
(i.e., equilateral) triangulations of the smooth 2-sphere in terms of non-degenerate simplicial
complexes. The result for dS are shown in figure 4.

The larger the triangulation, the taller the height of the peak. In particular, only the spectral
dimension of the icosahedral triangulation can be seen as providing a good approximation for
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Figure 5. Smallest regular (non-degenerate) simplicial complex of T 2 topology given
by p2 = 32 vertices.

the topological dimension d = 2, provided one defines it to coincide with the height of the
peak (and assuming this would become a plateau for larger complexes, as seems to be the case
in feasible calculations).

The extent to which too-small triangulations fail to capture the topological dimension
can be seen even more drastically in the case of the degenerate complex, called dipole or
(super)melon, triangulating a d-sphere in terms of just two simplices. Independently of the
dimension d, its heat trace is proportional to (see appendix C in [33])

P(τ ) = P(t = aτ ) = 1 + e−t, (4.22)

where the only geometric factor a can be absorbed into the diffusion parameter. This yields a
spectral dimension

dS(t) = 2t

1 + et
. (4.23)

From its derivative
d

dt
dS(t) = 2

1 − e(t − 1) et−1

(1 + et )2
, (4.24)

it can be seen that the maximum is at tmax = W0(1/e) + 1 ≈ 1.278 (where W0 is the upper
branch of the real Lambert W -function) and has value

dmax
S = dS(tmax) ≈ 0.56, (4.25)

independent of the parameter a. Only the position of the maximum is rescaled by a.

Regular equilateral triangulations of T d . While there are no further, larger equilateral
triangulations of S2, for the d-torus T d there are regular equilateral triangulations of arbitrary
combinatorial size (i.e., number of vertices) N0 = pd . These are obtained from hypercubic
lattices via a so called standard triangulation of each hypercube [46] and are non-degenerate
for p � 3. In two dimensions, these are triangulations of the flat torus with radii ratio
R1/R2 = sin(π/3) = √

3/2 (figure 5).
When comparing triangulations of different combinatorial size N0, one can either (a) fix

the edge lengths to some scale l∗ such that the geometric size of the triangulations is growing
with the combinatorial size, or one can (b) rescale them to l(p) = l∗/p according to the
combinatorial size to keep the overall geometric size fixed. Thus, in the limit p → ∞ the
former case gives a triangulated plane R2, while the latter approximates the smooth flat T 2
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Figure 6. Right plot: (a) unrescaled equilateral T 2 triangulation with N0 = p2 = (3×2k)2

vertices, k = 0, 1, 2, 3 from left to right (dotted, dot-dashed, dashed thin, solid curve)
indicating a convergence to the topological dimension for large τ in the p → ∞ limit,
compared with the infinite quadrangular lattice (dashed thick). Left plot: (b) rescaled
triangulations (k = 0, 1, 2, 3 from right to left) indicating a convergence to the smooth
T 2 (dashed thick) for p → ∞.
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Figure 7. Left: (a) equilateral T 3 triangulation in terms of N0 = p3 vertices, p =
6, 8, 10, 12 from left to right (dotted, dot-dashed, dashed thin, solid curve), compared
with the cubic lattice (dashed thick). Right: (b) rescaled triangulations.

geometry. Indeed, the calculations in figure 6 (for various finite p) indicate that the spectral
dimension of these triangulations capture both limits.

Moreover, these calculations show that the only difference between a quadrangular
(2d hypercubic) and a triangular lattice of the plane consists in a qualitatively different
discretization effect given by the peak around τ = 1.

The same analysis can be repeated in higher dimensions. In terms of the standard
triangulation of the cube, there is an equilateral triangulation of the 3-torus with radii ratios
R2/R1 = √

3/2 and R3/R1 ≈ 0.752. The calculations in figure 7 again indicate the correct
behavior in the limit of infinite triangulations. The discretization effect here is slightly more
marked, in that below the relatively small peak there is a small regime of relatively weak slope
before the usual steeper fall-off at small τ sets in.

Subdivisions of triangulations of T d . An alternative strategy for obtaining combinatorially
larger simplicial manifolds of a given topology is to subdivide them. A natural way to do so is
the Pachner 1-(d+1) move where one d-simplex is subdivided into d +1 simplices by inserting
a vertex in the middle of the original simplex and connecting it to all its vertices.
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Figure 8. Spectral dimension of k global subdivisions of the smallest regular T 2-
triangulation, k = 1, 2, 3, 4 (dotted, dot-dashed, dashed and solid curve). Left: (a)
purely combinatorial complex, with a dashed line at dS = 1.37. Right: (b) complex with
rescaled edge lengths triangulating the flat torus, with a dashed line at dS = 3/5.

Again, concerning the geometric realization of such a combinatorial structure, one can
either (a) consider it as an equilateral triangulation (although this is not a triangulation of a
torus with flat geometry anymore) or (b) rescale the edge lengths such that it is a triangulation
of the flat torus. One can, for example, consider the vertex v inserted by the Pachner 1-(d+1)
move as the barycenter of a d-simplex with vertex set (i jk . . .). The new edges (iv) then need
to have squared lengths

l2
iv = 1

(d + 1)2

⎛⎝d
∑

j

l2
i j −

∑
( jk)

l2
jk

⎞⎠ (4.26)

to preserve the flat geometry approximated by the triangulation (see [33], Appendix B.2; sums
are running over vertices j and edges ( jk) of the simplex not containing the vertex i).

We compare these two possibilities in two cases. (i) First, we subdivide the above T 2

triangulation (N0 = 9) applying the 1-(d+1) move simultaneously on all triangles; (ii) second,
we apply it randomly.

(i) In the first case of global subdivisions (figure 8), considered as equilateral triangulations,
there is a peak slightly lower than d = 2 at the diffusion time scale of the size of the
triangulation. But at smaller intermediate scales we find small oscillations around a value
of about dS ≈ 1.37, obtained after integrating over a period. It is not surprising that
there is a deviation from the topological dimension, since these equilateral triangulations
have geometric realizations only in terms of a torus curved at various scales in a specific
manner.

What might be more surprising is that also the complex with barycentrically rescaled
edges triangulating the flat torus has a spectral-dimension plot quite different from the
equilateral triangulations and cubulations considered above. There is a more complicated
oscillatory behavior but now at a value around 5/3. Furthermore, the fall-off at small τ is
much less steep.

The rescaled Pachner subdivisions are thus an example of a triangulation which
substantially deviates with respect to the spectral dimension in the corresponding
continuum geometry, due to the particular combinatorial structure. In particular, in the
finite case there is no plateau at the value of the topological dimension, nor is it expected
that the topological dimension be recovered in the large-size limit. An important lesson
one can draw is that the spectral dimension of a triangulation of a given geometry does
depend on the combinatorics of the chosen triangulation.
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Figure 9. Spectral dimension of the simplicial complex obtained from the smallest
regular T 2-triangulation by 6 × 3k single random subdivisions, k = 1, 2, 3, 4 (dotted,
dot-dashed, dashed and solid curve) taken (a) as equilateral (left, with dashed line at
dS = 1.37) or (b) rescaled triangulations of the flat torus (right, with dashed line at
dS = 3/5).

(ii) In the second case, we construct subdivisions by choosing (with uniform random
distribution) one triangle to subdivide, performing the subdivision, and then re-iterating
the process. The results (figure 9) hint at some kind of averaging effect. In the equilateral
case, the oscillations are washed away and the height of the peak at the volume-size scale
seems to be dependent on the particular element chosen in the random ensemble. The
closer is the element to a global subdivision, the more pronounced the peak.

In the rescaled case, the regime around 3/5 is much smaller than in the global
subdivided case and the fall-off is even less steep. This might be explained by the fact
that the random subdivision effectively averages over both the regime corresponding to a
plateau and the regime of low-τ fall-off.

Finally, we have checked a very peculiar element in the random ensemble, namely the
repeated subdivision around the same vertex of the triangulation. This is interesting because
it shows that the spectral dimension is very much dependent on the combinatorics, yielding
a spectral dimension which could be conjectured to run to dS → 1 in the large-size limit, as
suggested by the calculations at finite sizes (figure 10). Since this property of the example
is actually independent of the global structure of the complex, one can have the same result
starting with only one triangle.

In this section, we have investigated discreteness effects in the spectral dimension for
various equilateral lattices. In general, there are three characteristic features. (A) A zero
spectral dimension at scales below the lattice spacing, dS � 0, coming from the fact that
the test particle feels the discrete spacing of the lattice: for too-short or infinitesimal times
δτ , the probe does not have the chance to diffuse from a given node to another. (B) A
peak larger than the topological dimension at the lattice scale. (C) At larger scales, there is
agreement with the smooth spectral dimension in the case of regular toroidal hypercubulations
(figure 3) and triangulations (figure 6). In particular, there is a plateau with height close to the
topological dimension, the more extended the larger the complex. This cannot be found for
spherical equilateral triangulations, which only exist for certain sizes too small to establish a
plateau (figure 4). Triangulations obtained by subdivisions via Pachner 1-(d+1)-moves do not
reproduce the topological dimension neither in the unrescaled nor rescaled case (figures 8 and
9). Thus, already at the classical level the spectral dimension is very sensitive to the precise
structure of the discrete manifolds combinatorics.
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Figure 10. Spectral dimension of the simplicial complex obtained by 10k single
subdivisions, k = 0, 1, 2, 3, around the same vertex of the N0 = 9 torus triangulation
(left) and of a single triangle (right), both unrescaled. In both cases, dS is independent
of the global structure in the large complex size limit. (In the right plot, the spectral
dimension goes to infinity for large τ since there is no zero eigenvalue in the spectrum
of the Laplacian due to the boundary).

5. Spectral dimension of states of quantum geometry (in d = 2)

After these preliminary considerations, we can now calculate the spectral dimension of various
states of 2+1 Euclidean quantum geometry. First, we want to consider coherent states, that is
states which are peaked both on an intrinsic, two-dimensional spatial geometry as well as on
its conjugate extrinsic geometry. The aim is to identify the quantum corrections to the classical
spectral dimension and find the dependence of dS on the parameters of the coherent states.
In these cases, our results show only qualitative and small deviations from the classical case.
In an attempt to uncover stronger quantum effects, we finally investigate superpositions of
coherent states. The resulting spectral dimension turns out to be an average of the superposed
cases, thereby showing a more distinct quantum behavior.

5.1. Coherent spin-network states

In the LQG literature, the starting point to get coherent LQG states is usually group coherent
states in the holonomy basis. Coherent states peaked at phase space points (g, x = 0) ∈ T ∗G ∼=
G × g can be obtained from the heat kernel Kσ on the group G = SU (2) with Peter–Weyl
expansion:

ψσ
(g,0)(h) = Kσ (hg−1) =

∑
j

d j e− Cj
2σ2 χ j(hg−1). (5.1)

Here d j refers to the dimension and χ j to the character of the G representation labeled by j, σ
is a positive spread, σ ∈ R+. There are two known constructions for a generalization including
a non-trivial g-dependence: Either by analytic continuation to eixg ∈ GC such that [48–50]

ψσ
(g,x)(h) = Kσ (hg−1e−ix) (5.2)

or using the flux representation [51] where the heat kernel appears to be a (κ-non-commutative)
Gaussian

ψ̃σ
(g,x)(y) = F

[
ψσ

g

]
(x − y) ∝ e

− 1
2κ2

(x−y)2

2σ2
� � e

i
κ
|P(g)|(x−y). (5.3)

Here, κ = l−1
Pl and plane waves eg(x) := e

i
κ
|P(g)|x use group coordinates �P(g) = sin[θ (g)]�n

in the usual coordinates in which the group element is parametrized as g = eiθ�n·�σ , with �σ the
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Pauli matrices. The notation e� indicates the non-commutative exponential defined as a power
series expansion of �-monomials [42]. Transforming back to group space, this results in just
an additional plane wave factor,

ψσ
(g,x)(h) = ψσ

(g,0)(h) eh(−x). (5.4)

Since we are considering the Laplacian operator diagonal in the spin representation, we
need the spin expansion of these coherent states. In both cases, there is a limit (for large enough
spins) in which these can be described [48, 49, 51, 52] as Gaussian-type states peaked at spin
representation labels of intrinsic geometry {Jl} and angles of extrinsic geometry {Kl}:

|ψ {Jl ,Kl}
� 〉 = 1

N

∑
{ jl}

ψ
{Jl ,Kl}
� ( jl )|�, jl〉, (5.5)

with spin-network basis coefficients

ψ
{Jl ,Kl}
� ( jl ) ∝

∏
l∈�

e− (Jl − jl )
2

2σ2 +iKl jl . (5.6)

In fact, following [51, 52], in the large-x approximation, one finds that the Jl can be identified
(up to a factor dependent on σ ) with the modulus x of the flux, and the Kl are angles in the
representation of the group elements gl (in the plane orthogonal to the flux x). For the details
we refer to [52] and [51] respectively, since in the following only the intrinsic curvature as
captured by the Jl will be relevant. Their dependence on σ does not play a role for fixed σ or
small variations of it, with respect to (assumed large) x.

The heat-trace expectation value is then

〈P̂(τ )〉{Jl ,Kl}
� = 1

N2

∑
{ jl}

∣∣ψ {Jl ,Kl}
� ( jl )

∣∣2〈�, jl |Tr eτ�̂|�, jl〉 (5.7)

∝
∑
{ jl}

∣∣∣∣∣∏
l∈�

e− (Jl − jl )
2

2σ2 +iKl jl

∣∣∣∣∣
2

Tr eτ 〈�, jl |�̂|�, jl〉 (5.8)

=
∑
{ jl}

[∏
l∈�

e− (Jl − jl )
2

σ2

]
Tr eτ��( jl ), (5.9)

from which the spectral dimension is derived according to equation (2.17). As the spatial
Laplacian does not depend on the extrinsic curvature, it is natural that also the phase of the
coherent state drops out of the expectation value.

The reason for considering coherent states here is twofold. First, as they are semi-classical
states peaking at classical geometries, it is interesting to check if their properties are reflected
in the spectral dimension. Second, if the quantum spectral dimension was comparable with the
spectral dimension of the classical geometries peaked at, the difference should be understood
as due to quantum corrections, which can be studied in a controlled manner in terms of the
parameters of the coherent states. These parameters are the spins Jl , the classical extrinsic
geometries Kl and the spread σ , as well as the graph � they are defined on. The interpretation
of the semi-classical limit in terms of these parameters is rather subtle here.

As far as the spread is concerned, with respect to the whole coherent state {Jl, Kl} there is a
value where Heisenberg inequalities are minimized, which would be the ‘most semi-classical’
case. On the other hand, since the spectral dimension on the spatial state is not dependent on
the extrinsic curvature, obviously the deviation from the classical spectral dimension vanishes
for σ = 0, i.e., states sharply peaked at the intrinsic curvature but totally random in the
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extrinsic one. Nevertheless, these states are highly quantum. More interesting for our purpose
are quantum effects of those states randomizing the intrinsic curvature, that is states with large
spread σ .

Furthermore, from the physical interpretation of the geometric spectra with corresponding
eigenbasis in terms of the spin representations, the limit Jl → ∞ is often seen as another semi-
classical limit.

Finally, one should not forget the dependence of the states on the underlying graphs. At
least with respect to the spectral dimension, classically we have already seen the important
dependence on the combinatorial structure. At the level of kinematical states, this dependence
is still poorly understood in the literature.

In the following, we will consider the dual 1-skeletons of the previous regular torus
triangulations as spin-network graphs �. They are parametrized by the number of nodes
|�0| ∝ pd and their spectral dimension converges to the topological dimension d if they are
large or fine enough, i.e., in the limit p → ∞ (see section 4.2). Therefore, in such a geometric
regime we can interpret the quantum corrections as actual deviations from the topological
dimension. Accordingly with this regular combinatorial structure, we will consider states
peaked at all equal Jl = J for l ∈ �1.

A direct implementation of equation (2.17) is unfeasible. This is because the number of
terms in the quantum sum over representations { jl} even with cutoffs jmin and jmax

( jmax − jmin)
L (5.10)

grows exponentially fast with the number of links L = |�1| = Nd−1. We have already
shown that only for large classical triangulations (e.g., for T 2 of the order 103; see figure 6)
a geometric regime is obtained. Furthermore, although the state amplitude for many spin
configurations vanishes due to the Clebsch–Gordan conditions implicit in the intertwiners, the
resulting effective space of spin configurations is highly non-trivial and, in general, not well
understood.

Alternatively, the quantum sum can be approximated by summing over some number of
configuration samples { jl} chosen randomly according to the coefficients |ψ(s)|2 (where the
norm must be included now to give a proper probability density).

If the space of representations is discrete, as for the spins of SU (2), this measure needs
to be discrete. Here we can choose the binomial distribution B. For large enough {Jl} and σ ,
this is in turn well approximated by the normal distribution N :

B

(⌊
2J2

J − σ 2

⌋
,

J − σ 2

J

)
� N

(
J,

σ√
2

)
. (5.11)

The floor function �·� is needed since the first argument must be an integer. The variable X =
B(J, σ ) is a random field dependent on J and σ . The probability density function associated
with it is, by virtue of the approximation (5.11), the Gaussian profile (πσ 2)−1/2 e−(J−x)2/σ 2

.
Using this method, we have evaluated coherent spin networks on the T 2 triangulations

discussed in section 4.2.
To compare dS for various peaks J, we choose the scale l∗ such that l2(J) (the scale of the

Laplacian) is kept fixed. That is, we include a rescaling factor r(J) = l2(J):

〈P̂(τ )〉{Jl ,Kl}
� ∝

∑
{ jl}

[∏
l∈�

e− (Jl − jl )
2

σ2

]
Tr eτ r(J)��( jl ). (5.12)

Without this rescaling, as in the classical cases, one observes a shift ln τ → ln τ −ln r(J) of the
dS plot due to the � → �/r(J) scaling of the Laplacian. We will include this rescaling factor
in the following calculations, mainly to allow for a more direct comparison of the spectral
dimension of states.
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Figure 11. Left: dS for coherent states peaked at l(J) = J + 1/2 = 16, 32, 64 (solid,
dashed and dot-dashed curve) on a regular torus triangulation (with N2 = 18×42 = 288
triangles) with spread σ = √

J − 1/2. Right: deviation of dS from the classical case.
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Figure 12. Left: dS for coherent states peaked at l(J) = J + 1/2 = 16 with spread
σ = 1, 2, 3,

√
15 (dotted, dot-dashed, dashed and solid curve) on a regular torus

triangulation (with N2 = 18 × 43 = 1152 right triangles). Right: deviation of dS

from the classical case.

We start with testing the dependence of coherent states with respect to the spin J peaked at.
As expected, the quantum spectral dimension function of these states does not differ much from
the classical version: for Jl = J = O(10) and σ = O(1), the deviation is at most of order 10−2

(figure 11). This is an important consistency check. Note, though, that all the known coherent
states are peaked at discrete geometries. Therefore, strictly speaking, it is not the topological
dimension but the particular spectral-dimension profile of these discrete geometries to be
approximated well by the coherent states. What can be considered as quantum corrections in
the spectral dimension is thus the difference between the quantum spectral dimension and the
spectral dimension of discrete geometries.

Second, we test the dependence of states with spread σ . Since the binomial distribution
approximation (5.11) is only defined for σ 2 < 2J, it is difficult to probe the regime of larger
σ within this method. Probing the σ dependence for Jl = 10, we observe increasing quantum
corrections, but still of order O(10−2) (figure 12).

The main challenge when extending the calculations to larger spreads is to deal with
the highly non-trivial space of group representations due to the Clebsch–Gordan conditions,
as we noted. However, there is a very straightforward way to define pure states (or their
superpositions) by bounding the range of spins to an interval I = [ jmin, jmax] such that
the Clebsch–Gordan conditions are trivially fulfilled for any combinatorial (i.e., simplicial
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Figure 13. Left: dS for a sum over seven random states with spins in IJ for J =
15.5, 31.5, 63.5 (solid, dashed and dot-dashed curve) on a regular torus triangulation
(with N2 = 288). Right: deviation of dS from the classical case.

complex) structure of the states. In terms of the difference J = jmax − jmin, one could for
instance construct states uniformly randomized over the interval

IJ = [
1
3 (2J + 1), 1

3 (4J − 1)
] ∩ 1

2 N, (5.13)

on which any three elements satisfy the Clebsch–Gordan conditions.
As an example, we consider uniformly distributed spins for the same J as in the above cases

of coherent states (figure 13). Again, the difference with respect to the classical triangulation
randomized around is of order O(10−2). It is worth noticing that, in all the above examples of
quantum states, the difference with the corresponding classical state is rather marginal. The
key result of the calculations for coherent states on a given regular triangulation is that the
quantum corrections are very small, since by varying spins J and spread σ one gets deviations
from the classical spectral dimension only of order ∼10−2dS.

5.2. Summing semi-classical (kinematical) states

A basic feature of quantum mechanics is the superposition principle. The coherent and
randomized states already are a typical example in this sense, as they are superpositions
in the spin-network basis. One can probe the quantum features of spatial geometry also by
constructing other kinds of superposition states. One obvious strategy is to superpose coherent
states themselves. There are various ways one could do so. Possible choices would be sums
in the coherent-state labels J, K and σ ,

|�, {cJl ,Kl ,σ }〉 =
∑

Jl ,Kl ,σ

cJl ,Kl ,σ

∣∣ψ {Jl ,Kl}
�

〉
, (5.14)

or over different complexes and their dual graphs �:

|{c�}, Jl, Kl, σ 〉 =
∑

�

c�

∣∣ψ {Jl ,Kl}
�

〉
. (5.15)

We will first deal with superposed states on the same complex and consider superpositions of
complexes in the next section.

In the case (5.14), the expectation value of the heat trace does not simplify to a single sum
over the expectation values of squared coefficients. Assuming trivial intertwiners,
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Figure 14. dS for the superposition of coherent states l(J)2 = J + 1/2 = 16, 32, 64
on a regular torus triangulation (with N2 = 18 × 42 = 288 triangles) with unrescaled
Laplacian compared with the states summed over (dashed curve; see figure 11).

〈P̂(τ )〉ψ =
∑

Jl ,Kl ,σ

∑
J′

l ,K
′
l ,σ

′

∑
{ jl′ }

∑
{ jl}

cJl ,Kl ,σψ
{Jl ,Kl}
� ( jl )cJ′

l ,K
′
l ,σ

′ψ
{J′

l′ ,K
′
l′ }

� ( j′l )〈�, jl |Tr eτ�̂|�, j′l〉

=
∑

Jl ,Kl ,σ

∑
J′

l ,K
′
l ,σ

′
cJl ,Kl ,σ cJ′

l ,K
′
l ,σ

′
∑
{ jl}

∏
l∈�

e− (Jl − jl )
2

2σ2 +iKl jl e− (J′
l − jl )

2

2σ ′2 +iK′
l jl Tr eτ��( jl )

=
∑

Jl ,Kl ,σ

∑
J′

l ,K
′
l ,σ

′
cJl ,Kl ,σ cJ′

l ,K
′
l ,σ

′
∑
{ jl}

∏
l∈�

e
− 1

2

[
(Jl − jl )

2

σ2 + (J′
l − jl )

2

σ ′2

]
−i(Kl−K′

l ) jl
Tr eτ��( jl ). (5.16)

Assuming a fixed extrinsic curvature Kl there is no phase causing interferences, and for sharply
peaked coherent states the cross terms with Jl �= J′

l are suppressed. In this case, one would
expect that the ‘naive’ sum disregarding the cross terms∑

Jl ,σ

∑
{ jl}

|cJl ,σ |2
[∏

l∈�

e− (Jl − jl )
2

σ2

]
Tr eτ��( jl ) (5.17)

would still be a good approximation for 〈P̂〉.
When summing over coherent states peaked at different spins, it makes a crucial difference

whether we take them as peaked at classical geometries of different size or at the same classical
geometry given by a fixed scale l = l�J. In both cases, the spectral dimension turns out to
be an average of the spectral dimensions of the parts summed over. However, in the first
case (figure 14) these individual profiles are shifted with respect to one another such that the
superposition has dimension of order one only in the regime where most of them overlap. In the
second case (figure 15), all profiles have features at the same scales, so that the superposition
yields a dS plot close to the classical geometry peaked at; the quantum correction is even less
important, being smaller than for the individual coherent states (figure 11).

In this section, we have investigated the spectral dimension of coherent states and
superpositions of these on toroidal complexes. Quantum corrections are small in the small-spin
regime (figure 11), for large spreads (figure 12) and for total randomization in a given spin
interval (figure 13). Superpositions of coherent states peaked at the same geometry smoothen
out the quantum deviations even more (figure 15). Only superpositions of states peaked at
different geometries show a distinct behavior. This happens when the spectral dimension of
the individual states is noticeably different from one another (figure 14).
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Figure 15. Left: dS for the superposition of coherent states l(J)2 = J+1/2 = 16, 32, 64
on a regular torus triangulation (with N2 = 18 × 42 = 288 triangles) with rescaled
Laplacian compared with the states summed over (dashed curve; see figure 11). Right:
deviation of dS from the classical case.

6. Summing complexes

In quantum gravity, another source of non-trivial features in effective geometry is expected to
come from summing over the combinatorial structures. Thus, in this section we will investigate
superpositions of states on distinct combinatorial complexes6.

In the following, we are interested in superposed states of the form

〈P̂(τ )〉 ∝
∑

�

∑
{ jl}

w2
�

∣∣ψ {Jl ,Kl}
�

∣∣2〈�, jl |Tr eτ�̂|�, jl〉. (6.1)

In this definition, we have included a weighting factor w� for the graphs to be superposed.
A natural choice would be, for example, w� = 1/sym�, a symmetry factor for the
automorphism group, which may or may not be included. The calculations we will present do
not include it, but later on we will briefly discuss the effect of weighting, which we checked
in detail. Comparing with the heat-trace expectation value of the superposition of coherent
states on the same complex, equation (5.16), the sum here does not contain cross terms since
spin-network states on different graphs are orthogonal.

We will only consider the summation over equilateral triangulations. These can be
understood as the extreme case of minimal spread σ , that is, sharply peaked at the intrinsic
curvature but totally randomized in the extrinsic one. The reason is that we have already seen
in the previous section that the effect of the quantum fluctuations in coherent states is only
of order 10−2. One would then expect that the effect of superposing truly quantum coherent
states can be reproduced by a superposition of the discrete geometries associated with their
peak values (equation (6.1)). Indeed, we will find that the effects of superposing graphs are of
order higher than 10−2. This justifies the approximation of the full sum, which in the case of
superposition of graphs is considerably more challenging from a numerical point of view.

6 In CDT these are the only dynamical degrees of freedom. The fact that the spectral dimension of the spacetime
sum-over-histories is scale dependent in the CDT ensemble [6, 8] is thus a consequence of (and eventually needs
to be explained by) the way it is summed over a class of simplicial manifolds. Although here we restrict ourselves
to kinematical spatial states and their superpositions, when summing with certain weights over simplicial manifolds
we are in a setting quite comparable with CDT, and similar results could be expected. The main difference is that,
while in CDT there is a precise description for the integration measure given by the exponential of the Regge action
of equilateral triangulations, in the context of kinematical states of quantum geometry there is no unique prescription
for how these states should be superposed on different complexes, in order to obtain some approximately smooth
geometry. Therefore, our considerations are somewhat explorative and driven mainly by the aim of unveiling generic
features of superpositions of complexes.
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Figure 16. Sum over the regular T 2 triangulations of figure 6 (included as dashed curves
for comparison) with trivial weights, unrescaled (left) and rescaled (right).
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Figure 17. Sum over all rescaled regular T 2 triangulations of size p = 3, 4, . . . , 43
(solid curve) and, for comparison, the individual p = 3 and p = 43 cases (dotted and
dot-dashed curve).

As before, it is crucial whether the superposed triangulations are taken as purely
combinatorial or as refinements of the same smooth geometry through rescaling the edge
lengths (figure 16). While in both cases the result is an averaging of the spectral dimension
(depending on the weights w�), in the first one this effect takes place at larger diffusion scales,
in contrast with the small-diffusion-scale regime of the second.

The most interesting case here is the second (rescaling). Since all complexes summed
over are triangulations of the same smooth geometry, it can be interpreted as a special case of a
semi-classical state incorporating a (kinematical) continuum approximation (which, obviously,
can only be implemented up to some finite order in our explicit calculations). Furthermore, the
peak in the spectral dimension is a discreteness effect which does not appear for these states
as a result of averaging.

For these reasons, it is interesting to calculate not only the superposition of a few rescaled
triangulations but also of all regular triangulations of the type described in section 4.2, of
size ranging from p > 3 up to some pmax (figure 17). The effect is a more extended plateau.
Thus, from these calculations one would expect the appearance of a plateau at the topological
dimension for sums over more and larger triangulations, but without the discretization effect
of a peak at the characteristic lattice scale.
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Figure 18. Sum over randomly subdivided T 2 triangulations (dashed line, for
comparison; see figure 9), unrescaled (left) and rescaled (right).

Finally, the same can be done for the randomly subdivided triangulations. The effect of
summing is, again, an averaging of the dS profiles. Qualitatively, these are quite different from
the regular triangulations.

In this final section, we have seen that the superposition of states on distinct combinatorial
complexes produces an interesting behavior of the spectral dimension. For a superposition
of regular triangulations of the same smooth geometry but of different size, we find that the
discreteness artifact of the peak, appearing in classical cases, disappears (figure 16) and a
plateau with the topological dimension is obtained (figure 17). Still, there are no hints for
an effective smaller dimension at smaller scales in one superposition state. The running of
the spectral dimension in the profiles of the figures is, in fact, mainly due to discreteness
artifacts (dS → 0 at small τ ) and topological effects (dS → 0 at large τ ). On the other
hand, superpositions of 1-3 Pachner subdivisions have a dS plateau at a height smaller than
the topological dimension (figure 18). Summarizing, the averaging effect stemming from
superposition states is the only manifestation of additional geometric data in the profile of the
spectral dimension, which would be otherwise reproduced by a classical triangulation.

7. Summary and outlook

In this paper, we have explored the spatial spectral dimension of states of quantum geometry
in the case of (2+1)-dimensional Euclidean LQG. To this end, we have discussed the definition
of the spectral dimension for combinatorial complexes equipped with the geometric variables
defining the LQG configuration space. We have then showed that quantum states have a well-
defined spectral dimension, identified with the scaling of the quantum expectation value of the
heat trace. We also checked the quantum observable properties of these LQG geometries.

We have presented for the first time a systematic classification of topological effects
and discreteness artifacts in classical settings, pushing the analysis to analytic expressions
whenever possible. After that, we studied coherent states in LQG, both as superpositions
of geometries on the same complex and as superpositions of complexes, in particular
triangulations of the same geometry. One of the main results of this work is the lack of
any strong indication of a dimensional flow not due to topology or discreteness, as otherwise
suggested in [27].

To clarify the source of this discrepancy, let us discuss the differences between our work
and [27] more in detail. The basic idea in [27] is to consider the scaling of the (quantum)
Laplacian with a length scale �. Since the Laplacian scales as the inverse metric, and the metric
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roughly scales as an area, one could relate the scaling of the spectrum of the area operator in
LQG to the scaling of the quantum Laplacian. With the further identification, on one hand,
of the length scale with the spin representation label j as � = lPl

√
j, and from dimensional

reasonings in momentum space on the other hand, one ends up with an effective dispersion
relation which is eventually used to derive the spectral dimension, as in the smooth approaches
mentioned in the introduction.

Our starting point, in contrast, is to consider the full structure of the Laplacian as directly
acting on states of quantum geometry. The proper discrete Laplacian (2.11) indeed turns out
to have a much richer structure than in the inverse-area heuristic argument. It is not obvious
whether there could be any regime of approximation where the dimensional reasoning about
the inverse area would apply.

The Laplacian takes necessarily the form of a matrix with non-zero entries for incident,
neighboring nodes. Therefore, it is further required to take the full underlying combinatorial
structure into account, which is neglected in the approximations of [27]. Also, the validity of
an approximation based on a single simplex is hard to understand from our perspective, as
we have found that it is crucial to consider large enough complexes in order to reproduce the
topological dimension at large scales (small probing resolution). As we have seen, calculations
on triangulations with few simplexes, such as the dipole, do not show any geometric regime
between the ones in which discreteness and topology effects dominate, thus forbidding any
interpretation of the spectral dimension as a spatial dimension.

Nevertheless, one might try to understand the approximations of [27] in terms of regular
lattices such as the ones used here with the regular triangulations. However, in contrast with
the non-trivial dispersion relation derived from the area spectrum there, in our setting the
effect of the discrete (length) spectrum seems to be washed away in a twofold way. First,
because of the more involved manner in which the spectra are entering the expression of the
Laplacian and, second, because of the tracing over the dual nodes of large complexes. These
two differences seem to be the main reason for the distinct results. Due to the complexity of
the problem, we have been unable to obtain the explicit dependence on such geometric data in
the spin representation (pure or coherently peaked at) in a closed, analytic form. Yet, this can
still be analyzed when comparing states labeled with different spins. For the latter, our results
clearly show only a minimal dependence (figure 11).

Notwithstanding, it has to be stressed that the calculations we have presented are only a
first step, so our results can only be seen as a hopefully interesting indication of how actual
LQG geometries behave. First, we have analyzed the spectral dimension only for kinematical
states and in 2+1 Euclidean LQG. In [27], the argument was for kinematical states in 3+1
dimensions, although the result was interpreted as the spectral dimension of the full (3+1)-
dimensional spacetime and the effective dispersion relation was inserted in a heat trace over
four-dimensional momentum space. Furthermore, the argument was extended to physical states
on certain one-simplex spin foams in the boundary formalism, in 2+1 dimensions [28] as well
as in 3+1 dimensions [29]. The spectrum yielding the effective dispersion relation was taken
to be the same in both dimensions there, but for the full Laplacian considered in the present
paper the step to 3+1 dimensions gives rise to essential differences, as already explained in
the introduction. It is also clear that, eventually, the quantum spectral dimension should be
considered on physical states, i.e., the quantum dynamics needs to be taken into account for
the results to have a solid physical significance. Let us briefly discuss how these issues could
be addressed.

The most significant differences for gravity in 3+1 dimensions versus 2+1 dimensions
lie in the dynamics. In this respect, one would not necessarily expect crucial qualitative
discrepancies at the level of kinematical states in the quantum theory. However, in LQG the
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polyhedral interpretation in terms of the spectra of geometric observables is different in that
the length spectra in 2+1 dimensions already provide a classical geometric interpretation as
Regge geometries, while in 3+1 dimensions the corresponding geometric variables are not
sufficient. More variables such as dihedral angles would be needed, but their corresponding
quantum operators do not commute.

In principle, these uncertainties do not pose any obstacle to define the Laplacian [33] and
analyze the quantum spectral dimension. Such features could be effectively captured using
the flux representation of states and operators [53] or, alternatively, the spinor representation
[54]. Beside the implicit operator ordering ambiguities, the major challenge in pursuing this
step is just technical. The explicit form of the Laplacian becomes very complicated and clever
ideas and approximations would be needed to cast the expectation value of the corresponding
heat trace into a form feasible for actual computations. This is going to be an interesting
challenge, as the non-commutativity in 3+1 dimension might give rise to unexpected features
in the quantum spectral dimension.

From the point of view of a complete theory of quantum gravity, the challenge to include
the full dynamics is more important. This is indeed the starting point for studying the spectral
dimension of spacetime, which is the actual quantity mainly studied in the quantum gravity
literature so far. This observable could be defined in a covariant, path-integral-like formalism.
Then, the expectation value of the heat trace would amount to the insertion of the heat-trace
function in appropriate variables into a sum over spacetime histories. Independently of the
precise model of LQG dynamics chosen (i.e., the exact spin-foam or, equivalently, group field
theory model), new issues arise.

A first challenge is the concept of spacetime heat trace as a path-integral observable.
The latter is not simply a polynomial in the configuration variables. This raises several
computational difficulties: the insertion of the heat trace in the path integral cannot be easily
split into integrals of monomials of local variables. As a result, it seems quite hard, if not
impossible, to solve the path integral with such heat-trace insertion. One should then find
some viable approximation, for example one in which earlier results [55] on ‘ultralocal’
observables (i.e., observables depending only on the moduli of the discrete B-field values) in
the Ponzano–Regge model can be used to evaluate the heat-trace expectation value.

Even if a method for solving the path integral was at hand, a further issue is raised
by degenerate configurations in the state sum. Already in the (2+1)-dimensional theory, the
spin-foam sum generically contains degenerate geometries, in contrast with its kinematical
states as shown in section 2.4. We have done preliminary calculations on small complexes
showing this feature [56]. As a consequence, the spacetime heat-trace insertion has a complex
part. This is not, in itself, a sign of any inconsistency. Nevertheless, it raises an interesting
question about the physical relevance and interpretation of a complex spectral dimension, and
it may represent an intriguing line of investigation in the analysis of the spin-foam quantum
dynamics.

Finally, a general issue with any explicit spin-foam evaluation is divergences. This is
crucial for a global object such as the spectral dimension, since common regularization
techniques may not be appropriate. For instance, gauge-fixing geometric data along a maximal
tree of the dual complex [57] are problematic because the heat trace might trivialize on the
corresponding configurations. Considering coherent states on the boundary suppressing larger
spin configurations (the cause of divergences) in the bulk works only for smaller complexes.
But, as we have discussed, larger complexes are needed in order to obtain a meaningful spectral
dimension. One way to circumvent this problem would be spin-foam models with quantum
groups [58]. An actual solution, however, would consist in the proper renormalization of spin
foams in terms of their group field theory (second-quantized) description [59, 60].
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